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Abstract
Congenital heart diseases (CHD) represent the most common birth defect in human. The majority of cases are
caused by a combination of complex genetic alterations and environmental influences. In the past, many disease-
causing mutations have been identified; however, there is still a large proportion of cardiac malformations with
unknown precise origin. High-throughput sequencing technologies established during the last years offer novel
opportunities to further study the genetic background underlying the disease. In this review, we provide a roadmap
for designing and analyzing high-throughput sequencing studies focused on CHD, but also with general applicability
to other complex diseases. The three main next-generation sequencing (NGS) platforms including their particular
advantages and disadvantages are presented.To identify potentially disease-related genomic variations and genes, dif-
ferent filtering steps and gene prioritization strategies are discussed. In addition, available control datasets based
on NGS are summarized. Finally, we provide an overview of current studies already using NGS technologies and
showing that these techniques will help to further unravel the complex genetics underlying CHD.

Keywords: next-generation sequencing; congenital heart disease; sequence variations; variation filtering; whole-exome data-
sets; genomics

INTRODUCTION
Over the last years, the application of automated

Sanger sequencing and microarrays for genomic

and genetic analyses has been increasingly replaced

by next-generation sequencing (NGS) technologies.

These high-throughput technologies are able to gen-

erate far more sequence data, in less time and with

lower costs. This adds a particular advantage to many

non-Mendelian diseases with a clear genetic compo-

nent, where it has been a great challenge to identify

the contributions made by single or even multiple

genes. Doing so might permit the establishment of a

profile for the disease that could be used for diagnos-

tic purposes as well as predicting the likely outcome

of particular therapeutic interventions. Using NGS,

previously inaccessible insights into cognitive and

neurological disorders, schizophrenia, cancer and

cardiovascular diseases have been gained [1–5] and

its application in clinical settings is increasingly

being explored [6–9]. These technologies also open
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new opportunities for the study of cardiovascular

development and complex human disorders like

congenital heart disease (CHD). Here, we give an

overview about the latest NGS technologies and

provide a roadmap for study design and analysis of

genomic CHD data. Furthermore, available control

datasets and studies using NGS to investigate the

genetics of congenital heart malformations are

summarized.

CHD are the most common birth defect in

human with an incidence of �1% in all live births

[10, 11]. For the United States it is estimated that

�760 000 individuals with CHD born in 1990 or

later will be alive by the year 2020 [12]. In

Germany, a prevalence of �280 000 individuals

with CHD in 2020 is expected [13]. CHD comprise

a heterogeneous group of cardiac malformations that

arise during heart development and the long-term

clinical outcome after corrective surgery or interven-

tion varies depending on the malformation as well as

associated non-cardiac abnormalities [14]. Already

decades ago, a multifactorial background of CHD

with genetic–environmental interactions has been

assumed [15]. A number of environmental influences

during pregnancy are well-known to increase the

risk of CHD, such as alcohol, teratogens and infec-

tious agents [16–18] as well as common diseases like

obesity and diabetes [19, 20]. Approximately 30% of

cardiac malformations are part of syndromic disorders

like Down syndrome, 22q11.2 deletion syndrome

and Holt–Oram syndrome [21–23]; however, the

majority of CHD occurs sporadically and does not

follow Mendelian inheritance [15].

In the last decades studying familial cases using

classical linkage analyses or performing candidate

gene approaches based on knowledge gained in

model organisms such as knockout mice have

helped to gather major insights into the genetic

background of CHD. Examples are families with

atrial septal defect and conduction delay harboring

mutations in the homeobox transcription factor

NKX2-5 [24], or a large family suffering from iso-

lated septal defects related to a missense mutation in

the transcription factor GATA4 [25]. Based on

knockout mouse data, the gene CITED2 was ana-

lyzed using denaturing high-performance liquid

chromatography (DHPLC) and direct sequencing,

resulting in the identification of mutations in patients

with different types of cardiac malformations [26].

Chromosomal aberrations including copy number

variations (CNVs) can be identified by cytogenetic

analysis including fluorescent in situ hybridization

(FISH). For example, the majority of DiGeorge syn-

drome cases are caused by a chromosomal microde-

letion (22q11) [27, 28]. However, some of the

patients lack this deletion but harbor mutations in

the T-box gene TBX1 located in 22q11, displaying

its important role for CHD [29]. Array comparative

genomic hybridization (array CGH) offers a higher

resolution for screening of submicroscopic chromo-

somal imbalances. The first studies using array CGH

showed that �17% of CHD patients harbor poten-

tially disease-causing rare chromosomal aberrations

[30, 31]. More recently, genome-wide SNP arrays

[32] were used to identify copy number changes in

sporadic CHD [33, 34]. To find single nucleotide

polymorphisms (SNPs) associated with complex dis-

orders, genome-wide association studies (GWAS)

have been performed in large cohorts comprising

hundreds to thousands of individuals [35]. The first

studies on CHD identified loci associated with the

risk of Tetralogy of Fallot (TOF) and septation

defects [36–38].

Taken together, these studies have provided valu-

able insights into the genetics of CHD, as reviewed

elsewhere [39–41]. However, there is still a large

proportion of cardiac malformations for which no

underlying cause could be identified. NGS tech-

niques now provide a powerful novel approach to

further elucidate the genetic background of CHD.

They allow the simultaneous analysis of thousands of

genes or even the whole genome in large patient

cohorts. In contrast to microarrays, they are not de-

pendent on DNA hybridization to preselected

probes, which facilitates the identification of novel

variations at a single-base resolution without a priori
sequence information. Thus, they will enable the

discovery of novel disease genes and networks.

Nevertheless, the identification of true disease-

related genes is complicated by the huge amount

of data that is generated. Large-scale population stu-

dies showed that a high number of potentially patho-

genic variations can be observed in any healthy

individual [42–44], with >95% being rare [42].

Using NGS, some variations identified to be disease

causing in the past based on their exclusive occur-

rence in patients are now also found, albeit at very

low frequencies, in healthy individuals and seem to

be tolerated in the individual context. Thus, the ap-

plication of novel sequencing approaches to the ana-

lysis of complex disorders like CHD remains

challenging.
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STUDYDESIGN
The current high-throughput sequencing technolo-

gies offer a variety of different study designs, which

have to be considered carefully with regard to the

scientific question being asked. The number of indi-

viduals selected for sequencing, the pooling of sam-

ples (multiplexing), the number of selected target

bases, the choice of the sequencing platform as

well as the desired read depth and length determine

the costs and the major bottlenecks for research

projects.

One important aspect of study design is the selec-

tion of individuals for sequencing. Depending on the

research question, the availability of samples and

costs, one might focus on families (e.g. trios), unre-

lated individuals or cases with extreme phenotypes.

For small cohorts, the selection of well-defined,

homogenous (sub)phenotypes can increase the sig-

nificance of the study, as has been shown for apical

hypertrophic cardiomyopathy [45]. However, large

consortia now enable the analysis of hundreds of pa-

tients, which represent diverse CHD phenotypes.

Using barcodes for multiplexing allows the simultan-

eous sequencing of a larger number of samples and

thus reduces the time and costs for data generation

when analyzing large cohorts.

Another crucial step is the choice between

whole-genome sequencing (WGS), whole-exome

sequencing and targeted resequencing. They all

have their individual strengths and limitations and

are suitable for different scientific questions. WGS

allows gaining a broad understanding of the full

range of genomic variations including e.g. enhancers

and promoters. However, due to high costs and time

needed to achieve an adequate read depth, WGS is

not feasible for many studies. Thus, whole-exome

and targeted resequencing approaches have been es-

tablished as an alternative. Whole-exome sequencing

enables the sequencing of almost all protein-coding

regions, often combined with a high coverage. For

rare inherited disorders, it has been shown that focus-

ing on the exome is reasonable because the majority

of mutations responsible for Mendelian diseases affect

protein-coding sequences [46]. If knowledge about

possible candidate genes and disease pathways is al-

ready available, the targeted resequencing of selected

regions is a promising option. To select genomic

regions for targeted resequencing, data from previous

projects like sequencing analyses, GWAS studies,

animal models as well as publicly available databases

and other web resources can be used. In addition,

gene prioritization tools can be employed to narrow

down the list of genes of interest [47, 48], which

enables their analysis in a much larger cohort of pa-

tients and controls. For CHD, the CHDWiki offers a

repository of current knowledge on the genetic basis

of the disease [49]. However, due to the constantly

decreasing sequencing costs, whole-exome sequen-

cing should be applied if possible, because it is not

limited to the selection of genes. Thus, the more

comprehensive data allow the discovery of novel dis-

ease pathways and can be used for subsequent pro-

jects. Both exome and targeted resequencing require

sequence enrichment technologies like array-based

sequence capturing. Care should be taken when

comparing different datasets, because the use of dif-

ferent enrichment techniques can lead to differences

in the captured regions ranging from whole genes

down to single bases.

In addition to identifying the genomic positions

and nucleotide changes of a wide range of alter-

ations, recent advances in sequencing technologies

also enable the independent determination of both

haplotype sequences of individual genomes. This

phase information, i.e. the separation of maternally

and paternally derived sequences, are important for

understanding gene function and disease [50]. The

successful application of this approach has been

demonstrated in several studies [51–53]. It allows

the discrimination of cis and trans configurations of

mutations and can provide valuable insights into dis-

ease mechanisms like compound heterozygosity.

Next-generation sequencing platforms
Once a decision about the samples and genomic re-

gions to be sequenced has been made, the next step

is to select a sequencing platform. NGS technologies

are evolving rapidly and during the last years several

platforms were released. Although they differ in their

biochemistry, all follow the principle of cyclic-array

sequencing, where an array of DNA features is itera-

tively enzymatically sequenced combined with

imaging-based data detection [54].

Recently, the HiSeq 2000/2500 instrument

(Illumina), GS FLXþ system (Roche/454) and

SOLiD 5500/5500xl Wildfire system (Life Technol-

ogies) have set the standard for high-throughput

sequencing. There are differences between these

platforms resulting in specific advantages and disad-

vantages (Figure 1), which also have to be taken into

account when comparing different datasets. In add-

ition to the standard high-throughput sequencing

High-throughput sequencing & genomic variations in CHD 53
 at G

eneralverw
altung der M

ax-Planck-G
esellschaft on A

pril 10, 2014
http://bfg.oxfordjournals.org/

D
ow

nloaded from
 

whole exome
-
whole exome
-
Whole exome
s
re-sequencing
re-sequencing
whole exome
re-sequencing
,
http://bfg.oxfordjournals.org/
http://bfg.oxfordjournals.org/


platforms, three benchtop platforms have been

released, envisaged for smaller laboratories and the

clinical diagnostic market [55]. The MiSeq (Illu-

mina), 454 GS Junior (Roche/454) and Ion Torrent

PGM/Ion Proton (Life Technologies) are lower

throughput fast-turnaround instruments, which

need much less instrument space and offer less set-

up [55, 56].

Figure 1: NGS platforms. Overview of the three most common high-throughput sequencing platforms currently
available. The information provided are based on company sources alone. B, Billion; bp, base pairs; hrs, hours; Gb,
Giga bases; Mb, Mega bases; nt, nucleotides; PCR, polymerase chain reaction. *Illumina HiSeq 2500 only.
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In general, a higher number of sequence reads

from NGS results in greater sequencing depth and

thus in higher sequence confidence. For example,

the different phases within the 1000 Genomes Pro-

jects range from low coverage (2–6�) for whole-

genome sequence data to high coverage (50–100�)

for exome sequence data [57]. Moreover, the overall

accuracy and specific error distribution (e.g. ten-

dency for systematic errors) of the different technol-

ogies have to be considered [54].

IDENTIFICATIONOF GENOMIC
VARIATIONS
Single nucleotide variations (SNVs) represent the

most abundant type of genomic variation, followed

by short (<50 bases) insertions and deletions

(InDels), summarized as local variations. Common

SNVs (SNPs) occur in >1% of a population.

InDels are both less frequent and subjected to a

stronger purifying selection compared with SNVs

because they create larger changes in coding regions

such as frameshifts and insertions/deletions of amino

acids. In contrast, SNVs often produce synonymous

changes with less or no impact on gene function

[58].

After sequencing, the first preprocessing step is the

quality assessment of the raw sequence reads. Several

tools are available for this purpose, including FastQC

(http://www.bioinformatics.babraham.ac.uk/projec

ts/fastqc/), FASTX-Toolkit (http://hannonlab.cshl.

edu/fastx_toolkit/) and NGS QC Toolkit (http://

www.nipgr.res.in/ngsqctoolkit.html) [59], which all

can also be used for the handling of NGS data in

general.

The method of choice for the identification of

local variations is the mapping of sequence reads to

a known reference genome (alignment-consensus

approach). Many algorithms have been developed

specifically for this purpose (e.g. Bowtie 2, BWA,

RazerS 3, SOAP3 [60–63]), which has been re-

viewed elsewhere [64].

After taking sequencing and alignment problems

into account (e.g. using the GATK realignment

[65]), several SNV and InDel calling tools can be

used, such as mpileup (samtools), GATK,

VarScan2, SOAPsnp, SOAPindel and Pindel

[65–71], as reviewed elsewhere [72, 73]. From the

computational perspective, algorithms for the detec-

tion of SNVs are much more advanced than for the

detection of InDels, partially due to the difficulties of

detecting InDels in relatively short sequence reads.

However, having long reads from NGS does not

necessarily help to find true InDels. The platform

from Roche/454 produces reads with a length of

up to 1000 bp (Figure 1) but tends to identify

many false InDels because of its problem to correctly

assess the length of homopolymer repeats, resulting

in over- and undercalls [74].

CNVs are much larger genetic alterations (up to

millions of DNA bases). There are four main com-

putational methods for detecting copy numbers from

NGS data, namely read-depth, read-pair, split-read

and assembly-based methods. Assembly-based

approaches perform best for smaller genomes and

are less widely used for the human genome because

the assembly in repeat regions is difficult with short

read lengths [75]. Split-read methods (e.g. Pindel

[71]) can detect deletions and small insertions at

single base pair resolution, thus defining the exact

breakpoint [32]. They were first applied to longer

reads from Sanger sequencing [76] and they are cur-

rently used to identify rearrangement points in the

long sequence reads from Roche/454 (Roche GS

Reference Mapper). Read-pair approaches (e.g.

PEMer, BreakDancer, VariationHunter [77–79])

consider the span and orientation between two

pairs of reads (paired-end) [32] but they are limited

by the insert size when detecting insertions (see ‘Pros

and Cons’ in Figure 1) [80]. Read-depth methods

(e.g. mrCaNaVar and CNVnator [81, 82]) assume

that the mapped reads are randomly distributed

across the reference genome or targeted regions.

They investigate differences from the expected read

distribution to detect duplications (higher read

depth) and deletions (reduced read depth) [32].

IDENTIFICATIONOF CANDIDATE
GENES
Genes affected by raw local variations must be

reduced to potential disease-causing genes, which

are candidates for further downstream analyses.

This includes the filtering of all local variations for

functional relevance and frequency in control data-

sets as well as the gene prioritization process and the

validation of related variations.

Filtering of local variations
Variation calling often results in false positives and

negatives resulting from technical bias (duplicate

reads, strand and GC bias), sequencing errors
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(e.g. increased error probability at the 30-end of

Illumina reads and at homopolymer repeats in

Roche/454 sequencing) and alignment artifacts in

low mappability regions [32]. The variation calling

methods already try to minimize the number of false

positives. However, to further reduce these errors

and to identify functionally relevant variations add-

itional filtering steps have to be applied.

First, variations should be filtered by the sequen-

cing quality including the read depth (coverage),

number of supporting reads, average base quality

(e.g. Phred score� 20), supporting strands (i.e. for-

ward and/or reverse) and variation allele frequency

(step 1 in Figure 3). Variations with an allele fre-

quency <0.2 should be discarded, while frequencies

between 0.2 and 0.8 are called heterozygous and

those >0.8 are considered as homozygous [83].

Moreover, variations with an excessively high cover-

age are usually caused by structural variations like

CNVs or other alignment artifacts.

The next filtering step is the annotation and func-

tional characterization of the variations (step 2 in

Figure 3). Several tools are available to annotate vari-

ations from NGS data such as SeattleSeq (http://snp.

gs.washington.edu/SeattleSeqAnnotation/), ANOVA,

VAT, F-SNP and snpEff [84–87]. To identify

putatively deleterious SNVs, functional prediction

methods (e.g. PolyPhen-2, SIFT, MutationTaster

and a likelihood ratio test [88–91]) and conserva-

tion-based methods (e.g. PhastCons, GERPþþ,

PhyloP, SCONE [92–95]) can be applied. Using mul-

tiple methods can help to obtain more reliable func-

tional predictions and thus, to focus on the most likely

relevant variations [96]. Over all, variations not pre-

dicted to be damaging, nonsense, frame-shifting or

inserting/deleting amino acids as well as variations

not affecting splice sites, non-coding RNAs (e.g.

seeds of microRNAs) or other regulatory regions

(e.g. promoter or enhancer) might be discarded. An

overview of the different types of genomic annota-

tions and functional characterizations of local vari-

ations is given in Figure 2.

The retained variations can subsequently be

reduced to novel variations or rare variations with

a minor allele frequency (MAF) of �0.01 in the

dbSNP database [97] or other public datasets,

which will be presented in the next section. Rare

and de novo mutations are the main genetic cause for

CHD and thus, filtering for rare variations or vari-

ations not present in dbSNP can reduce the search

space by 2 - to 10-fold while retaining the most

promising candidates. However, known disease-

associated variations present for example in the

OMIM, KEGG disease, HGMD and ClinVar data-

base [98–102] or the CHDWiki [49] might be

retained (step 3 in Figure 3).

AVAILABLE CONTROLDATASETS
Several datasets and databases are available that can be

used to filter for rare variations (step 3 in Figure 3).

To catalog short genomic variations dbSNP was es-

tablished [97]. The database summarizes data from

various projects using different genotyping methods.

Examples for contributing large-scale projects are the

HapMap Project, the 1000 Genomes Project and the

ClinSeq Study (CSAgilent) [57, 103–105]. Of

course, dbSNP is not always complete and accurate,

as it contains false positives and might be contami-

nated by single nucleotide differences arising from

paralogous sequences in the genome [106, 107].

As an alternative or in addition to dbSNP, separ-

ate datasets can also be used as controls. Currently,

several NGS datasets of large cohorts are being gen-

erated and are already partly available. The 1000

Genomes Project aims to sequence the genomes of

2500 individuals of European, East Asian, West

African, American and South Asian ancestry using a

combination of low-coverage WGS (2–6�), tar-

geted deep exome sequencing (50–100�) and

dense SNP genotyping [57, 104]. The Exome

Sequencing Project of the National Heart, Lung

and Blood Institute (NHLBI) provides whole-

exome sequencing data of 6503 individuals from

multiple cohorts to study heart, lung and blood dis-

orders [42, 96]. The ClinSeq Study focuses on car-

diovascular health and aims to recruit >1500

participants. A total of 662 participants of European

descent have already undergone whole-exome

sequencing and the data are publicly available

[9, 105].

Li and colleagues analyzed 200 healthy Danish

individuals by whole-exome sequencing at low

coverage. This dataset also contains individual geno-

types in addition to the accumulated frequency for

each variation [44]. The project ‘Genome of the

Netherlands’ (GoNL) aims to capture the genetic

variation present in the Dutch population and has

performed WGS of 769 individuals belonging to

250 families with two parents and one or two chil-

dren [108].
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The UK10K project is currently performing

WGS for 4000 individuals (including twin pairs)

and whole-exome sequencing for 6000 individuals

showing disease phenotypes in the three large groups

obesity, neurodevelopmental disorders and rare dis-

eases including 125 CHD cases. The sequencing data

are already partly available through the European

Genome-phenome Archive (EGA; https://www.

ebi.ac.uk/ega/) at the EBI. In general, NGS datasets

can also be obtained from the database of Genotypes

and Phenotypes (dbGaP; http://www.ncbi.nlm.nih.

gov/gap) [109] at the NCBI. A summary of the

described datasets is given in Table 1. When analyz-

ing trio samples or larger families, a further oppor-

tunity is to use healthy family members as additional

controls and to filter for de novo mutations, which

will be discussed in the following section.

In general, the selection of a suitable control data-

set mainly depends on the technical comparability

and the individuals selected for sequencing. The

control and the study cohort should preferably be

enriched with the same technique and sequenced

with the same platform. Moreover, the control in-

dividuals should belong to the same ethnical group as

the studied cases and phenotypic information of the

controls should also be considered. For example, the

individuals sequenced within the NHLBI project

belong to multiple disease groups like atherosclerosis,

asthma and cystic fibrosis.

Gene prioritization
After filtering for rare deleterious variations using

prediction tools and control datasets, the resulting

affected genes can be prioritized to identify the

most likely disease-related genes and to further

reduce the number of candidate genes for down-

stream studies (step 4 in Figure 3).

Automated gene prioritization approaches require

prior knowledge about the disease and associated

genes and pathways. They integrate diverse data

including protein–protein interactions, animal

models, coexpression, gene ontologies (e.g. GO

[110]), sequence homologies and literature co-oc-

currences and include tools like GeneSeeker and

Endeavour [111, 112]. They can link the candidate

genes to known disease-associated genes and gener-

ate a ranked list, with the most promising candidates

at the top [47, 48].

Pathway databases and analysis tools, which can

also be used for the gene prioritization process by

Figure 2: Genomic annotations and functional characterizations of local variations.The main functionally relevant
types of variations are marked in bold. UTR, untranslated region.
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Figure 3: Identification of candidate genes. The individual filtering steps from raw local variations to potential dis-
ease-related variations and genes are shown including different data sources, tools and approaches that can be used.
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placing candidate genes into the context of known mo-

lecular pathways, include KEGG, STRING,

HumanNet, FunCoup, Reactome [99, 100, 113–116]

or the commercial Ingenuity Pathway Analysis (IPA;

www.ingenuity.com/). For Mendelian diseases the

human gene connectome (HGC) approach was re-

cently introduced [117].

Since CHD is a developmental disorder, the genes

causing it must be functional during heart develop-

ment. Moreover, the gene expression in adult heart

might be important regarding the long-term clinical

outcome. Thus, cardiac expression might be used as a

further criterion for prioritizing candidate genes.

Expression can be measured by e.g. quantitative

PCR, serial analysis of gene expression (SAGE), ex-

pression array or RNA-seq, which was recently used

in a high-throughput screen of CHD candidate

genes [118]. Already published data can be retrieved

from e.g. Mouse Atlas, ArrayExpress, Bgee and GEO

[119–122]. For individual genes, literature research

for expression data can be guided by e.g. MGI

(Mouse Genome Informatics; http://www.inform-

atics.jax.org/). Moreover, spatial mouse expression

data based on in situ hybridization can be obtained

from the EMAGE, Genepaint and Eurexpress data-

bases [123–125].

When analyzing family trios, one approach is to

further filter for genes with denovo mutations, assum-

ing that a unique mutation is causing CHD in the

offspring [118]. In addition, large CHD pedigrees

offer the opportunity to analyze Mendelian inherit-

ance of disease-causing mutations. Another approach

is to consider the combination of variations in dif-

ferent genes and the mutation frequencies of the

genes, assuming an oligo- or multigenic background

with disease-related genes more often affected by

deleterious mutations in cases compared to controls.

Validation of NGS results
Today’s NGS platforms generate highly accurate

data, as shown by validation studies using Sanger

sequencing. When using a high coverage threshold

for variation calling (�30�), �100% of variations

can be confirmed [126, 127]. However, when select-

ing for rare variations overrepresented in a cohort,

one also runs the risk of enriching false-positive vari-

ations that result from characteristic sequence fea-

tures or mapping problems at a specific position

and thus are likely to occur in several individuals.

In a study on TOF patients, 35 variations in 20

genes with a significantly higher mutation frequency

in cases compared with controls were initially iden-

tified. Four of these variations were found in mul-

tiple patients. Using Sanger sequencing, seven

variations (20%) could not be validated, including

the four variations that were detected in more than

one patient. Nevertheless, comparison to related

RNA-seq data showed that 94% of variations cov-

ered at least 10� could be confirmed and thus

demonstrated a high sequencing quality (unpub-

lished data). Notably, true-positive variations could

still be missed by RNA-seq due to allelic expression,

which is a widespread phenomenon that can be

mediated through mechanisms like alternative

mRNA processing or differential transcription

factor binding [128–130]. Taken together, validation

of variations detected by NGS sequencing should

additionally be performed as one of the last filtering

steps (step 5 in Figure 3).

HIGH-THROUGHPUT
SEQUENCING STUDIES ONCHD
To date, only few CHD studies based on NGS have

been published. One combined approach of whole-

exome sequencing, high-resolution melting analysis

and direct DNA sequencing of selected genes iden-

tified possible disease-causing mutations in a family

with heterogeneous CHD [131]. Whole-exome

sequencing of one heterotaxy patient with CHD

could identify a recessive missense mutation in

SHROOM3. Subsequent screening of 96 heterotaxy

patients using Sanger sequencing identified four add-

itional cases with rare variants in the gene, suggesting

a role of SHROOM3 in left–right patterning [132].

Another application of NGS identified a dominant

missense mutation causing the rare Cantú syndrome,

which includes cardiac manifestations. Here, whole-

exome sequencing of the index patient and his un-

affected parents was performed, identifying a single

de novo missense mutation in the potassium channel

gene ABCC9. Subsequently, missense mutations in

the ABCC9 gene could be detected in 13 of 15 add-

itional cases and functional studies showed that the

mutations lead to dominant channel opening [133].

Studying large cohorts of CHD patients using

high-throughput sequencing will hopefully lead to a

better understanding of the complex genetics under-

lying the disease. One example is the Congenital

Heart Disease Genetic Network Study established

by the Pediatric Cardiac Genomics Consortium,

which enrolled >3700 patients representing a diverse
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range of congenital heart defects. The study aims to

investigate the relationships between genetic factors,

clinical features and outcomes in CHD patients. Med-

ical data and biospecimen were collected and ongoing

studies include the identification of CNVs, the

resequencing of candidate genes as well as the search

for somatic mutations and skewed allelic expression

using whole-exome sequencing and RNA sequen-

cing, respectively, from cardiac tissue samples [134].

For a subset of 362 patients and their parents whole-

exome sequencing from venous blood DNA has al-

ready been completed. Most interestingly, this study

revealed an accumulation of denovo mutations in his-

tone-modifying genes in CHD cases, underlining the

important role of epigenetic regulation in heart

development [118].

Another large-scale project is the Deciphering

Developmental Disorders (DDD) study (http://

www.ddduk.org/) headed by the Wellcome Trust

Sanger Institute, which aims to collect clinical data

and DNA samples from 12 000 undiagnosed children

with developmental disorders and their parents.

The study also includes CHD patients and uses

high-resolution array CGH, SNP genotyping, and

whole-exome sequencing to identify the genetic

causes underlying the diverse disorders [135].

Finally, the UK10K project (http://www.uk10k.

org/) is performing whole-exome sequencing for

125 CHD patients enclosed in its rare disease

sample set. Both studies are still ongoing and so far,

no results on CHD have been published.

CONCLUDING REMARKSAND
FUTURE PERSPECTIVES
The heart is the first organ that functions during

embryonic development, and congenital cardiac

malformation are the most common birth defect in

human. CHDs represent a heterogeneous group of

disorders with a complex genetic background.

Although many disease-causing genetic alterations

have been identified, there is still a large proportion

of CHD with unknown precise origin. During the

last years, high-throughput sequencing technologies

were established, which are still rapidly developing.

These NGS techniques offer novel opportunities to

further study the genetics underlying congenital

heart malformations. Furthermore, high-throughput

sequencing as well as many of the tools and databases

described here can also be applied to a wide range of

other complex diseases.

Besides the analysis of genomic variations, NGS

can be used for studying genetic and epigenetic al-

terations such as RNA and small RNA expression,

alternative splicing, DNA methylation and protein–

DNA interactions. Individual NGS datasets can al-

ready provide a wealth of information. However, the

combination of genomic, genetic and epigenetic as

well as proteomic and metabolic data in a systems

biology approach enables a more comprehensive

understanding of disease processes [136–138]. Just

recently, exome sequencing data of CHD patients

were linked to gene expression data from mouse to

filter for potentially disease-causing mutations [118].

Moreover, considering sequence variations in

regulatory regions like enhancers or promoters can

lead to valuable insights into regulatory changes

underlying a disease. These variations might disrupt

the assembly of the transcription machinery or

change transcription factor binding affinities [139].

Combining such findings with corresponding ex-

pression data can show the functional consequences

of observed variations. To date, several computa-

tional and experimental tools are available to assess

the pathogenicity of variations in regulatory elements

and numerous examples for disease associations have

been identified [140]. In a patient suffering from

ventricular septal defect, a homozygous variation in

the TBX5 enhancer could be shown to abrogate the

gene’s expression in the heart [141].

To analyze the effect of individual mutations in

combination with the complex genetic background,

the differentiation of patient-specific induced pluri-

potent stem cells might be a valuable approach. This

strategy was used to model several cardiac pheno-

types [142–144] and can prospectively be used for

drug discovery and development [145]. Hopefully, a

better understanding of the causes underlying cardiac

malformation will enable the development of novel

therapeutic and preventive strategies in the future.

Key points

� NGS technologies offer novel opportunities to study complex
genetic disorders like congenital heart disease.

� The huge amount of data generated with high-throughput
sequencing requires a sophisticated study design and analysis to
identify potentially disease-related variations and genes.

� There are several large-scale projects providing sequence infor-
mation for control cohorts comprising hundreds to thousands
of individuals.

� Current studies already using NGS technologies were able to
gain new insights into the genetic background of CHD.
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