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Abstract. Obtaining the eigenvalues and eigenvectors of large matrices is a key

problem in electronic structure theory and many other areas of computational science.

The computational effort formally scales as O(N3) with the size of the investigated

problem, N (e.g., the electron count in electronic structure theory), and thus often

defines the system size limit that practical calculations cannot overcome. In many

cases, more than just a small fraction of the possible eigenvalue/eigenvector pairs

is needed, so that iterative solution strategies that focus only on few eigenvalues

become ineffective. Likewise, it is not always desirable or practical to circumvent the

eigenvalue solution entirely. We here review some current developments regarding

dense eigenvalue solvers and then focus on the ELPA library, which facilitates

the efficient algebraic solution of symmetric and Hermitian eigenvalue problems for

dense matrices that have real-valued and complex-valued matrix entries, respectively,

on parallel computer platforms. ELPA addresses standard as well as generalized

eigenvalue problems, relying on the well documented matrix layout of the ScaLAPACK

library but replacing all actual parallel solution steps with subroutines of its own. For

these steps, ELPA significantly outperforms the corresponding ScaLAPACK routines

and proprietary libraries that implement the ScaLAPACK interface (e.g., Intel’s

MKL). The most time-critical step is the reduction of the matrix to tridiagonal form

and the corresponding backtransformation of the eigenvectors. ELPA offers both a

one-step tridiagonalization (successive Householder transformations) and a two-step

transformation that is more efficient especially towards larger matrices and larger

numbers of CPU cores. ELPA is based on the MPI standard, with an early hybrid MPI-

OpenMPI implementation available as well. Scalability beyond 10,000 CPU cores for

problem sizes arising in the electronic structure theory is demonstrated for current

high-performance computer architectures such as Cray or Intel/Infiniband. For a
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matrix of dimension 260,000, scalability up to 295,000 CPU cores has been shown

on BlueGene/P.

Submitted to: Journal of Physics: Condensed Matter
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1. Introduction

Finding the eigenvalues and eigenvectors of a large matrix is a frequent numerical task

throughout science and engineering. In electronic structure theory, efficient strategies

to address the eigenvalue problem have long been a central pursuit.‡. Most practical

solutions of many-electron problems begin with a self-consistent solution of an effective

independent-particle problem (e.g., Hartree-Fock[4, 5] or Kohn-Sham theory[6]) that

can be discretized into matrix form. If this problem is solved at each step towards

self-consistency, a large number of eigenvalue/eigenvector pairs of the Hamilton matrix

are needed. The strategies applied to find them (or to avoid having to find them)

vary widely, and are often tailored to a specific class of problem. They range from

robust, standard algebraic solutions (e.g., in the (Sca)LAPACK library[7]) via iterative

strategies of many kinds (e.g., Refs. [1, 2, 8, 9, 10, 11] and many others; best suited if

only a small fraction of the eigenvalues and eigenvectors of a large matrix are needed),

shape constraints on the eigenfunctions,[12], contour integration based approaches,[13]

and many others, all the way to O(N) strategies (e.g., Refs. [14, 15, 16] and many

others) which attempt to circumvent the solution of an eigenvalue problem entirely.

The basic numerical task reads as follows: Find λ and c such that

Ac = Bcλ . (1)

Here A and B are N×N matrices and c is the N×N matrix of eigenvectors for the pair

(A,B). The diagonal matrix λ contains the eigenvalues λi (i=1,...,N). If the matrix

B is equal to unity, we have a standard eigenvalue problem to solve. Otherwise, the

form of Eq. (1) defines a generalized eigenvalue problem. For many cases of practical

interest the matrix A is symmetric and has real-valued entries or A is Hermitian having

complex-valued entries. The same holds for B, which is in addition non-singular and

often even positive definite. Then the problem can be transformed to standard form in

the course of its solution. In electronic structure theory, the matrix A is usually called

the Hamilton matrix H . The matrix B is called the overlap matrix S, and it is different

from unity for the case of a non-orthonormal basis set. The eigenvalues in λ are the

eigenenergies of the system, and c describes the quantum-mechanical eigenstates of the

system in terms of the underlying basis set.

If more than just a few eigenvalue-eigenvector pairs of the matrix A are needed,

it is often desirable to perform a direct, algebraic solution of Eq. (1) instead of using

an iterative solver. The computational effort to obtain the full set of eigenvalues and

eigenvectors scales as O(N3). Thus, if a single solution on a typical compute node at

the time of writing takes several tens of seconds for N=10,000 (a manageable effort and

typical time scale as outlined in this paper), a few tens of thousands of seconds will

be required for N=100,000, and so on. Clearly, the effort can be somewhat reduced

if only k eigenvalue/eigenvector pairs out of the maximum possible number N are

‡ See, e.g., Refs. [1, 2] and many later references. A sweeping overview of approaches to the eigenvalue

problem in the past century is given in Ref. [3].
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needed (k ≤ N). Still, the O(N3) bottleneck will impair a straightforward solution

of electronic structure problems involving more than (say) 10,000 atoms, but for an

accurate description of such systems (especially their electronic structure), quantum-

mechanical effects can often still not be simply ignored. Strategies that circumvent the

algebraic eigenvalue problems are an active field,[14, 15, 16] but the O(N3) “wall” for

the general case is still a reality for many applications today.

One way to alleviate the problem is the efficient use of massively parallel compute

platforms, which are increasingly available for routine computations. For instance,

general-purpose computer architectures can (at the time of writing) offer a few 100,000

CPU cores in the biggest computer installations (see, e.g., the “Top 500” list of

supercomputers [17]). By the same measure, smaller installations with hundreds or

thousands of CPU cores are now widespread. With such an installation and an ideally

scalable eigenvalue solver library, our (hypothetical) N=100,000 problem would be back

in the manageable range.

In addition to sheer problem size, there are of course much broader scenarios in

which scalable eigenvalue solutions are decidedly desirable. For some problem sizes

where the eigenvalue solution is well within the manageable range, traditional O(N3)

diagonalization could even be the fastest available strategy to deal with Eq. (1).

However, eigenvalue/eigenvector pairs may be required many times in an individual

simulation, along with other computational steps (e.g., in ab initio molecular dynamics).

Here, parallel execution is obviously beneficial, but only if all computational steps scale

– including the solution to Eq. (1).

Fortunately, there are now a number of active developments to address parallel

eigenvalue solutions for dense matrices and a large number of eigenvalue/eigenvector

pairs, including some focused on general-purpose parallel computers,[7, 18, 19, 20, 21,

22, 23, 24, 25] some geared towards multicore architectures (e.g., the PLASMA project

[26]) or towards GPUs (Ref. [27] and references therein; most prominently, the MAGMA

project [28]).

In this highlight, we review some of these efforts and then focus particularly

on the “ELPA” (Eigenvalue soLvers for Petascale Applications) library[22, 29] that

facilitates the direct, massively parallel solution of symmetric or Hermitian eigenvalue

problems. The roots of ELPA go back to the FHI-aims[30, 31, 32] all-electron electronic

structure package. In that code, ELPA is a cornerstone for the parallel efficiency of

routine calculations involving up to several thousand atoms,[33, 34] and/or calculations

employing (ten)thousands of CPU cores at a time.

The ELPA library relies on the same block-cyclic matrix layout that is provided by

the widely used parallel linear algebra library ScaLAPACK. Thus, the ELPA subroutines

can function as drop-in enhancements in existing ScaLAPACK-based applications.

ELPA also relies on the conventional serial linear algebra infrastructure of LAPACK [35]

and the basic linear algebra subroutines (BLAS) that are available in numerous vendor-

specific implementations (e.g., IBM’s ESSL or Intel’s Math Kernel Library, MKL). For

particularly performance-critical areas, however, ELPA provides custom linear algebra
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“kernels” of its own.

In its present form, ELPA is a standalone library, distributed under the lesser GNU

General Public License. It is the product of significant development work of a consortium

led by the Compute Center of the Max Planck Society (Garching, Germany), and several

other entities, initially funded by the German Ministry of Research and Education

(BMBF). The chosen license ensures the compatibility of ELPA with both open-source

and proprietary implementations. Many of its present users come from a wide range of

other electronic structure packages (examples include cp2k,[36] VASP,[37, 38] Quantum

Espresso,[39] and others). Perhaps the largest documented application of ELPA is

the computation of molecular rotation-vibration spectra using the computer program

TROVE [40], allowing them to handle matrix sizes beyond 200,000. ELPA is also

included directly in Linux distributions such as Debian or Fedora.

2. The Eigenvalue Problem

The steps to the direct (algebraic) solution of Eq. (1) are conceptually simple and well

known (e.g., Ref. [41]). All that is needed are well defined matrix transformations of

the problem into a form where its eigenvalues and eigenvectors can easily be found

(tridiagonal form), followed by the back-transformation of the eigenvectors to the

original standard or generalized problem. We define each step here for a complete

notation. Assuming for simplicity that we are dealing with a symmetric eigenvalue

problem and the matrices have real-valued entries we have:

(I) Cholesky decomposition of B:

B = LLT , (2)

where L is a lower triangular matrix and LT is its transpose.

(II) Transformation of Eq. (1) to standard form:

Ãc̃ = c̃λ (3)

Ã = L−1A(L−1)T (4)

c̃ = LTc . (5)

Steps (I) and (II) are obviously extra steps for the generalized eigenvalue problems. The

next steps are common to generalized and standard eigenvalue problems.

(III) Reduction of Ã to tridiagonal form (schematically illustrated in Fig. 1a):

T = QÃQT (6)

where Q = Qn...Q2Q1 and QT = Q1
TQ2

T ...Qn
T are the successive products of

Householder matrices, which reduce one column or row of the original matrix Ã and its

successive refinements at a time. The elegance of the Householder transform lies in the

fact that each step can be written only in terms of a single vector vi: Qi = I − βivivTi ,

where I is the identity matrix and βi = 2/(vTi vi) is just a normalization factor.

The individual Householder matrices Qi, of course, never need be formed explicitly.

If Householder transforms are applied to a matrix only from one side (as it is the
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Figure 1. Schematic illustration of the (a) one-step vs. (b) two-step [42, 22]

tridiagonalization schemes employed in ELPA, steps (III) vs. (IIIa) and (IIIb) in

the text. The two-step version allows to make full use of matrix-matrix products and

sparse matrix-vector products but gives rise to one extra backtransformation step of

the eigenvectors (step (V) vs. steps (Va) and (Vb) in the main text).

case in computing a QR decomposition of the matrix), they can be blocked, allowing

almost all arithmetic to take place in highly efficient matrix-matrix operations.[41]

In the one-step reduction to tridiagonal form this is prevented by the fact that vi is

determined from the matrix Ãi−1 = Qi−1...Q1ÃQ1
T ...Qi−1

T , which requires two-sided

application of the preceding transforms. By using an implicit representation[35, 7]

Ãi−1 =: Ã− V i−1W i−1
T −W i−1V i−1

T (where the i− 1 columns of V i−1 just contain

the Householder vectors v1, ...,vi−1, and W i−1 is a suitable matrix with i− 1 columns)

and building Ai only after a certain number of steps, it is possible to do at least these

“explicit builds” with matrix-matrix operations. However, a matrix-vector product with

Ãi−1 is still required in each step to determine the next column wi of W , leading to

one half of the overall operations to be confined to matrix-vector operations.

If only the forward transformation from Ã to T were required, it would always

be more effective to employ a two-step reduction to tridiagonal form, as shown in

Fig. 1b:[42, 22]

(IIIa) Reduction of Ã to band form:

D = PÃP T . (7)

(IIIb) Reduction of the (sparse banded) matrix D to tridiagonal form:

T = ODOT . (8)

Step (IIIa), the reduction to banded form,[42] relies almost exclusively on efficient

matrix-matrix operations.[43, 44] A parallel version has been described in Ref. [22].

Step (IIIb), the reduction of the banded matrix to tridiagonal form, can then be done

using Householder transforms, but these now act on a small band of D and constitute

much less computational effort than the original step (III).
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(IV) Solution of the tridiagonal eigenvalue problem:

T ĉ = ĉλ (9)

There are numerous options available for the solution of the tridiagonal problem,

e.g., (i) the implicit QL/QR method,[45] (ii) a combination of bisection and inverse

iteration,[46, 47] (iii) the divide-and-conquer approach,[48, 49, 50] (iv) and the

historically newest “Multiple Relatively Robust Representations” (MRRR) based

algorithm.[51, 52, 53, 54] For the purposes of this paper, we note that ELPA relies upon

an efficient implementation of the divide-and-conquer approach, the steps of which are

reviewed in Ref. [22].

(V) Backtransformation of the k required eigenvectors to the form of the standard

eigenvalue problem, c̃. In the case of the one-step reduction technique, step (III) above,

only a single backtransformation step is required:

c̃ = QT ĉ . (10)

In the case of a two-step reduction to tridiagonal form, however, both steps lead to

separate backtransformation steps and thus to additional numerical operations (to be

weighed against the computational savings of steps (IIIa) and (IIIb)):

(Va) Backtransformation to the intermediate, sparse banded form of the problem:

cSB = OT ĉ , (11)

(Vb) and backtransformation to the standard eigenvalue problem,

c̃ = P TcSB . (12)

(VI) In the case that the original eigenvalue problem was a generalized one (in

quantum mechanics, for a non-orthonormal basis set), the eigenvectors need to be

transformed to the original generalized basis set one more time, as defined in Eq. (5).

The point of writing down steps (I)-(VI) explicitly is to de-mystify them (if

needed), since the basic algorithm is indeed straightforward. The key challenges for

an efficient solution arise in the details. Even on a single CPU, it is well known that the

use of matrix-matrix operations packaged in computer- and/or vendor-specific BLAS

subroutines is greatly preferable over directly implemented products, or indeed over

simpler matrix-vector operations. On multiple CPU cores, the simple fact that matrix

sizes grow in memory as N2 shows that it is essential to distribute all matrices and their

intermediates over the available cores and nodes. At this point, it becomes important

to utilize storage patterns that avoid any communication between different CPU cores

if possible, and to minimize the remaining (unavoidable) communication between CPU

cores.

It should be mentioned that the above sequence is not the only one for

computing the eigensystem via an intermediate banded matrix; in particular, the

backtransformation in step (Va) can be replaced with different computations. For very

small intermediate bandwidths it might be more efficient to replace steps (IIIb) through

(Va) with a band divide and conquer method delivering eigenvalues and eigenvectors
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of the banded matrix [55]. A narrow-band reduction algorithm coupled with a band

divide and conquer approach was also described and successfully implemented in the

new EigenExa library.[21, 25] If orthogonality is not an issue then the eigenvectors can

also be computed as the null spaces of shifted banded matrices [56, 57]. Finally, even

the tridiagonalization of the banded matrix (steps (IIIb) and (Va)) may be subdivided

further[43, 44, 58].

3. Recent Developments in Parallel Eigenvalue Solvers

For the serial (single CPU core) case, highly efficient solution strategies to steps (I)-

(VI) have long been available in the framework of libraries like LAPACK[35], its

predecessors, and highly optimized basic linear algebra subroutines (BLAS)[59, 60, 61]

in optimized libraries such as ATLAS[62], the (no longer maintained) GotoBLAS[63], a

successor project, OpenBLAS,[64, 65] or vendor-specific implementations such as e.g.,

IBM’s ESSL or Intel’s MKL. Beyond single-CPU core implementations, shared-memory

implementations of these libraries also exist using the OpenMP framework, or for GPU

architectures. However, a different approach is required for the large, distributed-

memory computer installations that are commonly used for high-performance computing

today.

With the ScaLAPACK library[7], a comprehensive linear algebra library (far

more than just eigenvalue solvers) for distributed-memory machines emerged in the

1990s, directly from the same roots as LAPACK and BLAS. In ScaLAPACK, most

communication is carried out by an intermediate layer of Basic Linear Algebra

Communication Subroutines (BLACS). ScaLAPACK makes extensive use of matrices

distributed across processors in a block-cyclic layouts (see Figure 2 and the associated

discussion below). In many ways, ScaLAPACK thus provides a clearly defined standard

for parallel linear algebra and is commonly employed as the reference implementation

against which other developments are benchmarked. High-performance linear algebra

libraries from vendors such as Intel (MKL) or IBM (ESSL) feature interfaces compatible

with ScaLAPACK.

A similarly broad effort from the same era is the PLAPACK library[19, 18, 20].

The (self-described) distinction from ScaLAPACK was the adoption of an object-

based coding style, yielding improved execution times over ScaLAPACK for certain

operations.[20] This picture was not uniform, however; for example, a 2003 eigenvalue

solver benchmark[66] showed that the implementation in ScaLAPACK on the particular

computer system used (an IBM Power4 installation) was generally faster.

A third, long-running and broad effort for parallel linear algebra is the Portable,

Extensible Toolkit for Scientific Computation (PETSc).[67, 68, 69] However, regarding

eigenvalue solvers, the emphasis in the PETSc environment is currently placed on

iterative eigenvalue solvers, e.g., in the Scalable Library for Eigenvalue Problem

Computations (SLEPc) [70] which is based on PETSc. Many more iterative solvers for

large-scale sparse eigenvalue problems are available, e.g., via the Anasazi package[71] in
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the Trilinos software project[72]. However, the focus of the present paper is on direct

methods.

When the ELPA effort began (in 2007), a key motivation was the need to extend

the capabilities of the then-current parallel eigenvalue solvers to architectures like IBM’s

BlueGene/P, where several thousand CPU cores needed to be utilized efficiently and

concurrently. As documented in Ref. [22], this effort met with some difficulty, possibly

simply because existing libraries had not yet been designed with installations at hand

that featured such large processor numbers. This situation has changed for the better

in recent years, with several different promising projects taking on the dense eigenvalue

problem.

In particular, the Elemental library [23] has emerged as a C++ based framework

for parallel linear algebra, which includes components for full and partial symmetric

and Hermitian Eigenvalue problems. To date, Elemental includes only the one-stage

reduction to tridiagonal form, (III) above. On the other hand, the algorithm employed

for the solution of the tridiagonal problem, (IV), is a rather new parallel implementation

of the MRRR algorithm by Petschow and coworkers.[24]

A recent detailed benchmark compared components from ScaLAPACK, Elemental,

and the ELPA library on the BlueGene/Q architecture [73], including the important

aspect of hyperthreading (the possible use of more than one MPI task per CPU core)

on that machine. In short, ELPA and Elemental showed the best performance on this

architecture, with a slight edge for the two-step reduction approach (IIIa) and (IIIb) as

implemented in ELPA.

A second new effort is the EigenExa effort pursued at the RIKEN Advanced

Institute for Computational Science in Japan.[25, 21] As mentioned above, this library

incorporates a narrow-band reduction and a band divide and conquer method, thus

modifying steps (III)-(V) above. Another very recent benchmark[74] for the K computer,

a 640,000 core, SPARC64 processor based distributed-memory computer, shows very

promising results for this new approach.

The above discussion gives a flavor of, but certainly cannot fully cover all

developments targeted at “traditional” architectures. In addition, we note again the

ongoing efforts towards the creation of dedicated libraries for new multicore or GPU

based computer architectures, including the PLASMA project[26] and the MAGMA

project.[28] An overview of eigensolver-related developments towards distributed multi-

GPU installations can be found in Ref. [27], including a direct performance comparison

between the GPU-based solution and the traditional distributed-memory solutions

implemented in ScaLAPACK and ELPA.

As the broader message, several independent, promising parallel dense linear-

algebra based eigenvalue solver developments are now available to cope with the

proliferation of new massively parallel distributed computers as well as with new

architectural models, particularly GPUs. The remainder of this highlight reviews the

underlying model and performance achieved by one of them, the ELPA library, in greater

depth.
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Figure 2. Schematic visualization of a block-cyclic distribution of a matrix on a 2×2

processor grid (four processors in total) that would be used in ELPA. In the example,

the matrix is divided into several primary blocks (full lines), and each primary block is

divided into four sub-blocks or “tiles” (dotted lines). The number in each tile indicates

the CPU number on which it is stored and handled. The width and height of the tiles

is given by a fixed parameter nblks with typical values between 16 and 64. nblks thus

indirectly determines the overall number of primary blocks.

4. The ELPA Library

4.1. Data Layout and Basic Setup

In parallel linear algebra, the first key decision concerns the layout of the matrices

involved (the matrices A and B as well as many others needed in the intermediate

steps). In line with what is arguably the industry standard today for dense matrices,

ELPA employs block-cyclic distributions for its data (matrices and eigenvectors), a mode

of distribution summarized in detail in the ScaLAPACK manual [7]. An example of a

block-cyclic distribution for a 2×2 processor grid (four CPUs total) is shown in Fig. 2.

In short, a matrix is divided into a number of primary blocks. Each primary block is

distributed across all available CPU cores. The width and height of the individual matrix

sub-blocks (or “tiles”) located on an individual CPU, nblks, is an important parameter

for parallel load-balancing and efficiency (on standard distributed parallel compute

platforms, typical values for good performance for the most time-critical operations

range between 16 and 64[22]).

As was established, e.g., in the early ScaLAPACK related literature,[7, 75] two-

dimensional (block) cyclic layouts are crucial for improving scalability up to higher

numbers of processors through well-balanced work load and efficient communication

patterns. Choosing this layout has the additional advantage that it is easy to insert

ELPA into existing code that is already set up for ScaLAPACK.

In Fig. 2, it is important to note that the number of tiles in each sub-block is chosen

to match the number of available processors. The number of primary blocks then follows

from the chosen tile width, nblks. The primary blocks can be arranged so as to greatly

restrict the necessary communication in certain operations. In Fig. 2, this is evident for

the example of a matrix transposition. This would require only the processor pair (2,3)

to communicate.

In practice, ELPA supports rectangular processor grids to split each matrix block

into sub-blocks:

NCPUs = Ncols ·Nrows , (13)
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with NCPUs the number of CPU cores available, and Ncols and Nrows the number of

columns and rows into which each matrix block is split. As mentioned above, Ncols,

Nrows and nblks determine the number of primary matrix blocks used. Each processor is

associated with a single pair of column/row numbers in each primary block.

The above layout corresponds exactly to the pioneering ScaLAPACK and Basic

Linear Algebra Communication Subroutines (BLACS) libraries. Beyond the layout, the

ELPA subroutines themselves do not rely on either library. Instead, all communication

between different processors is handled by direct calls to a Message Passing Interface

(MPI) library, another standard part of any parallel computing system today.

For its communication, ELPA relies on two separate sets of MPI communicators,

connecting either the processors that handle the same rows or the same columns

of the distributed matrix blocks (row communicators and column communicators,

respectively). This choice corresponds closely to what is needed in matrix multiplications

and helps avoid any unnecessary communication between all processors at once.

Additionally, we note that a (near-)square layout of processor rows and columns can

give better performance but is not required.

Collective communication operations such as broadcast and allreduce along columns

and rows of different matrices are very efficient for the generally dense matrices

encountered in the main steps of the algorithm. Only in the reduction from band to

tridiagonal form and corresponding back transform (steps IIIb and Va above), a more

refined use of asynchronous MPI communication calls is advantageous to alleviate load

imbalances and to overlap computations with communication and is therefore used in

the corresponding routines to ensure minimal execution times.

Once the input matrices are distributed in block-cyclic fashion and the column and

row communicators are set up, the actual eigenvalue problem can be solved by ELPA.

4.2. ELPA 1

The main linear algebra steps (I)-(VI) outlined in Sect. 2 can be solved in essentially

a straightforward way. The implementation of these basic steps is here referred to as

“ELPA 1” (corresponding to a source code file “elpa1.F90”). Importantly, the reduction

to tridiagonal form (III) is carried out in vector steps, i.e., each Householder vector is

determined one by one. Since this steps constitutes the dominant workload and show

limited scalability, its “two-step” alternative (IIIa), (IIIb) (and therefore also (Va), (Vb))

is available in an additional library (“ELPA 2”) below. We first comment briefly on the

most important algorithmic choices made in “ELPA 1”.

4.2.1. Overall Choices Perhaps the most significant overall choice made in ELPA is

to keep things simple. The matrices A and B are assumed to be real symmetric or

complex Hermitian, and only these choices are supported. The matrices are assumed to

have been correctly set up on input (a correct assumption in most practical programs

that use ELPA), i.e., any redundant layers of consistency checks at the outset of each
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step are avoided.

The actual programming hierarchy is flat, i.e., parallel linear algebra and MPI

communication are conducted outrightly and step by step in the individual subroutines.

Any auxiliary linear algebra subroutines called from the ELPA routines are serial

themselves, typically LAPACK, LAPACK-like and BLAS subroutines that are available

in efficient, highly optimized version in computer- or vendor-specific libraries.

Finally, the necessary communication between individual processors is concentrated

in as few steps as possible, making use of the efficient separate column and row MPI

communicators described above.

4.2.2. Cholesky Decomposition In the case of a generalized eigenvalue problem, the

Cholesky decomposition of the overlap matrix B is typically not the computationally

dominant step. Although linear-scaling computational approaches to the Cholesky

decomposition exist [76], ELPA implements the standard algorithm, working only on the

matrix tiles which are on the diagonal or above. Intermediate serial steps are carried

out using standard LAPACK linear algebra, including actual Cholesky factorizations

of single blocks on the diagonal. Communication is restricted to individual processor

rows and columns as usual in ELPA, with the exception of a special operation which

transposes vectors of individual rows and columns. As mentioned above, block-cyclic

arrangements can here be chosen such that only processor pairs that interchange two

blocks need to communicate, i.e., no all-to-all communication is needed.

Historically, the primary motivation to include the Cholesky transform into ELPA

itself was, in fact, not a performance need, but rather the necessity to circumvent

frequent technical problems encountered in third-party implementations of the Cholesky

transform.

4.2.3. Transformation to Standard Form For the transformation to standard form

(step (II) above), we require the inverse of the Cholesky factor L and its transpose.

As outlined briefly in Ref. [30], using backward/forward substitution to calculate the

product of the inverse Cholesky factors with A was found to become a scalability

bottleneck.

In ELPA, the inverse of the Cholesky factors is thus calculated outrightly and stored

for later use. This is done using a specially written routine for the parallel inversion

of an upper triangular matrix, running over the tiles of the block-cyclic distribution

one by one. In each step, the LAPACK subroutine for the inversion of a triangular

matrix, dtrtri, is employed on the lowest remaining block. Using the column and row

communicators, the resulting transformations are broadcast and applied to all other

remaining blocks in turn.

The matrix multiplications of A from the left and right, respectively, are performed

using a custom-written parallel matrix multiplication routine which allows to take the

product of a triangular matrix with a full matrix. The standard parallel BLAS (PBLAS)

routine pdtran can be used for a matrix transpose operation inbetween.
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The context of electronic structure theory is particularly advantageous for this

strategy since the Cholesky factors and their inverse do not change during a self-

consistency cycle if the basis set and the nuclear coordinates are fixed. Thus, in

the iterative self-consistent field case, the inverse Cholesky factors can simply be

precomputed once and stored before use in multiple s.c.f. iterations that correspond

to the same overlap matrix B.

4.2.4. Reduction to Tridiagonal Form by Successive Householder Transforms This is

the most time-critical step of the algorithm. In “ELPA 1”, the column by column and

row by row based reduction (step (III) above) is implemented in an efficient way, using

an implicit representation as described in Sec. 2. In practice, ELPA works on the full

matrix Ã, although in the real case, this matrix is in principle symmetric. One important

aspect is that the “algorithmic block size” k, i.e., the number of steps between explicit

builds of the current matrix Ãi, does not have to be connected to the memory block

size of the block-cyclic distribution, so an independent efficient choice of k is possible

(k = 32 being a typical value). Eventually, the diagonal and off-diagonal elements of

T are stored as vectors, and Ã is overwritten with the Householder vectors (needed for

the backtransformation of the eigenvectors).

In terms of special tweaks in ELPA, it is worth noting that for real symmetric

matrices, individual matrix blocks can be used for column and for row operations

right after one another, keeping them in the processor cache and thus improving the

performance. As before, favorable block-cyclic arrangements can be chosen to minimize

communication, e.g., for a matrix transposition, such that only processor pairs that

interchange two blocks need to communicate. The overall communication is otherwise

again restricted to individual processor rows and columns, respectively. The final storage

of the Householder vectors in Ã happens in groups of k ≤32 rows and columns, each.

Overall, this leads to a rather scalable implementation, however still limited by the fact

that matrix-vector are carried out in addition to matrix-matrix operations.

4.2.5. Solution of the Tridiagonal Problem To solve the tridiagonal problem (step (IV)

above), ELPA relies on the divide and conquer algorithm. In the context of ELPA, this

algorithm has been summarized completely in Ref. [22]. In particular, a simple but

very helpful modification is to carry out the solution of the problem only for the needed

eigenvectors, which is possible in the final (but most expensive) step of the algorithm.

In ELPA, care was taken to ensure that any trivial parallelism in the algorithm

is exploited. Thus, upon each split of the problem into two half-sized problems, the

available processors are also split into two subsets that take care of each half-sized

problem on their own. This strategy is pursued recursively until only a single processor

is left. From that point on, the remaining partial problem can be solved with the existing,

efficient serial implementation of the divide and conquer algorithm in LAPACK.
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4.2.6. Backtransformation to Standard Form In ELPA 1, the reduction to tridiagonal

form is carried out in only a single step, i.e., the corresponding backtransformation also

requires only a single step, step (V) above. The columns of ĉ are transformed with the

Householder matrices from the tridiagonalization, in reverse order, and combining nb

of them into a blocked transformation. An important sub-step is the separation of the

algorithmic block size nb – the size of the blocks of matrices that are multiplied in a

single BLAS call – and the memory block size of the block-cyclic distribution. While

the latter can be relatively small (typically, between 16 and 64), the matrix blocks to

be multiplied in the back transformation have a relatively large dimension, normally

256. This value is only reduced if the ratio of the full matrix dimension to the number

of processor rows is itself smaller than 256. This modification guarantees an optimally

efficient use of the typically highest optimized BLAS operation on a single processor,

i.e., a matrix product.

4.2.7. Backtransformation of the Eigenvectors to the Generalized Form This final step

(step (VI)) is carried out as outlined for step (II) above. Again, a special parallel matrix

multiplication routine optimized for triangular matrices is employed.

4.3. ELPA 2

The central modifications in “ELPA 2” concern the most compute-intensive parts of the

algorithm: The reduction to tridiagonal form and the corresponding backtransformation

of the eigenvectors.

As mentioned in Sec. 2, the most important modification is the separation of the

reduction into two steps, (IIIa) and (IIIb). The first step reduces the matrix to a banded

form, which employs efficient matrix-matrix multiplications. The second step reduces

the banded matrix to tridiagonal form, but this time only faces a sparse matrix for the

necessary matrix-vector operations. Both steps can be optimized much better than the

usual one-step vector-based reduction.

The price to pay is an additional backtransformation step ((Va) and (Vb) above).

Thus, it is critical to carry these steps out as efficiently as possible. Since often, only

a fraction of the eigenvectors is needed, the overall “ELPA 2” approach lends itself

particularly well to scenarios where a sizeable part (say, 10 %-50 %) of the eigenvectors

is required. This is often the case when compact basis sets are used to discretize the

Kohn-Sham Equations, for final sub-space rotation steps of iterative eigenvalue solvers,

for optical spectra where many but not all eigenvalues / -vectors are needed, etc. We

also note that, in practice, we find that ELPA 2 is usually superior to ELPA 1 even

when all eigenvalues and eigenvector pairs are required, at least for matrix dimensions

N of a few thousand and above.

The key technical underpinnings of the two-step reduction in “ELPA 2” have been

summarized in detail in Ref. [22]. From a practical point, what is most important is

that the overhead from the additional backtransformation step (Va) can be minimized
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quite efficiently by turning to a transformation involving several Householder vectors at

once and a two-dimensional layout of the resulting matrices (allowing parallel scalability

beyond what would be possible with a one-dimensional layout). Another key step is the

introduction of small so-called “kernel” subroutines which implement this strategy in the

computationally most effective way, making sure that operations can be carried out in

the processor cache as far as possible. Thus, these kernels can be architecture-dependent

in their most efficient variants.

At the time of writing, the ELPA 2 library contains several different kernels for

the compute intensive Householder transformations in step (Va). These kernels are

optimized for good performance on different platforms and currently support

• IBM Bluegene/P and BlueGene/Q

• X86 SSE: for platforms that support Intel’s SSE 4.2 ”Single Instruction Multiple

Data” (SIMD) vectorization, e.g. Intel Nehalem CPUs

• X86 AVX: for platforms that support Intel’s AVX SIMD vectorization, e.g. Intel

SandyBridge/IvyBridge CPUs

• AMD Bulldozer

• generic: for routine use on any platform

The generic kernel is written in standard Fortran and ensures that the ELPA

library can be used on every system. The other kernels are intended for use on specific

architectures and are either written in assembler or with intrinsic machine instructions.

In order to use these machine-specific ELPA kernels, a separate compilation (e.g., using

the GNU compiler tools) is usually necessary. The ELPA library is distributed with a

standard ”configure & make” procedure to facilitate this process.

Depending on the respective platform, the kernels are optimized with regard to

cache efficiency and – where possible – SIMD vectorization, and make use of machine

specific intrinsic or assembler instructions. Compared to the generic kernel, the

optimized versions lead to a measurable performance gain. As an example, Table 1

shows a comparison between the generic kernel and the AVX optimized kernel. The

measurements were done on an Intel SandyBridge system with Intel Fortran Compiler

14.0 and GNU compiler 4.7.3. Obviously, on a SandyBridge (or IvyBridge) system the

optimized version gives about twice better performance than the generic kernel.

In practical use, the architecture-specific kernels are intended as “expert tools”.

For normal use, the generic ELPA kernel provides good baseline efficiency and is easily

compiled with any Fortran compiler. The kernels thus do not constitute a barrier to

make ELPA usable in practice. On high-end supercomputers, however, it is possible

and worthwhile to carry out specific performance tests once and provide a pre-compiled,

optimum kernel in the ELPA library for end users.
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Table 1. A comparison of the generic ELPA 2 kernel and the AVX optimized kernel.

Measurements were done on two Intel SandyBridge cores. As an example, a real and

complex valued matrix with N=5,000 were constructed and 100%, 50%, and 10% of

the eigenvectors were computed.

Generic kernel AVX kernel

Number of EVs [%] matric type kernel time [s] GFlops/s kernel time [s] GFlops/s

100 real 13.06 9.66 6.75 18.6

50 real 6.48 9.76 3.39 18.5

10 real 1.26 9.9 0.67 18.7

100 complex 60.64 8.2 26.24 19.1

50 complex 30.25 8.3 13.28 18.9

10 complex 6.0 8.3 2.70 18.6

5. ELPA Performance on Reference Platforms

Some performance benchmarks for the ELPA library have already been published on

HPC platforms in the form of technical reports. On the former “JUGENE” BlueGene/P

installation in Jülich (now decommissioned), strong scaling up to 295,000 CPU cores was

shown for a test matrix with N=260,000.[77] Likewise, a whitepaper covering “tier-0”

systems of the European “Partnership for Advanced Computing in Europe” (PRACE)

high-performance computing (HPC) infrastructure showed excellent scalability of the

tested ELPA subroutines for relatively low processor numbers (up to 8,192 processors

on BlueGene/P; up to 1,024 processors on an Intel Nehalem based system) and matrix

sizes between N=3,888 and 20,480.[78]

In the following, we present performance benchmarks of our own on new, large

HPC systems.

All performance results presented in Sections 5.1–5.3 were done on the new HPC

system “Hydra”, an Intel IvyBridge based X86 64 cluster of the Garching Computing

Centre of the Max-Planck-Society (RZG). Each compute node of the system is equipped

with two Intel Xeon E-2680v2 “IvyBridge” CPUs (10 cores per CPU), operating at

2.8 Ghz, with a peak performance of 448 GFlop/s. Internode communication is done

with an Infiniband FDR-14 network with a maximum bandwidth of 56 Gb/s. The

ELPA software is compiled with Intel’s Fortran Compiler 13.1 and GNU gcc 4.7.3 where

necessary.

The results in Sec. 5.4 were obtained on ”Sisu” the Cray XC30 supercomputer of

CSC – IT Center for Science in Finland. Each node of Sisu is equipped with two Intel

Xeon E5-2670 CPUs with 8 cores per CPU. The system has a proprietary interconnect

”Aries” and its theoretical peak performance is 244 TFlop/s. FHI-aims is compiled with

Intel’s Fortran Compiler 13.1.
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Figure 3. Scaling plots of ELPA and MKL 11.0 on the Intel SandyBridge Cluster.

Measurements were done on “full” nodes, of 20 cores (1 node), 40 cores, 80 cores ...

up to 10240 cores (512 nodes). Run times are shown for real matrices of size N=5,000

(a) and N=20,000 (c), and complex matrices for the same matrix sizes (b and d),

respectively. For each matrix, fractions of 100%, 50%, and 10% of the eigenvector

spectrum were calculated. Note that the ScaLAPACK/MKL routines pdsyed and

pzheevd always compute all the eigenvectors.

5.1. Overall Performance of ELPA

We compare the performance of ELPA to Intel’s Math Kernel Library (MKL) 11.0,

which implements ScaLAPACK-like interfaces. We use two sets of MKL subroutines:

(i) the MKL/ScaLAPACK routines pdsyevr and pzheevr for real and complex matrices,

respectively. These routines are rather new and allow the extraction of only a part of

all eigenvectors, as ELPA does. Thus, the comparison is formally on equal footing.

However, as shown in Fig. 3, the pdsyevr and pzheevr routines in MKL are not yet

fully optimized. Thus, we also include (ii) performance results of the routines pdsyevd

and pzheevd, which compute the full set of eigenvectors but show better scalability.

Both ELPA and MKL benchmarks were done with IBM MPI implementation

version 1.3 for X86 64 systems. ELPA was built with the kernel routines optimized

for AVX SandyBridge and IvyBridge processors.

In Figure 3, we show scaling plots of MKL 11.0, ELPA 1, and ELPA 2 for both

real and complex matrices of size N=5,000 and 20,000. The computed fraction of the

eigenvector spectrum is 100%, 50%, and 10%, respectively. Throughout the investigated

core range (20 to 10,240 cores), ELPA 1 and ELPA 2 both show lower (better) execution
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Figure 4. Comparison of ELPA runs with core counts which correspond to powers of

two vs. core counts which correspond to full IvyBridge nodes (20 cores per node), i.e.

multiples of 20. Powers of two imply implies that all involved nodes except for one are

used with 20 cores per node. Only on the last node, fewer than 20 cores are used. The

representative cases of real valued (a) and complex valued (b) matrices are shown. In

both cases, the full eigenvalue spectrum was computed.

Figure 5. Detailed sub-timings of ELPA 1 and ELPA 2 for real valued matrices

of size N=5,000 (a) and size N=20,000 (b), respectively. In both cases, as a

typical representation, 100% of the eigenvalue spectrum are computed. Shown

are the total time to solution (solid) and the timings of the three major steps

transformation to tridiagonal form (dashed), solution in tridiagonal form (dotted),

and back transformation (dashed-dotted). Obviously, the transformation to tridiagonal

form is the most expensive and also determines the scaling behaviour.

times than pdsyevr and pzheevr in this version of MKL. For low processor counts, i.e.

20 and 40 cores, the time difference to MKL is in the range of 10% to 50%. However, with

increasing core count the difference becomes much larger. ELPA 1 and ELPA 2 scale up

to almost 5,000 cores in the investigated setups, whereas MKL effectively stops scaling
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at ≈100 cores (N=5,000) and ≈1,000 cores (N=20,000), respectively. ELPA does not

scale beyond ≈10,000 cores. However, the time to solution is still small and does not

increase drastically beyond 10,000 cores. For real-world applications, this behaviour is

a critical feature. Even if the eigenvalue solver formally no longer scales, other parts of

the calculation will continue to scale. The low overall execution time of ELPA in the

limit of large processor counts will help push out the “crossover point”, i.e., the number

of processors beyond which the eigensolver dominates the entire calculation.

We also show performance results of Intel’s MKL implementation of the

ScaLAPACK pdsyevd and pzheevd routines for real and complexed valued matrices.

These routines always compute all the eigenvectors, which implies that they have to

perform worse than ELPA if only a fraction of the eigenvectors is needed. Although

neither routine outperforms ELPA, it is interesting to see that these routines currently

still show better scalability than the MKL routines that allow one to limit the calculation

to only a fraction of the eigenvalue / eigenvector pairs.

5.2. Role of the Block-Cyclic Layout: Powers of Two

As explained in Sec. 4.1 and shown in Fig. 2, ELPA relies on a processor grid that can

in principle be rectangular and still maintain a lean communication pattern for certain

operations (notably, the transposition of columns and rows). In the example and in

the initial implementation of ELPA, this was first done for processor counts that are

powers of two. Figure 4 therefore compares the performance of ELPA for processor

counts in multiples of 20 with processor counts in powers of two on the same machine.

In short, a small performance gain is possible by relying on “power of two” processor

counts. This, however, is rather minor for all practical situation in which the overall

scalability is not yet exhausted. Only for the largest tested processor counts (well above

1,000), a significant performance benefit from “powers of two” can be exploited. We

note that all computations employ full nodes, i.e., only the last node in each “power

of two” run is not completely used. Thus, there is no intrinsic difference between both

setups other than the processor count. In particular, a simple memory bandwidth effect

can be excluded as the reason for the observed, slightly superior scalability observed for

“power of two” processor counts.

5.3. ELPA Sub-Timings for Individual Computational Steps

In Fig. 5, we show the sub-timings and the scaling behaviour of the three major

computational steps (III)-(V) of Sec. 2, i.e., the transformation to tridiagonal form, the

solution of the tridiagonal problem, and the back transformation of the eigenvectors.

Fig. 5 shows as a representative case the timings if 100% of the eigenvectors are

computed. It is clear from Fig. 5 that the transformation to the tridiagonal form and

the corresponding back transformation are still the computationally most expensive

parts. In these setups (100% of the eigenvectors), the back transformation in ELPA 2
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actually dominates for small processor counts, while the scaling limit is dominated by

the behaviour of the transformation to tridiagonal form.

Interestingly, even for 100% of the eigenvalue spectrum (the worst case for ELPA 2),

ELPA 2 mostly outperforms ELPA 1 in these benchmarks. This is a direct consequence

of the availability and use of the optimized ELPA linear algebra kernels for the back

transformation steps.

5.4. ELPA in FHI-aims

To put ELPA into the context of a practical application, we focus on a large large-scale

electronic structure problem using the FHI-aims code. Figure 6 shows timings for a

single s.c.f. iteration of large polyalanine molecule with 2,003 atoms on a Cray XC30

supercomputer, employing the standard “tight” numerical settings and tier 2 numeric

atom-centered orbital basis set of FHI-aims.[30] Very good scalability is achieved up-to

4,096 CPU cores and going to 6,144 cores gives still some improvement but this is no

longer due to ELPA. The fastest time achievable for such a set-up is 37 seconds using

6,144 CPU cores. As is evident from Fig. 6, for this system size the dominant cost for

the calculation is the solution of 6,810 eigenvalues and vectors out of the 54,069 possible

ones. The other tasks of the s.c.f. cycle are (most importantly) the integration of the

Hamilton matrix elements, the computation of the electron density and its gradients,

and the calculation of the Hartree potential, all of which happen on a non-uniform

real-space grid. These tasks take less than three seconds each for the largest CPU core

counts. Here the advantage of ELPA 2 is also obvious since it takes only 31 seconds to

solve the eigensystem compared to 128 seconds using ELPA 1 with 6,144 CPU cores.

As Fig. 6 demonstrates, for such a calculation the scalability of the eigensolver is

of central importance. The time for one s.c.f. iteration is dominated by the eigensolver

consuming about 80% of the iteration time. Use of ELPA on Cray can be encouraged

since according to our tests ELPA also outperforms Cray’s ScaLAPACK implementation

in LibSci on XC30.

6. Hybrid MPI-OpenMP implementation of ELPA

Currently, a hybrid MPI-OpenMP (i.e., distributed-shared memory) version of the ELPA

1 and ELPA 2 library is under development. For a fixed number of available cores, the

idea of the hybrid version is to have fewer MPI tasks with a bigger computational

workload. The workload for each MPI task is then subdivided to the different OpenMP

threads, effectively leading to lower communication in MPI. This means that the hybrid

version should become superior to the plain MPI version for large numbers of processor

cores, for which a large number of MPI messages is sent. In such a case, it might be

possible to achieve improved scaling with a hybrid version of ELPA.

Since the development of the hybrid version of ELPA is ongoing, we here only

briefly demonstrate the capability of the present version, labelled 2013.11. Execution
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Figure 6. Subtimings for one s.c.f. iteration of a polyalanine molecule having 2,003

atoms computed using FHI-aims on a Cray XC30 supercomputer. The system has

54,069 basis functions and 6,810 eigenvalues and vectors are solved for at each s.c.f.

iteration using ELPA 2. The solution time for the eigenproblem is 31 seconds using

6,144 CPU cores.

times for various scenarios are summarized inTables 2 and 3. All measurements were

done on the same machine as the pure MPI runs, the HPC system “Hydra” at RZG

(see Section 5).

In particular, we compare – for a subset of core counts – the runtimes of the hybrid

version of ELPA with the pure MPI version for a N=5,000 matrix. Results for the

N=20,000 matrix (not shown) are qualitatively similar. Already at the time of writing,

the hybrid variant of ELPA can yield an additional performance improvement of about

10% to 40% over the plain MPI version. As expected, larger performance benefits are

found for higher core numbers, which indeed increases the scalability.

7. Conclusions

Simulations in science and engineering often require the computation of eigenvalues and

eigenvectors, and while many of these eigenvalue problems are most efficiently solved

by iterative methods, there remains strong demand for direct solvers achieving high

performance on massively parallel machines.

Compared to the implementations available at its inception, the ELPA library

provides significantly better scalability, and thus higher performance, than previous

implementations of well-known direct methods. This was possible by (i) algorithmic

changes, such as two-step reduction instead of direct tridiagonalization, and enabling

the divide and conquer algorithm to compute partial eigensystems at reduced cost; (ii)
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Table 2. Comparison of the plain MPI version of ELPA 1 with the hybrid MPI-

OpenMP development version of ELPA 1. Runtimes are shown for different numbers

of cores for a matrix with N=5,000. Both real and complex values matrices were

investigated and 100% or 50% of the eigenvectors were computed.

Execution time [s]

#cores number of EVs matrix entries ELPA-MPI ELPA-HYBRID

160 100 % real 2.01 1.83

640 100 % real 1.78 1.49

2560 100 % real 1.58 1.26

5120 100 % real 1.60 1.16

160 50 % real 1.84 1.72

640 50 % real 1.72 1.45

2560 50 % real 1.52 1.22

5120 50 % real 1.51 1.15

160 100 % complex 3.19 2.94

640 100 % complex 2.17 1.93

2560 100 % complex 1.80 1.53

5120 100 % complex 1.78 1.50

160 50 % complex 2.85 2.67

640 50 % complex 2.09 1.85

2560 50 % complex 1.75 1.66

5120 50 & complex 1.64 1.43

Table 3. Same as Table 2, however, ELPA 2 values are shown.

Execution time [s]

#cores number of EVs matrix entries ELPA-MPI ELPA-HYBRID

160 100 % real 1.91 1.97

640 100 % real 1.16 1.13

2560 100 % real 1.10 0.85

5120 100 % real 1.10 0.78

160 50 % real 1.57 1.57

640 50 % real 1.06 1.00

2560 50 % real 1.02 0.81

5120 50 % real 1.01 0.73

160 100 % complex 3.53 3.33

640 100 % complex 1.92 1.82

2560 100 % complex 1.50 1.24

5120 100 % complex 1.49 0.99

160 50 % complex 2.77 2.59

640 50 % complex 1.67 1.58

2560 50 % complex 1.39 1.19

5120 50 % complex 1.35 0.93
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improved data layouts and communication patterns in most stages of the computation;

(iii) highly tuned kernels for a performance-critical operation, and building on fewer

software layers to reduce overhead.

Obviously, these modifications cannot eliminate the O(N3) scaling with system size

of conventional eigenvalue solvers. They can also not lead to “infinitely good” parallel

scaling in the sense that, beyond some limiting processor count, reasonable matrix block

sizes to enable efficient matrix block multiplications mean that the workload for some

processors must eventually run out.

However, the practical impact of moving the scalability limit much further out

is enormous in real-world applications that have other workloads, too. Even if the

eigenvalue solver itself no longer scales for a certain processor count, the execution time

for other parts of the calculation may still go down with processor number. Especially

for smaller problems, this improves the overall scalability in practice as long as the

eigenvalue solver does not dominate the entire workload. Likewise, more challenging

larger computations can be carried out with reasonable efficiency on processor counts or

1,000 and above, a number that still sets a practical (availability) limit for many routine

computations.

As a final point, perhaps the biggest practical challenge for “everyday

computations” is that libraries like ELPA do not live in an isolated universe. ELPA

relies on standard tools such as MPI libraries that are outside the scope of “normal”

parallel application development. Here, differences between competing implementations

can be very significant, as can be the effects of simple setup differences for the same

implementation or computer architecture.

One of the objectives of presenting benchmarks in this work for the test cases

provided with ELPA is to provide reference points that give an indication how ELPA

should scale in a “clean” setup. With the efficiency demonstrated here, a significant

computational bottleneck for many applications in electronic structure theory and

elsewhere is indeed alleviated by the ELPA library.

In general, we stress again the fact that new developments for parallel eigenvalue

solutions are now carried out in multiple different contexts and by several independent

groups of scientists. For scientists in electronic structure theory and other fields requiring

the solution of large eigenvalue problems, this renewed interest in traditional linear-

algebra based solutions is excellent news. In this context, the development of ELPA

certainly stands as a highly successful example of how research in computational science

and engineering can be done on the eve of the exascale era: as an interdisciplinary

effort involving mathematicians, computer scientists, and scientists from (in this case)

the electronic structure community, to help realize the potential of the computational

means that are now available for practical research.



ELPA – Eigenvalue Solutions for Electronic Structure Theory 24

8. Acknowledgements

The ELPA library was developed by a multidisciplinary consortium of scientists from

the Fritz Haber Institute of the Max Planck Society, the Garching Computing Center

of the Max Planck Society, the University of Wuppertal, the Technical University of

Munich, IBM Germany, and the Max Planck Institute for Mathematics in the Natural

Sciences. Support by the German Government through BMBF grant 01IH08007 is

gratefully acknowledged.

The authors thank Inge Gutheil and coworkers (Forschungszentrum Jülich) for
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Appendix A. Technical Realization of ELPA

Appendix A.1. Access and Build Process

The ELPA library is actively maintained and is distributed with a standard configure

& make build process. This provides a convenient way to build the library, including

the support of one of the different ELPA 2 kernels or to build the hybrid MPI/OpenMP

development version (see Sec. 6). Access to the source code is normally provided through

repository using the “git” version control system, which is standard software, e.g., on

most Linux distributions. The main project web site is http://elpa.rzg.mpg.de/, with

git repository access described at http://elpa-lib.fhi-berlin.mpg.de/ .

Appendix A.2. Basic Handling

The ELPA library is shipped with a set of easy-to-understand test cases for real and

complex matrices. The test cases demonstrate how to

• set up the BLACS distribution,

• create the ELPA specific communicators for rows and columns,

• and call the solver for ELPA 1 and ELPA 2.

Thus, the test cases serve as the most straightforward practical documentation of

the library. Simply following the lead of the test cases should result in a working port

of existing software to the ELPA environment.

The test cases are also meant as a playground to check the performance of ELPA

1 and ELPA 2, respectively, and to allow the user to get a feeling for the ELPA library.
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For this reason, one can arbitarily choose for each test case the size of the matrix and

the fraction of the eigenvectors to be computed.

After setting up the BLACS data distribution special ELPA specific MPI

communicators have to be set up. This is done with the following method:

GET_ELPA_ROW_COL_COMMS (MPI_COMM_GLOBAL, MY_PROW, MY_PCOL,

MPI_COMM_ROWS, MPI_COMM_COLS)

MPI_COMM_GLOBAL: (integer, input) global communicator for calculations

MY_PROW: (integer, input) row coordinate of the calling process

in the process grid

MY_PCOL: (integer, input) column coordinate of the calling

process in the processor grid

MPI_COMM_ROWS: (integer, output) communicator for communication with

rows of processes

MPI_COMM_COLS: (integer, output) communicator for communication

with columns of processes

Next, the ELPA 1 solver for real and complex valued matrices can be called with

the methods

SOLVE_EVP_{REAL|COMPLEX} (NA, NEV, A, LDA, EV, Q, LDQ, NBLK, MPI_COMM_ROWS,

MPI_COMM_COLS)

NA: (integer, input) order of matrix A

NEV: (integer, input) numbers of eigenvectors to be computed

A(LDA,*): (real|complex, input) distributed matrix for which eigenvectors

are computed. Distribution as in ScaLAPACK.

The full matrix must be set (not only one

half as in ScaLAPACK. Destroyed on exit

(upper and lower half)

LDA: (integer, input) leading dimension of A

EV(NA) (real, output) eigenvalues of A, every processor

gets complete set

Q(LDQ,*): (real|complex, output) eigenvectors of A. Distribution as in

ScaLAPACK. Must be always dimensioned

to full size (NA,NA) even if only a

part of the eigenvalues is needed.

LDQ: (integer, input) leading dimension of Q

NBLK: (integer, input) blocksize of cyclic distribution, must

be the same in both directions

MPI_COMM_ROWS (integer, input) MPI communicator for rows

MPI_COMM_COLS (integer, input) MPI communicator for columns
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The ELPA 2 solver is called with

SOLVE_EVP_{REAL|COMPLEX}_2STAGE (NA, NEV, A, LDA, EV, Q, LDQ, NBLK, MPI_COMM_ROWS,

MPI_COMM_COLS, MPI_COMM_ALL)

Input and output definitions as in ELPA 1

MPI_COMM_ALL: (integer, input) global communicator (e.g. MPI_COMM_WORLD)
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