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ABSTRACT: 

Mass production of high-quality graphene sheets is essential for their practical application in 

electronics, optoelectronics, composite materials and energy-storage devices. Here we report a 

prompt electrochemical exfoliation of graphene sheets into aqueous solutions of different 

inorganic salts ((NH4)2SO4, Na2SO4, K2SO4, etc). Exfoliation in these electrolytes leads to 

graphene with a high yield (>85%, ≤3 layers), large lateral size (up to 44 µm), low oxidation 

degree (a C/O ratio of 17.2), and a remarkable hole mobility of 310 cm2 V-1 s-1. Further, highly 

conductive graphene films (11 Ω sq.-1) are readily fabricated on an A4-size paper by applying 

brush painting of a concentrated graphene ink (10 mg/mL, in N,N’-dimethylformamide (DMF)). 
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All-solid-state flexible supercapacitors manufactured based on such graphene films deliver a 

high area capacitance of 11.3 mF cm-2 and an excellent rate capability of 5000 mV s-1. The 

described electrochemical exfoliation shows great promise for the industrial-scale synthesis of 

high-quality graphene for numerous advanced applications. 

KEYWORDS: electrochemical exfoliation, high-quality graphene, electrolyte, graphene-ink, 

supercapacitor 

INTRODUCTION 

Graphene, a two-dimensional honeycomb sp2 carbon lattice, has received immense attention 

for its potential application in next-generation electronic devices,1,2 composite materials,3,4 

energy storage devices,5 etc., due to its intriguing electrical, mechanical, and chemical 

properties.6,7 Mass production of high-quality, solution-processable graphene via a simple low-

cost method, however, remains a major challenge. Several graphene preparation methods have 

been developed since its discovery.8 Among them, mechanically exfoliated and epitaxially 

grown graphene provides high-quality material, but in only limited quantities, for fundamental 

research8,9. Chemical vapour deposition (CVD) using catalytic metal substrates such as Ni or Cu, 

produces large-area high-quality graphene.9,10 The major obstacles to cost-effective industrial-

scale production of CVD-grown graphene, however, are the requirements of high temperature, a 

sacrificial metal, and multi-step transfer processes onto the desired substrates. Chemical 

exfoliation of graphite based on the Hummers method is an appealing route to produce solution-

processable graphene oxide (GO) in bulk-scale, but requires thermal or chemical reduction to 

partially restore the electronic properties of graphene.11 Several other methods have been 

developed to overcome these limitations, such as solvent- and/or surfactant-assisted liquid-phase 

exfoliation,12 electrochemical expansion,13 and formation of graphite intercalated compounds.14 
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Nevertheless, extensive sonication processes are indispensable for these methods, which limit the 

size and yield of thin graphene layers.  

Recently, electrochemical exfoliation of graphite has attracted attention due to its easy, fast, 

and environmentally friendly nature to produce high-quality graphene.15-18 Electrochemical 

exfoliation of graphite has been performed mainly in two different types of electrolytes, i.e., 

ionic-liquids17,19 and aqueous acids (e.g., H2SO4 or H3PO4).
15,18,20 Exfoliation in ionic liquids 

results in only a low yield of graphene with a small lateral size (<5 µm), and is often 

functionalised with the ionic liquids, which disrupt the electronic properties of graphene.17,21 On 

the other hand, exfoliation in acidic electrolytes can yield graphene with a better quality and a 

larger lateral size, but a significant amount of oxygen-containing functional groups cannot be 

avoided due to the over-oxidation of graphite by the acid.15,18,20 Therefore, a proper electrolyte 

system that can balance the high-quality and large-quantity synthesis of exfoliated graphene (EG) 

is highly in demand.  

In this work, we demonstrate a highly efficient electrochemical exfoliation of graphite in 

aqueous inorganic salts, such as ammonium sulphate ((NH4)2SO4), sodium sulphate (Na2SO4), 

and potassium sulphate (K2SO4). Under neutral pH conditions for electrochemical exfoliation, 

graphene sheets with the highest C/O ratio of 17.2 (i.e., oxygen content of 5.5 atomic% [at%]) 

and lowest defect density were obtained. The EG sheets were readily produced on a scale of tens 

of grams, with ~80% of the flakes larger than 5 µm, and ~ 85% of flakes having 1 to 3 layers. 

Moreover, single-layer graphene sheets had a high hole mobility of 310 cm2 V-1 s-1 with a sheet 

resistance of 1.96 kΩ sq.-1, which is superior to the chemically reduced graphene oxide (rGO). 

The high solution-processability of EG further allowed for the preparation of concentrated 

graphene ink in N,N’-dimethylformamide (DMF) without any additional surfactants. A simple 
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paintbrush application of EG-ink to A4-sized paper yielded highly conductive (~ 11 Ω sq.-1 with 

0.74 mg cm-2 EG loading), mechanically stable, and large-area graphene films. All-solid-state 

flexible supercapacitors fabricated based on such graphene paper exhibited a high-area capacity 

of 11.3  mF cm-2 (at a scan rate of 1 mV s-1) and a high rate capability (up to 5000 mV s-1).   

RESULTS AND DISCUSSION 

Graphene preparation by electrochemical exfoliation. Electrochemical exfoliation of graphite 

was performed in a two-electrode system using platinum as the counter electrode and a graphite 

flake as the working electrode. Different types of aqueous inorganic salt electrolyte solutions 

were examined and among them sulphate-containing salts such as (NH4)2SO4 exhibited the best 

exfoliation efficiency. Electrolyte solutions were prepared by dissolving (NH4)2SO4 in water 

(concentration of 0.1 M and pH ~6.5-7.0). When a direct current (DC) voltage of +10 V was 

applied to a graphite electrode, the graphite flakes began to dissociate and disperse into the 

electrolyte solution (Fig. 1a). The voltage was kept constant for 3 to 5 min to complete the 

exfoliation process. Afterwards, the exfoliated product was collected by vacuum filtration and 

repeatedly washed with water to remove any residual salts. The yield of the exfoliated EG flakes 

was more than 75% relative to the total weight of the starting graphite electrode.  The collected 

powder was then dispersed in DMF by sonication for 10 min. Thus, a dispersion of ~ 2.5 mg/mL 

was obtained, which was stable for 3 weeks without apparent agglomeration (Fig. 1b). 

Remarkably, the exfoliation process could be readily scaled up depending on the type and size of 

the graphite electrode used (Fig. S1). For example, in a series of electrochemical experiments, 

~16.3 g of graphene sheets was obtained (Fig. 1c) within 30 min using three graphite foils (each 

with a dimension of 11.5 cm × 2.5 cm) simultaneously (Fig. S1a).  
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In addition to (NH4)2SO4, various aqueous electrolyte solutions of inorganic salts, such as 

NH4Cl, Na2SO4, NaNO3, K2SO4, and NaClO4 were examined in the electrochemical exfoliation 

process (see Fig. S2-S3 and Table S1 for details). Salts containing anions, such as ClO4
-, Cl-, and 

NO3
-, had no apparent exfoliation effects. Expansion of the graphite electrode was only observed 

when using ClO4
- and NO3

- anions.  In contrast, salts containing sulphate anions (e.g., SO4
2-) 

exhibited pronounced exfoliation efficiency. Thin graphene sheets were readily obtained in less 

than 5 min (Fig. S2d,e and Fig. S3). The superior exfoliation efficiency of sulphate salts 

compared to other anions can be attributed to the lower reduction potential of SO4
2- (+0.20 V) to 

generate SO2 gas. In contrast, the reduction potential of ClO4
- and NO3

- ions to produce Cl2 and 

NO gases is as high as 1.42 and 0.96 V, respectively (see Scheme S1 for details).  

We propose the mechanism of electrochemical exfoliation depicted in Fig. 1d: (i) Applying 

bias voltage results in a reduction of water at the cathode, creating hydroxyl ions (OH-) that act 

as a strong nucleophile in the electrolyte. The nucleophilic attack of graphite by OH- ions 

initially occurs at the edge sites and grain boundaries. (ii) Oxidation at the edge sites and grain 

boundaries then leads to depolarization and expansion of the graphite layers, thereby facilitating 

the intercalation of sulphate ions (SO4
2-) within the graphitic layers. During this stage, water 

molecules may co-intercalate with the SO4
2- anions. (iii) Reduction of SO4

2- anions and self-

oxidation of water produce gaseous species such as SO2, O2, and others, as evidenced by the 

vigorous gas evolution during the electrochemical process.22,23 These gaseous species can exert 

large forces on the graphite layers, which are sufficient to separate weakly bonded graphite 

layers from one another.24  This hypothesis was confirmed by controlled experiments in which a 

constant bias voltage (e.g., +10 V) was applied to graphite electrodes for different time periods 

(5 to 60 s), and changes in the morphology of the graphite foil were monitored by scanning 
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electron microscopy (SEM) and optical microscopy. SEM images of both the surface and edge of 

the original graphite show closely packed layers (Fig. 2a-c). When voltage was applied, however, 

the surface and edge morphology changed drastically within a few seconds (Fig. S4). After 

applying voltage for 5 s, the edge of the graphite foil expanded and the cracks in the graphite 

layers increased (Fig. S5b and c). When the time was increased from 5 to 60 s, a large amount of 

graphene flakes was exfoliated and dispersed into the electrolyte solution.  After 60 s, the edge of 

the graphite foil expanded to almost 10 times that in the initial state (Fig. 2b, h). Moreover, a 

network of ripples on the surface of the graphite was clearly identified in the SEM images (Fig. 

2d,g and Fig. S5a,d), which might be due to the visible gas evolution causing expansion and 

swelling of the graphite layers. These observations strongly support our hypothesis that during 

the electrochemical process, edge and grain boundaries of the graphite electrode open up first, 

which facilitates anion intercalation and results in exfoliated graphene sheets. A detailed reaction 

mechanism on the oxidation, i.e., oxide bond formation of graphite, is proposed and discussed in 

the Supplementary Information (Scheme S2).  

We further investigated the effect of the electrolyte concentration on the applied potential 

for graphite exfoliation. The voltage or potential for graphite exfoliation decreased upon 

increasing the concentration of (NH4)2SO4 (Fig. S6a). When the concentration of (NH4)2SO4 was 

lower than 0.01 M, the yield of EG was less than 5 wt%, indicating a limited amount of ions 

available for graphite intercalation. In sharp contrast, when the concentration increased from 

0.01 to 1.0 M, a high yield of EG (> 75 wt%) was obtained. A further increase in the 

concentration (e.g., 3.0 and 5.0 M), however, failed to enhance the graphene yield (< 50%, Fig. 

S6b). As discussed above, the initial oxidation of graphite by OH- ions at the edge and/or grain 

boundaries is essential for the depolarization and expansion of the graphite layers as well as for 
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the following anion intercalation. With the high concentration of (NH4)2SO4, the formation of 

OH- ions is suppressed due to the low water content, therefore, the graphite edge oxidation, 

expansion, and SO4
2- ion intercalation processes are expected to be relatively slow. 

Morphological and structural characterizations of EG. The morphology of the EG sheets was 

investigated by SEM and atomic force microscopy (AFM). EG nanosheets were deposited on 

SiO2 substrates using the Langmuir-Blodgett technique (Fig. S7a). Figure 3a shows a SEM 

image of a typical EG sheet (18.7 µm). Lateral size measurements of 120 EG sheets reveal that 

over 80% of the EG sheets are larger than 5.0 µm (Fig. 3b), and the largest flake size observed is 

~ 44.0 µm (Fig. S7b). A histogram of flake thickness acquired across EG flakes using AFM 

shows a mean thickness of ~0.72 nm (Fig. 3c), confirming the monolayer nature, which is 

comparable with the thickness of pristine graphene on a Si wafer25. The measured thickness of a 

bilayer and a multi-layer (≥ 4 layers) EG is 1.30 and 3.11 nm, respectively (Fig. S8). The 

thickness distribution of more than 50 sheets calculated from the AFM height profile is presented 

in Fig. 3d. Remarkably, more than 85% of EG nanosheets comprises thin graphene (≤ 3 layers), 

where single and bi-layer graphenes are the dominant products (together ~ 72%). High-

resolution transmission electron microscopic (HRTEM) images further disclose that the EG 

sheets range from a single layer to four layers (Fig. 3e and S9). The selected area electron 

diffraction (SAED) pattern in Figure 3f exhibits a typical six-fold symmetric diffraction with 

stronger diffraction from (1-210) plane than from the (0-110) plane, indicating the high 

crystallinity of a bilayer graphene sheet.13,26 

We then used Raman spectroscopy to identify defects in the graphene27,28. We performed 

Raman spectroscopy and mapping with a 532-nm excitation laser on EG deposited on SiO2/Si 

substrates. Raman mapping of D and G peaks from a few layer EG sheet (2 - 4 layers; selected 
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layers are shown in Fig. 4a) was extracted and plotted in Fig. 3b and c, respectively. The D peak 

(~ 1350 cm-1) was caused by the breathing mode of the sp2 carbon atoms and activated by the 

existence of defects such as edges, functional groups, or structural disorders29. The intensity 

contrast in the colour scale in Fig. 4b and c shows that the intensity of the G peak is more than 

two times that of D peak (mean ID/IG ratio = 0.42), indicating a low degree of defects. The 

corresponding Raman spectra in Fig. 4d (measured near the centre of the graphene flake)  

demonstrates an ID/IG ratio of 0.25, which is much smaller than for chemically or thermally 

reduced GO (~1.1 to 1.5)30, and electrochemically exfoliated graphene (0.4) in acidic solution15.  

X-ray photoelectron spectroscopy (XPS) was used to probe the chemical composition of the 

as-prepared EG. The EG showed approximately 5.5 at% oxygen content on graphene (Fig. S10), 

which was much lower than that obtained in acidic electrolyte solution (i.e., 7.5 at%).15 Despite 

the presence of a tiny amount of oxygen originating from the oxidation of graphite by OH- ions 

during the electrochemical process, the C/O ratio of 17.2 for EG was significantly higher than 

those reported for EG and rGO.15,31,32 A detailed comparison of the C/O ratios between rGO and 

different types of exfoliated graphene is presented in Table S2. The deconvoluted XPS spectra of 

the C1s peak (Fig. 5a) disclose the presence of 3.64 at% of C-OH (285.5 eV), 0.38 at% of C=O 

(287.6 eV), and 1.48 at% of C(O)-O (290.1 eV) groups.  

Further structural analysis of EG by 13C magic angle spinning (MAS) NMR revealed a 

broad signal centred at 122 ppm (graphitic, C sp2), indicating the presence of pure sp2 hybridised 

carbon sites (Fig. S11). In contrast, the NMR spectrum of GO showed an additional signal of sp3 

hybridised carbons bound to oxygen (C-OH or C-O-C) in the range of 60 to 70 ppm. The signal 

of EG at 122 ppm was quite broad when compared to that of GO. This can be attributed to the 

high conductivity of EG, resulting in a higher number of perturbing magnetic moments of the 
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free charges.  The spinning of the EG sample in the magnetic field was difficult because of the 

high conductivity, which also limited the filling of MAS rotors.  

The powder X-ray diffraction pattern of EG displayed a peak at 26.3° (d-spacing 3.48 Å; 

Fig. S12). The presence of a small amount of functional groups in EG acts as a spacer between 

layers and results in a lower 2θ angle with large d-spacing compared to graphite (26.5°, d-

spacing ~ 3.36 Å), but significantly higher than rGO (25.0°, d-spacing ~ 3.56 Å).31 Figure 5b 

displays the ultraviolet photoelectron spectra around the secondary-electron threshold region for 

a thin film of EG. The measured work function (ΦEG) of EG was 4.57 eV, slightly higher than 

that of pristine graphene (~ 4.50 eV).33 This can be attributed to the presence of oxygen-

containing functional groups in EG that can produce surface dipoles via the extraction of π 

electrons from graphene.34  

Electronic properties of EG. To examine the electronic properties of the as-prepared EG flakes, 

we fabricated field-effect transistor (FET) devices based on thin EG film (thickness ~0.7 - 4 nm) 

and a single-layer EG sheet (thickness ~0.71 nm), respectively (Fig. S13). Both thin EG film and 

isolated single-layer EG on SiO2/Si substrates were prepared by using the Langmuir-Blodgett 

technique. The detailed device fabrication is described in the experimental section. The transfer 

curves of the FET devices based on thin EG film and single-layer EG are presented in Fig. 6a 

and c, respectively. Notably, the device based on thin EG film (Fig. 6a,b) possesses a maximum 

hole mobility of 98.2 cm2 V-1 s-1, whereas single-layer EG (Fig. 6c) gives an excellent hole 

mobility of ~310 cm2 V-1 s-1 and a sheet resistance of 1.96 kΩ sq.-1 (Fig. 6d), comparable with un-

doped CVD-grown graphene (1.05 kΩ sq.-1)35. The lower mobility of the thin film device can be 

attributed to the interjunction resistance between EG flakes. It should be emphasised that the 

hole mobility of single-layer EG achieved in this work is significantly higher than that of 

Page 9 of 25

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10 

chemically reduced GO (123 cm2 V-1 s-1)31 or electrochemically exfoliated graphene in acidic 

solution (233 cm2 V-1 s-1)15 (see Table S3 for detailed comparison).  

EG thin films on plastic substrate. The high-quality and solution-processability of EG allow 

for fabricating transparent graphene films on flexible polyethylene terephthalate (PET) substrates 

by a vacuum filtration and dry transfer method (Fig. S14a).15 Briefly, an EG dispersion of 0.1 

mg/mL in DMF was vacuum-filtered through a polytetrafluoroethylene (PTFE) membrane 

followed by mechanically pressing the filtered film against a PET substrate. Afterwards, the 

PTFE membrane was peeled off, leaving the transferred EG film on the substrate due to van der 

Waals interaction between the substrate and graphene. The thickness of the transferred EG film 

could be adjusted by controlling the filtration volume and the concentration of EG dispersions. 

For example, vacuum filtration of 3 and 9 mL of EG dispersions resulted in ~6.0 and ~16.0 nm 

graphene films on PET with ~91% and ~80% transparency, respectively (Fig. S14b). The sheet 

resistance (Rs) measured by a four-point probe system revealed a mean value of 24.2 and 7.56 

kΩ sq.-1 for 6.0 and 16.0 nm films, respectively. Low temperature annealing (i.e., 300°C) of the 

EG films decreased the Rs to 7.61 and 1.81 kΩ sq.-1, respectively (Fig. S14c). Remarkably, 

further doping the EG films with 65% HNO3 for 2 h led to Rs values of 0.87 and 0.33 kΩ sq.-1, 

respectively, without sacrificing the original transparency (Fig. S15).        

EG ink-coated paper for flexible supercapacitors. We further demonstrated the use of EG as 

conductive ink, which is an important requirement for next-generation printable electronics. 

Towards this end, a conductive graphene ink was prepared by dispersing EG flakes in DMF with 

a high concentration (10 mg/mL; Fig. 7a). Application of the as-prepared graphene ink on A4-

size paper using a paintbrush (Fig. 7b) easily transformed the paper into an electrically 

conductive sheet. The bonding of cellulose fiber in paper produces many air passages or pores 
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11 

throughout the paper (Fig. S16a). Thus, the highly porous nature of paper provides a strong 

capillary force for the EG ink, enhancing solvent absorption and leading to a conformal coating 

of EG ink on paper (Fig. S16b). Moreover, a simple film adhesion test with a piece of cellophane 

tape demonstrated strong adhesion between the EG and paper, confirming high film stability 

against damage, such as scratching or peeling off (Fig. 7c). Figure 7d presents the relationship 

between the paper resistance and the amount of EG loading (in mg cm-2). A sheet resistance of 

~11 Ω sq.-1 was obtained with an EG loading of 0.74 mg cm-2, comparable to carbon nanotube 

paper.36  Moreover, the graphene paper possessed excellent mechanical properties since after 

bending to a 4-mm radius, there was no significant change in electrical conductivity (Fig. 7e).  

To demonstrate the multifunction of the EG paper, we explored the potential of EG-coated 

paper for all solid-state flexible supercapacitors. For this purpose, a polyvinyl alcohol/H2SO4 gel 

was drop-cast onto the top surface of EG-coated paper (with a loading of ~0.60 mg cm-2) and 

solidified overnight. Afterwards, two pieces of EG paper electrodes were integrated into an all-

solid-state supercapacitor without using an additional current collector (Fig. 8a). The 

electrochemical properties of the as-fabricated device were investigated by cyclic voltammetry. 

The binder- and additive-free fabricated EG paper-based supercapacitor exhibited typical double-

layer capacitive behaviour at various scan rates (Fig. 8b and S17a). The area capacitance of the 

flexible EG paper supercapacitor was ~11.3 mF cm-2 at a low scan rate of 1 mV s-1 (Fig. 8d), 

comparable to or even higher than thin-film rGO or carbon nanotubes on flexible substrates.37,38 

In addition, the gravimetric capacitance calculated based on the area capacitance ranges from 

18.8 to 56.6 F g-1, depending of the loading of EG on paper varying from 0.6 to 0.2 mg cm-2, 

respectively (Fig. S17).  Remarkably, the device exhibited high rate capability that could be 
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operated up to 5000 mV s-1 (Fig. 8c). The rate capability achieved in this work was thus superior 

to that of carbon nanotubes and/or rGO-coated cellulose paper supercapacitors. 37,39-42   

 

CONCLUSION: 

Taken together, our electrochemical exfoliation of graphite in aqueous sulphate salt 

electrolyte solution effectively reduces the oxidation degree and thereby significantly improves 

the chemical and electronic properties of graphene. Thin-layer graphene sheets were obtained at 

a high yield with large flake size and can be produced on a scale of tens of grams, demonstrating 

the great potential for industrial scale-up production. The EG has the highest C/O ratio (17.2) 

and hole mobility (~ 310 cm2 V-1 s-1) among all the reported values of EG obtained in acidic 

electrolytes and solution-processed rGO. The solution-processability of high-quality EG in 

organic solvents permits their direct use in transparent films and conductive ink, providing great 

advantage for the fabrication of graphene-based materials and devices. Low-cost and 

environmentally-friendly production of such high-quality graphene is important, not only for 

future generation electronics but also for large-scale applications, such as composite materials, 

supercapacitors, fuel-cells, and batteries. 
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device, UV-Vis and sheet resistance of EG thin film before and after acid doping; SEM image of 

EG coated paper and electrochemical characterizations of EG paper based supercapacitors; 

summary of electrochemical exfoliation in different inorganic salts and comparison of elemental 

analysis and mobility of EG with different types of graphene. This material is available free of 

charge via the Internet at http://pubs.acs.org. 
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 Figure 1. Photograph of (a) graphite flakes after electrochemical exfoliation, (b) dispersed EG 

in DMF solution (concentration ~ 2.5 mg/mL), (c) EG powders in a bulk scale (~ 16.3 g). (d) 

Schematic illustration of the mechanism of electrochemical exfoliation. 
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Figure 2. SEM images of (a), (d), and (g) surface and (b), (e), and (h) edge morphology of the 

graphite foil after applying a bias voltage of +10 V for 0 s, 10 s, and 60 s in aqueous (NH4)2SO4 

electrolyte solution, respectively. (c), (f), and (i) are magnified images of (b), (e), and (h), 

respectively.  
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Figure 3. (a) SEM image of EG, (b) statistical flake size analysis of graphene sheets by SEM. (c) 

AFM image of EG on silicon substrate, (d) statistical thickness analysis of EG by AFM. (e) 

HRTEM of single-layer graphene. (f) SAED pattern of EG. 
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Figure 4. (a) Optical microscopic image of an EG flake. Scale bar 5 µm. (b) and (c) Raman 

intensity maps for D and G peak, respectively. (d) Representative Raman spectra. The Raman 

excitation laser wavelength is 532 nm. 
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Figure 5. (a) XPS C1s spectra of EG. (b) The secondary electron cut-off of EG measured from 

ultraviolet photoemission spectra. 

 

Page 21 of 25

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



22 

 

Figure 6. (a) Transfer curve for a FET device based on EG thin film. (b) SEM image of the 

fabricated device showing thin EG flakes between the Au electrodes. Channel length and width 

are indicated by arrows. (c) Transfer curve of an FET device based on single-layer EG (inset is 

the SEM image of the fabricated device). (d) Current-voltage (I-V) curve of an isolated single-

layer EG flake. 
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Figure 7. (a) Photograph of EG in DMF (10 mg/mL) used as an ink; (b) commercial A4-size 

paper coated with EG using a paintbrush (inset). (c) Film adhesion test with cellophane tape (d) 

Relationship between the resistances of the paper with graphene loading. (e) Changes in sheet 

resistance after bending the conductive paper into different radii. 
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Figure 8. (a) Photographs of supercapacitor based on EG ink-coated paper, where the device is 

rolled around a glass rod. Inset shows a photograph of the device prior to rolling. (b) and (c) 

Cyclic voltammetry curves of EG paper based supercapacitor (loading 0.6 mg cm-2) at a scan 

tares from 10 to 100 mV s-1 and 200 to 5000 mV s-1, respectively. (d) Evolution of area 

capacitance versus scan rate. 
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