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Reconstructing the sky location of gravitational-wave detected compact binary
systems: methodology for testing and comparison
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The problem of reconstructing the sky position of compact binary coalescences detected via gravi-
tational waves is a central one for future observations with the ground-based network of gravitational-
wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for
sky localisation have been independently developed. They can be divided in two broad categories:
fully coherent Bayesian techniques, which are high-latency and aimed at in-depth studies of all the
parameters of a source, including sky position, and “triangulation-based” techniques, which exploit
the data products from the search stage of the analysis to provide an almost real-time approxi-
mation of the posterior probability density function of the sky location of a detection candidate.
These techniques have previously been applied to data collected during the last science runs of
gravitational-wave detectors operating in the so-called initial configuration.

Here, we develop and analyze methods for assessing the self-consistency of parameter estimation
methods and carrying out fair comparisons between different algorithms, addressing issues of ef-
ficiency and optimality. These methods are general, and can be applied to parameter estimation
problems other than sky localisation. We apply these methods to two existing sky localisation
techniques representing the two above-mentioned categories, using a set of simulated inspiral-only
signals from compact binary systems with total mass < 20 Mg and non-spinning components. We
compare the relative advantages and costs of the two techniques and show that sky location un-
certainties are on average a factor ~ 20 smaller for fully coherent techniques than for the specific
variant of the “triangulation-based” technique used during the last science runs, at the expense of

a factor &~ 1000 longer processing time.

PACS numbers:

I. INTRODUCTION

Ground-based gravitational-wave (GW) laser interfer-
ometers — LIGO [I], Virgo [2] and GEO-600 [3] — have
completed science observations in 2010 (S6/VSR2-3) [4]
in the so-called initial configuration, and are currently be-
ing upgraded with the plan to start running again from
2015 at a significantly improved sensitivity [5] [6]. No de-
tection was achieved during this initial period of obser-
vations; however, the expectations are that by the time
the instruments reach design “advanced” sensitivity they
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shall routinely detect gravitational-wave signals. One of
the most promising candidate sources for detection are
coalescing binary systems of compact objects containing
neutron stars and black holes [7].

One of the key pieces of information to extract is the
source location in the sky. Once a detection candidate
is identified by search pipelines, the location parameters
that describe the source are reconstructed using a num-
ber of techniques, both high and low-latency [8, @]. In
contrast to traditional telescopes, gravitational-wave in-
struments are all-sky monitors and the source location in
the sky is reconstructed a posteriori. Information about
the source geometry is primarily encoded in the relative
time of arrival of GW radiation at the different detector
sites, together with the relative amplitude and phase of
the GWs as seen in different detectors. Constraining the
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source location on the sky will be an important element
of the analysis, because it allows for follow-ups of the
relevant portion of the sky with electro-magnetic instru-
ments, possibly over a wide spectral range, and could of-
fer information about the environment of a GW-detected
binary [I0HIZ]. The electro-magnetic signatures associ-
ated to the merger of the compact objects are expected to
be transient, so the timescale over which sky location in-
formation becomes available from the gravitational-wave
ground-based network is also important.

For this reason the problem of reconstructing the sky
position of GW sources with the network of ground-based
laser interferometers is an area of active work in prepara-
tion for advanced instruments [I3HI8]. By the end of ob-
servations with instruments in initial configuration, two
main implementations had been used to determine the
sky localization uncertainty region of a coalescing binary
candidate [8] []:

e LALInference [19], a library of fully coherent
Bayesian analysis algorithms, computes the poste-
rior Probability Density Function (PDF) on the sky
location and other parameters, on the timescale of
hours to several weeks, depending on the specific
signal. Using two classes of stochastic sampling
techniques, Markov-Chain Monte Carlo [20H22] and
Nested Sampling [23H25], LALInference coherently
analyses the data from all the interferometers in the
network and generates the multi-dimensional PDF
on the full set of parameters needed to describe
a binary system, before marginalising over all pa-
rameters other than the sky location (a binary in
circular orbit is described by 9 to 15 parameters,
depending on whether spins of the binary compo-
nents are included in the model).

e A much faster low-latency technique, that we will
call Timing++ [§], uses data products from the
search stage of the analysis, and can construct sky
maps on (sub-)minute time scales by using pri-
marily time-delay information between different de-
tector sites. In particular, the masses, time and
phase of arrival, and the amplitude of the signal
are searched for in each detector separately and the
masses and time of arrival are checked for consis-
tency [26]. The time of arrival and amplitude of the
signal in each detector are the intermediate data
products used by Timing++ to construct the PDF
of the sky location.

These two approaches were initially designed to serve
different purposes: a thorough parameter reconstruction
and a low-latency sky-localisation technique, trading off
accuracy for computational speed.

The goal of this paper is two-fold. Several parameter
estimation approaches have been, and continue to be, de-
veloped in preparation of the advanced instruments com-
ing on line in 2015. Algorithms may be tuned in specific
ways to serve different purposes. The first goal of this pa-
per is to provide fair and rigorous methods to compare

different approaches, in order to inform future develop-
ments. One of the most actively investigated parameter
estimation aspects is sky localisation reconstruction. It
is therefore natural to apply these comparison methods
to the algorithms used up to now, to check the consis-
tency of the results, quantify relative benefits and iden-
tify the areas that need the most attention in the future.
The second goal of this paper is to provide the first rig-
orous comparison of the two sky localisation techniques
described above. We examine the sky location PDFs for
a large number of simulated signals from coalescing com-
pact binaries with total masses up to 200, in simulated
stationary, Gaussian noise. Although our signal distribu-
tion is not astrophysically motivated, it allows us to sta-
tistically examine the self-consistency of both techniques
by testing whether the claimed uncertainty regions match
the actual probability that the source is found at those
sky locations. Furthermore, by comparing the uncertain-
ties in sky location across the code outputs we gain an
understanding of the systematic behaviour of each tech-
nique. Many of these comparison methods have now be-
come the routine test-bed in the development effort for
gravitational-wave data analysis and may have applica-
bility in other areas of astronomy.

The paper is organised as follows. In Section 2 we de-
scribe two techniques used to determine the sky location
of a candidate coalescing compact binary. In Section 3,
we evaluate the correctness of the two techniques using
a simulated population of binaries over a wide range of
the parameter space, compare their sky localisation ca-
pabilities and latency time scales. Section 4 contains our
conclusions and pointers to future work.

II. LOCATION RECONSTRUCTION METHODS

Gravitational-wave interferometers are, by design, sen-
sitive to sources across much of the sky. Because of this,
position reconstruction estimates rely largely on time de-
lays between sites in a multiple detector network, i.e.,
triangulation. Using only time-delay information, there
is generally a degeneracy in the position reconstructed.
For a two-detector network, this degeneracy is a conical
surface of constant time delay around the line connecting
the two detectors, whose projection onto the sky plane
yields a ring. For a three-detector network this degen-
eracy is broken into two regions symmetric about the
plane defined by the detectors: the intersections of two
rings on the sky. A four (or more) detector network will
generally identify a single region in the sky. However,
time-delays are not the only source of sky location infor-
mation. Though the observed amplitude of gravitational
waves depends only weakly on the source location, it typ-
ically helps to break these degeneracies in two and three
detector networks; further information is contained in the
relative phasing between detectors [I8]. In this section
we outline the two methods considered so far for position
reconstruction.



We can formalise the problem we want to address as
follows. The data

=

dj (t) =n; (t) + hj (t; 9) R (1)
from each gravitational-wave interferometer in the net-
work j = 1,..., N, where N is the number of instru-
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ments, is a sum of the noise n;(t) and any signal h;(t;6),

where § is a vector that describes the set of unknown
parameters that characterize the GW source. For this
study we consider coalescing binaries of compact ob-
jects with approximately circular orbits and negligible
spins; 0 is a nine-dimensional parameter vector: two
mass parameters (the two component masses mj o, Or
an alternative combination of these, e.g., the symmetric
mass ratio n = mymsa/(m; + m2)2 and the chirp mass
M =1?/5 (mq +my)), the distance to the source D, the
source location in the sky (described by two angles that
identify the unit vector Q- e g., right ascension « and
declination ¢), the orientation of the binary (polarization
v and inclination of the orbital plane ¢), and the reference
phase ¢g and time tg. To simplify notation, we define

6 =1{0,5}, (2)

where E is the parameter vector that does not contain the
sky location parameters, right ascension and declination.
Regardless of the specific technique that one decides to
adopt, the goal is to evaluate p(ﬁ\d), the marginalised
joint posterior density function of the sky location pa-
rameters given the observations.

A straightforward application of Bayes’ theorem al-
lows us to calculate the posterior probability density for
a model with parameters 6 given the data, d, using

— —

7.y Pdlo) p(f)

The prior probability density, p(g), encapsulates all our
a priori information about the expected distribution of
sources in distance, masses or other parameters in the

model. The likelihood p(d|@) is the probability of gen-
erating the data set d given an assumed signal with pa-

3)

rameters 6. The evidence p(d) is used to normalise the
integral of the posterior over the entire parameter space
to unity.

A. LALInference

The evaluation of p(f]d) is notoriously difficult in high-
dimensional problems with complex likelihood functions,
as is the case for coalescing compact binaries in a net-
work of laser interferometers. We have developed a
set of sampling algorithms within the LSC Algorithms
Library (LAL) [27] , collected under LALInference
[19], specifically for the analysis of gravitational-
wave data, and for what is relevant here, coalescing-
binary signal models. The library contains two

main stochastic parameter-space exploration techniques:
Markov-Chain Monte-Carlo (lalinference mcmc [22]),
and nested sampling (lalinference nest [24] and
lalinference_bambi [28]). Different algorithms are in-
cluded to validate results during the development stage
and to explore a range of schemes to optimise the run
time. These techniques have been used to analyse a set
of hardware and software injections as well as detection
candidates during the last LIGO/Virgo science runs [9];
a technical description of the algorithms will be reported
elsewhere [19].

The output of a LALInference run is a list of “sam-
ples”, values of g drawn from the the joint posterior prob-
ability density function. The density of samples in a re-
gion of parameter space is proportional to the value of
the PDF. For the specific sky localisation problem we are
considering here, the marginalised posterior probability
density function on the sky location is simply:

—

p(§3]d) = / p(S%, By, (4)

where p(ﬁ,g\d) = p(d]d) is derived using Eq. (3). If
we could extract an infinite number of samples then we
would be able to map out the PDF perfectly; however,
these are computationally intensive algorithms, see Sec-
tion [[ITD] for more details, and we typically have ~1000
independent samples. The finite number of samples can
introduce both stochastic and systematic bias, and so we
have implemented a 2-step kD-tree binning process to es-
timate the PDF that removes the systematic issues [29].

The fully coherent Bayesian analysis takes into account
the search stage of the analysis only to set the prior range
for the arrival time of a gravitational wave around the
observed detection candidate. However, the matched-
filtering stage of a search already offers processed infor-
mation that can be used to generate approximate poste-
rior density functions p(€3|d). This is the approach taken
in Timing++.

B. Timing++

Timing++ [§] takes the parameters of the waveform
that best fit the data in each detector, as found by the
initial search [26], and assumes that the posterior of in-
terest is only a function of the arrival times in each detec-
tor, t®), and the amplitude of the signal in each detector,
AW That is, we write

p(@ld) ~ p (6|9, 400) (5)

where ) is the location on the sky. We further assume
the information in the arrival times and amplitudes can



each be replaced by a single quantity so that
mﬁu)zp(ﬁﬁ@,Am)
o f(Abrss (D), Adras (D)
= f(Atrss,sc» AArss)a (6)

where f(Atygssc, AArss) is an empirically derived distri-
bution function and At . and AA,e are described in
the following. For a source at position Q, the arrival time
at detector ¢ allows us to predict the arrival time at any
other fiducial point, which, for the sake of simplicity, we
choose to be the geocenter. In the absence of noise, the
predicted geocentric arrival times, computed separately
from each detector’s measured arrival time, should coin-
cide. The summed squared differences of the predicted
arrival times at the geocenter between detector pairs give
us a measure of how far we expect to be from the true
location:

At = |37 (£ 1620(60)) - (1) - i)

>
| (7)
where tge)o(ﬁ) is the difference between the arrival time
of a signal from € at detector (i) and at the geocenter,

and tmf is the time the signal crosses a reference fre-
quency in the band of detector 7. This vanishes in the
idealised case of no noise for the true location. By ap-
propriately choosing the reference frequency we minimise
the correlation between the determined mass and phase
in the waveform, and the recovered time of arrival [30].
This is important since the parameters of the waveform
are determined separately in each detector. Moreover,
we expect that these errors in timing will scale inversely
with the signal-to-noise ratio (SNR) of the system in the
high-SNR regime:

10
Atrss = Atrss,sc ) (8)
P

where p = />, p? is the combined SNR, p; is the SNR
measured in detector ¢, and the factor of 10 is chosen as a
fiducial SNR. We use the SNR-corrected At,g s in place
of At,ss to remove this dependence on SNR.

Incorporating the amplitude of the signal is more com-
plicated. The SNR is a function not only of sky location
but also of luminosity distance, inclination and polariza-
tion of the signal. Because this method is designed for
low-latency sky localisation, a somewhat ad hoc measure
of amplitude consistency between detectors is used. The
starting point is the fact that

1
Dig

where Deg is an effective distance, defined by

~1/2
1 <2 2
Deg =D |F? <+COH> + F2 cos? L‘| . (10)

2

and Fy . = F, »(Q,1) are the antenna beam pattern
functions, see equations B9 and B10 of Ref. [3I]. While
the matched filter detection pipeline produces an esti-
mate of Deg separately in each detector, it is not invert-
ible to obtain any of the quantities in Eq. directly.
With that in mind, we define

1

A2 = = = ) (11)
F2(Q,4 = 0) + F2(Q,¢ =0)
and use
2 ()2 : 2\ °
D - D (32 — A@G)2
s (DT - )
Ny Deg™ + D

(12)
as a measure of the consistency of the calculated and
observed difference in response functions between each
detector pair. In contrast to Eq. . this quantlty is
typically not zero in the absence of noise as A? = D.g/D
only when inclination and polarisation are both 0. How-
ever, the use of amplitude reconstruction in this manner
has been determined empirically to improve position re-
construction estimates. In contrast to At s, there is no
adjustment for SNR in AA,s. Grover et al. [18] showed
that phase consistency between detectors can provide ad-
ditional information on sky location and significantly re-
duce sky localisation uncertainty; however, phase consis-
tency was not included in Timing++.
Putting together our previous assumptions

p(Hd) ~ p (3¢9, 40)
08 p( )f(AtrSS,SC7 AAYSS)
~ p(ﬁ)ft(AtrSS,SC)fA(AArSS)v (13)

fo]l =

where p(ﬁ) is the prior on sky location and in the
third line we have assumed that f(Atysssc, AArss) can
be written as the product of two other empirical distri-
butions, fi(Atrssc) and fa(AArs). In this work we as-
sume isotropic priors on sky location. In the low-latency
search for compact binaries and associated electromag-
netic counterparts for which Timing++ was designed, a
restrictive prior that limited consideration to only areas
of the sky containing galaxies was imposed, as described
in [8]. In practice, fi(Atysssc) and fa(AA,s) are mea-
sured beforehand using simulations, where Aty ¢ and
A A, are computed from the recovered arrival times and
effective distances, respectively, and the true (known)
sky location, ﬁtrue. This amounts to evaluating Aty s
(AA.ss) according to Eq. (Eb (Eq. ) at Gerue using
the time of arrival (effective distance) from the matched
filter pipeline. A kernel density estimator is then used
to estimate the distribution of these quantities. When
a candidate is found, At;ssc and AA.q are computed
across a fixed grid on the sky, and the likelihood is taken
from the previously simulated distributions and the re-
sult is normalized, leading to an inherently fast method.



IIT. TESTING

The goal of this study is to compare the relative per-
formances in terms of sky localisation of Timing++ and
LALInference and in doing so to develop a set of criteria
and general tools that can be applied to many parame-
ter estimation problems in which different techniques are
considered. The tests should ensure that each algorithm
separately is self-consistent, and then provide fair meth-
ods of making comparisons.

For the specific problem considered in this paper,
Timing++ and LALInference both evaluate the posterior
probability density function p(ﬁ|d), see Egs. (4) and .
For a given model assumption and data realisation, there
is an exact PDF of which the algorithms produce an ap-
proximation. There are many effects that can distort the
recovered PDF from the true one. They can be grouped
in two broad categories.

Irrespective of the algorithm that is used, the assump-
tions on the elements that enter the PDF calculation may
differ from the actual problem, and therefore produce
a bias in the results. For the problem at hand, they
can be summarised as follows: (i) the model waveform
family does not describe the actual signal contained in
the data; (ii) the noise model is incorrect, and (iii) the
choice of priors does not match the actual ones that de-
scribe the problem, and in the specific case considered
here, the priors from which the source parameters have
been drawn. Each of these enter the calculation of the
PDF, see Eq. . In the test described here, the signal
model (the waveform family) is exactly known, and the
same waveform family is used for the signal generation
and the likelihood calculation. The statistical proper-
ties of the noise — Gaussian and stationary drawn from a
known distribution — are also known. It is however im-
portant to emphasise that in the case of LALInference
the noise power spectral density (PSD) is estimated from
the data surrounding the signal, and as a consequence
it does not exactly describe the distribution from which
noise is drawn. For the Timing++ analysis, on the other
hand, the noise PSD is taken to be exactly the one used
to generate the noise realisations.

A different set of effects that can affect the recovered
PDF are more fundamentally intrinsic to the algorithms:
(i) the assumptions that go into the likelihood calculation
are not perfect, (ii) there are algorithmic issues that pro-
duce errors, and (iii) PDFs cannot be reconstructed per-
fectly from a finite number of samples (post-processing).
The likelihood calculation makes assumptions about the
form of the noise and so is linked to the previously men-
tioned noise issue. For Timing++, the likelihood is calcu-
lated using a mix of approximations and simulated runs.
This is a point of possible bias entering the results of
the Timing++ runs; measuring its extent is part of our
investigation.

As well as the obvious statement that the algo-
rithm must be working correctly, it was found with
LALInference that the way that the results are processed

to create a continuous PDF from discrete samples from
the posterior can also introduce noticeable distortions.
This is linked to the finite sampling issues mentioned
previously and fixed with 2-stage kD-trees [29].

While in theory the sources of bias due to the test
itself are straightforward to control, any erroneous re-
sults may either be due to code issues or a failure to
properly treat the setup issues; both of which may give
very similar distortions in the final PDF. This leads to
a cycle of code checking and test setup checking while
codes are being developed. This is particularly true of
the LALInference type algorithms that, with the correct
setup, should precisely recover the PDF, creating a strin-
gent checking mechanism for the codes’ self-consistency.

A. Test population

To set up a rigorous comparison test-bed we have
considered 360 mock inspiralling compact binary signals
from a population of binary sources and “injected” the
waveforms into Gaussian and stationary noise represent-
ing observations with the 3-detector network consisting of
the two LIGO detectors at Hanford, WA and Livingston,
LA and the Virgo detector near Pisa, Italy. The power
spectrum of the noise was chosen to mimic the LIGO sen-
sitivity achieved during the last science run [4], and was
the same for all the instruments of the network, including
Virgo. A subset of this population has been recently used
for other parameter estimation studies, see Refs. [18][32].
The noise data were generated with the infrastructure
used for the NINJA-2 project [33]. The low-frequency
cut-off was set to 40 Hz.

The source distribution was chosen to test these two
sky localisation approaches over a large range of signal-
to-noise ratios and physical parameters that describe stel-
lar mass binary systems, rather than being astrophysi-
cally motivated. The mass distribution was uniform in
component masses with 1 Mo < mq 2 < 15 Mg and a cut
off on the total mass mj + mo < 20 Mg. The sky posi-
tion and orientation of the systems with respect to the
interferometers were distributed uniformly. For distances
between 10 and 40 Mpc the logarithm of the distance was
uniformly distributed in order to give a broad range of
network SNRs above the detection threshold.

The waveforms used to generate, and then analyse, the
signal are restricted post-Newtonian approximations of
the inspiral phase, with spins of the binary components
set to zero. The time-domain TaylorT3 and TaylorT4 ap-
proximants of the LSC Algorithm Library (LAL) [27] at
second post-Newtonian order in phase, in which the dif-
ferential equations that describe the evolution of a char-
acteristic orbital velocity and phase of the system are
Taylor expanded in terms of the characteristic velocity of
the two inspiralling objects [34], were used for Timing++
and LALInference, respectively. The precise forms of
the two families of waveforms have phase differences from
post?®>-Newtonian order and above, which has no effect
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FIG. 1: An output PDF of the sky position from the two
codes. The contour lines label the 50% and 90% credible

regions for Timing++ while the light and dark shaded re-
gions show the 50% and 90% credible regions respectively for
LALInference. The star indicates the source location.

for the purpose of these comparisons; the crucial factor
for these tests was that each code used the same wave-
form family for injection and subsequent recovery of the
signal. It was necessary to use different waveforms in each
code due to compatibility issues of the implementations.

The synthetic data containing GW signals added to
noise were processed using the standard matched-filter
search pipeline ihope [26] used in the LIGO/Virgo anal-
yses in this parameter range, see, e.g., Ref. [35] and ref-
erences therein. LALInference was run on all the 360
injections, with a flat prior on the time of arrival over
a range of +£100 ms around the time of the injection.
Timing++ uses an additional criterion that the SNR must
be greater than 5.5 in each of three detectors; 243 candi-
dates passed this cut. Figure [l| gives an example output
PDF from one of the runs. For the self-consistency tests
described in Section [IIB] we used all the results avail-
able for each algorithm. For the comparisons between
the codes in Section [[ITC] we only used those data sets
for which results from both methods are available.

B. Self-consistency checks

We describe the PDF via credible levels (CL): the in-
tegrated probability, in our case p((ﬂd), over a given re-
gion of the parameter space. In particular we consider
the smallest region, or minimum credible region (CRyin ),
for a given CL; in our case, this corresponds to the small-
est region in the sky that contains the given probability
that the source is in that location. More formally, for a
given CL, any credible region (CR) must satisfy

CL = /CRp(Q|d)dQ. (14)
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FIG. 2: For each credible level (CL) we plot the number of

injections that fall within the associated minimum credible
region CRuin for all the signals analysed with LALInference,
bottom (red) curve, and Timing++, top (green) curve. The
error bars correspond to the binomial error, see text for more
details. A self-consistent algorithm gives results that lie along
the diagonal line of this plot. Results that fall above the ex-
pected line, as is the case for Timing++, highlight an algorithm
that is overcautious in its estimation of CRumin.

We can then find the smallest region such that this still
holds, which we call CRy,;,. By considering the full range
of probabilities we can map out the PDF with a set of
contours that bound each CRin.

While the analysis of a single GW signal will not tell us
very much about the correctness of the analysis, consider-
ing how CL and CRy,;, are related over a large number of
GW signals gives us statistical information: Does a given
credible level really correspond to the probability of find-
ing the source in that location? For each run and a given
CL we can check if the injection’s parameter coordinates
fall within the associated CRy,y,; if there are no sources
of bias in the analysis, this should happen with probabil-
ity CL in order for the credible regions to be meaningful.
We can plot a cumulative figure, over all injected signals
and the full range of CLs, of the proportion of injections
found within a given CL’s CRyin. We expect this to be
diagonal, up to statistical fluctuations arising from a fi-
nite number of injections. Deviations from the diagonal
indicate that the parameter-estimation algorithm does
not correctly evaluate the PDF, or other sources of bias
are present, e.g., the priors used in the analysis do not
match the distribution of the injected source population.

The results of this test from all the signals detected
out of the 360 injections in each of LALInference and
Timing++ is shown in Figure[2] The error bars are calcu-
lated from the expected variance in the number of injec-
tions that fall within a given CR. For a CL of p, and n



runs, the variance on the number of sources found within
CRuin is np(1 — p) if the fraction of injections that fall
within a given CRy,, is really described by the binomial
distribution, as expected. The error bars on the frac-
tion of injections found within a given CRy,;, are given
by the standard deviation normalised by the number of
runs, 1/p(1 —p)/n.

We can see here that LALInference produces results
that indeed follow the expected relation; we can therefore
conclude that the algorithm is self-consistent. During
the LALInference development, parallel to this investi-
gation, this test has been used as one of the primary tools
to check the algorithm. As well as checking sky location,
this test was done in each of the model parameters sep-
arately, though rather than using the minimal CL it is
easier and sufficient to use a connected credible region
whose lower bound is the lowest value of the parameter
being investigated.

On the other hand, the results obtained with Timing++
show a significant deviation from the expected behaviour:
the calculated CRs for Timing++ do not represent the
‘true” CL. As the results are above the expected be-
haviour, the sky regions are too large. This shows that
Timing++ is not ‘self-consistent’. This is not necessar-
ily unexpected, because Timing++ is purposefully an ap-
proximation in favour of speed; it is useful to note that
Timing++ is over-conservative.

From these results it also follows that we need to be
cautious when designing comparisons between Timing++
and LALInference applied to the same GW signal. We
consider these comparisons in the next section.

C. Comparisons

We can now turn to comparisons between Timing++
and LALInference, and we consider two different figures
of merit for this.

For a self-consistent code, the CRj, of a chosen CL is
a natural metric of the ability of the algorithm to localise
the source. This is equivalent to stating the expected
smallest region of the sky that needs to be scanned by a
follow-up observation to have a given probability that the
actual source location is covered. Here we will consider
the 50% minimum credible region, and therefore set CL =
0.5. While this is natural for the fully coherent Bayesian
codes, the same is not true of Timing++. We saw in the
previous section that Timing++ is not self-consistent: it
does not provide the ‘correct’” CRs at a given CL, but
actually overstates it.

It is however still interesting and possible to know the
size of the CR,i, that relates to the ‘true’ CL. From the
self-consistency test we have a relation between the out-
put CRs and the ‘true’ CLs from Timing++. This means
we can compare the output areas of the minimal credible
regions of the ‘true’ 50% CL by using the quoted 23%
CRupin from Timing++ and the 50% from LALInference.
In other words, we are correcting for the lack of self-
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FIG. 3: The fraction of detected signals whose associated

true (corrected) 50% CRumin covers less than a given area on
the sky. We can see that LALInference gives much tighter
constraints than Timing++ on the location of a source.

consistency of Timing++ and can produce a fair compar-
ison of the two methods.

Figure |3| shows the fraction of signals whose 50%
CRpins were smaller than a given area. We can see
that even after the corrections to the CLs are imple-
mented, Timing++ gives significantly larger CRyins. This
happens because the PDFs returned from Timing++ are
not quite the same shape as the ‘correct’” PDFs that
LALInference is returning; the differences are not simply
a rescaling of the width of the peak.

While this test was quite natural from the Bayesian
framework point of view, another piece of information
that would be passed to followup telescopes would be a
list of the most likely “pixels” on the sky. One can eas-
ily consider a follow-up strategy in which these tiles are
observed in order with telescopes until a possible coun-
terpart of the GW-detected source is imaged (or one runs
out of pointings). This searched area is equivalent to the
size of the CRyi, whose boundary passes through the
source’s true location on the sky. Furthermore, by con-
sidering this area for both approaches we bypass the need
to correct for the true relation between probability and
CL. Figure ] shows the fraction of sources that would be
imaged after only the given area is searched over, for each
source, using the CRyns as discussed above. We can
see that there is a significant difference between the two
sky localisation approaches; for example, 76% of sources
would be found after searching 20 deg? if we followed the
output of LALInference, where as we would only have
found 38% of the injections by following Timing++.

To gain a better feel for the difference in the calcu-
lated areas for the two methods we compared the areas
injection-by-injection. We plot the areas of the true (cor-
rected) 50% CR, found by each code where the injections
are sorted by SNR (Figure [5). For the LALInference
results we can see the expected scaling of the area



1.0

0.8}

Fraction
o
o

o
~

0.2 1
. — LALInference
’:' -- Timing++
0.0 : ‘ ‘ -
0 20 40 60 80 100
Area (degrees? )
FIG. 4: The fraction of sources where the injection would

have been imaged after searching less than the given area in
a telescope greedy algorithm.
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FIG. 5: The sky area of the 50% true (corrected) mini-
mum credible region for each of the sources as a function of
the optimal network SNR of the signal. While there is some
scatter, the areas from LALInference (solid (red) dots) scale
as o< 1/SNR?, as one would expect, while the areas from
Timing++ (open (green) circles) are closer to o« 1/SNR.

l/SNRQ. We also plot the ratio of the 50% CRy,i, areas
determined by the two codes in Figure []] We can see
that there is significant spread around the typical factor
of 20 difference between the calculated CR,,;, areas.
These results should not be taken as a statement on
the expected sky localisation accuracy as the underlying
injection distribution is not astrophysical. The set of
injections was chosen to test and compare the codes over
a wide region of parameter space and should be treated
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FIG. 6: The ratio of recovered areas of the 50% true

(corrected) CRs using LALInference as the baseline. While
there is some scatter, LALInference is consistently producing
smaller areas than Timing++ by a factor which is roughly 10
for low SNRs and approximately scales with SNR.

as such.

D. Run time

Timing++ has been set up with speed in mind and so
the run time to extract the sky location after data is
received is on the order of minutes [8]. Prior to the anal-
ysis, the distributions p(AtrSS’SC\ﬁ) and p(AArSS\ﬁ) need
to be generated, and this is done with large scale simu-
lations. Despite being computationally expensive — the
simulations require on the order of days to weeks — this
step is done prior to the actual analysis and therefore has
no impact on the latency of the on-line analysis.

While considering code speed, we need to specify the
specific sampler used in LALInference. Here we report
results for lalinference mcmc, the sampling method
that was used for this study. A comparison between dif-
ferent samplers in LALInference will be reported else-
where.

There are two main metrics of computational cost that
we consider here: the so-called “wall time” (the time an
analysis job takes from start to finish), and the total pro-
cessing (CPU) time. lalinference mcmc is designed to
take advantage of multiple cores and runs in parallel on
different processors. The parallel chains explore likeli-
hoods at different contrast levels (“temperatures”). We
find that roughly 10 chains are optimal for improving
sampling and convergence for the data sets considered in
this study; therefore, CPU times are a factor of ten larger
than wall times.

The important quantity to report for LALInference is
the time required to output a new independent sample
of the posterior PDF. The precise number of samples
that we deem necessary to describe the PDF is a balance
between speed and precision; as mentioned earlier, finite
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FIG. T: The cumulative distribution of wall times for
lalinferencemcmc to output a new independent sample
across the runs performed to generate the results reported
in this paper. With 10 cores used for each run, CPU times
were a factor of 10 larger.

sample-size issues are a concern for post-processing, and
we have found that we require at least 1000 independent
samples.

In Fig.[7] we show the fraction of the analysis runs that
output a single independent sample within a given wall
time. This quantity was derived by dividing the total wall
time of each injection run by the number of independent
samples generated in that run. From this graph we can
see that 90% of the runs had output 1000 independent
samples in ~ 14 hours of wall time. The runs were done
on nodes composed of Intel Nehalem E5520 processors
(2.26 GHz) with Infiniband DDR interconnects.

IV. DISCUSSION

In this paper we have considered two sky localisation
algorithms, LALInference and Timing++, used during
the final science run of the LIGO and Virgo instruments
in initial configuration. Our goal was to assess the rel-
ative benefits and costs of the two approaches, and to
develop a strategy as well as practical tools to evaluate
the consistency of the results and inform the future di-
rection of development. We are now applying these tools
to a number of parameter-estimation research projects.

For the study presented in this paper we have con-
sidered a synthetic data set representing a three-detector
network. GW signals generated during the inspiral phase
of the coalescence of binary systems with total mass
smaller than 20 My and non-spinning components were
added to Gaussian and stationary noise representative of
the sensitivity of initial LIGO. We have chosen the range
of source parameters in order to best explore the perfor-
mance of the algorithms. This is important for testing
purposes, but one cannot draw conclusions about the ac-

tual performance of the GW instruments in future ob-
servations from these simulations. To address that ques-
tion, one would need to consider an astrophysically mo-
tivated population of sources, e.g., binaries distributed
uniformly in volume, and then consider sky localisation
only for those signals that pass a detection threshold of
the search pipeline.

As discussed in Section [[TI} posteriors can be system-
atically biased because of incorrect models, inaccurate
priors, insufficient sampling, or improper post-processing
to estimate credible regions.

Incorrect models are always a concern in parameter
estimation. Our likelihood model, p(d|§, H), could be
incorrect because of inaccuracies in the waveform models,
noise models, or calibration errors. Waveforms may not
include certain features, (e.g., in this study, we did not
allow for spinning binary components) or are affected by
limitations in the accuracy of waveform models; efforts
are under way to develop more accurate and complete
models [36] [37] and to account for waveform uncertainty
directly in parameter estimation. Real detector noise is
neither stationary nor Gaussian; promising strides have
been made in accounting for noise non-stationarity [38],
shifts in spectral lines, and even glitches in the noise.
The impact of calibration errors on parameter estimation
was analyzed in the context of initial detectors [39]; this
analysis will need to be repeated for advanced networks.
In this study, our models were correct by construction,
as we used stationary, Gaussian noise, assumed perfect
calibrations, and employed the same waveform families
for injections and templates.

In this paper, we explicitly made sure that the priors
assumed by LALInference were identical to the injec-
tion distribution to guarantee that inaccurate priors did
not introduce a bias in the results, and our code devel-
opment efforts and thorough testing ensured that insuf-
ficient sampling was not a concern.

We did find early in our studies that our initial ap-
proach to post-processing could lead to systematically
understated posterior credible regions. We addressed this
by developing a more sophisticated post-processing pro-
cedure (see below and [29]).

There is an important difference between self-
consistency and optimality of the results. Self-
consistency is a requirement of any code that claims to
provide reliable credible regions: the credible regions cor-
responding to a given confidence level must include the
true source parameters for a fraction of signals equal to
that confidence level. Optimality refers to an algorithm’s
ability to return the smallest credible region among all
self-consistent credible regions. A self-consistent algo-
rithm need not be optimal. When it comes to our ability
to optimise, we must consider both the main algorithm,
and the post-processing of the results.

As has been shown here, the proportion of avail-
able information that is utilised in the analysis can sig-
nificantly affect the accuracy of parameter estimation.
LALInference uses the data taken from all detectors co-
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herently and thereby recovers small credible regions while
staying self-consistent. Timing++ on the other hand pur-
posefully makes simplifications, using intermediate data
products from the incoherent analysis of individual de-
tector data, and hence the recovered credible regions,
even after a correction for self-consistency, are much
larger. The trade-off lies in the runtime of the analyses:
Timing++ returns a sky location within minutes from the
completion of the search, whereas LALInference takes
approximately half a day (wall time) for the specific wave-
form family and network considered here.

Optimality is also important for the post-processing
of the algorithms’ output to generate marginalised PDFs
and credible regions. A binning scheme is traditionally
applied, in which the parameter space is split into a uni-
form grid and the average density of samples in each
region found. Using a greedy approach based on this
scheme to calculate optimal credible regions (CRuin),
self-consistency is broken [29]. For LALInference we
have therefore implemented a more sophisticated way of
setting up the initial bins known as a kD-tree so that
the resolution of bins follows the density of the sam-
ples. A two-stage approach to ordering bins and esti-
mating their contribution to the posterior is required to
satisfy self-consistency while managing to get close to
optimality. This method will be described in full else-
where [29]. While we have successfully applied this to 2-
dimensional posteriors in this study, we cannot currently
extend this scheme to higher dimensions: the number
of LALInference output samples required for accurate
kD-tree PDF interpolation grows exponentially with the
number of dimensions and so the runs become impracti-
cally long.

While we have outlined the procedure for testing
that an algorithm and its implementation report self-

consistent results, it is difficult to check for optimal-
ity. Ome approach is to set up runs where the poste-
rior PDFs are known, which was indeed done as part of
the LALInference testing and validation [19]. By design
these will be simple analytic functions and there is no
general prescription that will test for all circumstances.

The work that we have reported here, and the tools
that we have developed and described have already been
important in the further development of LALInference.
A new low-latency sky local localisation has also been de-
veloped [40]. Tt is important for future work that while we
strive to improve on our methods in both speed and ac-
curacy, we continue to validate these methods against the
tests described here in order to have a reliable analysis
when the next generation of detectors begins collecting
data.
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