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Enabling Grand-Canonical Monte Carlo: Extending the
Flexibility of GROMACS Through the GromPy Python
Interface Module
René Pool,[a,b]∗ Jaap Heringa,[a,b] Martin Hoefling,[c] Roland Schulz,[d] Jeremy C. Smith,[d]
and K. Anton Feenstra[a,b]

We report on a python interface to the GROMACS molecular simu-
lation package, GromPy (available at https://github.com/GromPy).
This application programming interface (API) uses the ctypes
python module that allows function calls to shared libraries, for
example, written in C.To the best of our knowledge, this is the first
reported interface to the GROMACS library that uses direct library
calls. GromPy can be used for extending the current GROMACS
simulation and analysis modes. In this work, we demonstrate that
the interface enables hybrid Monte-Carlo/molecular dynamics
(MD) simulations in the grand-canonical ensemble, a simula-
tion mode that is currently not implemented in GROMACS. For

this application, the interplay between GromPy and GROMACS
requires only minor modifications of the GROMACS source code,
not affecting the operation, efficiency, and performance of the
GROMACS applications. We validate the grand-canonical appli-
cation against MD in the canonical ensemble by comparison of
equations of state. The results of the grand-canonical simulations
are in complete agreement with MD in the canonical ensemble.
The python overhead of the grand-canonical scheme is only min-
imal. © 2012 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.22947

Introduction

The GROMACS molecular simulation package[1–4] is widely used
in the field of (bio)molecular simulation. The most common
setup of a simulation system in GROMACS, as in most other
major molecular simulation software, assumes a system with a
fixed composition of molecules. In addition, for each type of
molecule, a fixed, predefined chemical connectivity is assumed.
This setup does neither readily allow the breaking of chemical
bonds nor readily allow the addition or removal of atoms or
molecules to or from the system, for example, simulations in
the grand-canonical ensemble. A common workaround imple-
mentation involves shell scripting to apply modifications to
the simulated system setup, followed by (re)starting of the
simulation engine. Needless to say, this adds significant over-
head and subtracts from the overall efficiency. Moreover, such
approaches show unfavorable scaling behavior with respect to
computational efforts, for example, when increasing the amount
of insertions/removals or when increasing the system size.

The grand-canonical ensemble can be used for studying
systems where one is interested in the average number of
molecules as a function of the external chemical potential and
temperature. This renders it a suitable ensemble, for example,
for exploring adsorption behavior of a given molecular species
to the system of interest.[5] In a grand-canonical Monte Carlo
(GCMC) simulation, one imposes the chemical potential µi of
species i, the system volume V , and the temperature T . Dur-
ing simulation, particles of type i are removed or inserted as
a result of the imposed chemical potential. At equilibrium, the
amount of removals is equal to the amount of insertions, and
one can sample the average number of molecules i. The main
computational advantage with respect to molecular dynamics

(MD) and NVT Monte Carlo (MC) is that equilibration times are
drastically reduced as well as the sizes needed for the molecular
systems.[5] It is also possible to combine MD with GCMC.[5, 6] The
result is a “hybrid” scheme that alternates short MD trajectories
for particle translations of a system containing Ni particles of
type i, with trial particle removals (Ni ← Ni − 1) or insertions
(Ni ← Ni + 1).

The main application of GROMACS is as an engine to perform
MD simulations. Based on such simulations, dynamic system
properties of interest can be determined. In addition, the MD tra-
jectories also contain nonequilibrium thermodynamic properties
of molecular systems. For analyzing the simulation outcomes,
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GROMACS comes with a range of applications that facilitate this
process. With respect to specific simulation options (e.g., GCMC)
or with respect to data analysis, it would however be useful to
have the GROMACS data structures accessible to the user via
interpreted, high-level programming languages such as python.

In contrast to C or Fortran, python is suitable for rapid proto-
typing and is easy to read and learn. Moreover, the python
user community is active and growing[7] and several python
packages such as BioPython[8] and PyCogent[9] have become
standards. A python interface would therefore extend the scope
of users that can contribute to and use the flexibility of the
GROMACS simulation package.

In this work, we describe an approach that makes the GRO-
MACS data structures available to the user via the python
module GromPy acting as an application programming inter-
face (API) to the GROMACS C-library. The module allows access
to the desired GROMACS data structures in memory from the
python interpreter that can then be used to implement anal-
ysis tools and new simulation schemes. Here, we illustrate the
use of the GromPy API by implementing a GCMC simulation
scheme[5] for which we use GROMACS C-library functions to
perform energy calculations.

Methods

The GromPy python interface

The GROMACS package is written in the C programming lan-
guage. We base our development tree on GROMACS version
4.0.5 that will be ported to the latest development branch in
the near future.

To implement the interface, we choose the python pro-
gramming language. Python is a high-level, interpreted, object-
oriented, and multiplatform programming language. It provides
a large standard library and is easy to code. We use the free
and open source CPython implementation of python.[10] Apart
from the standard library, python has excellent extensions for
numerical data analysis and data display.[11–16] CPython is writ-
ten in C and compiles python programs into intermediate code
that can be executed by a virtual machine. The CPython imple-
mentation also allows the implementation of modules in C and
the interfacing of (precompiled) libraries.

In our setup, we use the ctypes module[17] as interface
between python and the GROMACS C-library. The ctypes mod-
ule contains python equivalents for all basic C data types and
allows the mapping of compound structures in C to python
classes. As soon as the GROMACS data structures are accessible
via ctypes, we can pass them to external GROMACS functions
and access the result from the python interpreter during the
execution with the GromPy module.

The initial GromPy implementation can be used for the
analysis of trajectories, for example, using GROMACS’ periodic
boundary condition removal and structure fitting routines.[18]

GromPy can also read in index groups and topologies and was
applied in the prototyping of GROMACS tools, which were later
implemented in C.[19] Recently, GromPy was applied to design
a combined MD/MC approach to simulate FRET experiments

and aid in the distance reconstruction.[20] This work involves
extending GromPy by a GCMC simulation mode. The GromPy
source code is publicly available at https://github.com/GromPy.

Hybrid GCMC/MD Simulations

In GCMC, the simulation box is in chemical equilibrium with
an external bath. Hence, the chemical potential µ of both sys-
tems is equal. One therefore imposes the chemical potential
of a particular molecular species upon which molecules are
exchanged between the external reservoir and the simulation
box.[5] In practice, this means that molecules are inserted into
or removed from the simulation box during simulation. The MC
acceptance rule for insertion of a molecule reads

Pacc(N → N + 1) = min

[
1,

V

�3(N + 1)
exp (β[µ − �U])

]
, (1)

where N is the number of molecules, V is the box volume,
� = √

h2/(2πmkBT ) is the thermal De Broglie wavelength (h
denotes Planck’s constant, m is the molecular mass, kB Boltz-
mann’s constant, and T is the temperature), β = 1/(kBT ) is the
inverse temperature, and �U = U(N + 1) − U(N) is the energy
difference of adding one molecule at a random position in the
simulation box. For removal of a molecule, we use the following
acceptance rule

Pacc(N → N − 1) = min

[
1,

�3N

V
exp (−β[µ + �U])

]
, (2)

where �U = U(N− 1)−U(N) is the potential energy difference
associated with the removal of a randomly selected molecule.

To simulate thermal motion, we apply several MD steps at
constant NVT using the velocity rescale thermostat,[21] which
generates a canonical ensemble, in between the GCMC moves.
The nature of the MC move (i.e., a trial insertion/removal or an
MD move) during a MC cycle is chosen at random based on a
user-defined list of probabilities for each type of MC move.

Extending GromPy andmodifying the GROMACS source code

This work involves an extension of GromPy, enabling GCMC
using the GROMACS C-library. The general setup is shown in
Figure 1. When used in GCMC mode, GromPy needs a starting
configuration with a number of molecules Ni,start of type i in
the form of a GROMACS tpr file stored on disk. Such a tpr
file serves as input for a GROMACS simulation and contains all
simulation parameters and a configuration of a system. The tpr
file range Ni ∈ [Ni,min,Ni,max] is generated in the preprocessing
stage, where Ni,min � Ni,start and Ni,max � Ni,start are the extrema
of the Ni sampling range. By imposing a chemical potential µi

of this molecule type, GromPy samples the Ni range via the
hybrid GCMC/MD algorithm.

All MC moves in our hybrid MD/GC MC module require hav-
ing the current state sc : [Ni,c, rNi,c , vNi,c ] and associated total
potential energy Uc in memory, compare Figure 2. This state is
a member of the grand-canonical ensemble and thus comprises
the current number of molecules Ni,c of type i, the coordinates
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Figure 1. The GCMC simulation setup used in this work. The preprocessing
stage (1) involves generating tpr files for each configuration Ni ∈ [Ni,min,Ni,max]
using grompp. The input (2) for GromPy comprises the molecule type i for
which the chemical potential µi is imposed, a range of numbers of molecules
[Ni,min,Ni,max] of type i that can be sampled, a starting configuration Ni,start,
the tpr path on disk, and the output path on disk. The preprocessing step
requires prior knowledge of the input parameters (a). GromPy (3) reads the
input parameters (b). Molecular insertions/removals requires tpr reads from
disk (c). Once read, the associated data structures are kept in memory. The
necessary energy evaluations are performed by the GROMACS library (4) with
which GromPy communicates (d). This shared object library is compiled (e)

from a slightly modified version (5) of GROMACS 4.0.5. The generated output
can be further analyzed by the native GROMACS analysis suite,GromPy,or other
software.

rNi,c , and the velocities vNi,c (we use the rN and vN short hand
notation for the coordinate and velocity arrays consisting of N
elements). The GCMC module uses two MC move types: one that
performs several MD steps on sc to simulate thermal motion
of the molecular system and one that performs a GCMC move
that tries to modify sc by inserting or removing a molecule. For
computational efficiency, the MD move is always accepted as
the resulting configuration is already part of the correct sta-
tistical mechanical ensemble. After the MD move, we update
the coordinates, velocities, and total potential energy. Inside
the GCMC move, we select either the removal or the insertion
of a molecule with a probability of Pinsert = Premove = 1

2 . For
insertion, we generate a trial state st that has Ni,t = Ni,c + 1
molecules. The first Ni,c elements of the coordinate and veloc-
ity arrays are copied from sc. The last element is filled by a
random molecular position r′ inside the box and by a molecu-
lar velocity v′ chosen at random from the Maxwell–Boltzmann
velocity distribution associated with the imposed temperature
T , respectively. This step requires having st in memory. If this is
not the case, we first read a tpr file with Ni = Ni,t from disk. A
molecular removal involves generating a trial state st that has
Ni,t = Ni,c − 1 molecules. We randomly select a molecule (k)

from the list and copy the Ni,c elements of the coordinate and
velocity arrays from sc to st, while excluding the kth element.
Again, we require having st in memory and read from disk
otherwise. Trial insertions or removals with associated Ut are
accepted according to eq. (1) or eq. (2) (where �U = Ut − Uc),

Figure 2. Flowchart of GromPy in GCMC mode. Each MC move is based on the current state sc : [Ni,c, rNi,c , vNi,c ] and associated total potential energy Uc, kept in
memory. State sc is defined by the number of molecules Ni,c of type i, their coordinates rNi,c and velocities vNi,c . GromPy uses two MC move types: an MD move of
several MD steps and a GC MC move. After the MD move, the coordinates, velocities, and total potential energy are updated. The GCMC move involves removal or
insertion of a molecule selected with a probability Pinsert = Premove = 1

2 . Insertion or removal requires having st in memory. If this is not the case, we first read a tpr
file with Ni = Ni,t from disk. Insertions or removals are accepted with the probabilities in eq. (1) and eq. (2), respectively. If accepted, st becomes sc and Ut becomes
Uc. Otherwise, we keep sc and Uc. After each MC move we update the averages and increment the MC loop iterator j.
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respectively. If accepted, we update st to sc and the associated
potential energy Ut becomes Uc. Otherwise, we keep sc and Uc.
After each MC move, we update the averages and increment
the MC loop iterator.

Figure 3. Modification of the source code of GROMACS version 4.0.5. Left:
default compilation yields the mdrun executable (among others).This program
calls function mdrunner() that is the calculation engine for MD simulations.
Right: compilation of the mdrun executable as the shared object library lib-
mdrun.so and splitting up function mdrunner() into an initialization stage, an
integration stage, and a finalization stage. Communication between the stages
is achieved through the new cs data structure.Library libmdrun.so is loaded into
the GromPy module where mdr_init(cs),mdr_int(cs) and mdr_fin() are called for
performing MD moves and GCMC trial moves by manipulating cs before each
MC move.

As described above, the GCMC module uses the current and
trial states (sc and st) to sample the grand-canonical ensemble.
For this, energy evaluations are needed to obtain Uc and Ut

that serve as input for the acceptance rules for insertion [eq.
(1)] and removal [eq. (2)]. At run time, the states are stored in
memory by interfacing with specific GROMACS library functions.
The associated energies Uc and Ut are computed by calls to
the GROMACS library. Both operations are performed using the
python ctypes module. To achieve the interfacing, we modified
the GROMACS 4.0.5 source code as shown in Figure 3. Although
the modifications were performed for the serial implementation
of GROMACS, we intend to make the modifications compatible
with the parallel parts of the code. We expect that this will
require relatively little effort. The GROMACS function mdrun-
ner() loads a tpr file and can perform an MD simulation on a
given system. This function is called by the GROMACS mdrun
executable. As ctypes can load only shared object libraries, we
compile the mdrun executable as a shared object library: lib-
mdrun.so. During a GCMC run, we generate trial states st by

copying the current state sc to st and adding a trial position (and
velocity) for insertion or excluding a randomly selected mole-
cule for removal. To achieve this flexibility, we have split up the
mdrunner() function into three parts: mdr_init(cs), mdr_int(cs),
and mdr_fin(cs). We added a new data structure cs for the
current state that enables communication between the sub-
functions. For our purposes, the most important member of cs
is the state s. By subsequently calling the three separate func-
tions (and without modifying cs in between), the behavior of
the original mdrunner() function is reproduced exactly. Function
mdr_init(cs) reads a tpr file from disk and stores the state s

in cs. Function mdr_int(cs) performs an MD calculation of NMD

steps. NMD is also a member of cs and can be set from within
GromPy. For an MD move, the number of MD steps is set to
NMD > 0 and for energy evaluations in a GCMC move it is set
to NMD = 0 (which results in a single point energy calculation).
Computational performance of the simulation is calculated by
function mdr_fin(cs). The gain in total computational time is
realized by keeping cs in python memory once initialized by a
disk read. In this way, cs can be (re)used efficiently for MD or
GCMC moves.

Note that the Ni,start configuration should be an equilibrated
one. However, this is not a precondition for all other Ni �= Ni,start

tpr files that the user wishes to use for sampling, as this tpr
file is merely used to fill the coordinate and velocity arrays in
a trial move. During simulation, sc will always be part of the
correct ensemble.

To summarize, once in memory cs can be manipulated
for whatever intended purpose and can serve as input for
mdr_int(cs). Our purpose is GCMC and we therefore need to
manipulate the cs members s and NMD. Obviously, the same
behavior can be achieved by executing a shell script that calls
the necessary GROMACS executables, that is, grompp and mdrun.
The downside of such an approach is that most of the time
the GCMC shell will perform file I/O and/or system calls, mainly
invoked by the necessary consecutive execution of the GRO-
MACS grompp and mdrun applications. Having the relevant
GROMACS data structures in memory, combined with the mod-
ified GROMACS source code drastically reduces the time spent
on file I/O and renders GromPy an efficient GCMC application,
with less than 6% of run time spent in overhead. This over-
head involves logging to disk, reading of tpr files from disk,
iterating over the MC loop, replacing the rN and vN arrays for
trial insertions/removals, and associated evaluations of eqs. (1)
and (2).

Validation of the GCMCmodule

We aim to validate the GROMACS-GCMC scheme by compar-
ing equations of state (EOS) determined by GCMC and NVT

MD. For this, it is necessary to simulate a single phase. We
therefore choose to simulate supercritical fluids. The validation
is performed for two model systems. The first system con-
sists of single Lennard-Jones (LJ) particles of the same type.
For this, we use water particles of the MARTINI coarse-grained
force field[22] that are modeled as single LJ particles. For this
system type, we approximate the critical properties by Gibbs
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ensemble simulation results.[5] For the second system, with polar
SPC water,[23] we also need to account for charges and inser-
tions/removals of multi-atomic molecules, rendering it a more
complicated and challenging test case. The critical properties for
the SPC model are taken from the literature[24]: Tc,SPC = 587 K
and ρc,SPC = 15 mol/l.

In the LJ simulations, we use a shift potential for the non-
bonded interactions with a switch radius of rs = 0.9 nm. The
nonbonded interactions were truncated at rc = 1.2 nm.[22] In the
SPC simulations, all nonbonded interactions were calculated up
to a cut-off distance of rc = 0.9 nm (corrections to the total
energy and pressure due to truncation are taken into account)
and the Coulombic interactions are calculated by the particle
mesh Ewald method[25] with a spacing of the Fourier grid of
0.12 nm.

The NVT EOS for both systems are determined at T = 773 K
and T = 900 K. The simulation parameters are summarized in
Table 1. For each density ρ, we perform a separate simulation
of which the ranges are the x-values in Figures 4a and 4b
for the LJ and SPC models, respectively. These density ranges
are obtained by changing the box volume, while keeping the
amount of molecules constant. A pilot experiment showed that
NVT results are consistent when varying the box volume V at
constant N or varying N at constant V . We average the total

Table 1. MD parameters used in this work for the LJ and SPC models.

Model

LJ SPC

Nmolecules 400 500
�t (ps) 2 × 10−2 2 × 10−3

tNVT (ps) 2 × 103 2 × 103

tMD,µVT (ps) 2 0.2
tGCMC,µVT (ps) 0 0
τ−1

thermostat (ps−1) 0.1 0.1

The MD time step is denoted by �t, the total simulation time for each NVT

simulation by tNVT , the simulation time per MD move in each µVT simulation
by tMD,µVT , and the “simulation time” for a single point energy calculation
needed for a GCMC trial move by tGCMC,µVT . We apply the velocity rescale
thermostat[21] that ensures a canonical ensemble. The associated coupling
frequency is represented by τ−1

thermostat.

pressure p and hence obtain a pressure profile as a function
of density ρ.

The µVT EOSs at T = 773 K and T = 900 K are obtained
by imposing a range of chemical potentials µ to fixed volume
systems of either LJ particles or SPC water molecules. The sim-
ulation parameters of the µVT simulations can be found in
Table 2. The MD parameters used in MD moves are listed in
Table 1. For the density ranges studied, compare the x-values

Figure 4. EOS for the LJ model (a) and the SPC water model (b) at T = 773 K (top) and T = 900 K (bottom). The data points on the p(ρ) line are determined
by MD at NVT (the error bars indicate the standard deviation of the pressure fluctuations). The points on the µex(ρ) line are determined by grand-canonical MC
using GromPy in GCMC mode. The standard deviations of µex and of ρ for the µVT data are shown as error bars (at 1σ ) and were calculated by conventional error
propagation rules. The least-squares fit of a sixth degree polynomial to these µex points was transformed into a p(ρ) curve using eq. (4). Both results are shown as
dotted lines in each plot.
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Table 2. GCMC parameters used in this work for the LJ and SPC models.

Model

LJ SPC

b (nm) 3.64 2.70
Ncycles 2500 2500
Nmoves 42 42
PMD 0.05 0.05
PGCMC 0.95 0.95

The length of the cubic simulation box is denoted by b and the number of
MC cycles is denoted by Ncycles. Each MC cycle consists of Nmoves trial MC
moves where the MC move type is chosen randomly with probabilities PMD

and PGCMC for an MD move and GCMC move, respectively.

in Figures 4a and 4b for the LJ and SPC models, respectively.
For this type of simulation, we obtain a density profile as a
function of µ.

The Gibbs–Duhem equation is used to validate the µVT results

ρ

[
∂µ

∂ρ

]
T

=
[

∂p

∂ρ

]
T

, (3)

from which the pressure profile

p(ρ) = ρkBT +
∫ ρ′=ρ

ρ′=0
dρ ′

(
ρ ′

[
∂µex

∂ρ ′

]
T

)
(4)

is derived. The excess part of the chemical potential µex is
calculated as

µex = µ − µid

= µ − kBT ln (�3ρ), (5)

where µid is the ideal part of the chemical potential. The pressure
as a function of density p(ρ) in eq. (4) is determined from a
numerical least-squares fit of a sixth degree polynomial to the
µVT data of Ndat = 1000 data points.

Results and Discussion

A supercritical LJ system

For the supercritical LJ system, we used a system of single
particle MARTINI[22] water (W) molecules. A system consisting
of just this molecule type, involves nonbonded LJ interactions
only and therefore renders it a relatively simple test system.
We calculated the critical temperature of this system as Tc,W =
647.2 K and its associated critical density as ρc,W = 4.99 mol/l
by Gibbs ensemble simulations.[5]

The NVT results are shown in Figure 4a (left and bottom
axes). The GCMC insertion/removal acceptance probabilities are
listed in Table 3. We examined if the NVT EOS is different when
varying the number of molecules compared with varying the
simulation box volume. This was found not to be the case.
The results of the LJ µVT simulations are shown in Figure 4a

Table 3. Insertion/removal acceptance probabilities Pacc,GCMC at various
densities for the LJ and SPC models.

Model 〈ρ〉 (mol/l) Pacc,GCMC

LJ 0.22 0.81
LJ 7.4 0.10
LJ 13.0 0.002
SPC 0.32 0.76
SPC 10.7 0.32
SPC 56.0 0.004

Note that at equilibrium Pacc(N → N + 1) = Pacc(N → N − 1) = Pacc,GCMC.

(right and bottom axes). The NVT and µVT EOS are completely
equivalent.

A supercritical SPC water system

Apart from nonbonded LJ interactions between the water oxy-
gen atoms, the SPC model[23] involves Coulomb interactions
between the partially charged hydrogen and oxygen atoms. The
relative orientation of the hydrogen and oxygen atoms within
a water molecule is assumed constant, that is, bond stretching
and bond bending is constrained during simulation using the
SETTLE algorithm.[26]

In Figure 4b (left and bottom axes), we show the NVT results.
The GCMC insertion/removal acceptance probabilities are listed
in Table 3. We again validated the NVT EOS when varying the
number of molecules compared against the NVT EOS when
varying the simulation box volume. The results of the µVT

simulations are shown in Figure 4b (right and bottom axes).
As we can see from Figure 4b, the µVT data at T = 773 K

are in excellent agreement with the NVT results. The µVT data
at T = 900 K also agrees with the NVT data. Although still
within the NVT error bars, the µVT p(ρ) profile at the high-
est particle densities slightly overestimates the NVT one. This
could be explained by GCMC sampling difficulties at extreme
simulation conditions. SPC molecule insertions are performed
by generating a random position in the simulation box for the
oxygen atom, followed by randomly orienting the hydrogens
while meeting the bond angular and bond length constraints.
A more efficient sampling at higher densities could be achieved
by applying the configurational bias MC (CBMC) technique.[5] In
CBMC, one selects the most favorable insertion configuration
from a set of trial configurations and appropriately corrects for
this bias. It should be kept in mind that for both temperatures,
the conditions at higher densities can be considered extreme,
for example, pressures of over 5 × 108 Pa.

Computational performance and accuracy

To get an impression of the computational performance of
GromPy in GCMC mode, we again determined the EOS for the LJ
system at T = 773 K. For the GCMC case, simulation parameters
are the same as above. For each data point in Figure 5, the
number of particles in the NVT simulation was taken the same
as the average number of particles, calculated from the µVT

simulation series. In this way, a fair comparison can be made
between the two simulation modes. Per µVT or NVT simulation,
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Figure 5. EOS for the LJ model at T = 773 K. The data points on the p(ρ)

line are determined by MD at NVT. The points on the µex(ρ) line are deter-
mined by GC MC using GromPy in GCMC mode.The standard deviations of µex

and of ρ for the µVT data were calculated by conventional error propagation
rules.The least-squares fit of a sixth degree polynomial to these µex points was
transformed into a p(ρ) curve using eq. (4). Both results are shown as dotted
lines. Note that the data points for both simulation types are obtained by an
equal number of integration steps. The error bandwidth in the pressure pro-
file based on the uncertainty in the µVT data is the area between the thin
full lines.

we used a total of 749,700 integration steps of which the first
16.7% was used for equilibration.

Both EOSs were determined on a 32-bit Linux machine with
the applications running on a single CPU. The total simulation
time for the NVT EOS is 2400 s (8 s spent on system calls and
2392 s spent on “real” CPU time). The total simulation time for
the µVT EOS is 2547 s (149 s spent on system calls and 2397 s
spent on real CPU time). The ∼150 s difference between the two
simulation modes comes from the limited amount of time spent
on system calls and can be considered as “python overhead” as
described in Extending GromPy and modifying the GROMACS
source code section. Note that this also involves the evaluations
of eqs. (1) and (2) in python.

The µVT and NVT EOSs are completely equivalent, compare
Figure 5. The uncertainty bandwidth in the pressure profile
based on the standard deviations in the µVT data is the area
between the thin solid lines in Figure 5. The µVT EOS uncertainty
is well within the error bars of the pressure sampled in the NVT

ensemble.
To illustrate the file I/O overhead problem in a shell approach

that does not use direct calls to the GROMACS library, we imple-
mented such a shell that can also sample the grand-canonical
ensemble but uses the GROMACS executables to perform the
necessary MC moves. We simulated the LJ system at T = 900 K at
a chemical potential yielding an average number of 〈N〉 ≈ 377
(〈ρ〉 ≈ 13 mol/l) using both GCMC approaches. For both simu-
lations, the parameters are listed in Table 2 (and Table 1 for the
parameters of the MD moves). The “shell” GCMC module requires
10,800 s for 2500 MC cycles, whereas GromPy in GCMC mode
does the same 14 times faster (771 s). It thus turns out that
the “shell” approach spends over 90% of the computation time
on system calls and disk operations at this particular chemical
potential. For this LJ system, we found that the computation
time tCPU scales as tCPU ∝ N1.48. Now, assuming that the file I/O

overhead remains constant, the shell approach would be 1.01
times slower if we would study systems of size 〈N〉 ≈ 11, 000
and it would be two times slower for system sizes of 〈N〉 ≈ 2700.
We tested this assumption and found that for a system of size
〈N〉 ≈ 11, 850, again 〈ρ〉 ≈ 13 mol/l, the shell implementation
is 39 times slower compared with GromPy/GCMC. Moreover,
tCPU for GromPy/GCMC scales with N via the above relation,
whereas the shell approach shows a more unfavorable scaling
behavior of tCPU with N. Clearly, grompp and mdrun contribute
unfavorably to the scaling behavior of tCPU with system size
and render the shell GCMC implementation unfeasible for large
system sizes, due to the large number of grompp and mdrun
executions (and associated file I/O) needed. GromPy/GCMC does
not suffer from this effect as the necessary data structures are
kept in memory at run-time.

Conclusions

We have successfully implemented and extended the GromPy
module (available at https://github.com/GromPy) and enabled
simulations in grand-canonical ensemble using the GROMACS
C-library. To this end, only minor modifications to the GROMACS
source code needed to be applied, and these do not in any
way affect the operation, efficiency, and/or performance of the
GROMACS applications built with the GROMACS source. To the
best of our knowledge, GromPy is the first reported interface
to the GROMACS library and MD engine that uses direct library
calls. It can be used for further extending the current GROMACS
simulation and analysis modes.

We validated our grand-canonical scheme for two system
types. For the simplest one that involves only LJ interactions,
the µVT results are in complete agreement with those of
NVT MD simulations performed with GROMACS. For a second,
more complicated, system that also involves Coulombic interac-
tions and insertions of multi-atomic molecules, the µVT results
agree completely with the NVT results at T = 773 K, but seem
to slightly overestimate the high density region of the NVT

EOS at T = 900 K (although still within the NVT error). This
deviation is explained by sampling difficulties at this high tem-
perature and density. Sampling efficiency might be enhanced
by implementing CBMC for multiatomic molecules.

The computational performance of GromPy in GCMC mode is
comparable to the GROMACS mdrun executable. The accuracy
of the µVT data is well within that of conventional MD in the
NVT ensemble.

Our work is compatible with the 4.0.7 version of GROMACS,
and only minor modifications are needed for the 4.5 version
and higher versions. For the near future, we plan to merge the
necessary changes on the code to the main development tree,
which will make our GCMC compatible with the latest GROMACS
releases, of course in consultation with the GROMACS developers
community. In addition, our minor modifications to the serial
implementation of the GROMACS source code should be made
compatible with the parallel implementation. We expect that
GCMC and hybrid MD/MC is of interest to the GROMACS users
community. Our modifications to the source code are only minor
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and do not stand in the way of “normal” use of the MD engine.
Additionally, a python interface to GROMACS will contribute
significantly to the flexibility of the package.
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