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1 Introduction

Limits of rational conformal field theories in two dimensions play an important role for the

proposed higher-spin AdS3/CFT2 dualities. After the observation that higher-spin gauge

theories on asymptotically Anti-de Sitter backgrounds have large asymptotic symmetry

W-algebras [1, 2], a concrete proposal for the dual of the bosonic Prokushkin-Vasiliev

model [3] was formulated [4], which is given by a certain limit of bosonic Wn-minimal

models. This has been generalised to duality proposals for N = 2 [5–9] and N = 4 [10]

supersymmetric situations. In a very interesting recent development [11] it was shown

that a certain large level limit of the models occurring in the N = 4 case is related

to a conjectured conformal field theory dual of tensionless strings on AdS3 × S3 × T 4,

thus pointing towards an understanding how higher-spin gauge theories are related to a

tensionless limit of string theory.
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In this article we want to investigate the large level limit of the N = 2 supercon-

formal models that appear in the N = 2 higher-spin AdS3/CFT2 duality. These are the

Grassmannian Kazama-Suzuki models [12, 13] that are realised as coset models of the form

su(n+ 1)k ⊕ so(2n)1
su(n)k+1 ⊕ u(1)n(n+1)(k+n+1)

. (1.1)

Similarly to what happens for the bosonic models in the large level limit [14],1 for n = 1

it was shown in [17] that the limit theory coincides with the continuous orbifold C/U(1).

Analogously, it was conjectured in [18] that the large level limit for general n is given by

the continuous orbifold Cn/U(n). Recently, evidence for this conjecture has been given

in [19], where the untwisted sector as well as the ground states of the twisted sectors of

the orbifold theory were identified in the limit theory. In the present work we on the one

hand give further support to the conjecture by an analysis of boundary conditions and

boundary partition functions, and on the other hand we provide a complete description of

the spectrum of N = 2 Wn+1-primaries in the limit theory, which is based on the modular

bootstrap.

The paper is organised as follows. Section 2 contains a short summary of the facts

about Kazama-Suzuki models that we will need in this paper. In section 3 we study

boundary conditions in Kazama-Suzuki models in the large level limit. We determine the

boundary partition functions for discrete boundary conditions in the limit theory, and show

that they coincide with the boundary partition functions of fractional boundary conditions

in the orbifold Cn/U(n). We present in section 4 a proposal how the full continuous bulk

spectrum of N = 2 Wn+1 primaries arises from the Kazama-Suzuki spectra in the limit.

We confirm this proposal by the modular bootstrap that we discuss in section 5.

2 Kazama-Suzuki Grassmannian cosets

We are interested in the Kazama-Suzuki models [12, 13], which are rational N = (2, 2)

superconformal field theories based on the coset

gk ⊕ so(dim[g]− dim[h])1
hk+gG−gH

, (2.1)

where gG, gH indicate the dual Coxeter numbers of the numerator and denominator algebra,

respectively. A particular class of Kazama-Suzuki models are the Grassmannian cosets,

which are specified by two positive integers, the rank n and the level k of the model, and

whose explicit coset description reads

su(n+ 1)k ⊕ so(2n)1
su(n)k+1 ⊕ u(1)κ

. (2.2)

Here, κ = n(n+1)(k+n+1) and the central charge is c = 3nk
k+n+1 . The theories are rational

with respect to an extension of the N = 2 superconformal algebras, the so-called N = 2

Wn+1-algebras.

1Limits of coset models have also been studied in [15, 16].
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The map of the denominator into the numerator group in equation (2.2) is specified

by the following group homomorphisms (see e.g. [6]):

i1 : U(n) −→ SU(n+ 1) , i1(h, ξ) =

(

hξ 0

0 ξ−n

)

∈ SU(n+ 1) ,

i2 : U(n) −→ SO(2n) , i2(h, ξ) =

(

Re(hξn+1) Im(hξn+1)

−Im(hξn+1) Re(hξn+1)

)

∈ SO(2n) ,

(2.3)

where h ∈ SU(n) is a n× n-matrix, and ξ ∈ U(1) is a phase.

Following the usual coset construction [20, 21], the spectrum of the theory is given

by the branching of the decomposition of the representations of the numerator algebra in

terms of representations of the denominator algebra,

HΛ
su(n+1) ⊗HΣ

so(2n) =
⊕

λ,µ

HΛ,Σ
λ,µ ⊗

[

Hλ
su(n) ⊗Hµ

u(1)

]

. (2.4)

The representations HΛ,Σ
λ,µ are labelled by (Λ,Σ;λ, µ), where Λ = (Λ1, . . . ,Λn) is a domi-

nant weight of su(n + 1)k (where we display only the corresponding weight of the finite-

dimensional algebra), Σ one of the four dominant weights of so(2n)1 (Σ = 0 singlet, Σ = v

vector, Σ = s spinor, Σ = c co-spinor), λ = (λ1, . . . , λn−1) labels dominant weights

of su(n)k+1, and µ is an integer (κ-periodic) labelling the primaries of the free boson

compactified at radius
√
κ.

We are here only interested in the Neveu-Schwarz sector where Σ = 0 or Σ = v. Also

we are usually interested in representations of the full N = 2 Wn+1-algebra and not only

in representations of the bosonic part of it. To get those in the Neveu-Schwarz sector we

have to consider in so(2n)1 the representation H0
so(2n) ⊕Hv

so(2n).

We can get the full N = 2 Neveu-Schwarz characters ΞΛ
λ,µ(q) of the coset represen-

tations by decomposing the product of a su(n + 1)k character and the character for the

so(2n)1-part,

χ
su(n+1),k
Λ (q; i1(h, ξ)) θ

NS(q; i2(h, ξ)) =
∑

λ,µ

ΞΛ
λ,µ(q)

[

χ
su(n),k+1
λ (q;h) Θµ,κ(q; ξ)

]

, (2.5)

where χ
su(n+1),k
Λ and χ

su(n),k+1
λ are the characters of the representations of su(n+1)k and of

su(n)k+1, respectively, Ξ is the coset character, Θ are u(1)κ characters; the squared bracket

expression on the right hand side is altogether a u(n) affine character. θNS is the character

of 2n Neveu-Schwarz Majorana fermions, given by

θNS(q) =χ
so(2n),1
0 (q; i2(h, ξ)) + χso(2n),1

v (q; i2(h, ξ)) (2.6)

=trNS

(

qL0−
n
24 i2(h, ξ)

)

= q−
n
24

n
∏

j=1

∞
∏

m=0

(

1 + hjξ
n+1qm+ 1

2
)(

1 + h̄jξ
−(n+1)qm+ 1

2
)

.

Note that i2(h, ξ) given in (2.3) has eigenvalues hjξ
n+1 and h̄jξ

−n−1, where hj are the

eigenvalues of h ∈ SU(n).
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Being class functions, the characters depend only on the coordinates of the Cartan

torus Tn of U(n), which we parameterise as

T
n ∋ Diag(eiθ1 , . . . , eiθn) , with eiθj = hjξ

n+1 . (2.7)

The spectrum obtained in this way is subject to selection rules, since some of the repre-

sentations of the denominator do not appear as subsectors of the numerator. Only those

representations occur for which

|Λ|
n+ 1

− |λ|
n

+
µ

n(n+ 1)
∈ Z , (2.8)

where for su(n) and su(n + 1) the symbol |D| denotes the number of boxes of the Young

diagram associated with the finite dimensional representation D.

Furthermore, some states in the spectrum have to be identified, because of the outer

automorphisms of the numerator and denominator chiral algebras. The group of outer

automorphisms of the affine algebra su(n)k is isomorphic to the centre of the group SU(n),

which is Zn. The automorphism acts therefore by permuting the Dynkin labels of the

representations on both the special unitary numerator and denominator algebras, resulting

in a Zn(n+1) group. Under the automorphisms the u(1) label gets shifted by k+n+1. The

identifications among representations are accordingly:

su(n+ 1)k : Λ1 −→ k −∑n
j=1 Λj , Λi −→ Λi−1 for 2 ≤ i ≤ n ,

su(n)k+1 : λ1 −→ k + 1−∑n−1
j=1 λj , λi −→ λi−1 for 2 ≤ i ≤ n− 1 ,

u(1)n(n+1)(n+k+1) : µ −→ µ+ k + n+ 1 mod n(n+ 1)(n+ k + 1) .

(2.9)

Conformal weights can be determined from the knowledge of the L0 eigenvalues for

the representations in the numerator and in the denominator. The U(1)-charge can be

obtained by a careful definition of the fields which generate the N = 2 superconformal

algebra [12]. The conformal dimension h and the U(1) charge Q of the Neveu-Schwarz

representation (Λ;λ, µ) are then

h =
1

k + n+ 1

[

C(n+1)(Λ)− C(n)(λ)− µ2

2n(n+ 1)

]

mod
1

2
(2.10)

Q = − µ

n+ k + 1
mod 1 , (2.11)

where C(n) and C(n+1) denote the quadratic Casimir, which for su(n) reads

C(n)(λ) =
∑

1≤i<j≤n−1

λiλj
i(n− j)

n
+

1

2

n−1
∑

j=1

λ2
j

j(n− j)

n
+

1

2

n−1
∑

j=1

λj j(n− j) . (2.12)

3 Boundary conditions in the large level limit

In this section we analyse the behaviour of boundary states of the coset theory in the large

level limit. We show how one can obtain a certain discrete class of boundary conditions for

the limit theory, and we study their boundary partition functions. We then give support

to the claim that the limit theory can be described by the N = (2, 2) superconformal

continuous orbifold Cn/U(n).
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3.1 Boundary conditions and spectrum

The Grassmannian coset models su(n + 1)/u(n) are rational with respect to the N =

2 Wn+1-algebras. With the Cardy construction [22] one can define rational boundary

states, i.e. those that preserve one copy of the chiral algebra of the theory. Depending on the

gluing conditions for the supercurrents, one can distinguish A-type and B-type boundary

conditions — here we want to focus on A-type conditions. For a diagonal bulk spectrum, A-

type boundary conditions are labelled by the same set of representations as the bulk fields,

i.e. by tuples (Λ,Σ;λ, µ), with Λ,Σ, λ dominant weights of su(n + 1)k, so(2n)1, su(n)k+1

respectively, and µ the U(1) label of the free boson on the circle of radius
√
κ. We want to

use a particular choice for the gluing condition for the fermions, this restricts the so-label

to Σ = 0 or Σ = v.

From the analysis of boundary renormalisation group flows in coset models [23–25]

one knows that a boundary state with su(n + 1) label (Λ1, . . .Λn) can be obtained by

a flow from a superposition of boundary states with su(n + 1) label (0, . . . , 0). These

boundary renormalisation group flows become shorter and shorter as k grows, and in the

limit k → ∞ the initial and final fixed-point coincide. We therefore expect that in the limit

theory the elementary boundary conditions are labelled by the tuples (0,S;L,M). This

fact generalises what we observed in the case n = 1 of N = 2 minimal models [17, 26].

The boundary partition function for two boundary conditions (0,Si;Li,Mi) (i = 1, 2)

in the model at level k is given by

Z(0,S1;L1,M1)(0,S2;L2,M2)(τ̃) =
∑

Σ,λ

N
so(2n)1
ΣS1

S2N
su(n)k+1

λL1

L2 χ(0,Σ;λ,M2−M1)(q̃) , (3.1)

where q̃ = e2πiτ̃ , and the symbols N denote the fusion coefficients. In the expression

above, the characters of the bosonic subalgebra of the coset algebra appear. To simplify

our analysis we want to study the supersymmetric partition functions with the full super-

Wn characters ΞΛ
λ,µ (the unprojected partition function). Then we can forget about the

so-label S in the boundary conditions, and the unprojected partition function reads

Z(0;L1,M1)(0;L2,M2)(τ̃) =
∑

λ

N
su(n)k+1

λL1

L2 Ξ0
λ,M2−M1

(q̃) . (3.2)

To obtain the large level limit k of this boundary partition function we have to identify

the limit of the coset characters, which we will do in the following subsection.

3.2 Limit of coset characters

We want to evaluate the coset characters Ξ0
λ,µ in the limit k → ∞ while keeping the labels

λ, µ fixed. This has been worked out in [6, 19] (see [27] for a similar analysis for the bosonic

models) by using large level expansions of the individual character that enter (2.5) as we

will review below.

The su(n)k+1 character is given by the Weyl-Kač formula

χ
su(n)k+1

λ = q
−

(n+1)(n−1)(k+1)
24(k+n+1)

∑

w∈Ŵ sgn(w)ew(λ+ρ)

∑

w∈Ŵ sgn(w)ew(ρ)
(3.3)

– 5 –
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where Ŵ represents the affine Weyl group, which is given by the semidirect product of finite

Weyl reflections with translations of elements of the root lattice. The affine translations

contribute with terms of order qk+1−
∑

i λi (see e.g. [28]), which are suppressed as k becomes

large. It is therefore possible to write down an expansion of the form

χ
su(n)k+1

λ (q;h) = q
−

(n+1)(n−1)(k+1)
24(k+n+1)

+
C(n)(λ)
n+k+1

ch
su(n)
λ (h) +O

(

qk+1−
∑

i λi
)

∞
∏

m=0

[

(1− qm+1)n−1
n−1
∏

i 6=j

(1− hih̄jqm+1)

] , (3.4)

where ch
su(n)
λ (t) is the finite su(n) character for the representation λ, and C(n)(λ) is the

quadratic Casimir (see (2.12)).

Similarly, the vacuum character of su(n+ 1)k for large level k becomes (see e.g. [19])

χ
su(n+1),k
0 (q, i1(h; ξ)) (3.5)

=
q
−

n(n+2)k
24(k+n+1) (1 +O

(

qk
)

)
∞
∏

m=0

[

(1− qm+1)n
n−1
∏

i 6=j

(1− hih̄jqm+1)
n
∏

k=1

(1− hkξn+1qm+1)(1− h̄kξ−(n+1)qm+1)

] .

Analogously the u(1) character can be expanded as

Θµ,κ(q; ξ) = q−
1
24

+µ2

2κ

ξ−µ +O
(

q
κ
2
−|µ|
)

∞
∏

m=0
(1− qm+1)

. (3.6)

Plugging the previous expansions into equation (2.5), we arrive at the following large k

expression for the coset characters:

Ξ0
λ,µ(q) = q

n(n+1)
8(k+n+1)

−
C(n)(λ)
n+k+1

−µ2

2κ

[

Aλ,µ(q) +O
(

qk−
∑

i λi

)

+O
(

q
κ
2
−|µ|
)]

, (3.7)

where Aλ,µ is given by

∑

λ,µ

Aλ,µ(q) ch
su(n)
λ (h) ξ−µ = q−

n
12

θNS(q)
∞
∏

m=0

n
∏

j=1
(1− hjξn+1qm+1)(1− h̄jξ−(n+1)qm+1)

=
n
∏

j=1

(

2 sin
θj
2

) ϑ3

(

q,
θj
2π

)

ϑ1

(

q,
θj
2π

) ,

(3.8)

and the angles θi are defined in analogy with (2.7). The branching function Aλ,µ can be

isolated using the orthogonality of the finite characters, and we conclude

Aλ,µ(q) =
1

|Tn|

∫

Tn

dµ(t) ch
u(n)
λ,µ (t, ξ)

n
∏

j=1

(

2 sin
θj
2

) ϑ3

(

q,
θj
2π

)

ϑ1

(

q,
θj
2π

) , (3.9)

where T
n is the Cartan torus of U(n).
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From (3.7) we see that the limit of the coset characters Ξ0
λ,µ with fixed labels λ, µ is

simply given by Aλ,µ,

lim
k→∞

Ξ0
λ,µ(q) = Aλ,µ(q) . (3.10)

This provides us with an expression for the boundary partition function (3.2) in the limit.

3.3 Match with the continuous orbifold

We will now show that the boundary partition functions in the limit theory coincide with

the corresponding partition functions in the orbifold model Cn/U(n).

The boundary conditions in an orbifold conformal field theory arise from superpositions

of conformal boundary conditions of the parent theory that are invariant under the action

of the orbifold group. A boundary condition that is by itself invariant splits into “fractional

boundary conditions”. In a continuous orbifold the only relevant boundary conditions are

these fractional boundary conditions, because they couple to twisted sectors of the orbifold,

which outnumber the untwisted sector in case of continuous groups (see the discussions

in [14, 17, 18]). Fractional boundary conditions are labelled by irreducible representations

of the orbifold group (if the original boundary condition is invariant under the full orbifold

group). In our case we consider the boundary condition corresponding to a point-like brane

at the origin. The boundary partition function between fractional boundary conditions

labelled by the U(n) multi-indices r, r′ then reads

Zrr′(τ̃) =
1

|G|

∫

G
dµ(g) chu(n)r (g) ch

u(n)
r′ (g) trH0

(

U(g)q̃L0−
n
8

)

, G = U(n) , (3.11)

whereH0 is the Hilbert space of the boundary spectrum of a point-like brane in Cn, ch
u(n)
r is

the finite character of the U(n) representation labelled by r, U(g) is the action of g ∈ U(n)

on the space of states H0, and |G| is the volume of U(n) measured with respect to the Haar

measure dµ(g).

The expression in equation (3.11) can be simplified by noting that

chu(n)r (g) ch
u(n)
r′ (g) =

∑

s

N
u(n)
rr′

s chu(n)s (g) , (3.12)

where N
u(n)
rr′

s are u(n) Clebsch-Gordan coefficients. This implies that any boundary parti-

tion function can be realised as a combination of elementary Zr0(τ̃) amplitudes.

Every group element is conjugate to some element of the Cartan torus (quotiented

by the Weyl group). Using the cyclicity of the trace we can rewrite the integral as

an integral over the Cartan torus of U(n) parameterised as in section 2 by n angles θi
as Diag(eiθ1 , . . . , eiθn). The trace becomes

trH0

(

U(g)q̃L0−
n
8

)

=

n
∏

i=1

(

2 sin
θi
2

) ϑ3

(

τ̃ , θi
2π

)

ϑ1

(

τ̃ , θi
2π

) . (3.13)

We conclude that

ZLM,0(τ̃) =
1

|Tn|

∫

Tn

dµ(t) ch
u(n)
LM(t)

n
∏

i=1

(

2 sin
θi
2

) ϑ3

(

τ̃ , θi
2π

)

ϑ1

(

τ̃ , θi
2π

) , (3.14)

– 7 –



J
H
E
P
0
4
(
2
0
1
5
)
0
1
5

where we have labelled the u(n) representation by representation labels of su(n) and u(1),

r → (L,M). Comparing (3.14) with equation (3.10) we find

ZLM,0(τ̃) ≡ AL,M(q̃) . (3.15)

Hence the boundary partition functions of type-A Cardy boundary conditions on the coset

coincide in the limit k → ∞ with the boundary partition functions of fractional boundary

conditions in the continuous orbifold. This provides further evidence that the k → ∞
limit of the Grassmannian Kazama-Suzuki models is equivalent to the continuous orb-

ifold Cn/U(n).

3.4 Explicit expressions for SU(3)/U(2)

The boundary partition functions (3.15) in the limit theory have been explicitly analysed

in [17, 18] for the case n = 1. We present here the explicit characters that appear in the

boundary functions in the limit for the second simplest example, n = 2, namely for the

A-type boundary conditions of the large level limit of su(3)/u(2) Grassmannian coset.

In the su(3)/u(2) case the integral (3.14) reads

ZLM,0(τ̃) =
1

|T2|

∫

T2

dµ(t) ch
u(2)
LM(t)

2
∏

i=1

(

2 sin
θi
2

) ϑ3

(

τ̃ , θi
2π

)

ϑ1

(

τ̃ , θi
2π

) , (3.16)

where the angles θ1 and θ2 parameterise the Cartan torus T
2. The finite U(2) character

has the form

ch
u(2)
L,M =

sin(1 + L) θ1−θ2
2

sin θ1−θ2
2

eiM
θ1+θ2

2 . (3.17)

The induced measure on the Cartan torus is

dµ(t)

|T2| =
dθ1dθ2
8π2

(

2 sin
θ1 − θ2

2

)2

. (3.18)

Using the following expansion (see e.g. [29], appendix A)

ϑ3(τ,
θi
2π )

ϑ1(τ,
θi
2π )

= −i
ϑ3(τ, 0)

η3(τ)

∑

n∈Z

eiθi(n+
1
2)

1 + qn+
1
2

, (3.19)

we can explicitly solve the integral (3.16). We find

Ac=6
L,M(q) = q−

5
2
+ 3

2
M− 1

2
L

[

ϑ3(τ, 0)

η3(τ)

]2 (1− q)3(1 + q)(1− q1+L)
2
∏

j=0

(

1 + q(
1
2
−j)+M−L

2

)(

1 + q(j−
1
2
)+M+L

2

)

, (3.20)

recalling that L + M must be even (L,M are u(2) representation labels). In the special

case L = M = 0 we find the vacuum character,

Ac=6
0,0 (q) = q−

1
4

∞
∏

n=0

(

1+qn+
3
2

)(

1 + qn+
3
2

)(

1 + qn+
5
2

)2

(1− qn+1) (1− qn+2)2 (1− qn+3)
=

[

ϑ3(τ, 0)

η3(τ)

]2

(

1−q
1
2

)4
(1+q)

(

1 + q
3
2

)2 .

(3.21)
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The expression presented in (3.21) and (3.20) are the characters of irreducible represen-

tations of the unprojected Neveu-Schwarz spectrum of the discrete boundary conditions

in the large level limit of su(3)/u(2) Kazama-Suzuki Grassmannian cosets. Analogously

they describe point-like fractional branes in the N = 2 supersymmetric continuous orb-

ifold C2/U(2).

The value of the conformal weight of the ground states above the vacuum can be

recognised as the leading exponent of the characters of equation (3.20) (when we take out

the overall factor q−1/4), and one finds [18]

range leading term

M = L = 0 q0

|M| ≤ L − 2 qL−1

|M| = L > 0 qL−
1
2

|M| = L+ 2 qL+1

|M| > L+ 2 q−
5
2
− 1

2
(−3|M|+L)

(3.22)

4 Bulk spectrum in the limit

We now want to explore the bulk spectrum of the limit theory. If one keeps the represen-

tation labels (Λ;λ, µ) of a bulk field fixed while taking the limit k → ∞, the corresponding

conformal weight will tend to zero (or at least to a (half-)integer) (see eq. (2.10)). If on the

other hand one looks at the complete spectrum of conformal weights of primaries, there are

many fractional weights, and in the limit the conformal weights that appear even become

dense on the positive real line, so that one expects a continuous spectrum.

This behaviour is well-known from other limit theories [17, 26, 30–33]. To obtain

the spectrum in the limit theory one has to study which fields contribute to some given

conformal weight (or better to a small neighbourhood of this conformal weight).2 The

representations that contribute to some finite non-integer conformal weight arise from coset

representations where the labels scale with the level k. The precise analysis is complicated

by the fact that one does not know all the conformal weights in the Kazama-Suzuki models

explicitly, and in general only its fractional part can be computed (by eq. (2.10)).3

In [19] a class of coset fields was identified whose conformal weights, which could be

computed exactly, precisely match the conformal weights we expect for the ground states

of the twisted sector of the continuous orbifold theory that is supposed to describe the

limit theory. We take this identification as a starting point to formulate a proposal for

what happens to the complete bulk spectrum in the limit. We can perform some checks

to our proposal in the SU(3)/U(2) model. In section 5 we will then see that our proposal

precisely matches with the modular bootstrap.

2In addition one should also specify the charges with respect to the other currents in the W-algebra.
3Only for n = 1 one can bring all coset fields by field identifications to some standard range for which

one can determine the conformal weights directly.
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4.1 Ground states

We expect that in the limit the representation labels of bulk fields have to be scaled with

k. Following [19], we write the labels λ, µ of the denominator group as4

λ(α) = (k + n+ 1)
(

α2 − α1, . . . , αn − αn−1

)

, µ(α) = (k + n+ 1)
n
∑

i=1

αi . (4.1)

By using field identification the αi can be brought to the range −1
2 ≤ αi ≤ 1

2 . Note also

that by definition they satisfy

α1 ≤ α2 ≤ · · · ≤ αn . (4.2)

For a given denominator label we expect that we have to tune the numerator label in a

precise way to obtain a finite conformal weight in the limit. In [19] it was proposed to

choose the numerator labels as

Λ(α) = (k+n+1)
(

α2−α1, . . . , αm−αm−1,−αm, αm+1, αm+2−αm+1, . . . , αn−αn−1

)

, (4.3)

where the integer m with 0 ≤ m ≤ n is the number of negative αi. For those labels

the conformal weight can be determined exactly, because there appears no integer shift in

the formula (2.10) (the representation (λ(α);µ(α)) occurs in the decomposition of Λ(α)

as can be seen from the explicit decomposition described in appendix A). If we consider

the representations (Λ(α);λ(α), µ(α)) for which the parameters αi have a finite limit, the

conformal weight is given by

h(Λ(α);λ(α),µ(α)) =
1

2

n
∑

i=1

|αi|+O(1/k) . (4.4)

We will now formulate a proposal for the complete spectrum of coset primaries.

4.2 Full coset spectrum in the limit

For given denominator labels λ(α), µ(α) we have seen that one obtains a finite conformal

weight in the limit if one chooses the numerator label as Λ(α). Except for the selection

rules the numerator labels and denominator labels run independently, so there are many

more coset fields in the spectrum. On the other hand, as emphasised before, to get a

finite limit of the conformal weight the scaling of the labels has to be tightly correlated,

and we expect that to get a finite result the numerator labels Λ should deviate from Λ(α)

in the limit only by a finite amount. Taking the selection rules into account, such Λ are

of the form

Λ(α,N)=Λ(α)+
(

N1−N2, . . . , Nm−1−Nm, Nm+N,Nm+1−N,Nm+2−Nm+1, . . . , Nn−Nn−1

)

,

(4.5)

where m again denotes the number of negative αi and Ni are integers, and

N =
m
∑

i=1

Ni −
n
∑

i=m+1

Ni . (4.6)

4In [19] the prefactor is k instead of k + n+ 1, in the limit k → ∞ this difference does not play a role.
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The Ni will be kept fixed in the limit. One can show (see appendix A) that for non-negative

Ni the U(n) representation (λ(α), µ(α)) is contained in the decomposition of Λ(α,N),

therefore there is no shift for the conformal weight when using the formula (2.10). The

result is

h =
n
∑

i=1

|αi|
(

1

2
+Ni

)

+O(1/k) (Ni ≥ 0) . (4.7)

For negative Ni we propose to shift the conformal weight by |Ni|− 1
2 so that the conformal

weight in the limit is

h =
∑+

i

|αi|
(

1

2
+Ni

)

+
∑−

i

(

1− |αi|
)

(

− 1

2
+ |Ni|

)

+O(1/k) , (4.8)

where the sum with superscript ’+’ runs over those i for which Ni ≥ 0, and the one with

the superscript ’−’ over those with Ni < 0.

We cannot give a proof of the proposed shift in the conformal weight, but we can give

some justifications. First of all there has to be a non-zero shift, because (λ(α), µ(α)) does

not occur in the decomposition of Λ(N,α) if any of the Ni is negative (see appendix A).

In [19] it was argued that finite changes of Λ away from Λ(α) would result in representations

belonging to the same twisted sector labelled by the αi in the orbifold description. In the

twisted sector we expect all conformal weights of primaries to be half-integer multiples of

|αi| and (1− |αi|), and the shift we propose is the only choice that is consistent with these

orbifold expectations.5

Also let us look at a simple example. Choose all αi negative, such that m = n.

Furthermore we choose N1 = −1 and all other Ni = 0. Then the numerator label is

Λ = Λ(α,N) =

(

λ1 − 1, λ2, . . . , λn−1,−
1

n

(

µ+ |λ|
)

− 1

)

. (4.9)

In its decomposition to representations of U(n) one finds among others the representation

(

λ− f , µ+ (n+ 1)
)

, (4.10)

where f is the fundamental weight of su(n). On the other hand the vector representation

v of so(2n) decomposes into the u(n) representation (f , n+1)⊕ (f̄ ,−n− 1), so that (λ, µ)

is contained in Λ⊗ v. The formula for the conformal weight therefore has to be shifted by

the conformal weight h(v) = 1/2 of the vector representation of so(2n)1.

We give some more evidence in the next subsection in the example of SU(3)/U(2).

Another justification for our proposal is provided by the modular bootstrap analysis in

section 5.

5In the orbifold picture, all these states can be obtained by acting on the ground state with twisted

bosonic and fermionic modes, and it was shown in [19] how this corresponds to adding or subtracting boxes

from the Young diagram belonging to Λ. In this way one could also determine the conformal weights in the

limit. We thank Matthias Gaberdiel for pointing this out.

– 11 –



J
H
E
P
0
4
(
2
0
1
5
)
0
1
5

4.3 The example of SU(3)/U(2)

We now consider the Kazama-Suzuki model based on SU(3)/U(2) (i.e. the case n = 2). We

consider negative α1, α2 (i.e. m = n = 2), and coset label
(

Λ(α,N);λ(α), µ(α)
)

with

Λ(α,N) =
(

(k + 3)(α2 − α1) +N1 −N2,−(k + 3)α2 +N1 + 2N2

)

(4.11)

λ(α) = (k + 3)(α2 − α1) (4.12)

µ(α) = (k + 3)(α1 + α2) . (4.13)

For non-negative Ni the conformal weight can be computed using the coset formula (2.10)

without (half-)integer shift, and the result is (compare eq. (4.7))

h = |α1|
(

N1 +
1

2

)

+ |α2|
(

N2 +
1

2

)

+O(1/k) . (4.14)

For one or both Ni negative there have to be shifts because the U(2) representation

(λ(α), µ(α)) does not appear in the decomposition of Λ(α,N). We consider now the case

where N1 < 0 and N2 ≥ 0. Then we make use of the field identification (see (2.9)) and

shift the labels by the action of the simple current

Λ(α,N) → Λ(1)(α,N) =
(

−(k + 3)α2 +N1 +N2, (k + 3)(1 + α1)− 2N1−N2 − 3
)

(4.15)

λ(α) → λ(1)(α) = (k + 3)(1− α2 + α1)− 2 (4.16)

µ(α) → µ(1)(α) = (k + 3)(α1 + α2 + 1) . (4.17)

Using the explicit branching described in appendix A one can now show that

(λ(1)(α), µ(1)(α)) is contained in the decomposition of Λ(1)(α,N) if N1 < 0 and N2 ≥ 0.

Therefore we can use the formula for the conformal weight (2.10) without any (half-)integer

shift, and we obtain

h =
(

1− |α1|
)

(

|N1| −
1

2

)

+ |α2|
(

N2 +
1

2

)

+O(1/k) . (4.18)

5 Modular bootstrap

In the last section we formulated a proposal for the bulk spectrum of N = 2 Wn+1-

primaries in the large level limit. One way of testing it is by comparing it against the

modular bootstrap: a boundary partition function after modular transformation results

in the overlap of boundary states, which should be expressible as a sum/integral over the

contributions of the different bulk fields.

We consider the boundary partition function Z00(q) for the simplest boundary condi-

tion labelled by (0; 0, 0), the vacuum representation. For this we know the expression in

the large level limit (see (3.14)), and we can determine its modular transformation. On the

other hand, we can also determine the modular transformation at finite level and express

it as a sum over the bulk spectrum. In the limit this has to approach the modular trans-

form of the limit of the boundary partition function. From the comparison we can identify

the bulk characters in the limit theory and verify that their leading exponent matches the

expectations for the conformal weight that we formulated in the previous section.
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5.1 Modular transformation of the boundary partition function

The boundary partition function for the simplest boundary condition is given by

Z00(τ̃) =
1

|U(n)|

∫

dµ(g) trH0

(

U(g)q̃L0−
n
8

)

. (5.1)

The integral can be rewritten as an integral over the Cartan torus which as in section 2 we

parameterise by Diag(eiθ1 , . . . , eiθn). The trace is then given by

trH0

(

U(g)q̃L0−
n
8

)

=

(

2 sin
θ1
2

)

· · ·
(

2 sin
θn
2

) ϑ3

(

τ̃ , θ1
2π

)

· · ·ϑ3

(

τ̃ , θn2π
)

ϑ1

(

τ̃ , θ1
2π

)

· · ·ϑ1

(

τ̃ , θn2π
)

. (5.2)

The induced measure on the torus is (Weyl’s integration formula)

1

|U(n)|

∫

dµ(g)f(g) =
1

(2π)nn!

∫

dθ1 · · · dθn
∏

i<j

(

2 sin
θi − θj

2

)2

f
(

Diag(eiθ1 , . . . , eiθn)
)

,

(5.3)

where f is some class function on U(n). Therefore the partition function can be written as

Z00(τ̃) =
1

(2π)nn!

∫

dθ1 · · · dθn
∏

i<j

(

2 sin
θi − θj

2

)2 n
∏

i=1



2 sin
θi
2

ϑ3

(

τ̃ , θi
2π

)

ϑ1

(

τ̃ , θi
2π

)



 . (5.4)

The modular transformation of the theta-functions is well known,

ϑ3

(

τ̃ ,
θ

2

)

=
√
−iτ eiπτ(

θ
2π )

2

ϑ3

(

τ, τ
θ

2π

)

(5.5)

ϑ1

(

τ̃ ,
θ

2

)

= −i
√
−iτ eiπτ(

θ
2π )

2

ϑ1

(

τ, τ
θ

2π

)

, (5.6)

where τ̃ = − 1
τ , and we obtain

Z00(τ̃) =
1

(2π)nn!

∫

dθ1 · · · dθn
∏

i<j

(

2 sin
θi − θj

2

)2 n
∏

j=1

(

2 sin
θj
2π

iϑ3

(

τ, τ
θj
2π

)

ϑ1

(

τ, τ
θj
2π

)

)

(5.7)

Now we can expand the ratio of the theta-functions,

sin
θ

2π

ϑ3

(

τ, τ θ
2π

)

ϑ1

(

τ, τ θ
2π

) = −i sin
|θ|
2π

ϑ3(τ, 0)

η3(τ)

∑

N∈Z

eiτ |θ|(N+ 1
2)

1 + qN+ 1
2

for − 2π ≤ θ ≤ 2π , (5.8)

to find

Z00(τ̃) =

∫

dθ1 · · · dθn
∑

N1,...,Nn∈Z

1

(2π)nn!

∏

i<j

(

2 sin
θi − θj

2

)2 n
∏

j=1

(

2 sin
|θj |
2

)

×
(

ϑ3(τ, 0)

η3(τ)

)n n
∏

j=1

q(Nj+
1
2
)
|θj |

2π

1 + qNj+
1
2

. (5.9)
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The integrand is invariant under permutation of the θj , therefore we can assume them to

be ordered and multiply the expression by n!. After introducing the variables αj =
θj
2π , we

finally arrive at

Z00(τ̃) =

∫

− 1
2
≤α1≤···≤αn≤

1
2

dα1 · · · dαn

∑

N1,...,Nn∈Z

∏

i<j

(2 sinπ(αi − αj))
2

n
∏

j=1

(2 sinπ|αj |)

×
n
∏

j=1

(

ϑ3(τ, 0)

η3(τ)

q(Nj+
1
2
)|αj |

1 + qNj+
1
2

)

. (5.10)

We want to interpret this expression as an integral/sum over the bulk sectors labelled by

the αj and Nj ,

Z00(τ̃) =

∫

− 1
2
≤α1≤···≤αn≤

1
2

dα1 · · · dαn

∑

N1,...,Nn∈Z

S{α,N} χ{α,N}(q) , (5.11)

where the character of the corresponding representation is given by

χ{α,N}(q) =
n
∏

j=1

(

ϑ3(τ, 0)

η3(τ)

q(Nj+
1
2)|αj |

1 + qNj+
1
2

)

. (5.12)

The coefficient that appears in front of the character,

S{α,N} =
∏

i<j

(2 sinπ(αi − αj))
2

n
∏

j=1

(2 sinπ|αj |) , (5.13)

is interpreted as the coefficient of the disc one-point function of the corresponding bulk

field in the presence of the boundary condition (0; 0, 0) (note that it does not depend on

the Ni). We confirm this interpretation by an analysis of the limit of the boundary states

overlap in the following subsection.

5.2 Limit of boundary state overlaps

For finite k, the modular S-transformation of the vacuum character reads

Ξ0
0,0(q̃) =

∑

Λ,λ,µ

S(0;0,0)(Λ;λ,µ) Ξ
Λ
λ,µ(q) , (5.14)

where Λ, λ, µ are the labels of the bulk representation, and the sum must be performed

taking care of identifications and selection rules. The modular S-matrix is given by

S(0;0,0)(Λ;λ,µ) = n(n+ 1)S
su(n+1)
0Λ S

su(n)
0λ S

u(1)
0µ , (5.15)
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as a product of S-matrices for su(n+ 1), su(n) and u(1), which read

S
su(n+1)
0Λ =

(k + n+ 1)−
n
2√

n+ 1

∏

1≤i<j≤n+1











2 sinπ

j−1
∑

k=i

Λk + (j − i)

k + n+ 1











(5.16)

S
su(n)
0λ =

(k + n+ 1)
1−n
2√

n+ 1

∏

1≤i<j≤n











2 sinπ

j−1
∑

k=i

λk + (j − i)

k + n+ 1











(5.17)

S
u(1)
0µ =

1
√

n(n+ 1)(k + n+ 1)
. (5.18)

We now evaluate S
su(n)
0λ for λ = λ(α) given in (4.1), and we find

S
su(n)
0λ(α) =

(k + n+ 1)
1−n
2√

n

∏

1≤i<j≤n

(

2 sinπ(αj − αi) +O(1/k)
)

. (5.19)

Similarly we evaluate S
su(n+1)
0Λ(α,N) for Λ(α,N) given in (4.5), and we arrive at

S
su(n+1)
0Λ(α,N) =

(k + n+ 1)−
n
2√

n+ 1

∏

1≤i<j≤n

(

2 sinπ(αj − αi)
)

n
∏

i=1

(

2 sinπ|αi|
)

(1 +O(1/k)) , (5.20)

where the leading term is independent of the Nj . Our final expression for the S-matrix

is then

S(0;0,0)(Λ(α,N);λ(α),µ(α)) = (k + n+ 1)−n S{α,N} (1 +O(1/k)) , (5.21)

where S{α,N} is the coefficient that we obtained from the modular transformation of the

limit of Z00 (see (5.13)). We want to reparameterise the sum over Λ, λ and µ in (5.14) by

αj and Nj . The sum over λ and µ can be replaced by an integral for large k, and when

we do a variable transformation to αj , we get a factor n(k + n + 1)n from the variable

transformation. Because of the selection rules not all combinations of λ and µ are allowed,

which reduces the integral by a factor of 1/n, so that we find

∑

λ,µ
allowed

−→ (k + n+ 1)n
∫

− 1
2
≤α1≤···≤αn≤

1
2

dα1 · · · dαn . (5.22)

We can then write down the limit of the modular transformed boundary partition function

Z00 as

Z00(τ̃) = lim
k→∞

Ξ0
0,0(q̃) (5.23)

= lim
k→∞

∑

Λ,λ,µ

S(0;0,0)(Λ;λ,µ) Ξ
Λ
λ,µ(q) (5.24)

=

∫

− 1
2
≤α1≤···≤αn≤

1
2

dα1 · · · dαn

∑

N1,...,Nn∈Z

S{α,N} χ{α,N}(q) , (5.25)
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where χ{α,N} is the limit of the character of the representation (Λ(α,N);λ(α), µ(α)) when

α is kept fixed. By comparison with the result of the modular transformation of the limit

of Z00 in (5.10) we can read off the character χ{α,N}, which confirms our identification in

eq. (5.12). Note also that the leading exponent of the character χ{α,N} (see (5.12)),

χ{α,N} = q−
n
8
+
∑+

j |αj |(Nj+
1
2)+

∑−
j (1−|αj |)(|Nj |−

1
2) + · · · , (5.26)

confirms the conformal weight for the representation (Λ(α,N);λ(α)), µ(α) that we deter-

mined in (4.8). This gives another evidence that our prescription for the shifts of the

conformal weights that we used in section 4.2 is correct.

We arrive therefore at our final result that the primary spectrum of the limit theory

is labelled by the continuous parameters αj as well as the integers Nj . The N = 2 Wn+1-

characters of the corresponding representations are given in (5.12).

6 Summary

We have analysed the large level limit of the Grassmannian Kazama-Suzuki models based

on the coset SU(n + 1)/U(n), and have provided evidence that the limit theory can be

identified with the continuous orbifold Cn/U(n) (supporting results of [17–19]). In partic-

ular we analysed in section 3 a class of boundary conditions that is obtained by keeping

the boundary labels fixed while taking the limit. In this limit, some boundary conditions

are identified, and elementary boundary conditions are labelled by representations of the

denominator group U(n). These are precisely the labels of fractional boundary conditions

in the continuous orbifold theory, and we have shown that the boundary partition functions

in the limit coincide with those in the orbifold theory.

Furthermore we have analysed the behaviour of the bulk spectrum. Similarly to other

limit theories, a continuous spectrum emerges, and bulk fields of the limit theory can be

thought of as averages of fields that have the same behaviour when the level goes to infinity.

We have made a proposal in section 4 how the N = 2 Wn+1 primary bulk fields of the

limit theory emerge from the coset fields; they are labelled by a set of continuous (αj) and

discrete parameters (Nj). This is confirmed by the modular bootstrap analysis in section 5,

which also provides the characters for the bulk representations.

Summarising, we have found the complete bulk spectrum of the limit theory, and a

class of boundary conditions labelled by representations of U(n) for which we know the

bulk one-point function (and — related by a modular transformation — the boundary

partition functions). A next obvious task in the analysis of the limit theory is to construct

further boundary conditions which one expects to exist from the orbifold point of view (in

particular those that correspond to space-filling branes in Cn). Another more fundamental

problem is to understand better why these limit theories lead to continuous orbifolds. For

the case n = 1, we gave a geometric argument in [17] why the limit should be described

by the orbifold C/U(1), and it would be interesting to find a similar argument also in the

general case.
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A Decomposition of representations

A representation of su(n+ 1) labelled by the weight Λ = (Λ1, . . . ,Λn) (with Dynkin labels

Λi) decomposes into representations (λ, µ) of su(n)⊕ u(1) embedded as described in (2.3)

in the following way (see e.g. the appendix of [19]),

Λ →
Λ1
⊕

a1=0

· · ·
Λn
⊕

an=0

(

(

Λ1 − a1 + a2, . . . ,Λn−1 − an−1 + an

)

, −|Λ|+ (n+ 1)
∑

i

ai

)

. (A.1)

Here, |Λ| =∑j jΛj is the number of boxes of the corresponding Young diagram.

As an example we test whether the representation (λ(α), µ(α)) (defined in (4.1)) is

contained in the su(n + 1) representation Λ(α,N) given in (4.5). If it occurs on the right

hand side of (A.1), the corresponding numbers ai are determined by the following equations:

N1 −N2 − a1 + a2 = 0

...

Nm−1 −Nm − am−1 + am = 0

−(k + n+ 1)αm+1 +Nm +N − am + am+1 = 0

(k + n+ 1)(2αm+1 − αm+2) +Nm+1 −N − am+1 + am+2 = 0

(k + n+ 1)(−αm+1 + 2αm+2 − αm+3) +Nm+2 −Nm+1 − am+2 + am+3 = 0

...

(k + n+ 1)(−αn−2 + 2αn−1 − αn) +Nn−1 −Nn−2 − an−1 + an = 0

−|Λ(α,N)| − (k + n+ 1)
∑

j

αj + (n+ 1)
∑

j

aj = 0 .

(A.2)

The last equation comes from comparing µ(α) with the u(1) entry of (A.1). To proceed

we evaluate |Λ(α,N)|, and we find

|Λ(α,N)| =























(k + n+ 1)

(

−
∑

i

αi + (n+ 1)αn

)

+ (n+ 1)Nn m ≤ n− 1

(k + n+ 1)

(

−
∑

i

αi

)

+ (n+ 1)
∑

j

Nj m = n

(A.3)

Let us first consider the case m = n. Then the last equation of (A.2) becomes simply

(n+ 1)
∑

j

aj − (n+ 1)
∑

j

Nj = 0 , (A.4)

and together with the remaining equations of (A.2) it follows that

ai = Ni for m = n . (A.5)

Let us now consider the case m ≤ n− 1. Then the last equation of (A.2) implies
∑

j

aj − (k + n+ 1)αn −Nn = 0 . (A.6)
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As one can check straightforwardly, the solution to this and the remaining equations

of (A.2) is given by

a1 = N1 , · · · , am = Nm , am+1 = Λm+1(α,N)−Nm+1 , · · · , an = Λn(α,N)−Nn . (A.7)

Comparing with (A.5) we see that this solution also applies in the case m = n. The

condition on the coefficients aj is 0 ≤ aj ≤ Λj(α,N). For large k one therefore concludes

that the representation (λ(α), µ(α)) appears in the decomposition of Λ(α,N) precisely

if Ni ≥ 0.
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