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Abstract 15 

FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. 16 

Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a 17 

phenotype that is largely restricted to orofacial impairment during articulation and linguistic 18 
processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain 19 

remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that 20 
FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. 21 
We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal 22 

differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation 23 
including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 24 

displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which 25 
FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid 26 
cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes 27 

neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key 28 
processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In 29 
this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive 30 

precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 31 
positive cells. 32 

 33 

1. Introduction 34 

Mutations in the FOXP2 gene are known to cause rare forms of speech and language disorder, the 35 

first report of which was the KE family in 2001 (Lai et al., 2001). Additional FOXP2 gene 36 

disruptions have since been identified in a number of unrelated individuals or families with similar 37 

phenotypes (MacDermot et al., 2005;Shriberg et al., 2006;Palka et al., 2011;Rice et al., 2012;Žilina et 38 
al., 2012). Affected individuals all carry heterozygous mutations in FOXP2, meaning that they still 39 
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have one functional copy of the gene. A complete loss of FOXP2 is thought to be lethal for humans, 40 

as it is in mouse models, likely due to developmental defects in multiple organs (Lu et al., 2002;Shu 41 
et al., 2007;Rousso et al., 2012). Although developmentally expressed in many tissues including the 42 
brain, lung and heart, reduced levels of functional FOXP2 results in a phenotype that is largely 43 

restricted to orofacial impairment during articulation and linguistic processing deficits in patients 44 
(Vargha-Khadem et al., 1995b;Alcock et al., 2000;Watkins et al., 2002a). This highly specific 45 
phenotype suggests that particular aspects of the nervous system have a lower tolerance for FOXP2 46 
reduction than other tissues, such as the heart or lung. The effect of FOXP2 mutation on brain 47 
structure and function has been studied in members of the KE family and no gross abnormalities have 48 

been found (Watkins et al., 1999;Lai et al., 2003). Instead only subtle effects are observed including 49 
changes to grey matter density in regions of the cortex, thalamus and striatum and functional 50 
activation differences during language tasks in a language related area of the cortex (Broca’s area) 51 

and the striatum (Watkins et al., 1999;Watkins et al., 2002b;Liegeois et al., 2003). Hence, the activity 52 
of FOXP2 in a subset of neurons throughout the brain is thought to be essential for the proper 53 
development of neural networks important for normal speech and language. 54 
 55 

FOXP2 encodes a Forkhead-box (FOX) transcription factor (Vernes et al., 2006). Related FOX 56 
transcription factors, such as FOXP1, have also been implicated in cognitive disorders. FOXP1 and 57 

FOXP2 have high sequence homology, display overlapping expression patterns and can form 58 
functional heterodimers to bind target DNA. However, mutations in FOXP1 result in a broad 59 

spectrum of cognitive impairments in patients including severe intellectual disability, gross motor 60 
delay and autism spectrum disorder (Hamdan et al., 2010;Horn et al., 2010;Horn, 2011;O'Roak et al., 61 
2011;Palumbo et al., 2013). Linguistic processing defects have not been found in FOXP1 patients, 62 

and although speech delay is sometimes seen, this is thought to be more related to general cognitive 63 

impairments and motor problems, rather than a speech/language specific effect (Bacon and Rappold, 64 
2012). This highlights the importance of directly studying FOXP2 function at a molecular level, since 65 
it seems to be playing a unique and critical role in language related circuitry that is different to even 66 

its most closely related family member, FOXP1.   67 
 68 

FOXP2 is expressed in a number of brain structures including the cortex, basal ganglia, thalamus, 69 
cerebellum, midbrain and medulla (Ferland et al., 2003;Lai et al., 2003). Previous studies have 70 
identified a range of genomic regions bound by FOXP2 in human brain tissue, human neuron-like 71 

cells and embryonic mouse brain (Spiteri et al., 2007;Vernes et al., 2007;Vernes et al., 2008;Vernes 72 

et al., 2011). The putative FOXP2 targets identified in these studies were known to act in pathways 73 
ranging from GABA signalling, Wnt pathway signalling, neurogenesis, neuronal differentiation and 74 

cell migration (Spiteri et al., 2007;Vernes et al., 2007;Vernes et al., 2011). Consistent with the high 75 
number of FOXP2 target genes involved in neurite outgrowth, Foxp2 (lowercase denotes the mouse 76 
homolog) was found to promote the growth and branching of neurites in medium spiny neurons 77 
(MSN) of the developing mouse striatum (Vernes et al., 2011) and affect spine density in mouse 78 
cortical neurons (Sia et al., 2013). Moreover, Foxp2 gene disruption leads to abnormal neuronal 79 

activity and altered striatal plasticity in mice (Groszer et al., 2008;French et al., 2012), implicating 80 
this protein in controlling not only the morphology but also the connectivity of neurons. Recently, an 81 
early developmental role for Foxp2 has been proposed in which Foxp2 enhances the transition from 82 
radial glial precursor to cortical neuron in the mouse brain (Tsui et al., 2013).  83 
 84 

Given the developmental importance of FOXP2, and its putative roles in pathways such as 85 

neurogenesis, neuronal migration and neurite outgrowth, we investigated if and how FOXP2 86 

contributes to human neuronal differentiation. For this purpose, we chose a well-defined model of 87 
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human neuronal differentiation, the SHSY5Y human neuron-like cell line. SHSY5Y cells can switch 88 

from a proliferative to a more differentiated neuronal phenotype by stimulation with differentiation 89 
inducing compounds, such as all-trans retinoic acid (RA) and/or growth factors such as brain derived 90 
neurotrophic factor (BDNF) (Voigt and Zintl, 2003;Agholme et al., 2010;Lopes et al., 2010a;Dwane 91 

et al., 2013). In this model, these factors reduce cell migration, increase expression of pro-neural 92 
gene markers, reduce expression of pluripotency markers and promote the growth and extension of 93 
long and extensively branched neurites, indicative of neuronal differentiation (Voigt and Zintl, 94 
2003;Lopes et al., 2010a). 95 

This study demonstrates that FOXP2 induces molecular and phenotypic features of neuronal 96 
differentiation. We show that FOXP2 mediates changes in gene expression resembling those 97 

occurring during differentiation to drive a more neuronal phenotype. FOXP2 controls similar gene 98 
expression programs to those that are regulated by RA, and increases the expression of a retinoic acid 99 
receptor central to RA signalling (RARβ). Interestingly, our results suggest that FOXP2 increases the 100 

sensitivity of cells to RA, influencing their molecular properties to drive neuronal differentiation. The 101 
interaction of FOXP2 with retinoic acid pathways, which are key to normal brain development and 102 
patterning, may represent an important mechanism in controlling cell type specific differentiation 103 

patterns and connectivity in language related circuitry in the developing brain.  104 

 105 

2. Materials and methods 106 

 107 

2.1. Cell culture and reagents 108 

Stable SHSY5Y cells expressing human FOXP2 or the empty vector (EMPTY) generated previously 109 
(Vernes et al., 2007) were grown at 37°C in the presence of 5% CO2 in growth media; DMEM:F12 110 
media (Invitrogen, Carlsbad, CA, USA) supplemented with 10% Foetal Calf Serum (FCS; Sigma, St 111 

Louis, MO, USA), 2mM L-glutamine (Sigma, St Louis, MO, USA), 1% Non-essential amino acids 112 
(NEAA; Invitrogen, Carlsbad, CA, USA) and 2mM Penicillin/Streptomycin (Sigma, St Louis, MO, 113 

USA). Neuronal differentiation protocol involved treating cells with 10 μM all-trans retinoic acid 114 
(RA) in low serum media (DMEM:F12, 2% Foetal Calf Serum, 2mM L-glutamine, 2mM 115 

Penicillin/Streptomycin, 1% NEAA) for 5 days, followed by a further 10 days of treatment with 50 116 
ng/mL BDNF in serum free media. All other retinoic acid treatments were performed in low serum 117 
media. Transfections were carried out with Transfast® (Promega, Madison, WI, USA), according to 118 
the manufacturers’ instructions.   119 

 120 

2.2. Quantitative RT-PCR 121 

Total RNA was extracted from cells harvested in TRIzol® reagent using the RNeasy kit (QIAGEN, 122 
Venlo, NL) according to manufacturers instructions.  RNA was extracted from three biological 123 

replicates of SHSY5Y cells stably transfected either with human FOXP2 or the empty control vector 124 
following culture in growth media (Day 0) or following the differentiation protocol (Day 5, 10 or 15).  125 
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Reverse transcription was performed as described previously (Vernes et al., 2007).  126 

 127 
PCR reactions utilised SYBR Green supermix (BioRad, Hercules, CA, USA) as described previously 128 
(Vernes et al., 2007). Primers specific for candidate genes and the control housekeeping genes CYPA 129 

and POLR2F are described in Supp Table S1. Quantitative PCR reactions were performed on the 130 
CFX96 Real-Time PCR Detection System (BioRad, Hercules, CA, USA) according to 131 
manufacturers’ instructions.  132 
 133 
Melting curve analysis was performed to assess the specificity of the amplification.  Data analysis 134 

was performed using CFX manager software (BioRad, Hercules, CA, USA), and quantification was 135 
performed via the comparative CT method (Livak and Schmittgen, 2001).  Fold changes are reported 136 
following normalisation to the geometric mean of two internal controls; CYPA and POLR2F 137 

(Hoerndli et al., 2004;Agholme et al., 2010). Data are expressed as mean ± standard deviation.  138 
Statistical significance was assessed using students t-tests (two-tailed) for pairs of means or ANOVA 139 
test for groups of three or more means followed by post-hoc Bonferroni, Tukey or Dunnett 140 
calculation as specified. 141 

 142 

2.3. Retinoic acid dose response 143 

SHSY5Y control (EMPTY) and FOXP2 cells were grown in low serum media (as detailed above) 144 
and were treated with increasing doses of RA (from 0.001 μM to 10 μM) or no added RA for 3 days. 145 
Total RNA was extracted from 3 biological replicates per treatment and reverse transcribed as 146 

described above. RT-PCR reactions were performed as described above. All fold changes are 147 

reported relative to expression levels in the SHSY5Y control (EMPTY) cell line in low serum media, 148 
following internal normalisation to POLR2F. Statistical significance was assessed using ANOVA test 149 

followed by post-hoc Bonferroni calculation. 150 

  151 

2.4. Neurite outgrowth analysis 152 

Cells were plated onto poly-L-lysine coated coverslips at 3.3 x 10
4
 cells per well. Cells were fixed 153 

using 4% Paraformaldehyde solution for 15 minutes at room temperature and permeabilised in wash 154 
solution (0.1% Triton X-100 in TBS). Antibodies were diluted in Blocking Solution (1% Fish 155 

Gelatine, 0.1% Triton X-100, 5% BSA in PBS). Cells were co-stained at 4˚C overnight, using an 156 

anti-MAP2 rabbit polyclonal antibody (Chemicon, Temecula, CA, USA). Cells were incubated with 157 
anti-rabbit FITC (Alexa Fluor 488, Molecular Probes, Carlsbad, CA, USA) for 1 hour, shaking under 158 
limited light exposure. Nuclei were visualised using mounting media containing a DAPI counterstain 159 

(VectaShield). Cells were viewed on a Zeiss Axiovert A-1 fluorescence inverted microscope. Images 160 
were captured using a Zeiss AxioCam MRm camera and Zen Software (Zeiss, Oberkochen, GER), 161 
and analysed using the neurite outgrowth function of Metamorph Version 7.8 (Molecular Devices, 162 
Sunnyvale, CA). Statistical significance was assessed using students t-tests (two-tailed). Data are 163 
expressed as the mean ± standard error of the mean (SEM). 164 

  165 

2.5. Cell migration analysis 166 

Gap closure assays were performed according to manufacturer's recommendations (Ibidi, 167 
Martinsried, GER).  2 x 10

4 
 control (EMPTY) or FOXP2 expressing cells (FOXP2) were seeded per 168 



Devanna et al.   FOXP2, retinoic acid and neuronal differentiation 

Sonja Vernes 5 

insert well (Ibidi Culture Inserts #80209) and cultured overnight at 37C in the presence of 5% 169 

CO2.  Culture media was supplemented with 1 μM Aphidicolin to inhibit cell division that would 170 
obscure the effects of FOXP2 expression on migration. Cells were allowed to migrate after removal 171 
of the inserts, and gap closure was imaged for 72 hrs by time lapse microscopy (with one photo taken 172 

every 10 minutes).  173 

Gap closure speed was determined by automated measurements of the gap-size throughout the series 174 
of images, using an ImageJ image analysis routine (developed by K.Jalink, NKI, Amsterdam, The 175 
Netherlands). In short, images were normalized with respect to intensity/contrast, and subjected to 176 

the variance filter in order to distinguish moving cells from the remaining gap. The area of the 177 
remaing gap was quantified in each successive image and plotted against time.  Quantification was 178 
performed by taking the migration values after 25%, 50% and 75% gap closure for non-FOXP2 179 
expressing cells and comparing the migration values for FOXP2 positive cells at the same time 180 

points.  Data are expressed as mean of 6 image sets ± standard deviation. Statistical significance was 181 
assessed using Student’s t-tests (two-tailed). 182 

  183 

2.6. Gene Ontology analysis 184 

Gene Ontology (GO) analysis was performed using the Webgestalt program  185 

(http://bioinfo.vanderbilt.edu/webgestalt/). Over representation of gene ontology categories was 186 
determined via hypergeometric testing using Benjamini & Hochberg multiple testing correction 187 

(Zhang et al., 2005). 188 

  189 

3. Results 190 

3.1. FOXP2 induces expression of neuronal differentiation markers 191 
Given that FOXP2 has previously been implicated in neurogenesis and neuronal development, we 192 
wanted to determine if FOXP2 affects the differentiation of neuron-like cells. SHSY5Y human 193 

neuron-like cells were derived from a neuroblastoma biopsy and are widely used for studying 194 
neuronal differentiation (Biedler et al., 1973;Messi et al., 2008;Lopes et al., 2010a;Xie et al., 195 
2010;Dwane et al., 2013). We established a neuronal differentiation protocol in which cells are 196 

treated for 5 days with RA in low serum (2% FCS) media, followed by a further 10 days of treatment 197 
with BDNF in the absence of RA or serum. This protocol led to dramatic morphological 198 

differentiation (Figure 1A-B) and strong and reproducible increases in expression levels of neuronal 199 
differentiation markers including microtubule associated protein (MAP2), doublecortin (DCX) 200 
growth associated protein 43 (GAP43) and the neuronal microRNA miR-9 (Figure 1C).  201 
 202 

We next set out to test whether FOXP2 could drive similar gene expression changes when the cells 203 
were maintained in normal growth media (ie without the addition of RA or BDNF supplements). 204 
Given that SHSY5Y cells do not express FOXP2 endogenously, we used SHSY5Y cells that were 205 
made to stably express human FOXP2 (FOXP2) or an empty vector control (EMPTY) (Vernes et al., 206 
2007) to determine the effect of FOXP2 in this system. We found that expression of FOXP2 protein 207 

alone was sufficient to induce significant increases in neuronal markers of differentiation, including 208 
MAP2, DCX and the pro-neural microRNA mir-9-2 (Figure 1D). 209 

  210 
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3.2. FOXP2 mediated gene expression changes are consistent with those occurring during 211 

neuronal differentiation. 212 
In addition to well-known differentiation markers such as MAP2 and DCX, neuronal differentiation 213 
involves widespread changes in gene expression programs. We surveyed the literature for additional 214 

differentiation related genes. We assembled a list of 45 genes (Supp Table S1) including retinoic acid 215 
receptors (RARs, RXRs and RORs), genes known to respond to retinoic acid or BDNF stimulation 216 
(eg. as ASCL1, ID1-3, BCL-2), genes involved in neurite outgrowth and migration (eg. NAV2, 217 
NEDD9) as well as putative FOXP2 target genes including a retinoic acid receptor (RARβ), 218 
transcription factors (BATF3, HOXD10 and ETV1), and neuronal differentiation factors (NEUROD2, 219 

NEUROD6 and FGF1) (Spiteri et al., 2007;Vernes et al., 2007;Vernes et al., 2011).  220 
 221 
We first assessed expression of these genes during neuronal differentiation of control cells. 222 

Expression levels for these genes were determined in the SHSY5Y control cell line (EMPTY) during 223 
the differentiation protocol at the same four time points as before; Day 0, Day 5, Day 10 and Day 15. 224 
Significant changes were observed for the majority of genes tested (Figure 2). The most strongly 225 
affected genes included retinoic acid receptor β (RARβ; ~50-fold upregulation), cellular retinoic acid 226 

binding protein 2 (CRABPII; ~25-fold upregulation), regulator of G-protein signaling 2 (RGS2; ~23-227 
fold upregulation), fibroblast growth factor 1 (FGF1; ~30-fold upregulation), achaete-scute complex 228 

homolog 1 (ASCL1; ~80% downregulation) and Delta-like ligand 3 (DLL3; ~80% downregulation). 229 
See Supp Table S2 for gene expression summary. 230 

 231 
In order to determine if FOXP2 was able to regulate this set of differentiation related genes, we  then 232 
compared their expression levels between untreated SHSY5Y control cells (EMPTY) and FOXP2 233 

expressing cells (FOXP2) when cells were maintained in normal growth media (equivalent to Day 0). 234 

More than half of the genes assayed displayed altered expression levels in response to FOXP2 235 
expression (Figure 3), suggesting that FOXP2 is regulating a wide range of differentiation related 236 
genes even in normal growth media (i.e. without the addition of RA/BDNF supplements). Moreover 237 

these expression changes were similar to those induced by the RA/BDNF differentiation protocol in 238 
control (EMPTY) cells. Targets previously identified via FOXP2-ChIP, including CNTNAP2, SLIT1, 239 

BATF3 and DLL3, were significantly downregulated in response to FOXP2 expression. The pro-240 
neural transcription factor ASCL1 was strongly repressed and TNR, AQP1 and the retinoic receptors 241 
RXRa and RORg were mildly downregulated (Figure 3 and Supp Table S2). The majority of these 242 

genes were also downregulated during at least one time point of differentiation in control (EMPTY) 243 

cells (Figure 2; Supp Table S2). 244 
 245 

FOXP2 has been widely described as a transcriptional repressor, however a number of genes, 246 
including some previously identified as direct FOXP2 targets, were upregulated upon FOXP2 247 
expression (Figure 3). Retinoic acid receptors such as RORβ and two isoforms of the putative FOXP2 248 
target gene RARβ (isoforms RARβ-001, RARβ-002) were upregulated 2-5 fold. Of note, RARβ has 249 
multiple promoters producing at least 4 different protein coding transcripts, but FOXP2 was 250 

previously only shown to bind to the shared RARβ-001/002 promoter (Vernes et al., 2007). 251 
Interestingly one of the earliest genes expressed during retinoic acid induced differentiation, NEDD9, 252 
was very highly upregulated by FOXP2 (~5 fold increase). FOXP2 target genes previously identified 253 
via ChIP-Seq including RGS2, SPOCK1, SYK, TJP2, FGF1 and ETV1 were upregulated, as were 254 
novel targets NAV2, HES1 and BCL-2 (Figure 3). This demonstrates that FOXP2 has the capacity to 255 

cause target gene expression to increase as well as to decrease, and thus should not be referred to 256 

only as a transcriptional repressor. A summary of all FOXP2 mediated gene expression changes as 257 

well as all changes that occur during differentiation in control cells can be found in Supp Table S2. 258 
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 259 

Overall, the presence of FOXP2 is sufficient to drive gene expression changes that resemble those 260 
occurring during SHSY5Y neuronal differentiation induced by RA and BDNF. This includes 261 
upregulation of RARβ, a nuclear receptor central to RA signalling that directly regulates the 262 

expression of downstream gene networks. FOXP2 also affected the expression of a range of genes 263 
known to be involved in RA signalling including pro-neural transcription factors (such as ASCL1) 264 
and proteins that directly affect differentiation phenotypes (NAV2 and NEDD9). These data 265 
demonstrate that the FOXP2 transcription factor activates a complex gene expression program that 266 
drives neuronal differentiation. 267 

 268 

3.3. FOXP2 positive cells are more responsive to retinoic acid 269 
The effects of RA in the developing brain are highly dependent on concentration gradients and the 270 
level of RA that cells are exposed to can influence their differentiation response (Maden, 2002;White 271 
et al., 2007;Rhinn and Dolle, 2012). Moreover, during development cells display a ‘sensitive period’ 272 
in which the effects of RA are most severe (Sive et al., 1990;Holson et al., 2001;Yamamoto et al., 273 

2003;Luo et al., 2004). This suggests that the amount of available RA, as well as the internal 274 
molecular state of the cell, is important to regulate the response induced by RA. Thus, we 275 
investigated if the presence of FOXP2 affected the way cells responded to RA treatment.  276 

 277 
Control (EMPTY) and FOXP2 expressing cells were treated with varying RA doses; low serum 278 

media alone (media) or low serum media containing a range of RA doses from low (0.001 µM) to 279 
high (10 μM) concentration. The lowest dosage had previously been shown to be sufficient to induce 280 

expression changes in SHSY5Y cells (Urban et al., 2010). Indeed, all doses of RA were able to 281 
significantly upregulate RARβ and NEDD9 and to downregulate DLL3 in the control (EMPTY) cell 282 

lines (Figure 4). Significant downregulation of ASCL1 in control cells could only be observed after 283 
high dose (10 μM) RA treatment in control cells (Figure 4C).  In the FOXP2 expressing cells, the 284 
molecular changes occurring in response to RA treatment were significantly stronger than in controls. 285 

Both RARβ and NEDD9 were more strongly induced by a range of RA doses in FOXP2 expressing 286 
cells compared to control cells and this effect was particularly striking for NEDD9 at the highest dose 287 

(10 μM RA). FOXP2 strongly downregulated ASCL1 in an RA independent fashion until cells were 288 
exposed to high dose RA (10 μM), at which point significantly stronger repression of ASCL1 was 289 
observed by the combination of FOXP2 plus RA than either treatment alone. The combination of 290 
FOXP2 expression and RA treatment also increased the repression of DLL3 at most RA doses. 291 

 292 
Given that the effect of expressing FOXP2 in the presence of RA produced greater magnitude effects 293 

on gene expression levels than either treatment alone, we suggest that the presence of FOXP2 is 294 
making these cells more sensitive to retinoic acid levels – ie FOXP2 may alter the internal state of 295 
cells to allow a larger induction of signaling via downstream networks in a dose dependent manner.  296 

  297 

3.4. FOXP2 promotes increased neurite outgrowth in response to retinoic acid 298 
We have previously shown that endogenous expression of murine Foxp2 in neurons promotes the 299 
growth and branching of neurites in the mouse (Vernes et al., 2011). SHSY5Y FOXP2 cells also 300 

displayed more neurite growth than their control (EMPTY) counterparts when growing in normal 301 
growth media (Figure 5A, upper panels). Furthermore, retinoic acid differentiation of SHSY5Y cells 302 
induces the growth of long, extensively branched neurites (Figure 1A-B)(Voigt and Zintl, 303 
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2003;Lopes et al., 2010b). Given the increased molecular response to retinoic acid exposure in 304 

FOXP2 positive cells, we investigated whether expression of FOXP2 affected the induction of 305 
neurite outgrowth by retinoic acid. 306 
 307 

In order to assess the effect of FOXP2 on neurite outgrowth and branching, we exposed cells to 308 
retinoic acid to initiate neurite formation in SHSY5Y FOXP2 and control (EMPTY) cells. RA treated 309 
cells that expressed FOXP2 showed more neurite growth than the control cell line (EMPTY) (Figure 310 
5A, lower panels). FOXP2 expression significantly increased the number and length of protrusions 311 
that grew in response to RA treatment (Figure 5B, left panel).  The majority of control (EMPTY) 312 

cells (83%) had either no outgrowths or ‘short’ outgrowths (<30 μm) following RA exposure (Figure 313 
5C, upper panel). In contrast, only 62% of FOXP2 expressing cells were in the no outgrowth or 314 
‘short’ outgrowth category. FOXP2 expressing cells were more likely to have ‘long’ outgrowths (ie. 315 

protrusions exceeding 60 μm) (Figure 5C, lower panel). 316 
 317 
FOXP2 expression significantly increased the number of branches observed per cell (Figure 5B, right 318 
panel). Processes in the majority of control (EMPTY) SHSY5Y cells were not branched and no 319 

EMPTY cells had more than 4 branches (Figure 5D, upper panel). FOXP2 expression increased 320 
branching, with a higher proportion of cells displaying branched outgrowths, a small number 321 

displaying as many as 14 branches (Figure 5D, lower panel). This illustrates that FOXP2 drives 322 
growth and branching of neurites during retinoic acid induced differentiation, and suggests that at 323 

both a molecular and a morphological level, FOXP2 expressing cells show increased responsiveness 324 
to retinoic acid. 325 

  326 

3.5. FOXP2 expression impairs neuronal cell migration 327 
RA induced differentiation reduces migration/invasion of SHSY5Y cells (Voigt and Zintl, 328 
2003;Messi et al., 2008) and controlling the migration of cells in the brain is essential to establishing 329 
neuronal circuitry during development (Marin et al., 2010). Here, we assessed the effect of FOXP2 330 

expression on SHSY5Y migration in gap closure assays. Using time lapse photography, we measured 331 
gap closure speed by EMPTY and FOXP2 cells. We found that FOXP2 expression reduced cell 332 

migration (Figure 6A). The effect of FOXP2 on migration was highly significant when assessing 333 
time to gap closure (Figure 6B). When control cells had reached 25%, 50% and 75% gap closure, 334 
FOXP2 positive cells had reached only 14%, 30% and 50% closure – a significantly reduced 335 
migration rate. Thus in addition to promoting molecular and morphological features of 336 

differentiation, FOXP2 expression results in reduced speed of migration, a key feature of retinoic 337 
acid induced neuronal differentiation. 338 

 339 

4. Discussion 340 

FOXP2 has garnered significant attention due to its importance for normal speech and language 341 
development in humans. FOXP2 acts as a transcription factor and a diverse list of putative targets 342 
have been identified in a range of model systems, suggesting a role for FOXP2 in cellular processes 343 

such as neurite outgrowth (Vernes et al., 2011) and synapse development (Schulz et al., 2010;Sia et 344 
al., 2013). Indeed, mouse and songbird models of FOXP2 have revealed important roles in synaptic 345 

plasticity and neuronal connectivity (Haesler et al., 2007;Groszer et al., 2008;French et al., 346 
2012;Murugan et al., 2013). However, it is still unclear how transcriptional programs controlled by 347 
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FOXP2 affect neuronal development. In this study we demonstrate the importance of FOXP2 for 348 

human neuronal differentiation using a neuron-like model system.  349 
 350 
We demonstrated that in normal growth media, FOXP2 increased the expression of neuronal markers 351 

such as MAP2, DCX and mir-9 and directed a transcriptional program that was consistent with 352 
retinoic acid induced differentiation. In addition to these molecular effects, we show that FOXP2 353 
induces phenotypic changes characteristic of neuronal differentiation such as increased neurite 354 
outgrowth and reduced migration. Neuronal migration and neurite outgrowth are tightly linked and 355 
many of the genetic mechanisms underlying these processes are shared (Marin et al., 2010). 356 

Throughout development, neurons migrate along tightly regulated paths to reach their correct 357 
destination before extending their processes to form connected neuronal circuitry. Control of both 358 
neuronal cell migration and neurite outgrowth are thus essential for normal brain development and 359 

defects in outgrowth or migration can lead to neurodevelopmental disorders such as intellectual 360 
disability and have been linked to disorders involving language impairment such as autism and 361 
dyslexia (McManus and Golden, 2005;Paracchini et al., 2007;Wegiel et al., 2010;Bellon et al., 362 
2011;Liu, 2011;Carrasco et al., 2012;Carrion-Castillo et al., 2013).   363 

 364 
In vivo studies have illustrated the importance of FOXP2 for normal brain development. Individuals 365 

carrying heterozygous mutations of FOXP2 display a complex speech and language disorder 366 
phenotype involving impaired articulation caused by an inability to coordinate the complex 367 

sequences of orofacial muscle movements required during speech (developmental orofacial 368 
dyspraxia; OMIM 602081), accompanied by both expressive and receptive linguistic and 369 
grammatical processing defects (Vargha-Khadem et al., 1995a;Vargha-Khadem et al., 1998;Watkins 370 

et al., 2002a). Corresponding differences in brain activation in language related areas during 371 

linguistic tasks has been observed in these affected individuals, suggesting that disruption of FOXP2 372 
is causing subtle network connectivity and/or activation differences (Watkins et al., 1999;Watkins et 373 
al., 2002b;Liégeois et al., 2003). However, it is still poorly understood how the molecular functions 374 

of FOXP2 can produce such a specific phenotype related to human speech and language circuitry. An 375 
intriguing finding of our study is that FOXP2 positive cells are more sensitive to retinoic acid 376 

treatment. Cells that both express FOXP2 and were RA treated displayed increased responses 377 
compared to either treatment alone. Our findings suggest that the transcriptional program enacted by 378 
FOXP2 alters the molecular composition of neurons, to allow these cells to respond differently to 379 

environmental retinoic acid cues driving neuronal differentiation. Retinoic acid signaling regulates 380 

proliferation, migration and differentiation of cells and is extremely important for normal brain 381 
development, contributing to forebrain, hindbrain and spinal cord patterning (Gudas, 1994;Rhinn and 382 

Dolle, 2012). RA induction of neuronal differentiation is mediated by a combination of morphogen 383 
signaling gradients acting on cells during a refractive ‘sensitive period’ in which the appropriate gene 384 
expression changes can be induced to produce different neuronal fates  (Sive et al., 1990;Holson et 385 
al., 2001;Maden, 2002;Yamamoto et al., 2003;Luo et al., 2004;White et al., 2007;Rhinn and Dolle, 386 
2012). FOXP2 is only expressed in a subset of neurons in select brain regions, such as deep layer 387 

cortical neurons, Purkinje cells of the cerebellum and a subset of medium spiny neurons (MSNs) of 388 
the striatum (Ferland et al., 2003;Lai et al., 2003). The importance of having FOXP2 expression in 389 
these specific neuronal populations during development is not understood. However given the 390 
findings presented here, FOXP2 may sensitize developing neurons to RA and thus program these 391 
subsets of neurons to respond differently to environmental RA cues than surrounding cells. In future, 392 

it will be of great interest to determine if this could specifically affect the differentiation and/or 393 

incorporation of FOXP2 positive cells into functioning neuronal circuitry, such as those subserving 394 

language. 395 
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 396 

The increased sensitivity to RA is likely mediated by FOXP2 inducing transcriptional changes across 397 
a range of molecules that we identified as acting downstream of both retinoic acid and FOXP2. This 398 
internal change of cellular components may collectively result in a greater response to retinoic acid 399 

levels. Mechanistically this may be occurring by affecting the classical RA pathway, or by affecting 400 
the non-genomic RA pathway (or potentially a combination of the two).  401 
 402 
The classical RA pathway involves retinoic acid entering the nucleus and binding to transcription 403 
factors such as the retinoic acid receptors (RAR)(Gudas, 1994;Balmer and Blomhoff, 2002). Cellular 404 

retinoic acid binding protein II (CRABPII) transports intracellular retinoic acid into the nucleus so 405 
that it can interact with RARs (Gudas, 1994). Thus, CRABPII is able to modulate the cellular 406 
response to RA, the more CRABPII that is present, the more environmental RA can be transported 407 

into the nucleus (Delva et al., 1999;Dong et al., 1999). Once in the nucleus, RA binds to receptors 408 
such as RARβ to induce conformational changes that result in the differential regulation of 409 
downstream target genes and induce neuronal differentiation and increased neurite outgrowth 410 
(Gudas, 1994;Puttagunta et al., 2011;Al Tanoury et al., 2013;Rochette-Egly, 2014). Both CRABPII 411 

and RARβ have previously been shown to be strongly upregulated by exposure to retinoic acid 412 
(Hewson et al., 2002) and we observed the same effects in our system. Furthermore we found that 413 

that both of these critical modulators of the classical RA pathway were upregulated by FOXP2 in 414 
normal growth media. Thus we can see how FOXP2 causes an increase in the pool of both CRABPII 415 

and RARβ with which RA can interact. Conceivably this could lead to greater magnitude responses 416 
either at a gene expression or phenotype level being evoked by RA treatment in FOXP2 positive cells 417 
compared to FOXP2 negative (EMPTY) counterparts. 418 

 419 

FOXP2 may also affect the non-genomic RA pathway which involves the rapid activation of kinase 420 
signaling pathways, such as MAPK or ERK as well as post-transcriptional control of gene expression 421 
(Rochette-Egly, 2014). These effects can again be mediated by RAR’s, however the pool of RARs 422 

associated with the non-genomic pathway are not localized to the nucleus and thus do not directly 423 
mediate transcriptional changes (Al Tanoury et al., 2013;Rochette-Egly, 2014). Non-genomic effects 424 

of RA have been observed in hippocampal neurons where synaptically localized RARα interacts with 425 

mRNA to control translation levels in an RA dependent fashion, leading to altered synaptic plasticity 426 

(Aoto et al., 2008;Sarti et al., 2013). RARβ is not expressed in the hippocampus and thus it is not yet 427 
clear if it is able to perform similar synaptic functions to RARα in other tissues, however in primary 428 
striatal neurons of the developing mouse brain we have observed localization of the RARβ protein at 429 
synapses (data not shown), suggesting it has the potential to modulate synaptic protein levels in a 430 

similar fashion to RARα. By increasing the RARβ levels, FOXP2 may again be influencing the pool 431 
of molecules that can respond to RA exposure and thus the level of signaling through the non-432 
genomic RA pathway. 433 

 434 
Interestingly, RARβ has been shown to be essential for the normal patterning of the postnatal striatum 435 
(Liao et al., 2008), and both RARβ and FOXP2 are highly expressed in the striatum, throughout 436 
development and into adulthood (Ferland et al., 2003;Lai et al., 2003;Takahashi et al., 2003;Liao et 437 
al., 2005). The striatum represents a site of pathology both structurally and in measures of functional 438 

activation during language related processing tasks in speech/language disorder patients carrying 439 
FOXP2 mutations (Vargha-Khadem et al., 1998;Watkins et al., 2002b). Given the upregulation of 440 
RARβ by FOXP2, it will be of interest to determine if striatal patterning occurs in a FOXP2 441 

dependent fashion and how patterning is affected by FOXP2 mutation. The importance of RA 442 
signaling for normal striatal development and the interplay between FOXP2 and RA responsive 443 
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pathways, may indicate a neurogenetic mechanism by which FOXP2 is able to produce subtle but 444 

specific phenotypic effects in language related areas of the brain such as the striatum. 445 
 446 
Retinoic acid signaling is also important for the specification of neuronal identity in the developing 447 

brain. In the neural tube, RA directs the differentiation of cells into serotonergic hindbrain or V3 448 
spinal cord neurons and ASCL1 (a proneural transcription factor also known as MASH1) has been 449 
shown to be the crucial downstream molecule directing this cell fate switch (Jacob et al., 2013). We 450 
found that ASCL1 was strongly downregulated by either FOXP2 or by retinoic acid induced 451 
differentiation. Furthermore, ASCL1 downregulation following RA treatment was significantly 452 

enhanced in FOXP2 expressing cells compared to controls. Another FOX family member, FOXO3, 453 
has been shown to repress ASCL1 to drive the switch from neural progenitor cell to differentiated 454 
neuron (Webb et al., 2013). In these cells ASCL1 and FOXO3 have been shown to bind to enhancers 455 

of a large number of overlapping genes in a competitive manner (Webb et al., 2013). Given the 456 
strong downregulation of ASCL1 by FOXP2 that we observed, coupled with the high conservation in 457 
the FOX family of both the FOX DNA binding domain and the core DNA motif recognized by these 458 
transcription factors, it is plausible that a similar model of action applies to FOXP2 positive neurons. 459 

Comparing our previously identified FOXP2 target genes (Spiteri et al., 2007;Vernes et al., 460 
2007;Vernes et al., 2011) with the ASCL1 targets from Webb et al. (2013), we found a very high 461 

degree of overlap (N=387). These genes, putatively regulated by both FOXP2/ASCL1, displayed a 462 
significant over-representation of genes involved in neuronal differentiation (adjP=2.78e-10) such as 463 

WNT5A, EFNB2, SEMA3A/6A and NRP2 (Vernes et al., 2007;Vernes et al., 2011). Hence the 464 
regulation of ASCL1 by FOXP2 may be a key step in driving differentiation in FOXP2 positive 465 
neurons. 466 

 467 

We have shown that both molecular and phenotypic features of human neuronal differentiation can 468 
be promoted by the FOXP2 protein. In addition to upregulating classical neuronal markers, FOXP2 469 
regulated the expression of a large number of differentiation responsive genes in a manner that was 470 

consistent with a more differentiated neuronal state. This transcriptional program is accompanied by 471 
phenotypic changes that occur during differentiation, ie increased neurite outgrowth and reduced 472 

neuronal migration. Intriguingly, our study suggests that FOXP2 causes cells to be more responsive 473 
to retinoic acid exposure. The mechanism for this sensitivity is likely related to FOXP2’s ability to 474 
control the expression of retinoic acid responsive genes and may present a novel mechanism for 475 

controlling cell type specific differentiation patterns in the developing brain. In the future, it will be 476 

essential to determine in vivo if FOXP2 controls the responsiveness of neurons to RA during 477 
development. These findings demonstrate the importance of FOXP2 for human neuronal 478 

differentiation and illustrate how mutations could lead to aberrant differentiation of neurons in the 479 
developing brain. This link between FOXP2 function and RA pathways may point to a novel role for 480 
retinoic acid signaling in the development of language related neuronal circuitry.  481 
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 727 

7. Figure legends 728 

Figure 1. Markers of neuronal differentiation show increased expression in the presence of 729 
FOXP2. SHSY5Y control cells (EMPTY) were differentiated using the RA/BDNF protocol outlined 730 
in Materials and Methods for 15 days. (A) Cell morphology at Day 0, ie undifferentiated SHSY5Y 731 
cells in normal growth media. (B) After 15 days exposure to sequential RA and BDNF treatment to 732 
induce neuronal-like differentiation, dramatic morphological changes can be seen including smaller 733 
cell bodies and substantial increases in neurite outgrowth and complexity. Scale bar = 100 µm.  (C) 734 

Gene expression changes in SHSHY5Y control (EMPTY) cells were assessed before (Day 0; D0) 735 
and during differentiation (Day 5, Day 10 and Day 15). The differentiation markers MAP2, DCX, 736 
GAP43 and miR-9-2 were significantly upregulated after 5-10 days treatment. Significant differences 737 

between groups was calculated using an ANOVA test followed by post-hoc Dunnett calculation.* = 738 
p<0.05, ** = p<0.01, *** = p<0.001. (D) Gene expression changes were assessed in SHSY5Y cells 739 
stably transfected with either an empty vector (EMPTY) or human FOXP2 (FOXP2) without 740 
differentiation (ie. Day 0). FOXP2 expression resulted in upregulation of the differentiation markers 741 

MAP2, DCX and miR-9-2 (primary transcript) compared to empty vector transfected cells (EMPTY) 742 
when cells were maintained in normal growth media (without added RA or BDNF). Statistical 743 

significance was assessed using student’s t-tests (two-tailed). * = p<0.05, ** = p<0.01. All data are 744 
the average of 3 biological replicates expressed as mean ± standard deviation.   745 
 746 

Figure 2. Widespread gene expression changes are induced during neuron-like differentiation 747 
of human SHSY5Y cells. SHSY5Y (EMPTY) control cells (which do not express any FOXP2 748 

protein) were induced to differentiate via sequential treatment with RA and BDNF. Gene expression 749 
changes were assessed before (Day 0) and during differentiation (Day 5, Day 10 and Day 15). To 750 

observe the effect of differentiation, all gene expression levels were normalized to their own 751 
expression at Day 0. (A-B) Massive inductions were observed for a subset of genes including RARβ 752 

(~50 fold), CRABPII, FGF1 and RGS2 (~25 fold). (C) Many other genes were more mildly (2-7 753 
fold), but significantly induced. (C) A few genes were strongly downregulated during differentiation 754 
including ASCL1, CNTNAP2 and DLL3 (80-90% reduction in expression). NEUROD2, NEUROD6 & 755 

DLL1 could not be assessed as transcripts could not be detected in any samples, suggesting that these 756 
genes are not expressed in SHSY5Y cells. Data are the average of 3 biological replicates expressed as 757 
mean ± standard deviation. Significant differences between groups was calculated using an ANOVA 758 

test followed by post-hoc Dunnett calculation.* = p<0.05, ** = p<0.01, *** = p<0.001.  759 

 760 

Figure 3. FOXP2 regulates the expression of genes related to human neuronal differentiation. 761 
The same genes tested in Figure 2 were assessed for regulation by FOXP2 in undifferentiated cells. 762 
Gene expression levels were compared between SHSY5Y control cells that do not express FOXP2 763 

(EMPTY) or FOXP2 expressing counterparts (FOXP2), in normal growth media (ie equivalent to 764 
Day 0). (A) FOXP2 strongly upregulates multiple isoforms of the RARβ receptor and the orphan 765 
nuclear receptor (RORb). Mild but significant reductions in RORg and RXRa expression were also 766 
observed in FOXP2 expressing cells. (B-C) A number of other genes induced by differentiation were 767 
also upregulated by FOXP2 in the absence of differentiation stimulus, including RGS2, NEDD9, 768 

SYK, BCL-2 and NAV2. (D) In normal growth media, FOXP2 strongly downregulated ASCL1, 769 

CNTNAP2 and DLL3, all of which are significantly repressed during neuronal differentiation. 770 

Underlined genes have shown evidence that FOXP2 binds directly to their promoter regions in ChIP 771 
assays (Spiteri et al., 2007;Vernes et al., 2007;Vernes et al., 2011). Data are the average of 3 772 
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biological replicates expressed as mean ± standard deviation.  Statistical significance was assessed 773 

using student’s t-tests (two-tailed). * = p<0.05, ** = p<0.01, *** = p<0.001.  774 
 775 
Figure 4. FOXP2 expression makes cells more responsive to retinoic acid. FOXP2 expression 776 

influences the cellular response to RA. Gene expression changes were measured in control (EMPTY) 777 
or FOXP2 expressing cells following treatment with varying levels of RA doses; ranging from 0.001 778 
µM to 10 µM RA. Low serum media ('media') containing 2% FCS acted as the baseline condition. In 779 
both EMPTY and FOXP2 cells, exposure to RA induces the expression of RARβ and NEDD9 (A-B), 780 
and represses ASCL1 and DLL3 (C-D). The effect on gene expression levels of adding RA is greater 781 

in cells that are expressing FOXP2 positive cells – ie larger increases or decreases in expression are 782 
observed in the FOXP2 positive cells compared to the control cells. This effect is particularly striking 783 
for ASCL1 and NEDD9 at the highest RA concentration. Data are the average of 3 biological 784 

replicates expressed as mean ± standard deviation. Significant difference between all groups was 785 
calculated using an ANOVA test followed by post-hoc Bonferroni calculation and significance is 786 
given for the differences between the EMPTY and FOXP2 groups where * = p<0.05, ** = p<0.01, 787 
*** = p<0.001.   788 

 789 

Figure 5. FOXP2 promotes increased neurite outgrowth in response to retinoic acid. (A) 790 
Example brightfield pictures demonstrating increased neurite growth in FOXP2 positive cells 791 
compared to EMPTY control cells both in normal growth media (upper panels) or after RA treatment 792 

for 3 days (lower panels) (B) SHSY5Y control (EMPTY) or FOXP2 cells were exposed to 10 μM 793 
RA for 3 days before measurement of neurite length and complexity. FOXP2 expression resulted in 794 
highly significant increases in total outgrowths (p=1.92E-08), mean process length (p=7.36E-03) and 795 

max process length (p=1.01E-06) as well as the number of cell processes (p=3.11E-09) and branches 796 

(p=1.76E-06). Data are the average of 3 biological replicates (N = 228 EMPTY cells and 223 FOXP2 797 
cells) expressed as mean ± SEM. Statistical significance was assessed using students t-tests (two-798 
tailed). ** = p<0.01, *** = p<0.00001. (C) Total outgrowths in EMPTY vs FOXP2 cells. The 799 

majority (83%) of EMPTY (control) cells had either no measurable neurites, or ‘short’ outgrowths 800 
(ie. <30 μm total outgrowths). By comparison, this number was only 62% for FOXP2 expressing 801 

cells. FOXP2 expressing cells were far more likely to show long neurite growth, with 20% of cells 802 
having ‘long’ neurites (totalling more than 60 μm), whereas only 5% of EMPTY cells had growth at 803 
or above this length. (D) FOXP2 significantly increases the number of secondary branches per cell. 804 

The majority of control cells (EMPTY) had no secondary branchpoints (93%), whereas when FOXP2 805 

was expressed, only 74% of cells had no branches. 7% of EMPTY cells had between 1-4 branches, 806 
while 22.5% had 1-4 branches (compared to 9% in EMPTY cells) and 3.6% of FOXP2 expressing 807 

cells and more than 4 branches respectively. EMPTY cells never displayed more than 4 branches. 808 
Data are the average of 3 biological replicates (N = 228 EMPTY cells and 223 FOXP2 cells). 809 
 810 
Figure 6. FOXP2 affects the rate at which SHSY5Y cells can migrate. Invasion assays were used 811 
to assess the migration of SHSY5Y cells expressing FOXP2 compared to control cells that are 812 

FOXP2 negative (EMPTY). Cells expressing FOXP2 migrate more slowly into the empty space. (A) 813 
Gap closure for EMPTY and FOXP2 cells over 72 hour timecourse. Cells expressing FOXP2 did 814 
eventually close the gap, but did so at a later timepoint, demonstrating a quantifiably slower 815 
migration speed compared to control cells. (B) The average invasion frequency was calculated once 816 
EMPTY cells had reached 25%, 50% and 75% gap closure. At each timepoint, FOXP2 expressing 817 

cells had completed significantly less gap closure (14%, 30% and 50% closure respectively). Data is 818 

the average of 6 replicates expressed as mean ± standard deviation. Statistical significance was 819 

assessed using students t-tests (two-tailed). * = p<0.05, ** = p<0.01. 820 
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8. Supplementary Material 822 

SUPPLEMENTARY TABLE S1. Primers used for quantitative PCR of candidate genes 823 
-see separate excel file. 824 

 825 
SUPPLEMENTARY TABLE S2 – Summary of gene expression changes caused by FOXP2 expression (FOXP2 826 
EFFECT) or by differentiation time course (DIFFERENTIATION EFFECT) 827 

-see separate excel file. 828 
 829 

 830 

 831 



Figure 1.TIF



Figure 2.TIF



Figure 3.TIF



Figure 4.TIF



Figure 5.TIF



Figure 6.TIF


