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INTRODUCTION

CHAPTER 1

The production of the first real word of an infant usually sends parents into rap-
tures, especially if the first word is “mama” or “papa”. It generally occurs at the
beginning of the second year of life (Benedict, 1979) and marks from the etymo-
logical point of view the end of the infancy period (Bremner, 1994). Lenneberg
(1967) — and perhaps many parents, too — assumed that the second year of
life is also the starting point for the acquisition of a language and that before this
age nothing important occurs with respect to the development of linguistic skills.
Similarly, when researchers investigate the acquisition of a language by children,
they normally assume that children already possess particular capabilities that
enable them to perceive fluent speech in their native language. However, lan-
guages not only differ in their semantics, syntax and lexicon, but also in their
phonology and phonetics. That means that language-specific perceptual prop-
erties of fluent speech have to be acquired, one way or another, already during
infancy.

1.1  Some major problems in speech perception

The immense task that an infant is confronted with becomes clear if one listens
to other people speaking an unfamiliar Janguage. Then, the seemingly effortless
and “automatic” process of the transition from the perceived sounds to meaning
gets strongly disturbed, not only because the words are unknown, but also be-
cause one has difficulty determining where one word begins and another ends.
This type of experience is shared by speakers of all languages and it illustrates
one of the fundamental problems of speech perception: How does a listener
segment the speech stream into discrete words? This problem is also called
the segmentation problem and it is mainly due to the often considerable acous-
tic overlap between successive segments in the speech stream. The consequence
is that boundaries between segments like words or syllables do not typically
coincide with pauses in the acoustic signal. According to recent experimental
results which suggest that listeners from different linguistic environments use
different segmentation strategies (Cutler, Mehler, Norris, & Segui, 1986; Otake,
Hatano, Cutler, & Mehler, 1993), infants have to acquire a language—dependent
segmentation strategy. Moreover, the acquisition of a segmentation strategy is
a condition for the development of a mental lexicon and the acquisition of the
syntactic characteristics of the language.

A related, though less obvious problem that infants have to overcome when
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learning a language is what has been termed the invariance problem, or the per-
ceptual constancy problem (Jusczyk, 1986b). One aspect of this problem is that
the acoustic properties associated with a particular phone are not invariant, but
depend on the surrounding phonetic context in which the phone is pronounced
(but see, Blumstein & Stevens, 1979, 1980). For example, Liberman, Delattre, and
Cooper (1952) showed that, when a noise burst centred at 1, 600 kHz is followed
by a steady state signal appropriate for the vowel {i] or [u], listeners reported
that they perceived the noise burst as a “p”. In contrast, when the vowel [a]
followed the noise burst, they reported the perception of a “k”. Therefore, the
same acoustic information was perceived differently dependent on the following
vowel context.

A second aspect of the invariance problem that infants must solve concerns
the variability in the speech signal due to the pronunciation of an utterance un-
der different circumstances, in different environments, or by different speakers.
Perhaps the most obvious type of variation in this respect is caused by changes
in the rate of speech. In general, an increase in the rate of speech leads to a re-
duction (or even elimination) of pauses between words and phrases. Moreover,
the words themselves are shortened in their articulation which affects the acous-
tic cues that are present in the speech signal. The average adult listener is easily
able to compensate for this effect by shifting the category boundaries for conso-
nants (Miller & Liberman, 1979) and vowels (Gottfried, Miller, & Payton, 1990)
dependent on the rate of the sentential context. A further type of variability that
an infant must handle are changes in the loudness of an utterance. In its ex-
treme cases, whispered speech or screaming, no distinction between voiced and
voiceless speech segments is possible but this is still easily compensated for by
the listener. This capability is amazing since some phonemes only differ in their
voicing feature. Besides the variation in the speech signal that results from a sin-
gle speaker, an even greater amount of variation occurs in the pronunciations of
the same utterance by different speakers. The shape and size of the vocal tract
is different for every individual and plays a critical role in the actual form of
the resulting speech signal. For example, the vocal tract of a man is on average
15% longer than that of a woman which leads to lower formant values in men’s
speech than in women'’s speech (Jusczyk, 1986b). Nevertheless, someone who
listens to a conversation with men and women has no problem in understand-
ing either the men or the women. The perceptual system clearly operates with
great flexibility.

The effect that differences in speaker, loudness, speaking rate, or emotional
state of the speaker have on the characteristics of the speech signal is universal
in all languages. For example, an increase in the speaking rate has the effect
that the length of the pauses between words is reduced and that the words are
shortened in their articulation, independent of whether the sentence is spoken
in German, Polish, or Hindi. Kuhl (1979) has shown that already infants are able
to deal with utterances of different speakers. Moreover, some of the adaptation
effects in human listeners have even been replicated with nonspeech stimuli
(e.g., Best, Morrongiello, & Robson, 1981). This suggests that in contrast to the
segmentation problem, general auditory processes compensate for these kinds
of variations and infants do not have to acquire particular characteristics of the
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ambient language to overcome the invariance problem. However, the precise
underlying nature of these processes still remains to be explored.

1.2 The acquisition of the sound system of a language

Apart from the segmentation and invariance problems, a language-learning in-
fant is confronted with a third problem the solution of which is another prereg-
uisite for the acquisition of a language’s syntax or semantics. Words, phrases,
and sentences in human languages are formed from a set of speech sounds, or
phonetic categories. However, only a subset of these speech sounds is used in
any particular language. That means that in order to efficiently process sen-
tences spoken in the prospective native language, an infant first has to recognise
the speech sounds that are used in this language and how these sounds can be
combined to form legal words, phrases, and sentences. Moreover, after acquir-
ing this subset of speech sounds, an infant has to map these phonetic categories
onto the phonological categories of the language and has to derive the phonolog-
ical rules for the language. For example, in English and Thai the phonological
category /k/ includes, among its allophones, the unaspirated [k] and the aspi-
rated [k"]. However, in English the aspiration in a word like [kat] is predictable
from the syllable—initial position of the consonant, which is not the case in Thai
(Goodluck, 1991).

As Jusczyk (1992) has emphasised, the acquisition of the speech sounds of a
language is concerned with the “basic abilities in the area of speech perception.”
(Jusczyk, 1992, p. 17). That means that for the identification of the subset of the
speech sounds of the prospective native language, an infant must be able:

1. to discriminate different speech sounds from one another;
2. to categorise different utterances of a sound to the same category’;
3. to locate the relevant information in the speech stream; and

4. to recover the phonetic segments.

Research during the last two and a half decades on speech perception by in-
fants has revealed that infants do not have to begin “from scratch” in accom-
plishing this task, but that they already possess from birth important percep-
tual capacities that facilitate the acquisition of the speech sounds of a language
(Aslin, Pisoni, & Jusczyk, 1983; Kuhl, 1987; Jusczyk, 1997). Moreover, it is
within the first year of life that the native language affects these basic speech
perception capacities and directs infants’ sensitivity to native-language speech
contrasts (Werker & Tees, 1984; Best, McRoberts, & Sithole, 1988; Werker &
Lalonde, 1988; Kuhl, 1991). These findings raise the question of what kind of
underlying mechanisms might direct the process of developmental reorgani-
sation. Since this reorganisational process mainly affects the discrimination of

'This aspect is strongly related to the invariance problem. Actually, the lack of invariance in
the speech signal makes this task much more complicated for the language learner.
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non-native speech contrasts it is clear that the sound system of the ambient lan-
guage plays a critical role in this process. However, the full extent of the re-
organisation and the individual role that is played by factors like the ambient
language are not fully understood.

In this respect it is important to consider the developmental context in which
the change of infants’ discrimination capabilities occurs. It has been empha-
sised that the reorganisational process has to be put into the context of the de-
velopment of a word recognition system in which the acquisition of a system of
phonological categories is a necessary stage for an efficient recognition of words
in fluent speech (Jusczyk, 1985b, 1986¢; Eimas, Miller, & Jusczyk, 1987). That
means, that (1) the acquisition of the speech sounds of the ambient language is
just an intermediate stage and serves as the foundation for the eventual acquisi-
tion of a phonological system, and that (2) the reorganisational process can only
be explained within the framework of the development of a word recognition
system.

The development of a system of phonological categories is addressed in the
first part of the thesis. In chapter 3, I will describe a theoretical model that is
intended to be an account of the processes responsible for the developmental
changes in infants’ speech perception capacities. Although this model concen-
trates on the development of a system of phonetic categories, it does so in the
context of the development of a word recognition system. The model is able
to explain the experimental data of speech perception experiments with infants
that has been collected during the last two and a half decades and which is re-
viewed in chapter 2. Moreover, it makes strong predictions with respect to the
developmental process in general, and to infants’ discrimination and categori-
sation capabilities for speech contrasts in particular.

1.3 The development of auditory categories:
An unsupervised learning process?

One aspect of the theoretical model concerns the question to what extent the
development of a system of phonetic categories can be explained by an unsu-
pervised learning process. The model assumes that initially a system of audi-
tory categories develops in which the categories are explicitly represented. This
system acts as a filter for incoming speech signals. The system of auditory cate-
gories will later develop into the system of phonological categories. In order to
acquire a system of phonological categories, feed-back information from high—
level processing routines is necessary. The information flows back to the andi-
tory categories and refines their representations. However, the model does not
specify when this kind of top-down informatjon comes to play a role in the ac-
quisition of a system of phonological categories. One possibility might be that
initially, a system of auditory categories develops which is exclusively based on
acoustic input signals. The system is then refined at the moment when differ-
ent words are mapped onto the same representations in the mental lexicon and
start to confuse the infant. For example, “daddy” and “Teddy” might both be
mapped onto [daedi]. Therefore, top-down information must split the auditory
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category [d] into two phonological categories /d/ and /t/. However, that as-
sumes that on the basis of acoustic information, auditory categories for [d], [z],
and [i] have already developed. An interesting question that is related to this
process is to what extent an unsupervised learning process is able to learn such
auditory categories from incoming speech signals. Or, in other words: Does the
input to the system contain sufficient information to acquire auditory categories
by an unsupervised learning process? 1 investigated this question by means of
an artificial neural network.

1.3.1 Connectionist modelling

Connectionist models? have been developed for several different problems in
psycholinguistics. The important contribution of these models is that they pro-
vide a new paradigm in which to investigate psycholinguistic theories. For ex-
ample, the simulation results might lead to new predictions of a theory, which
are testable by further experiments. The result is a further refinement of the
theory (Dijkstra & de Smedt, 1996b). Moreover, they might also provide al-
ternatives to established theories, as shown in the discussion of whether chil-
dren’s acquisition of the English past tense requires two separate mechanisms
or not (cf., Rumelhart & McClelland, 1986; Pinker & Prince, 1988; MacWhinney
& Leinbach, 1991; Plunkett & Marchman, 1993; Plunkett, 1995). Third, connec-
tionist models can be used in situations in which an experiment under the same
conditions would not be possible due to ethical reasons or the like. And fourth,
connectionist models can be applied to aspects of the theory that are not at all or
hardly testable by means of experiments.

Especially the last characteristic makes connectionist models attractive in
connection with investigations of the development of cognitive processes in in-
fants. In this respect forms the assumption of the theoretical model that the
developmental process is initially directed by acoustic input signals and an un-
derlying unsupervised learning process a good example. It is hard to imagine
how this assumption might be investigated by speech perception experiments
with infants. However, what one can do is to develop an artificial neural net-
work model that fulfils the requirements of the theoretical model and that al-
lows the simulation of the developmental process under different conditions. In
chapter 51 will present a corresponding artificial neural network model that was
developed according to the requirements of the theoretical model. Besides the
requirements of the theoretical model, the artificial neural network model had to
fulfil two further constraints: (1) the underlying learning algorithm has to be an
unsupervised one, and (2) the input consists of digitised (real) speech sounds.
These issues require some further explanation.

Unsupervised learning algorithms

Learning algorithms for artificial neural networks can be roughly divided into
two categories (Hertz, Krogh, & Palmer, 1991): (1) Supervised learning, in which

*In the following, T will only consider the application of connectionist models to particular
aspects within psycholinguistics. For a general introduction to computational modelling in psy-
cholinguistics, I refer to Dijkstra and de Smedt (1996a).
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learning occurs on the basis of a comparison of the output of the network with
the known correct answer. And (2), unsupervised learning, in which no feedback
from the environment is available and the network must discover the relevant
features and categories on the basis of correlations of the input signals in order
to produce an appropriate output signal.

With respect to the modelling of the development of a system of phonetic
categories in infants it is hard to imagine that this process makes use of knowl-
edge that specifies the expected output of the system. It is not clear where such
a “teacher signal” would originate or how the task would come to be defined in
the way it did — especially in infants. Therefore, I assume that the underlying
learning algorithm is an unsupervised one, exclusively guided by the informa-
tion in the input signals. This presumes that the input contains particular reg-
ularities that are distinguishable from random noise and can be detected by an
unsupervised learning algorithm. Or, as Barlow (1989) has formulated: “... re-
dundancy is the part of our sensory experience that distinguishes it from noise;
the knowledge it gives us about the patterns and regularities in sensory stimuli
must be what drives unsupervised learning.” (Barlow, 1989, p. 298).

In chapter 4 I will give an overview of the kinds of problems an unsuper-
vised learning algorithm will face. Moreover, I will discuss existing unsuper-
vised neural network models and their appropriateness for the modelling of the
developmental process that is specified by the theoretical model.

Digitised (real) speech as input signals

The second constraint the artificial neural network model has to fulfil concerns
the kind of input signals that are used for the simulations. Many computer mod-
els that account for particular aspects in psycholinguistics do not use a digitised
form of the acoustic speech signal as input. Instead, the input to the model either
consists of a sequence of feature vectors, whereby each vector represents a par-
ticular phoneme (e.g., McClelland & Elman, 1986), or a sequence of phonemes
(e.g., Norris, 1994), or even a sequence of words (e.g., Elman, 1993). The choice
of input is mainly determined by the goal of the simulation, but also “by the sim-
ple practical consideration that this [input] is the form of representation used in
most machine-readable dictionaries.” (Norris, 1994, p. 211).

However, with respect to the acquisition of a system of acoustic, phonetic, or
phonological categories, such input representations would make the simulation
process a trivial one and would abstract away from the actual variability within
the speech signal. Therefore, the use of digitised (real) speech as input signals
for the connectionist model is a strong prerequisite. In addition, the input signal
is not segmented into appropriate phonetic units so that it is reasonable to say,
that the specification of the input signal at the lowest processing level is really
minimal. On the other hand, this necessarily leads to a considerable increase in
the complexity of the input space. Therefore, the simulations were performed
with only a restricted set of utterances that consisted of CVCV-words produced
by a single female speaker. Moreover, I restricted the number and types of pho-
netic categories that were under investigation to the set of long vowels in the
Dutch vowel system. Although this set is only a small subset of the Dutch sound
system, it allowed me to investigate several important aspects of the develop-
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mental process. In chapter 6, I will explain in more detail why the constraints of
the input space are reasonable.

1.4 The scope of the thesis

It will be clear from the above that the thesis is separated into two parts. The first
part includes the description of a theoretical model that accounts for the devel-
opmental change in infants” speech perception during the first year of life. Since
I did not perform speech perception experiments with infants myself, the model
relies completely on the results of corresponding studies with infants that were
carried out during the last 25 years. Although excellent reviews about infants’
speech perception capacities and their development during the first year of life
already exist (e.g., Aslin et al., 1983; Kuhl, 1987; Jusczyk, 1997), I will present
my own summary in chapter 2. This review concentrates on the most relevant
findings for the theoretical model. The theoretical model itself is described in
detail in chapter 3. As I already emphasised, it does not contain a complete
account of the development of a word recognition system, but concentrates on
the developmental process during the first year of life and addresses the issue
why various things in infants’ speech perception change during that time. I will
further compare my model with other existing models.

In the second part of the thesis, I will investigate a particular important as-
pect of the theoretical model, namely the assumption that the development of
phonetic categories is initially driven by a self-organising process. What kind
of information can be acquired if the system is exclusively guided by the speech
signal as input? In order to answer this question I will make use of a connection-
ist model that is solely driven by the sequence of input signals that are presented
during a simulation. The development of the artificial neural network model
was based on the specifications of the theoretical model and its architecture is
described in detail in chapter 5. The learning algorithm of the network model is
based on a general Hebbian learning rule. I will show in chapter 4 that similar
models using this kind of learning rule do not completely fulfil the requirements
of the theoretical model. The new artificial neural network is tested on the seven
long vowels of the Dutch vowel system. A description of the input data in con-
nection with the simulation results will be presented in chapter 6 and further
discussed in chapter 7. The results suggest that already at a very early stage in
the development of phonetic categories, factors other than just the input play a
critical role in this process.






THE DEVELOPMENT OF SPEECH
PERCEPTION IN INFANCY

CHAPTER 2

2.1 Introduction

More than 25 years ago, Eimas, Siqueland, Jusczyk, and Vigorito (1971) demon-
strated in a pioneering study that one-month—old infants have the perceptual
capacity to discriminate speech syllables differing solely in voice—onset time
(VOT). The resulting discrimination function of the infants was comparable to
that of English-speaking adults which led to the conclusion that young infants
also perceive these stimuli in a categorical-like manner. This study marked the
starting point for a series of experiments investigating the perceptual capabili-
ties and limits of infants to discriminate differences in speech sounds. However,
the capability to discriminate one word type from another word type (e.g., bill
from pill) is only one requirement which is necessary for word recognition and
the development of a mental lexicon. In addition, the infant must be able to
compensate for the acoustic differences that arise when items like words and
phonemes are produced by different speakers, with different speaking rate or
in different phonetic contexts. In other words, he or she must be able to cate-
gorise different utterances of the same word. Furthermore, the infant must solve
the problem of locating the relevant information and recovering the appropriate
units, like words, phrases, and clauses from the speech signal. The problem is
actually that there are strong variations in the way different languages represent
these units in the speech stream. Consequently, the infant has to discover the
regularities of native language sound patterns.

The abilities to segment the speech signal into reasonable units of the native
language and to discriminate and categorise these units make it possible for the
infant to perceive words but still not to recognise words. An important part of
the recognition process depends on what kind of information about the speech
sounds is encoded in the mental lexicon and on the basis of what kind of infor-
mation the incoming speech signal is matched against stored representations.
Consequently, the infant must be able to build such representations from the
speech stream along with the corresponding meaning. Related to this task is the
question whether the infant pays attention to certain aspects of the speech signal
at the expense of others. The finding in the Eimas et al. study that one-month-
old infants discriminate syllables differing in VOT in a categorical-like manner
suggests that this is the case.
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In what follows, I outline the basic capacities that infants have for perceiving
speech signals and how they change as the infant acquires knowledge of the
native language. This review is far from complete and concentrates on the most
relevant findings. For a more comprehensive review, see Aslin et al. (1983), Kuhl
(1987), or Jusczyk (1997).

2.2 Basic speech perception capacities of infants

2.2.1 The discrimination of native language contrasts

There were two objectives in the pioneering study by Eimas et al. (1971). At that
time there was doubt whether pre-linguistic infants have the capacity to dis-
criminate speech contrasts at all. Therefore, the first goal was to test whether
young infants did indeed have that capacity. The second goal was to test,
whether young infants perceive speech contrasts differing in VOT in a categori-
cal manner, like adult listeners do (Liberman, Cooper, Shankweiler, & Studdert-
Kennedy, 1967; Abramson & Lisker, 1970).

Eimas et al. tested 1- and 4-month-old infants with synthetic speech tokens
of the syllables [ba] and [pa] using the high-amplitude sucking (HAS) proce-
dure (Siqueland & Del.ucia, 1969; Jusczyk, 1985a). The infant was placed in a re-
clining seat and sucked on an artificial nipple attached to a pressure transducer.
After obtaining a base-line level of infant’s sucking amplitude, a speech sylla-
ble (e.g., [ba]) was presented each time the infant produced a sucking response
whose amplitude exceeded the base-line (pre-shift phase). After a while, the
infant got used to the presentation of the speech syllable and the sucking rate
declined. When the sucking rate dropped below a pre-defined habituation cri-
terion, a new speech syllable was presented (post-shift phase).

The infants were divided into three different condition groups. Infants in
the control condition continued to hear the speech syllable from the pre-shift
phase. Infants in the other two groups heard a new syllable which differed by a
constant amount in its acoustic characteristics from the pre—shift syllable. In the
between—category condition the acoustic difference spanned the voicing boundary
between [ba] and [pa], whereas in the within—category condition the acoustic dif-
ference occurred within the same phonetic category (i.e. either two different [ba]
stimuli or two different [pa] stimuli). A comparison of the sucking rates showed
that only the infants in the between—category condition displayed significant in-
creases in sucking during the post-shift phase in comparison to the infants in
the control condition. This result demonstrated that young infants have capac-
ities to discriminate speech syllable contrasts differing in VOT and that their
discrimination of these contrasts is categorical-like.

That this effect is not limited solely to voicing distinctions was shown in
two subsequent investigations by Eimas (1974, 1975a). In the first of these stud-
ies, he tested 2—- and 3-month-old infants on contrasts which differ in place
of articulation, [bee] vs. [dee] and [dee] vs. [ge], respectively (Eimas, 1974). In
both cases infants’ discrimination of these speech stimuli was categorical-like.
Moreover, recent research has shown that even newborns have the ability to dis-
criminate a place of articulation contrast (Bertoncini, Bijeljac-Babic, Blumstein,
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& Mehler, 1987). In the second study, Eimas extended the series of discrimina-
tion studies to the manner of articulation contrast [ra] vs. [la]. The investiga-
tion of infants’ perception of this contrast was interesting for two reasons. First,
this contrast is one which emerges only late in the development of speech pro-
duction (Strange & Broen, 1981), and second, it is known that some non—native
English speakers, like Japanese, have great difficulties in mastering this contrast
(Miyawaki, Strange, Verbrugge, Liberman, Jenkins, & Fujimura, 1975; Yamada &
Tohkura, 1992). While American adults’ discrimination of this contrast was cat-
egorical, Japanese adults exhibited a non—categorical perception. Eimas tested
2- and 3-month-old infants on this contrast and found that their discrimination
behaviour was similar to that of English-speaking adults.

Further investigations have shown that infants’ initial discrimination capa-
bilities include a large number of other consonantal contrasts. Hillenbrand,
Minifie, and Edwards (1979) found that 6- to 8—-month—old infants were able to
discriminate the stop/glide contrast [be] vs. [we] in which the tokens differ in the
tempo of spectral change. In subsequent experiments, Eimas and Miller (1980a)
extended this finding and demonstrated that at two months of age infants could
already discriminate this contrast in a categorical-like manner (see also Miller
& Eimas, 1983). They investigated a further manner of articulation contrast and
found that 2- and 4-month—old infants were able to detect the oral/nasal con-
trast between syllables like [ba] and [ma] (Eimas & Miller, 1980b). Interestingly
enough, in contrast to the previous studies, there was no evidence that infants
perceived this contrast categorically. Infants discriminated both the between-
category pairs ([ba] vs. [ma]) and the within—category pairs ([ba,] vs. [ba:] or
[ma;] vs. [ma,]). The remarkable aspect of this finding is that infants’ discrimi-
nation was different to that of adults, who do show categorical perception of the
oral/nasal contrast (Miller & Eimas, 1977).

In addition to the previous studies, which used glides and nasals in manner
of articulation contrasts, these types of phonetic segments were also investigated
in place of articulation contrasts. For instance, Jusczyk, Copan, and Thompson
(1978) demonstrated that 2-month-old infants were able to discriminate the syl-
lables [wa] and [ja] on the basis of formant transitions. Furthermore, Eimas and
Miller (1981) showed that 2-month-old infants were capable of discriminating
the nasal contrast [ma] vs. [na]. These findings demonstrated that infants’ dis-
crimination of place of articulation contrasts is not restricted to stop consonants.

Another type of speech segment which has been explored in research with
infants are fricatives. Similar to stop consonants, fricative contrasts may differ
in voicing or place of articulation. Voicing differences in fricatives were investi-
gated by Eilers, Wilson, and Moore (1977). Although 3-month—old infants dis-
criminated the voicing contrast between [s] and [z] in syllable-final position (i.e.
[as] vs. [az]), there was no evidence that the infants discriminated the contrast
in syllable-initial position (i.e. [sa] vs. [za]). In contrast, 6~month-old infants
were able to distinguish [sa] from [za] (Filers et al,, 1977). Investigations us-
ing place of articulation differences in fricatives further supported the findings
that not all phonetic contrasts are equally discriminable for infants. While 2- to
1-month-old, 6~month-old and 12-month-old infants discriminated [sa] from
[ba] (Eilers & Minifie, 1975; Eilers et al., 1977). there was no evidence that infants
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from any of the age groups were able to discriminate [fa] from [6a]. Moreover,
only 12-month-old infants appeared to discriminate [fi] from [6i]. However, the
results of the Eilers et al. study have been criticised for several reasons (Eimas &
Tartter, 1979; Jusczyk, 1981). In particular, in the study with 3-month-~olds using
the HAS procedure, Eilers et al. compared the last four minutes of the pre—shift
phase with the first four minutes of the post-shift phase, instead of using two
minutes in each case. The critical argument was that this may increase variabil-
ity and therefore underestimate the probability that infants can discriminate the
[sa]-[za] contrast (Eimas & Tartter, 1979). Another objection was related to the
speech tokens of the [fa]-[fa] contrast. Jusczyk (1981) pointed out that the to-
kens were only correctly identified by adult listeners 60% and 70% of the time,
respectively, for [fa]-[6a]. This ambiguity of the stimuli tokens might be another
reason for an underestimation of infants discrimination capabilities.

Other studies investigating infants’ discrimination capabilities of fricative
contrasts demonstrated that infants were indeed able to discriminate differ-
ences between fricative segments. Holmberg, Morgan, and Kuhl (1977) tested
6-month—old infants and showed that infants were able to distinguish between
[f] and [8] in syllable-initial (i.e. [fa] vs. [fa]) and syllable—final (i.e. [af] vs. [af8])
position. And similarly, Levitt, Jusczyk, Murray, and Carden (1988) showed that
2-month-old infants were already capable of discriminating the contrast [fa] vs.
[8a] as well as the contrast [va] vs. [8a]. Moreover, the discrimination behaviour
appeared to be categorical-like.

So far, the investigations in infants’ discrimination capabilities described
have mainly been concentrated on contrasts which occurred in syllable-initial
position. Further studies have shown that infants also have the ability to dis-
tinguish syllables differing only in their final segments, like in [bad] vs. [bag]
{(Jusczyk, 1977), or in their medial segments, like in [apa] vs. [aba] (Cohen, Diehl,
Oakes, & Loehlin, 1992). In addition, 2-month-old infants were also sensitive to
differences in place of articulation occurring in either initial or medial positions
of multisyllabic stimuli, like in [bada] vs. [gada] or [daba] vs. [daga] (Jusczyk
& Thompson, 1978). These results formed an important extension to previous
studies, since the acoustic characteristics of phonetic segments differ in the ini-
tial, medial, and final positions of syllables.

Soon after the first demonstrations of infants’ categorical-like perception of
consonantal contrasts, researchers became interested in the question of whether
there are any important differences in infants’ perception of consonants and
vowels. It cannot be assumed a priori that the perception of these two types
of speech segments is identical because consonants and vowels differ in their
articulatory and acoustic-phonetic properties. Concerning perception, it has re-
peatedly been shown that, for both consonants and vowels, adults can easily dis-
criminate stimuli from contrasting native categories. However, discrimination
of stimuli from the same native categories is little better than chance for conso-
nants, but considerably better than chance for vowels (Fry, Abramson, Eimas, &
Liberman, 1962; Repp, 1984).

One of the first studies investigating infants” discrimination capabilities on
vowel contrasts was performed by Trehub (1973). She found that 4- to 17-week-
old infants were able to distinguish the vowel contrasts [a] vs. {i] and [i] vs. [u].
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The findings with respect to the [a] vs. [i] contrast were replicated by several
subsequent studies. Kuhl and Padden (1982) found that 1- to 4-month-old in-
fants could discriminate this contrast even in the presence of pitch variations.
In addition, Cameron Marean, Werner, and Kuhl (1992) demonstrated that 2—,
3- and 6-month~old infants could distinguish this vowel contrast, despite vari-
ations in pitch and speaker changes. Further studies demonstrated that infants
were able to detect even more subtle contrasts between vowels. 6- to 8&month-
old and 10- to 12-month-old infants discriminated the vowel contrasts [dut] vs.
[dyt] and [det] vs. [det] (Polka & Bohn, 1996), 6-month-old infants were able
to distinguish between the vowels [a] and [>] (Kuhl, 1983), and 2-month—old
infants were able to discriminate contrasts from a vowel continuum extending
from [i] to [I] (Swoboda, Morse, & Leavitt, 1976). In addition, Swoboda et al.
found that infants did not only discriminate between—category distinctions but
also, like adults, within—category distinctions.

In summary, the discrimination studies have shown that infants are capable
of distinguishing between many, if not all, native language phonetic contrasts
already from birth. In addition, the findings also indicate strong similarities with
perceptual capabilities of adults. Like adults, infants showed a discrimination
of consonant contrasts in a categorical-like manner, whereas vowels tend to be
perceived continuously.

2.2.2 The discrimination of foreign language contrasts

The study of Eimas et al. (1971) has shown that infants have the capacity to
distinguish between two modes of voicing along the VOT continuum, that is,
between the voiced bilabial stop [ba] and the voiceless stop [pa]. One of their
conclusions was that the mechanisms underlying infants’ discrimination of VOT
differences may well be part of the biological makeup of the infants, i.e. they
are presumably innate. However, cross-language investigations of discrimina-
tion capabilities of adults have exhibited at least three modes of voicing (Lisker
& Abramson, 1964; Lisker & Abramson, 1970). In addition to the voiced and
voiceless mode, Lisker and Abramson found a prevoiced mode, which is not
employed in English, but is used in a number of other languages, like Thai for
example. Therefore, if adult categories of bilabial stops along the VOT contin-
uum have an innate basis which is evident in early infancy, the difference be-
tween the prevoiced and voiced mode should be demonstrable in infants from
any language environment. In addition, infants from different language envi-
ronments should exhibit the same discrimination capabilities. In order to verify
Eimas et al.’s conclusion, a number of studies have investigated how infants per-
ceive speech contrasts that do not appear in their native language environment.

In a first study, Eimas (1975b) attempted to determine whether American in-
fants could discriminate the prevoiced/voiced contrast in stops, but his results
were equivocal. Although the infants showed the capability to discriminate the
prevoiced /voiced distinction, this was only the case when the voicing differ-
ence was larger (80 msec) than for the voiced/voiceless distinction (20 msec).
Moreover, there was no significant difference between the performance of in-
fants which were tested on the prevoiced/voiced contrast and that of infants
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which were tested on a contrast from within the prevoiced category. How-
ever, a study by Aslin, Pisoni, Hennessy, and Perey (1981) demonstrated that
infants from an English-speaking environment can reliably discriminate the pre-
voiced /voiced contrast. They used an adaptive-staircase procedure to estimate
the smallest VOT difference required for a reliable discrimination of two stim-
uli from the VOT continuum. Their results showed that although the smallest
VOT difference for the prevoiced/voiced contrast was considerably larger than
for the voiced/voiceless contrast, the infants showed the general capability to
distinguish both contrasts.

But how about infants from other language environments? Do they show
a similar discrimination behaviour? Studies with Guatemalan and Kikuyu in-
fants seem to support the innate hypothesis. For instance, Lasky, Syrdal-Lasky,
and Klein (1975) showed that 4- to 6 1/2~-month-old Spanish-learning infants
from Guatemalan were able to distinguish between all three modes of voicing.
In addition, the VOT boundaries between the voicing modes were compara-
ble to the ones found in the Aslin et al. study for American infants. This is
remarkable since investigations with Spanish adults showed that Spanish has
only one voicing distinction (Lisker & Abramson, 1970; Williams, 1977). More-
over, the perceptual boundary does not coincide with the English one. A fur-
ther study investigated the discrimination capabilities of 2-month-old Kikuyu
infants (Streeter, 1976). Again, the infants were able to discriminate both pre-
voiced /voiced and voiced /voiceless contrasts, although the voiced/voiceless
distinction does not occur in Kikuyu. Therefore, there is reliable evidence for
the hypothesis that infants’ discrimination of VOT differences has an innate ba-
sis.

The consistent findings of cross-language studies investigating infants” dis-
crimination behaviour on voicing contrasts were replicated by testing infants
on other types of foreign language contrasts. Trehub (1976) showed that 5- to
17-week-old infants from English-speaking homes were able to discriminate a
Czech fricative contrast ([fa] vs. [za]), which does not occur in English. There
is also evidence that 6- to 8—month-old English-learning infants can discrimi-
nate a retroflex/dental stop contrast ([ta] vs. [ta]) and a voiced/voiceless stop
contrast ([d"a] vs. [t"a]) from Hindi (Werker, Gilbert, Humphrey, & Tees, 1981),
as well as a glottalised velar/uvular contrast ([k’i] vs. [q'i]) from Nthlakampx?
(Werker & Tees, 1984). Subsequently, Best et al. (1988) demonstrated that 6~ to
8-month-old English-learning infants can discriminate the unaspirated lateral
versus apical click contrast ([5a] vs. [ja]) from Zulu, and Best (1991) reported
similar findings with respect to the place of articulation contrast [p’e] vs. [t'e] in
Ethiopian. Moreover, Japanese infants between 6 and 8 months of age were able
to discriminate the English contrast [1] vs. [l], which is not phonemic in Japanese
(Tsushima, Takizawa, Sasaki, Shiraki, Nishi, Kohno, Menyuk, & Best, 1994).

In addition to the previous studies, which investigated infants’ discrimina-
tion capabilities on foreign consonantal contrasts, further research has devel-
oped a similar pattern for foreign vowel contrasts. For instance, 5- to 17-week-
old infants from English-speaking homes were able to discriminate the Pol-

3Nthlakampx is an Interior Salish (Native Indian) language spoken in south central British
Columbia.
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ish/French oral nasal vowel contrast [pa] vs [pa] (Trehub, 1976). More recently,
Polka and Werker (1994) demonstrated that 4 1/2-month-old Canadian infants
have the capabilities to discriminate the German (non-English) vowel contrasts
/y/ vs. /u/ and /u/ vs. /v/. In addition, German infants at the age of 6 months
were able to discriminate the English (non—German) vowel contrast /det/ vs.
/deet/.

The picture that emerges from these studies of infants’ perception of foreign
language contrasts is the following: Right from birth, infants possess the per-
ceptual capabilities to discriminate a wide range of both native and non-native
phonetic distinctions among consonants and vowels. In addition, infants from
different language backgrounds show a close correspondence in their discrim-
ination of speech sounds along phonetic continua. Therefore, it appears that
infants’ initial discrimination capabilities are based on innate perceptual mech-
anisms which are similar across different language environments.

2.2.3 Underlying mechanisms for young infants’ speech
perception capabilities

The suggestion that infants’ initial discrimination capabilities are based on in-
nate perceptual mechanisms raises immediately the question whether these
mechanisms are part of a mode that is specialised for the processing of speech
signals or whether these mechanisms are part of the general auditory “equip-
ment”. Based on the findings from the experiment by Eimas et al. (1971) one
might conclude that infants from birth on perceive speech sounds in a spe-
cialised speech mode. This conclusion is based on the result that infants’ dis-
crimination of VOT differences was categorical-like and on the assumption that
categorical perception is unique to speech. However, subsequent studies have
shown that the categorical perception effect is not unique to speech signals but
can also be obtained with nonspeech stimuli (Cutting & Rosner, 1974; Miller,
Wier, Pastore, Kelly, & Dooling, 1976; Pisoni, 1977). Moreover, experiments with
non-human mammals, like macaques and chinchillas, demonstrated that a spe-
cialised speech mode is not a necessary mechanism to get a categorical percep-
tion effect (Kuhl & Miller, 1978; Kuhl & Padden, 1982, 1983). In the follow-
ing, I will review recent findings that support the hypothesis that infants’ ini-
tial speech processing mechanisms are based on general auditory mechanisms
rather than on a specialised speech mode.

Categorical perception of nonspeech stimuli

The basic idea of discrimination experiments using nonspeech stimuli is that any
difference in adults” perception between speech and nonspeech stimuli is an in-
dication for a specialised speech mode. Although the reverse conclusion is not
automatically true, finding no difference in perception demonstrates that a spe-
cialised speech mode is not necessary for the categorical perception effect. The
stimuli in these experiments are designed to imitate certain aspects of voiced
and voiceless consonant-vowel syllables without being perceived as speech.
For instance, Pisoni (1977) used the onset times of two pure tones to generate a
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tone—-onset time (TOT) continuum which encompassed the Spanish and English
voice—onset time boundary. The results showed that discrimination was signifi-
cantly better when the stimuli pair was selected from different perceptual cate-
gories (according to the VOT continuum) than for stimuli pairs selected from the
same category. In addition, the discrimination of stimuli from the same category
was nearly at chance, which corresponds to the categorical perception model.
Therefore, the categorical perception effect is not limited to speech sounds and
may reflect a general limitation on processing temporal order information in the
auditory system (Pisoni, 1977).

Further support for Pisoni’s conclusion came from studies that replicated
these findings with infants. Jusczyk, Pisoni, Walley, and Murray (1980) tested 2—
month-old infants on contrasts from various points along the TOT continuum.
The results showed that infants were able to discriminate contrasts differing in
their temporal order information, and that their performance was categorical-
like. Although the categorical boundaries did not coincide with the boundaries
from the adult experiment, the categorical-like perception of the TOT contrasts
supports the hypothesis that the underlying mechanisms are general in nature
and not limited to speech. Subsequently, Jusczyk, Rosner, Reed, and Kennedy
(1989) directly compared the discrimination performance of 2-month-old in-
fants on contrasts that differ in voicing (speech sounds) and temporal order
(nonspeech sounds). And again, the results support the general auditory mech-
anism hypothesis. The location of category boundaries along the VOT and TOT
continua closely corresponded to each other.

Categorical perception in non—human mammals

Under the assumption that animals do not possess phonetic or phonological
levels of processing, one would expect that they are not able to process human
speech sounds with a specialised speech mode. Consequently, it is of great inter-
est to investigate whether non-human mammals with psychoacoustic capabil-
ities that are similar to that of humans show any categorical perception effects
when they are presented with human speech sounds. The demonstration of
perceptual effects in these animals would be a strong argument that they are
based on general auditory mechanisms.* Kuhl and Miller (1975, 1978) tested

*Kuhl (1986) has emphasised the importance of animal experiments for the speech mode
debate. She argued that tests on nonspeech data do not exclude the argument, “that the mecha-
nisms responsible are ones that evolved especially for speech, but that the mechanisms are not
so narrowly tuned as to exclude nonspeech signals that mimic the critical features in speech.”
(Kuhl, 1986, p. 23). In contrast, animal experiments do not address the tuning but the necessity
of mechanisms especially evolved for speech. However, as Jusczyk (1986a) has pointed out in
his reply on Kuhl’s comments, the animal studies also do not provide a definite proof. From
his point of view, the debate about a common mechanism for two different tasks is indepen-
dent from the issue of whether one mechanism is responsible for the same effect in different
species. In any case, the general picture that the experimental results from both domains pro-
vide strongly supports the hypothesis that general auditory mechanisms are responsible for the
categorical perception effect. In Jusczyk’s words: “it is the attraction of being able to provide
a single explanation for the speech, nonspeech, and animal studies that favours one based on
general auditory mechanisms to account for the perception of speech during the initial state of
the infant’s life.” (Jusczyk, 1986a, p. 34).
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chinchillas’ categorisation of stimuli along three different voiced-voiceless con-
tinua, [d-t], [b-p], and [g-k]. The chinchillas were trained to discriminate two
“endpoint” stimuli (0 and +80 msec) on each of the VOT continua by an avoid-
ance conditioning procedure. After reaching nearly perfect discrimination per-
formance, the animals were tested on intermediate VOT values (+10 to +70
msec). The resulting generalisation functions showed perceptual boundaries
which were nearly identical to those obtained for American adults. Moreover,
the location of the category boundaries was dependent on the place of articula-
tion, with the lowest boundary value for labial stimuli, and the highest bound-
ary value for velar stimuli.

Further studies with macaques showed that the results by Kuhl and Miller
were not due to species-specific effects. Kuhl and Padden (1982) demonstrated
that macaques discriminated between—category VOT contrasts significantly bet-
ter than within—category VOT contrasts, whereby the category boundaries on
each voiced-voiceless continuum corresponded to the boundaries of human
adults. Subsequently, Kuhl and Padden (1983) compared human adults’ and
macaques’ discrimination of speech contrasts from the place of articulation con-
tinuum [bae—deae—gee]. The results showed that human listeners perceived three
distinct phonetic categories along the continuum. The speech contrasts that
spanned a category boundary according to the adult data produced the highest
discrimination scores in the experiment with macaques. Thus, macaques appear
to show very similar categorical discrimination of place of articulation contrasts
to adults. Moreover, they also coincide with categorical boundaries found in
experiments with infants (Eimas, 1974).

Is speech processed by a specialised perceptual module?

Having presented support for attributing effects in infants’ speech processing
to general auditory mechanisms, the questions that then arise are whether spe-
cialised processing of speech ever occurs, and, if so, when and at what level of
processing? Is speech processed by a specialised perceptual module or does spe-
cialised processing only occur at a higher level, taking the output of the auditory
system as input?

Data from speech perception experiments with adults that have shown that
the same stimuli can be processed differently depending on whether the subjects
perceived them as speech or nonspeech, strongly suggest that speech sounds un-
dergo some specialised processing. For instance, Best, Morrongiello, and Rob-
son (1981) tested adults on the trading relationship between two cues to the
“say”-"stay” contrast — the onset frequency of the first formant and the du-
ration of a silent gap following an initial fricative. As in previous nonspeech
studies, they used sinewave analogues of the “say”~“stay” continua. The results
depended strongly on subjects’ perception. Only the subjects who perceived the
sinewaves as speech sounds showed a trading relation effect between the two
acoustic cues. Therefore, the trading relation effect appears to occur specifically
for stimuli that are perceived as speech.

Further evidence for the specialised processing hypothesis came from studies
that investigated the phenomenon of “duplex perception” (Liberman, Isenberg,
& Rakerd, 1981; Mann & Liberman, 1983; Repp, Milburn, & Ashkenas, 1983).
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During the experiment, the listener heard the third formant transition of a
speech syllable in one ear and at the same time the rest of the speech syllable
in the other ear. While presented in isolation, the subject perceived a nonspeech
chirp or an ambiguous speech syllable, respectively. The simultaneous presenta-
tion of both percepts resulted in the perception of both a nonspeech chirp and an
unambiguous speech syllable. However, listeners did not hear the ambiguous
syllable when the rest of the speech syllable was presented in isolation. More-
over, when they were asked to discriminate two successive duplex percepts,
their discrimination function for the nonspeech chirps — approximately linear
— was quite different from the discrimination function for the speech sounds —
with a strong peak indicating a categorical boundary (Mann & Liberman, 1983).
Therefore, the results imply that the nonspeech and the speech signal were pro-
cessed by two different modes of perception.

The results of studies exploring the perception of ambiguous stimuli and
the duplex perception effect strongly suggest specialised processing of speech
sounds. That means that at a particular moment in time during processing,
speech and nonspeech sounds are treated as different signals. What might be the
reason for this different treatment? Jusczyk (1986¢) proposed two alternatives:
(1) speech sounds are perceived differently from nonspeech sounds and therefore
undergo a special perceptual processing. Or, (2) based on the auditory analysis
of the signal, special processing of the speech sounds is only involved at a higher
level when “treating the acoustic signal as a linguistic message” (Jusczyk, 1986¢,
p- 10). It is the picture provided by the coherent results of the nonspeech, in-
fant, and animal studies which suggest that the second of the two alternatives
is the correct one. That means the auditory analysis of the acoustic signal is in-
dependent of the kind of the signal and only higher levels of processing make a
distinction between speech and nonspeech signals.’

In summary, the data support the hypothesis that infants’ initial speech per-
ception capacities are based on general auditory capacities that process speech
and nonspeech signals in the same way. Only at a higher level of processing are
speech and nonspeech signals treated differently, resulting in perceptual effects
that are special for speech.

2.2.4 The ability to categorise

The emphasis of investigations described so far has been on the question of
whether infants were able to discriminate between two phonetic segments.
However, speech perception entails more than simple discrimination. Infants
are confronted with the fact that a single portion of the speech signal typically
contains information about more than only one phonetic segment, and con-

*However, there are still arguments to favour a special perceptual module for speech sounds.
As I described before, speaking rate effects did not occur when adult subjects perceived am-
biguous signals as nonspeech (Best et al., 1981). Therefore, according to the general auditory
mechanisms hypothesis one would conclude that this effect is dependent on higher levels of
processing that developed during the acquisition of the native language and is therefore not
present in infants. However, as Eimas (1985) has shown, infants are sensitive to this kind of
context—dependent effect. Consequently, these results suggest that speech signals undergo a
special kind of perceptual encoding.
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versely, that information about one phonetic segment is in general distributed
across several portions of the speech signal (Liberman et al., 1967). Therefore,
speech perception is a highly context-dependent task in which information oc-
curring later in the speech signal often has influence on the processing of acous-
tic information occurring at an earlier point in time. Despite the contextual vari-
ations in the speech signal, like differences in speaking rate or loudness, or ut-
terances of different speakers, infants must be able to cope with these acoustic
differences. For instance, although clearly discriminable and acoustically dif-
ferent, an infant has to recognise his or her name produced by the father or by
the mother. Consequently, the infant must put aside acoustic differences in the
utterances of his or her name and must categorise them as the same word type.

Effects of speaker variability on infants’ speech perception

In two related studies, Kuhl investigated whether 6-month-old infants are able
to categorise vowels produced by different speakers Kuhl (1979, 1983). In
her first study, the infants were trained using the operant headturn procedure
{Kuhl, 1985) to discriminate the vowel contrast [a] vs. [i] (Kuhl, 1979). During the
initial phase, pitch contour and speaker characteristics were held constant. Once
the infant had been successfully trained to turn his or her head only when the
background stimulus changed to a different vowel (e.g., from [a] to [i]), new to-
kens of both vowels with different speaker and pitch characteristics were added.
The results showed that infants continued to discriminate the vowel contrast
and were able to group the different tokens of each vowel category together. In
a second study, Kuhl replicated these results with 6~month-old infants using the
vowel contrast [a] vs. [0] (Kuhl, 1983). This vowel contrast is interesting in the
sense that the vowels are adjacent in vowel space and that productions of these
vowels produced by different kind of speakers (men, women, children) showed
considerable overlap in their first two formants (Peterson & Barney, 1952). Nev-
ertheless, the infants were still able to discriminate the vowel contrast, both
when they were tested in a stage-like procedure in which the complexity of
the input increased at each stage, as well as when they were immediately tested
on the complete stimuli set including the utterances of all three speakers. Al-
though Kuhl did not test whether the infants were able to distinguish the differ-
ences between speakers, there is ample evidence that they actually can. Studies
with newborns demonstrated that they have the capability to recognise the voice
of their mother from those of other mothers (Mills & Meluish, 1974; Mehler,
Bertoncini, Barriere, & Jassik-Gerschenfeld, 1978; DeCasper & Fifer, 1980). A fur-
ther study with 6~-month-old infants indicates that they are able to selectively
respond to utterances produced by a particular speaker as opposed to utterances
from another speaker (Miller, Younger, & Morse, 1982).

Kuhl’s data show that infants at six months of age have the capability to cope
with variations introduced by changes in speakers and pitch contour. A more
recent study by Jusczyk, Pisoni, and Mullenix (1992) has extended these find-
ings, demonstrating that even 2-month—old infants are able to cope with speaker
variability. Jusczyk, Pisoni, and Mullenix used a HAS procedure to investigate
whether infants were able to discriminate between the words [bag] and [dag],
each of them produced by twelve speakers, six males and six females. During
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the preshift phase, infants heard all twelve utterances of one of the words. Af-
ter habituation, infants in the control group continued listening to the utterances
of the same word as in the pre-shift phase, whereas infants in the multiple-
speaker group condition heard the utterances of the other word. In comparison
to the control group, infants in the multiple-speaker group showed a signifi-
cant increase in sucking, indicating that they detected the phonetic change de-
spite speaker variation. Moreover, a comparison of infants from the multiple-
speaker group and the single-speaker group, who heard the utterances of the
words from the same speaker during pre-shift and post-shift phase, showed no
significant difference in sucking during the post-shift phase. In addition to the
single-speaker group, Jusczyk, Pisoni, and Mullenix also tested the possibility
that infants were unable to distinguish between utterances produced by differ-
ent speakers. However, confronted with utterances of the same word from two
different speakers, the infants were able to distinguish between both utterances.
Taken together, these results and the findings of Kuhl demonstrate that infants
possess the capability to normalise for changes in the voice of a speaker from a
very early point in development.

Effects of changes in speaking rate on infants’ speech perception

Another type of context variability that influences speech perception is the rate
of speech. It has been shown in several studies that a change in speaking rate
systematically alters the acoustic characteristics of the phonetic segments in the
speech signal. Nevertheless, adult listeners can easily cope with this kind of
variability (for a review, see Miller, 1981). One phonetic contrast which has been
studied in great detail with respect to speaking rate is the distinction in manner
of articulation of syllable-initial [b] and [w]. Listeners make use of the dura-
tion of the initial formant transition between consonant onset and the following
vowel to distinguish the two consonants: Short, rapidly changing formant tran-
sitions are perceived as a stop consonant like [ba], whereas longer transitions are
perceived as a glide like [wa] (Liberman, Delattre, Gerstman, & Cooper, 1956). In
addition, the perception of stimuli along the transition continuum happens to be
categorical: Stimuli from different phonetic categories are discriminated reliably
better than stimuli from the same phonetic category (Miller, 1980). However, the
categorical boundary between [b] and [w] is dependent on the speaking rate.
Miller and Liberman (1979) have shown that the longer the steady-state seg-
ment of the syllable, indicating a slower speaking rate, the more the categorical
boundary shifts to longer transition values.

Based on these findings, Miller and Eimas tested 3 to 4-month—old infants
on the discrimination of the [ba]/[wa] contrast (Eimas & Miller, 1980a) and
investigated whether discrimination is dependent on speaking rate (Miller &
Eimas, 1983). They used syllables drawn from the stimulus set used by Miller
and Liberman (1979) having either short (80 msec) or long {296 msec) syllable
duration. Based on the adult data, Miller and Eimas selected three different
formant transitions so that a stimulus pair that belonged to different adult cate-
gories at one rate belonged to the same adult category at the other rate. The re-
sults showed that infants discriminated the speech contrast in a categorical-like
manner and that this discrimination was dependent on the duration of the syl-
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lable. There was no evidence that infants were able to detect a within—category
pair, while they detected the between—category pair from each series. There-
fore, analogous with the perception of adults, infants perceived speech sounds
relative to the rate of speech.

Effects of phonetic context on infants’ speech perception

The results of the study by Miller and Eimas (1983) are also remarkable from an-
other point of view. The fact that phonetic contrasts are cued by various acoustic
properties has led to investigations on the contribution of each of the cues to the
phonetic information (e.g., Dorman, Studdert-Kennedy, & Raphael, 1977). It has
been found that the values of the cues are context sensitive. In addition, the cues
are in a trading relationship, i.e. the strengthening of the value of one cue can be
offset by the weakening of the value of the other cue (Fitch, Halwes, Erickson, &
Liberman, 1980; Best et al., 1981). Miller and Eimas’ results indicate that already
3~ to 4-month-old infants use multiple cues — here: formant transition and syl-
lable duration — in the categorisation of speech and that they are sensitive to
the trading relations between these cues.

Subsequent research supports the hypothesis of a perceptual trading relation
in young infants. Eimas (1985) investigated 2- to 4-month-old infants on the
perceptual equivalence of the spectral and temporal cues that differentiate the
word “say” from the word “stay”. While a low starting frequency of the first
formant and a long duration of silence following the fricative were strong cues
for the presence of the stop consonant and therefore for the word “stay”, a high
starting frequency and a short duration of silence were strong cues for the word
“say”. Eimas tested the infants on stimuli contrasts in which the spectral and
temporal cues either conflicted or cooperated. The results showed that infants
only discriminated the speech contrast when the cues cooperated, indicating the
perceptual equivalence of both cues.

Another example of perceptual trading relations was reported by Levitt et al.
(1988). They investigated the perceptual capabilities of 2-month-old infants on
the English fricative contrast [fa] vs. [#a]. Previous research had shown that the
critical cue for this contrast is the formant transition difference (Carden, Levitt,
Jusczyk, & Walley, 1981). However, a discrimination experiment with adults
showed that the [fa]/[0a] distinction requires a fricative noise. Removing the
fricative noise caused the subjects to perceive both syllables as [ba]. Levitt et al.
tested infants with the same stimuli and found similar results. The infants were
able to discriminate the fricative contrast [fa] vs. [#a] but only in the presence
of an appropriate fricative noise context. They concluded that “context effects
themselves do not depend on a long apprenticeship in producing and listening
to speech. Rather, the source of these effects appears to be a consequence of
the inherent organisation of the underlying perceptual mechanisms.” (Levitt
etal, 1988, p. 367).

A third indication that infants are sensitive to trading relationships comes
from a study by Eimas and Miller (1991). They tested the discrimination capa-
bilities of 3— to 4~month-old infants on speech syllables which consisted of the
initial fricative [s], a variable duration of silence, and the vowel [a] containing
the formant transitions appropriate for the stop consonants {t] or [k]. Previ-
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ous experiments with adults have shown that the syllable-medial stops were
only perceived when the duration of silence was longer than 20 msec (Dorman,
Raphael, & Liberman, 1979; Bailey & Summerfield, 1980). Setting the period of
silence to smaller values caused the subjects only to perceive [sa], independent
of the formant transitions. The results of the Eimas and Miller study indicated
a strong similarity in performance between infants and adults. The infants dis-
criminated the contrast only for long durations of silence. When the silence
between the fricative and the beginning of the formant transitions was shorter
than 20 msec, the infants showed no evidence of discrimination.

The studies so far have demonstrated that infants’ perception of speech sig-
nals parallels the one for adults. In particular, the results showed that infants
are highly sensitive to the contextual variability of phonetic segments. This line
of research is further extended by investigations of the influence of coarticula-
tion on the perceptual capabilities of infants. Each time a speaker produces a
word, phrase, or sentence, the phonetic properties of neighbouring consonants
and vowels overlap in time. For instance, the articulation of a [g] is fronted
when it is preceded by an [1], i.e. the velar contact for the [g] is pulled forward in
the mouth (Mann, 1980). Fowler, Best, and McRaberts (1990) used this effect to
test young infants’ capability to separate coarticulatory influences on a speech
signal. They tested 4- to 5-month~old infants on items from a synthetic [da]-
{gal continuum preceded by either [al] or {ar]. Experiments with adults have
shown that the categorical boundary along this continuum was dependent on
the preceding syllable (Mann, 1980). Subjects’ [ga] responses increased in the
context of [al] compared to a preceding [ar] or no preceding syllable at all. The
infants showed discrimination behaviour that parallelled the adults’ results. A
stop consonant that was, according to adults’ identification rates, ambiguous be-
tween [d] and [g], was discriminated from a context—independent [g] only in the
[ar] context, while it was discriminated from a context-independent [d] only in
the [al] context.

Taken together, these studies show that at a very early point in time during
development infants already have some important capabilities for coping with
different sources of contextual variations in the speech signal and for forming
categories across a variety of acoustic contexts. The results of section 2.2.3 sug-
gest that these capabilities are based on general auditory mechanisms.

2.2.5 The speech signal as an attractor for infants’ attention

Knowledge about the linguistic environment of an infant is just as important for
our understanding of the developmental process of speech perception as inves-
tigations into the initial discrimination and categorisation capabilities of infants.
In particular, it is of special interest whether speech to infants emphasises partic-
ular acoustic features and whether infants” auditory preferences correspond o
these features. If this is the case, then the characteristics of the acoustic features
might supply additional information about the way word recognition processes
develop.

The first studies that investigated which possible aspects of speech en-
gage infants’ attention focused on the role of the mother’s voice (Mills &
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Meluish, 1974; Mehler et al., 1978; DeCasper & Fifer, 1980). Their results reli-
ably demonstrated that even newborns prefer their mother’s voice over that of a
stranger. Where does this preference come from, especially so soon after birth?
Since innate mechanisms cannot be an explanation for this effect, two possibil-
ities remained: (1) A newborn’s preference for the mother’s voice was induced
by the initial, limited exposure to the speech of the mother, or (2) prenatal au-
ditory experience produced the postnatal preference. Subsequent studies sup-
ported the second hypothesis. DeCasper and Spence (1986) showed that new-
borns preferred to listen to a story which they already heard prenatally to a non-
familiar story. Moreover, the preference was independent of the specific voice of
the speaker. DeCasper, Lecanuet, Busnel, Granier-Deferre, and Maugeais (1994)
replicated these results with foetuses who were exposed to a short thyme spo-
ken aloud by their mother each day between the thirty third and thirty seventh
week of their foetuses” gestation. The results demonstrated a decrease in the fe-
tal heartrates in response to the stimulation with the rhyme in comparison to a
different control rhyme.

Although these studies showed that a foetus is able to perceive and mem-
orise prenatal acoustic signals, they did not determine which of the acoustic
characteristics of the speech signals were relevant for the familiarity effects.
From intrauterine recordings it is known that frequencies higher than 1 kHz are
strongly attenuated by maternal tissue (Armitage, Baldwin, & Vince, 1980; Quer-
leu & Renard, 1981) whereby intensity and spectral properties are comparable in
and ex utero (Querleu, Renard, Versyp, Paris-Delrue, & Crepin, 1988; Richards,
Frentzen, Gerhardt, McCann, & Abrams, 1992). Therefore, the hypothesis was
that newborns’ perception was based on prosodic information in the speech sig-
nal. Spence and DeCasper (1987) tested newborns’ preference on two versions
of their mother’s voice: either unfiltered or filtered by a low-pass filter at 1 kHz.
The results showed that newborns who were exposed to a story prenatally did
not prefer one of the versions of mother’s voice. In contrast, newborns from
the control group, who did not hear a story prenatally, preferred the unfiltered
version. Spence and DeCasper’s conclusion was that their results support the
“prosody” hypothesis: Prenatal experience with low—frequency characteristics
of maternal voices has an influence on early postnatal perception.

The fact that infants” first listening experience is based on the prosodic char-
acteristics of speech and that the infant is able to process this information shows
that suprasegmental aspects of speech play an important role in early language
development. Adults make unconscious use of this fact in modifying their
speech when they speak to infants. Investigations of the acoustic character-
istics of infant-directed speech (IDS) have revealed that it typically contains
an overall higher pitch, wider and smoother pitch excursions, longer pauses,
slower tempo, increased rhythmicity, and an increased amplitude in comparison
to adult—directed speech (ADS) (Stern, Spieker, Barnett, & MacKain, 1983; Fer-
nald & Simon, 1984; Grieser & Kuhl, 1988; Fernald, Taeschner, Dunn, Papousek,
de Boysson-Bardies, & Fukui, 1989). Parents consistently modify their speech in
this way when they speak to their infants. Moreover, not only the parents, but
also strangers modify their speech in this way (Rheingold & Adams, 1980; Ja-
cobson, Boersma, Fields, & Olson, 1983). It has further been shown that adults’
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modifications of speech directed to infants are similar in different languages
such as German (Fernald & Simon, 1984; Papousek, Papousek, & Haekel, 1987),
Mandarin Chinese (Grieser & Kuhl, 1988), Italian, French, Japanese, and British
and American English (Fernald et al., 1989). Although the precise form of
the modifications is not exactly the same in all languages (Bernstein Ratner &
Pye, 1984), it seems to be that speech directed to infants occurs in all language
cultures and that it is different from speech directed to adults.®

The similar pattern that has been found between different languages with
respect to IDS led researchers to ask the question whether infants are espe-
cially sensitive to IDS in comparison to ADS. Although it has been shown that
suprasegmental aspects of speech play an important role in early language de-
velopment, that does not necessarily imply that all of the aspects have equal im-
portance. The question therefore is: Do infants show particular attentional pref-
erences for IDS? And, from which age on are these preferences evident? Since
the first investigations by Fernald (1985), who showed that 4-month—old infants
showed attentional preferences for IDS as compared to ADS, several further
studies replicated this result for younger and older infants, as well as for infants
from language environments other than American English (Panneton Cooper
& Aslin, 1990; Pegg, Werker, & McLeod, 1992; Werker, Pegg, & McLeod, 1994).
Therefore, there seems to be considerable evidence that infants from the moment
of birth already have an attentional preference for IDS over ADS.

But what exactly is it that makes IDS attractive to infants as opposed to ADS?
Is it the slower tempo of the utterances, is it the higher amplitude, or is it the
overall higher pitch? The studies so far suggest that it is not only one attribute
which defines the attractor function. For instance, Fernald and Kuhl (1987)
found that 4-month-old infants showed a significant preference for highly mod-
ulated (“high-pitched”) frequency contour. However, a higher pitch alone is
not sufficient to account for infants’ attention (Panneton Cooper & Aslin, 1990),
and there are languages, in which an overall higher pitch does not occur in IDS
(Bernstein Ratner & Pye, 1984). Moreover, there are more than only the acoustic
aspects which play a role in the attraction of infants’ attention, like facial expres-
sions (Werker & McLeod, 1989; Werker et al., 1994), or the mother’s intention
with respect to attracting or maintaining the infant’s attention (Stern et al., 1983).
Consequently, it is difficult to define for each of the characteristics of IDS a par-
ticular “attraction factor”. What is important is that IDS actually is an attractive
signal to infants and that infants do attend more to IDS than to ADS.

2.2.6 The influence of attentional factors on infants’
speech perception

So far, infants” perception of speech signals has been regarded as a process that
was mainly determined by the stimuli to which the infant was exposed during

5There are cultures, like the Kaluli of New Guinea (Schieffelin, 1979) and the Kwara’ae of the
Malatia in the Solomon Islands (Watson-Gegeo & Gegeo, 1976), in which adults do not address
their infants directly. However, that does not automatically imply that infants from these cul-
tures do not perceive IDS at all. For instance, Kwara’ae mothers modify their speech and use a
high-pitched voice when they speak on behalf of the infant (Watson-Gegeo & Gegeo, 1976).
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the pre-shift and post-shift conditions. The influence that the stimuli could have
on infants’ attentional focus was neglected. There was really no reason to pay
much attention to this point since in most of the cases pre-shift and post-shift
stimuli consisted of only one stimulus each. The underlying assumption was
actually that infants’ attentional focus to the speech stimuli was a static factor.

However, recent research by Jusczyk, Bertoncini, Bijeljac-Babic, Kennedy,
and Mehler (1990) has suggested that almost from birth, attentional processes
play a role in infants’ speech perception and can be “manipulated” by the stim-
uli used in the pre-shift phase. The hypothesis of the experimental setup was
that the perceptual similarity of the stimuli in the pre-shift phase determines
the attentional focus of an infant. If the syllables during the pre-shift phase
were perceptually similar to each other then infants would direct their focus to
fine distinctions between the stimuli. They would therefore be able to detect the
addition of a new, perceptually similar syllable during the post-shift phase. In
contrast, if the syllables during the pre-shift phase were perceptually dissim-
ilar to each other then infants would direct their focus on coarse distinctions
between the stimuli. Consequently, they would have more difficulty detecting
the addition of a new syllable during the post-shift phase.

Jusczyk et al. tested 4-day-old and 2-month—old infants in their ability to de-
tect the addition of a new syllable to a stimulus set. The 4-day-olds behaved as
hypothesised: They were able to detect the addition of a perceptually similar syl-
lable like [ta] to the stimulus set which consisted of “fine-grained distinctions”
([pa], [ka], and [ma]). However, when the infants were exposed to a stimulus set
which contained dissimilar syllables ([ba], [bi], and [bu}), the addition of a new
syllable [ba], which was perceptually similar to one of the syllables ([ba]), was
not detected.” In contrast, 2-month-olds detected the new syllables regardless
of the stimulus set in the pre-shift phase. Why the older infants were not af-
fected by the manipulations of the stimulus sets is not clear. Jusczyk et al. listed
several possible explanations: It could be the case that they are in general bet-
ter able to cope with the processing demands of the task, or that their greater
listening experience in comparison to newborns has such an influence that the
manipulation of infants’ attentional focus simply does not work for older in-
fants. Further studies are required to reveal the reasons for this effect. In any
case, the results of this experiment demonstrated that attention plays a critical
role in infant speech perception.

2.2.7 Infants’ representations of speech sounds

An intriguing aspect of the development of a mental lexicon in infants is related
to infants” representations of speech sounds in long-term memory. In order to
be able to recognise both the sounds and meanings of utterances, an infant has to
learn the sound patterns and their appropriate meaning and has to store them in
an efficient way. The critical question related to this issue is: What is the nature
of infants’ perceptual representations of speech sounds? Although it has been

"This effect is not due to the lack of the perceptual capability to discriminate [ba] from [ba].
Newborns are indeed capable of discriminating the syllables from each other (Jusczyk et al.,
1990).
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shown that infants are sensitive to fine-grained differences in speech sounds,
there has been doubt whether the initial representations are detailed in the same
way (e.g., Bertoncini & Mehler, 1981; Bertoncini, 1993; Bertoncini, Floccia, Nazzi,
& Mehler, 1995).

To address this issue, Jusczyk and Derrah (1987) used a modified high-am-
plitude sucking (HAS) procedure to tested 2-month-old infants. The infants
perceived a set of stimuli that shared the same initial consonant (e.g., (bal, [bi],
[bo], and [ba]) during the pre-shift phase. During the post—shift phase, a new
syllable was added to the stimuli set which either shared ([bu]) or not shared
([du)) the initial consonant. The results showed that in both cases the infants
detected the addition of a new syllable to the stimuli set. In addition, the type of
syllable which was added to the stimuli set had no differential effect on infants’
responses. Therefore, the results showed no indication that infants’ representa-
tions are as detailed as the discrimination experiments suggest.

In a subsequent study, Bertoncini, Bijeljac-Babic, Jusczyk, Kennedy, and
Mehler (1988) replicated these findings and extended them in two important
ways. First, they not only tested 2-month-olds but also newborns, and second,
they tested the infants not only on a set of stimuli that shared the same initial
consonant, but also on a set of stimuli that shared the same final vowel (e.g., [bi],
[1i], [mi], and [si]). The results for the 2-month—old infants showed the same pat-
tern as in the Jusczyk and Derrah study. Moreover, even the newborns showed
the capacity to detect differences based on representations of speech sounds.
However, the representations were not sufficiently detailed to detect the addi-
tion of a new syllable that differed only in the initial consonant. Bertoncini et al.
concluded that the vocalic portion of a syllable might be more salient for new-
borns and therefore are favoured in their earliest representations.

The findings so far support the hypothesis that infants’ initial representations
of syllables are holistic and do not contain information about the single phonetic
segments. However, an alternative explanation for the results which is based on
the influence of attentional factors is also possible (see section 2.2.6). As Jusczyk
et al. (1990) have shown, attentional focus during the pre-shift phase has a cru-
cial influence on infants’ perceptual capabilities. Newborns were able to detect
the addition of a perceptually similar syllable when the stimulus set consisted
of “fine-grained distinctions”. However, when the stimulus set consisted of dis-
similar syllables, the addition of a new syllable that was perceptually similar to
one of the items in the stimulus set was not detected by newborns. The results
of the study by Bertoncini et al. (1988) correspond to this explanation.® Indepen-
dent of the interpretation of the individual results, the studies strongly indicate
that there is a development from global representations in newborns to more
specific representations in 2-month-old infants.

Recently, new insights in infants’ representations of speech sounds have been
gained by using a further modified HAS procedure in which a two-minute de-

8However, the results of a successive small experiment of Bertoncini et al. (1988) are in con-
trast to the alternative explanation and the results of Jusczyk et al. (1990). Although the stimulus
set in the pre—shift phase consisted of “fine—grade distinctions” ({bil], [dil, {li], and [mi]), new-
borns were not able to detect the addition of the syllable [si] during the post-shift phase. This
means that further research is necessary to determine the precise role of attentional processes in
infants’ speech perception.
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lay period was introduced between the pre-shift and post-shift phase (Jusczyk,
Jusczyk, Kennedy, Schomberg, & Koenig, 1995; Jusczyk, Kennedy, & Jusczyk,
1995). The delay period was filled by a series of distracting slides without any
accompanying auditory stimulus. Jusczyk, Kennedy, and Jusczyk (1995) inves-
tigated the representations of 2—- to 3-month-old infants by systematically vary-
ing the magnitude of change between the syllables in the pre-shift and post-
shift phase. The results demonstrated that infants retained acoustic properties
of syllables over the delay period which were detailed enough so that they de-
tected even minimal phonetic distinctions. In another study, Jusczyk, Jusczyk,
Kennedy, Schomberg, and Koenig (1995) examined 2- to 3-month-olds’ repre-
sentations of bisyllables. The aim of the study was to investigate whether the
size of infants’ representations of speech information was syllable-like. The set
of stimuli during the pre—shift phase consisted of bisyllabic words that either
shared (e.g., [ba’lo], [ba’zi], [ba’mlt], [ba’des]) or not shared (e.g., [ne’lo], [pe’zi],
[ko'mlt], and [¢u’des]) a common syllable. Interestingly, the results indicated
that only infants which were exposed to the stimulus set that shared a common
syllable were able to detect the addition of a new syllable ([ba'nal] or [na’bal]).
In an additional experiment, Jusczyk, Jusczyk, et al. tested for the possibility
that the detection of a new syllable was based on the fact that the syllables in
the stimuli set and the new syllables shared two common phonetic segments
(Ib] and [a]). In this case, the set of stimuli consisted of bisyllabic words that
shared two common phonetic segments but in different syllables ([la’bo], [za’bi],
[ma’blt], and [da’bes]). However, under these conditions there was no evidence
that infants detected the addition of a new syllable (either [ba'nal] or [na’bal}).
These results suggest that infants in the previous experiments were sensitive to
the presence of syllabic similarities.

Although research on infants’ representations of speech information is far
from complete, the picture that emerges so far reliably suggests that infants are
able to retain and encode rather detailed information in their representations.
In addition, the representations seem to be structured in syllable-like units. As
is the case with the role of attentional factors, further research has to show in
more detail how memory representations are structured and how these repre-
sentations develop and perhaps change during further development.

2.3 Developmental changes in infants’
speech perception

The pattern that emerges from the previous sections shows that infants’ innate
perceptual capabilities are of universal nature, i.e. that an infant has the initial
potential to learn any language. However, in order to learn a language at all,
these initial capabilities have to become specialised for the characteristics of the
language which is spoken in the linguistic environment of the infant. Research
with adults has shown that they often have difficulty in discriminating non-
native phonetic contrasts (Miyawaki et al., 1975; Trehub, 1976; MacKain, Best,
& Strange, 1981; Werker et al., 1981). In addition, subsequent research showed
that non-native phonetic contrasts differ in their perceptual difficulty (MacKain
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et al., 1981; Werker et al., 1981; Logan, Lively, & Pisoni, 1991; Polka, 1991, 1992)
and that adults” discrimination capabilities can be improved by training (Werker
et al., 1981; Pisoni, Aslin, Perey, & Hennessy, 1982; Strange & Dittmann, 1984),
although performance did not reach the level of native speakers (Logan, Lively,
& Pisoni, 1991; Polka, 1991). Thus, the adult data is consistent with the view
that speech perception in adults is optimised for the processing of the native
language.

Consequently, infants’ initial speech perception capabilities have to get
“tuned” to the native language phonetic system during development. Jusczyk
has proposed that the “development of speech perception capacities should
be viewed in relation to the goal of building an input lexicon for recognising
words” (Jusczyk, 1992, p. 18). With respect to this goal the infant has to develop
optimal strategies which enables him or her to efficiently acquire such a men-
tal lexicon. In the following, I review the literature on cross-language speech
perception experiments with infants. The results show that the developmental
process has already started by the second half of the first year of life — at a
moment which coincides with the first engagement of infants in reduplicative
babblings (Vihman, 1993).

2.3.1 The development of a native language phonetic system
Developmental changes in the perception of non—native consonantal contrasts

The first study that investigated the time course of the developmental process
in infants was reported by Werker and Tees (1984). They tested Canadian in-
fants with an operant headturn procedure on three different contrasts: the En-
glish place of articulation contrast [ba]-[da], the Hindi retroflex/dental stop con-
trast {ta]-[ta], and the Nthlakampx glottalised velar/uvular contrast [k’i]-[q’i].
The discrimination results showed a decline in infants’ sensitivity to non-native
phonetic contrasts during the first year of life. 6~ to 8-month—olds could dis-
criminate both non-English contrasts as well as the English contrast. However,
the picture changed for older infants. By 8 to 10 months, only some of the in-
fants showed a sensitivity for the non-English contrasts, and by 10 to 12 months,
the infants only showed a sensitivity for the English speech contrast. These re-
sults were replicated in a successive longitudinal study. In contrast to the per-
formance of American infants, Hindi and Nthlakampx infants at 11 months of
age were shown to be able to discriminate the contrast from their native lan-
guage. Werker and Tees’ conclusion was that “specific linguistic experience is
necessary to maintain phonetic discrimination ability.” (Werker & Tees, 1984,
p- 59). This conclusion was confirmed by further studies which replicated the
finding of a developmental change between 6 and 12 months of age (Werker &
Lalonde, 1988; Best, 1994).

However, findings by Best, McRoberts, and Sithole (1988) suggested that spe-
cific linguistic experience is not the only factor which determines the develop-
mental process. In their study, they tested English-learning infants at four dif-
ferent ages (6-8, 8-10, 10-12, and 12-14 months), as well as Zulu- and English-
speaking adults on their ability to discriminate the apical/lateral Zulu click con-
trast [1a] vs. [5a]. The Zulu clicks are phones that do not occur in English. It
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is very unlikely that the English-learning infants would ever have heard these
sounds before. In contrast to the previous studies, the results showed no change
in discrimination between younger and older infants, or between older infants
and American adults. Adults as well as infants of all age groups were able to
discriminate the Zulu click contrast as well as they did the English [ba]-[da]
contrast. Best et al. hypothesised a “perceptual assimilation model” to account
for the findings (see also Best, 1994). According to the model, speech sounds
are assimilated to native language phonological categories whenever possible.
However, non—-native sounds that may be too distinct in their properties of any
native language category, are perceived as nonspeech sounds and are therefore
discriminated on the basis of their auditory differences. Chapter 3 contains a
more detailed description of this model.

Developmental changes in the perception of non—native vowel contrasts

The findings with respect to the developmental changes in non—native conso-
nantal contrasts raised the question of whether a similar pattern of perceptual
development could be observed for vowels. The acoustic differences between
vowels and consonants and their linguistic difference in terms of prosodic fea-
tures make it unlikely that they would show the same developmental course.

A first cross-language study that investigated the role of language expe-
rience on infants’ perceptual capabilities of vowels was reported by Kuhl,
Williams, Lacerda, Stevens, and Lindblom (1992). They tested 6~month-old
American and Swedish infants on the American English vowel /i/ and the
Swedish vowel /y/. From a pre—test with American adult subjects, Kuhl et al.
selected a so—called prototype, i.e. an exemplar that got consistently high rat-
ings from the adults as being a good exemplar of an American English /i/. Af-
terwards, variants of this vowel were created by changing the first and second
formant values (in equal mel steps). The variants formed four equally-spaced
rings around the prototype in F1 and F2 space. American adults rated the vari-
ants as worse exemplars of the vowel /i/: the larger the distance to the proto-
type the lower the ratings. In analogy to the American English vowel, proto-
type and variants of the Swedish vowel /y/ were determined, using Swedish
adults as subjects. In the following discrimination task, the prototype served
as a background stimulus during the pre-shift phase, while the variants (of the
same vowel category) were used as test stimuli in the post-shift phase. The in-
fants were tested on their capability to discriminate both stimuli. The results
showed that American and Swedish infants performed differently depending
on the background stimulus. The performance of American infants in discrimi-
nating the American English prototype /i/ from one of its variants was poorer
compared to their performance in discriminating the Swedish prototype /y/
from one of its variants. The performance of Swedish infants was reversed. A
tentative conclusion from these results is that linguistic experience may have
an earlier influence on vowel perception than on consonant perception (see sec-
tion 2.3.1 for Kuhl et al.’s (1992) conclusions).

This conclusion gained further support from studies by Polka and collab-
orators. They recently began to investigate in more detail the developmental
change in cross-language vowel perception and in connection with this the gen-
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eralisability of the developmental pattern that has emerged. In a first study,
Polka (1995) investigated the discrimination capabilities of American adults on
two German (non-English) vowel contrasts /y/-/u/ and /v/-/v/. The vow-
els were produced in a /d/+vowel+/t/ context and were spoken by a male
native speaker of German. A discrimination experiment with American adults
revealed that their discrimination rates for the /dyt/-/dut/ contrast were sim-
ilar to those of German adults. In contrast, their discrimination of the /dvt/-
/dut/ contrast was significantly worse than the German adults, although still
better than chance. A subsequent identification experiment showed that Ameri-
can adults mapped all four vowels onto the same two English vowel categories,
either /u/ or /u/. Moreover, the quality of the match was consistently higher
for the back vowels (/u/ and /u/) than for the front vowels (/y/ and /v/).
Therefore, the back vowels corresponded to more prototypical stimuli in each
contrast, whereas the front vowels were equivalent to the non—prototypical vari-
ants.

These findings served as reference for a discrimination experiment with 6—
to 8~month—old and 10- to 12-month—old infants (Polka & Werker, 1994). The
infants were tested with an operant headturn procedure on the same German
vowel contrasts. The results showed no evidence that the older infants were
able to discriminate either vowel contrast. And although the discrimination
rates of the younger infants were better than these of the older infants, their per-
formance was considerably poorer compared to results of discrimination exper-
iments with non-native consonant contrasts (e.g., Werker & Tees, 1984; Werker
& Lalonde, 1988). Moreover, a follow—up experiment with 4- and 6~-month-old
infants showed that 4-month—olds, but not 6-month-olds were able to discrimi-
nate both German vowel contrasts. Therefore, the results indicated that the shift
to a language-specific discrimination occurs earlier for vowels than for conso-
nants.

However, the influence of the ambient language on infants” vowel percep-
tion seems to be not as restrictive as in the case of infants’ consonant perception.
A further study by Polka and Bohn (1996) demonstrated that even 10- to 12—
month—old infants were still able to discriminate non—native vowel contrasts.
They tested American and German infants on the German vowel contrast /dut/
vs. /dyt/ and on the English vowel contrast /det/ vs. /deet/. To their surprise,
the results showed no evidence of age or language differences in infants’ dis-
crimination behaviour. Thus, Polka and Bohn were not able to replicate the
results of the previous studies, neither with the same German contrast as in the
experiment of Polka and Werker (1994), nor with a new English contrast. With
respect to these results it is interesting how American and German adults per-
ceived both contrasts. While both adult groups showed equally high discrimi-
nation rates for both vowel contrasts, a further identification and rating exper-
iment revealed that American and German adults perceived the vowels quite
differently. American adults perceived the non-native German vowels /u/ and
/y/ as a good and a poor exemplar of the English vowel /u/, respectively. Ger-
man adults perceived the English /e/ as a poor exemplar of the German /¢/,
whereas the English /a/ was either matched to the German /¢/, the German
/a/, or to no German vowel category.
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The adult data might suggest an explanation for the failure of the decline in
infants’ vowel perception. German infants discriminated the native-language
vowel contrast /dut/ vs. /dyt/ according to already developed, language-
specific vowel categories. Both vowels were mapped onto the corresponding
vowel category, therefore, no evidence of age differences were detectable. The
same is true for American infants with respect to the English vowel contrast
/det/ vs. /deet/. Under the assumption that infants are able to discriminate
strong differences of within vowel category contrasts, one would be able to
explain the discrimination of the non-native vowel contrasts. German infants
mapped the English vowel /¢/ onto the German vowel category /e/, whereas
the English /2/ was perceived as a very poor example of a non—determinable
category. The acoustic or gestural difference between both vowels was large
enough that the infants perceived the difference. A similar explanation holds
for the American infants. The German vowel /u/ was perceived as a vowel
that was quite similar to the English vowel /u/, whereas the German vowel
/y/ was recognised as a much poorer English vowel /u/. This would explain
why infants from both countries had no difficulty in discriminating either vowel
contrast.

However, the question still remains why there is a discrepancy in infants’ dis-
crimination in the studies of Polka and Werker (1994) and Polka and Bohn (1996)
for the German vowel contrast. A possible reason might be that the stimuli in
the two studies were not the same (Polka & Bohn, 1996). In the former study
the vowel contrast was produced by a native German speaker from Southern
Germany, whereas a North German produced the vowel contrast in the latter
study. A comparison of American adults’ identification rates revealed that the
vowels produced by the South German were perceived as much more similar to
each other than the vowels produced by the North German. According to Polka
and Bohn, the difference between both vowel contrasts was responsible for the
discrepancy in discrimination of the American infants in both studies.

In summary, the studies on infants’ perception of non-native consonant and
vowel contrasts showed that language-specific influences are evident during the
second half of the first year of life. Moreover, the native language environment
appears to have a different effect on the development of consonant and vowel
perception. The perceptual reorganisation maintains the discrimination of na-
tive consonant contrasts, but reduces infants’ ability to discriminate non—-native
contrasts. The decline in discrimination seems to be less strong for non-native
vowel contrasts. Language effects were only observed when both vowels in the
non-native contrast were quite similar to each other and corresponded to a sin-
gle native vowel category. In addition to the different strength of decline, the re-
organisation of consonant and vowel categories undergo a different time course.
The studies revealed an earlier reorganisation for the vowel categories than for
the consonant categories. The coincidence of language-specific effects in vowel
perception and infants’ sensitivity to prosodic characteristics of the ambient lan-
guage might explain why the reorganisation starts at an earlier point in time
for the vowel categories. Information about the prosodic characteristics of the
speech signal is mainly carried by vowels, so that they attract infants’ attention
very early in development — earlier than for most of the consonants.
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Figure 2.1: (a) Variants of the prototype (P) /i/ (open circles) and the nonprototype (NP)
/il (closed circles) in mel—scaled vowel space. (b) Average generalisation scores for
stimuli surrounding the prototype and the nonprototype by adults. (c) Average generali-
sation scores for stimuli surrounding the prototype and the nonprototype by infants (from
Kuhl, 1991).

The perceptual magnet effect: Possible influence of prototypes on the perception
of vowel contrasts

In 1991, Patricia Kuhl published a paper in which she reported that the inter-
nal structure of phonetic categories influences the speech perception process in
human adults and infants, but not in monkeys. According to the results, the
prototype of a category functions as a perceptual magnet in the sense that “lis-
teners perceive the prototype stimulus as more similar to other members of the
category than is the nonprototype of the category” (Kuhl, 1991, p. 99). The per-
ceptual magnet effect has been the topic of several follow-up studies (e.g., Kuhl
et al.,, 1992; Lively, 1993; Polka & Werker, 1994; Aaltonen, Eerola, Hellstrom,
Uusipaikka, & Lang, 1997). In the following, I will describe this effect and the
conclusions that follow from the studies in more detail.

The underlying assumption of the study by Kuhl was that speech categories
are organised around phonetic prototypes that form best exemplars of the cat-
egory and may be used as referents in categorising incoming speech signals. A
rating experiment with adults had shown that adults perceived a set of synthe-
sised /i/ vowels as varying in category goodness (Grieser & Kuhl, 1989). They
consistently rated some members of the vowel category as better (more proto-
typical) exemplars than others. According to the ratings it was possible to de-
fine a prototypical region within the category. Kuhl (1991) selected one vowel
that got the highest average goodness ratings from adult listeners and called it
the prototype (P) /i/, and another vowel that got consistently low goodness rat-
ings — but still perceived as an /i/ — and called it the nonprototype (NP) /i/.
Variants of both vowels were created by altering the values of first and second
formant frequencies. The 32 variants formed four rings around each vowel in
a mel-scaled vowel space with the distance between neighbouring rings held
constant (see figure 2.1 (a)).

These stimuli were used in a same-different task in which a subject had to
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react when he or she detected a difference between a referent and a following
comparison speech sound. The referent speech sound was either the prototype or
the nonprototype /i/ vowel, the comparison speech sound was one of the cor-
responding variants. The results for 6-~month-old infants and adults supported
the hypothesis that there is an internal structure to phonetic categories: the pro-
totype stimulus was perceived as more similar to its variants than was the non-
prototype stimulus, i.e. subjects detected fewer differences and produced there-
fore more miss (or generalisation) responses if the prototype /i/ vowel acted as
the referent than if the referent was the nonprototype /i/ vowel. The percent-
age of miss responses during all test trials, the generalisation score, is illustrated
in figure 2.1 (b) for the adults and in figure 2.1 (c) for the infants, respectively.
The finding that only humans showed this effect but not monkeys suggested
further that this effect is rather based on the internal structure of a category than
on general auditory mechanisms. Therefore, the prototype stimulus acts like
a “magnet”, attracting surrounding members of the category to it. The conse-
quence is that the perceptual space around the prototype shrinks compared to
the space around the non—prototype which strongly impairs discrimination (see
also Iverson & Kuhl, 1995).

The results of this study raised the question about the ontogenetical basis of
this effect: Are infants born with mechanisms that define the prototypes for cer-
tain vowel categories (or even for all possible vowels)? Or, is this effect due to
infants’ experience with a particular language? Evidence for the hypothesis that
the perceptual magnet effect is language-specific was found in studies by Kuhl
et al. (1992) and Polka and Werker (1994). The discrimination performance of
6- to 8-month—old infants was significantly poorer when the background stim-
ulus was a more typical native language vowel than a non-typical variant of it.
Moreover, 4-month-old infants did not show such an effect and were in contrast
to the older age group still able to distinguish between the non-native speech
sounds (Polka & Werker, 1994). In connection with the results from the previous
study, this suggests that the internal structure of vowel categories is responsible
for this effect.

However, there are still some points that cast a shadow on these results and
have to be investigated in more detail. First, it seems that language experience
continues to influence infants’ speech perception, so that by 10 to 12 months of
age infants are no longer able to discriminate non—-native vowel contrasts (Polka
& Werker, 1994). This decline is similar to findings with non-native consonant
contrasts (e.g., Werker & Tees, 1984; Werker & Lalonde, 1988). Polka and Werker
speculate “that when infants are between 6-8 and 10-12 months of age, their
vowel categories expand to encompass less prototypic instances. This relaxed
focus on within—category structure would facilitate the sorting of vowel differ-
ences in terms of phonemic classes, and thus would contribute to more efficiency
in making word-world mappings.” (Polka & Werker, 1994, p. 433). Further
studies have to clarify this issue in more detail, e.g. by exploring how vowel
perception develops in infants older than 12 months of age.

Second, as described in the previous section, a similar study by Polka and
Bohn (1996) demonstrated that 10~ to 12-month—old English-learning infants
were still able to discriminate the German vowel contrast /dut/~/dyt/. More-
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over, Polka and Bohn were not able to replicate the perceptual magnet effect for
6— to 8—month-olds. In contrast to the predictions, American as well as German
infants showed poorer discrimination when /u/ served as reference vowel com-
pared to /y/ as reference vowel. Because of the fact that both vowels occur in
German, this effect was not expected for the German infants. Similarly, Amer-
ican and German infants showed poorer discrimination when /a/ served as
reference vowel compared to /¢/ as reference vowel. Again, both vowels occur
in English and therefore this effect was not expected for the American infants.
Moreover, the effect was in the opposite direction than one would predict. Ac-
cording to previous tests with adults, the English /¢/ is more like the German
/¢/ than the English /ae/. Therefore, one would expect that the /¢/ would act
like a “perceptual magnet” for the German infants. These results undermine
the conclusion by Kuhl et al. (1992) and Polka and Werker (1994) that the origin
of the directional asymmetries in infants” vowel perception is due to linguistic
experience. Further cross-language studies have to clarify the meaning of this
effect. For instance, do infants younger than six months of age show similar
asymmetries in discrimination? And further, can this effect be generalised to
all classes of vowels? If so, when do infants show an influence of the ambient
language in their discrimination behaviour?

And third, recent evidence from adult speech perception studies questions
some of the findings by Kuhl (1991). An important assumption of the experi-
mental paradigm was that all stimuli were perceived as exemplars of the vowel
category /i/. However, investigations of Iverson and Kuhl (1995) and Suss-
man and Lauckner-Morano (1995) showed that this might not be the case for
each stimulus, but that some have been perceived as variants of other vowel cat-
egories. Moreover, subjects’ ratings of quality goodness might not be constant
within the subject group as assumed (Lively, 1993; Aaltonen etal., 1997; Sussman
& Lauckner-Morano, 1995). For instance, in the study by Aaltonen et al. (1997),
Finnish-speaking adults categorised the Finnish /y/-/i/ continuum (varying
in F2 values) quite differently: not only was the location of the /y/~/i/ bound-
ary along the F2 continuum different between subjects, but so was the steepness
of the category border. A subsequent goodness rating experiment showed that
the ratings were related to the performance in the categorisation task and that
the prototype of the /i/ category was not in all cases the centre of the category
but was sometimes close to the category boundary.

The partly contradictory results of the studies by Polka and Werker (1994)
and Polka and Bohn (1996) and the recent studies that question some of the fun-
damental assumptions of the study by Kuhl (1991) do not allow one to specify
the origins of the perceptual magnet effect. Further research has to show under
what kind of conditions this effect occurs and how it affects the perception of
speech in everyday communication.

2.3.2 The development of a native language prosodic system

Up to this point, I have mainly concentrated on the discrimination and categori-
sation capabilities of infants during the first year of life. However, as I already
mentioned in the introduction to this chapter, an infant must also solve the prob-
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lem of locating the relevant information and recovering the appropriate units,
like words, phrases, and clauses, from the speech signal. In other words, an
infant must be able to segment the speech stream into appropriate units. In con-
nection with this task, the infant is confronted with the problem that words are
not isolated from each other in fluent speech. That means that words are not al-
ways separated by pauses in the speech signal. Moreover, to make the situation
even more complicated, pauses do not always coincide with word boundaries
but can also occur within a word. Therefore, an infant has to learn what char-
acterises clause, phrase, and eventually word boundaries in his or her native
language.

In principle, there exist segmental as well as suprasegmental information
that infants could use to arrive to a correct segmentation of the speech sig-
nal. On a segmental level, phonotactics and allophonic constraints of the na-
tive language provide information about syllable and word boundaries. Sev-
eral studies have demonstrated that at the end of the first year of life infants
are sensitive to these kinds of language-specific features (Friederici & Wessels,
1993; Jusczyk, Friederici, Wessels, Svenkerud, & Jusczyk, 1993; Jusczyk, Luce, &
Charles-Luce, 1994). Over and above that, pure statistical information contained
in sequences of sounds might be a further important source of information about
possible word boundaries in a language. Recently, Saffran, Aslin, and Newport
(1996) have shown that 8—-month—old infants are able to make use of this kind of
experience—dependent information.

On a suprasegmental level, potential markers of units in the speech stream
are cues such as intonation, pausing, and stress patterns. In general, these
markers do not indicate possible syllable or word boundaries, but correspond
to syntactic units of a language, like clauses and phrases. In this context, it is
interesting to return to the characteristics of infant-directed speech (IDS), as
described in section 2.2.5. Speech directed to infants typically contains longer
pauses, slower tempo, increased rhythmicity, and a more distinct intonational
contour than adult-directed speech (ADS) (e.g., Fernald, 1984) — exactly the
features that in general correspond to acoustic markers of syntactic units. This
correspondence has led several researchers to suggest the “Prosodic Bootstrap-
ping Hypothesis” which states that attention to these prosodic markers may
enable the pre-linguistic infant to determine important grammatical units in
the speech stream (Gleitman & Wanner, 1982; Hirsh-Pasek, Kemler Nelson,
Jusczyk, Wright Cassidy, Druss, & Kennedy, 1987; Jusczyk, Hirsh-Pasek, Kem-
ler Nelson, Kennedy, Woodward, & Piwoz, 1992; Kemler Nelson, Hirsh-Pasek,
Jusczyk, & Wright Cassidy, 1989). On a more basic level, it should even help
to segregate utterances from different languages and to avoid inappropriate
generalisations based on regularities within more than only the native lan-
guage (Mehler, Jusczyk, Lambertz, & Halsted, 1988; Mehler, Dupoux, Nazzi,
& Dehaene-Lambertz, 1996). Recent studies have investigated this 1ssue in more
detail and provide a picture of the development of infants” sensitivity to such
prosodic markers.

The first study exploring the issue of when infants are able to distinguish
utterances in their native language from those in a foreign language was per-
formed by Mehler et al. (1988). They tested French newborns and 2-month-old
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American infants on their ability to detect a change in language when presented
with several different utterances from two different languages. Interestingly,
the French newborns already showed the capability to discriminate French from
Russian utterances. In contrast, there was no evidence that they distinguished
English from Italian utterances. In a following experiment, the utterances were
low—passed filtered in order to remove most of the segmental information, but
to keep the prosodic information in the signal. The French newborns tested on
these filtered stimuli showed comparable results to the newborns who heard the
original version. Mehler et al.’s conclusion was that infants” capability to distin-
guish between utterances from the native and a foreign language is based on
prosodic information. The data of the 2-month-old American infants further
support this notion. In contrast to the French newborns, the American infants
were able to discriminate English from Italian, but not French from Russian ut-
terances. Mehler et al.’s conclusion was that from a very early point in devel-
opment, infants are sensitive to the prosodic characteristics of the native lan-
guage that enables them to segregate between utterances from the native and
different languages. Further studies support this hypothesis (e.g., Moon, Pan-
neton Cooper, & Fifer, 1993).

Mehler et al.’s findings indicated that prosody might play a critical role dur-
ing language development. With respect to the “Prosodic Bootstrapping Hy-
pothesis”, the question was at what time during development do infants actu-
ally start to use prosodic cues of the native language to extract syntactic struc-
tures from the speech signal. In the first of a series of studies investigating this is-
sue, Hirsh-Pasek, Kemler Nelson, Jusczyk, Wright Cassidy, Druss, and Kennedy
(1987) tested with a headturn preference procedure the sensitivity of 6~ and 9-
month-old American infants to acoustic correlates of clausal units in English.
Based on recordings from a mother speaking to her 19-month—old daughter,
they generated two different versions of stimulus material. In the “Natural”
version, they inserted one second pauses at each clause boundary. In contrast,
in the “Unnatural” version the pauses were inserted in the middle of a clause.
The results showed that even the 6-month—olds showed a preference for the
“Natural” versions as compared to the “Unnatural” versions. Hirsh-Pasek et al.
interpreted these results as evidence that infants at six months of age are already
sensitive to prosodic markers of clausal structure.

A logical extension of these findings was to investigate whether infants at six
months of age are also sensitive to the organisation of units within clauses, like
subject or predicate phrases. Jusczyk, Hirsh-Pasek et al. (1992) tested 6— and
9-month-old infants on this issue in English. They used the recordings of the
previous experiment but inserted in this case the pauses either between subject
and predicate phrases (“Natural” versions) or in the middle of phrases (“Unnat-
ural” versions). 6-month—olds showed no preference for either version. How-
ever, 9-month-olds reliably preferred listening to the “Natural” versions of the
stimuli than to the “Unnatural” versions. In combination with the results of the
experiment by Hirsh-Pasek et al. (1987), Jusczyk, Hirsh-Pasek et al. concluded
that somewhere between six and nine months of age, infants have learned par-
ticular prosodic characteristics of the native language that enables them to detect
prosodic markers of phrasal units.
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The studies discussed so far have demonstrated that infants become sensitive
to the prosodic markers of clausal or phrasal units of the native language during
the first year of life. That they also make use of prosodic information and that
it really affects infants” speech perception was shown by Mandel, Jusczyk, and
Kemler Nelson (1994). The central question of their study was: “Do infants bet-
ter remember speech information that is packaged within a single, well-formed
prosodic unit than they remember the same information (1) spoken as a list or
(2) spoken as two different sentence fragments?” (Mandel et al., 1994, p. 157).
They tested 2-month-old infants using a high-amplitude sucking procedure. In
the pre-shift phase the infants of all experimental groups perceived the same se-
quences of words. However, in group 1, the words were produced as a complete
sentence, in group 2 they consisted of a collection of isolated spoken words, and
in group 3 the sequence included a clause boundary. In the post-shift phase,
the infants perceived either the same stimulus as in the pre-shift phase (con-
trol group), a stimulus that differed by one phone (one-phone—change group),
or a stimulus that differed by two phones (two—phone—change group). The re-
sults indicated that 2-month—old infants were reliably better able to remember
phonetic information when the stimuli formed a complete sentence. Therefore,
Mandel et al. concluded that infants benefit from prosodic information and use
it as an aid in organising and encoding of speech signals.

In summary, the studies indicate that at the end of the first year of life, in-
fants have acquired important information about the prosodic characteristics of
the native language. Moreover, the results are consistent with the “Prosodic
Bootstrapping Hypothesis” which means that infants are sensitive to prosodic
markers of syntactic units in the speech signal. Therefore, prosodic information
might play an important role in infants’ processing of fluent speech. However,
there are still a lot of gaps in the picture of the precise role of prosody in language
acquisition. Firstly, little is known about the exact prosodic features that attract
infants attention. It seems to be that pitch and syllable duration play a dominant
role in this respect (Jusczyk, Hirsh-Pasek et al., 1992; Gerken, Jusczyk, & Man-
del, 1994). A further aspect is the fact that prosodic boundaries and syntactic
units do not always coincide with each other. That means that an infant who
would solely rely on prosodic cues to syntactic units would be misled (Gerken,
Jusczyk, & Mandel, 1994). Therefore, prosody cannot be the only factor in ini-
tial learning of the grammatical structure of a language. Gerken et al. (1994)
suggested that infants overcome this problem by cross—sentence comparison of
prosodically cued linguistic structures (see also Jusczyk & Kemler Nelson, 1996).
And finally, the studies so far have only investigated the performance of Amer-
ican infants. It is of great interest whether infants from different language en-
vironments exhibit similar prosodic sensitivities and what kind of role infant-
directed speech plays in language development. Despite these remaining ques-
tions, the results so far clearly indicate that prosody has a strong influence on
infants” processing of fluent speech.
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2.4 Summary

This concludes my review of psycholinguistic research over the past 25 years
on infant speech perception. The review shows that infants have particular ca-
pacities which are available at birth and which enable them to process speech
in a way that facilitates the acquisition of a language. This includes the capabil-
ity to discriminate phonetic contrasts, as well as to compensate for differences in
speaking rate, variations in pitch contours, or speaker’s voice. In addition, while
the initial capacities are not tuned to a particular language, there is considerable
evidence that the ambient language influences infants’ speech perception dur-
ing the second half of the first year of life. This finding has led to several models
attempting to explain the developmental changes in infants’ speech perception
(e.g., Jusczyk, 1993; Kuhl, 1993b; Best, 1994). In the following chapter, I will
describe these models in detail. But first, I will elaborate on my own view by
presenting a new theoretical model of the developmental process.
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A MODEL OF THE ACQUISITION
OF PHONOLOGICAL CATEGORIES
(MAPCAT)

CHAPTER 3

3.1 Introduction

The review of speech perception experiments with infants in the previous chap-
ter shows that infants’ perception of speech sounds is influenced by the ambi-
ent language (their future native language) during the first year of life. In this
chapter, I present a theoretical model that is intended as an account of the pro-
cesses responsible for the developmental change in infants” speech perception
capacities. Though this model explains why infants’ discrimination capabili-
ties decrease with respect to foreign language speech contrasts, it only partly
addresses the larger issue of word recognition and lexical access (for a model
which addresses these issues in more detail, see Jusczyk, 1997). For reasons of
convenience, the theoretical model presented here is called MAPCAT —a Model
of the Acquisition of Phonological CATegories.

Previous discussions of speech perception capacities in infants have empha-
sised the issue that the developmental process has to be put into the context
of efficiently recognising words in fluent speech (Jusczyk, 1985b, 1986¢; Eimas,
Miller, & Jusczyk, 1987). Or, in other words, “word recognition is held to be an
endpoint of the developmental process” (Jusczyk, 1992, p. 39). Consequently,
the acquisition of a system of phonological categories should be regarded as a
by-product of the development of a word recognition system. Phonological cat-
egories develop because they make the process of word recognition more eco-
nomical and enable the listener to identify words in the speech stream rapidly.
MAPCAT was built with this assumption in mind. The model assumes that the
process of the development of phonological categories starts from birth and af-
fects the representations in secondary memory. That means that although the
phonological categories are a by—product of the development of a mental lexi-
con, MAPCAT assumes particular facilities for their development.

Another issue is this: is it correct to assume that phonological categories
develop? One might argue that the system of possible phonological categories
occurring in human languages is given innately and that the developmental
task consists only of a selection of a reduced, language-specific set through
language experience. However, the problem with this approach is that the
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phonology of a language — and therefore also its phonological categories —
involves language-specific rules and is part of the linguistic grammar. That
means that each phonological category has a particular linguistic function in
a language and this function cannot be specified in advance (see also Jusczyk
& Bertoncini, 1988; Best, 1993). Consequently, the development of phonological
categories is not a selection but rather an acquisition process. That is, based on
infants’ initial sensitivity to a wide range of language—-universal phonetic con-
trasts, he or she has to develop a system that reflects the linguistic functions of
the native language sound system.

3.2 The components of MAPCAT

The schematic diagram in figure 3.1 provides an overview of the main compo-
nents of MAPCAT and the flow of information through the model. The percep-
tual process starts when the speech signal reaches the auditory system and is
analysed with respect to the acoustic characteristics by an acoustic analysis mod-
ule. Essential to this stage is the assumption that the same kind of analysis is
performed for any kind of acoustic signal — no matter whether this includes
speech or other acoustic events. It is the acoustic analysis module that defines
the initial framework of human speech perception capacities.

Further processing is split into two paths. While in the “acoustic” path, the
output of the acoustic analysis module directly serves as input to the selection and
integration module, the “linguistic” path contains a phonetic map which describes
an additional perceptual filter between both modules. It is the phonetic map
that forms the adaptive module in this context. It represents a framework for
the acquisition of the phonological system of the native language in the form
of phonological categories. The incoming speech signal is filtered according to
these categories and, therefore, forms an optimal encoding of the signal with
respect to further processing routines.

Both paths, the “acoustic” path and “linguistic” path, converge at the selection
and integration module which has to evaluate and combine the information from
both paths for further processing. The path that is faster, more reliable, and
more efficient will get a higher priority compared to the other path. However,
the selection process is not an all-or-none process and additional factors, like
attentional processes might have an influence on it. Besides the selection, i.e. the
setting of the priorities of the two paths, another important task of the module
is the temporal integration of the incoming signals. The module has to form
representations that are stored in short-term memory and constitute the probes
to the mental lexicon. Therefore, the incoming information has to be integrated
into larger units so that words like “tea” and “eat” can be distinguished. In
this connection, an important feature of the model is the assumption that the
representations in the mental lexicon have an influence on the development of
the phonological categories. It is the discriminative “feed-back” information
from the mental lexicon to the phonetic map that is responsible for the final
phonological representations within the phonetic map.

After this short description of the flow of information within the model, I
will describe in the following sections, the modules and their characteristics in
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Figure 3.1: An overview of the main components of MAPCAT. The current input —
plotted in its waveform — consists of the utterance “mama”. The acoustic analysis mod-
ule analyses the signal according to its acoustic and suprasegmental properties. For
the acoustic analysis, at every time slice a new vector representing the current spec-
tral characteristics of the signal is produced. The black region within the phonetic map
shows that the current segment represents a particular phonological category of the
native language. The selection and integration module combines the speech informa-
tion passing through the “acoustic” path and “linguistic” path and stores it in short-term
memory. Additionally, the information at this processing level forms the pattern for the
word matching process. In order to achieve the development of phonological categories,
feed-back information from high—leve!l processing routines flows back to the phonetic
map and refines its representations.
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more detail. The predictions of the model will be discussed thereafter.

3.2.1 The acoustic analysis module

The perception process starts when the speech signal enters the peripheral audi-
tory system. The auditory system processes the signal according to its acoustic
characteristics. In order to do this, the signal has to be divided into temporal
units, whereby the individual length of each unit may be different and depen-
dent on the current information in the auditory signal. That means that the
module contains not only one, but several different intrinsic time constants with
respect to which the incoming information is processed. The outcome of the
acoustic analysis consists of a vector-like representation that on the one side
includes information about the energy of particular frequency ranges within a
unit, and, on the other side, information about properties such as speaking rate,
pitch accent, and noise.

An important assumption of the model is that the acoustic analysis module
represents a mandatory processing stage that is passed by all types of acoustic
signals, speech as well as nonspeech. As a consequence, that means that the
same acoustic analysis is performed for speech as well as nonspeech signals and
that a difference between both types of signals is made only at higher processing
levels. Moreover, that also means that the acoustic analysis module defines the
limits of the auditory perceptual system as well as the dimensions along which
acoustic signals can be classified. Information which the acoustic signal contains
but that is not processed by the acoustic analysis module will not be available to
higher-level processing routines.

3.2.2 The development of the phonetic map

While infants” initial perceptual capabilities must be broad enough to learn any
language, this picture changes already during the first year of life. The capac-
ity to discriminate non—native speech contrasts declines (Werker & Tees, 1984;
Werker & Lalonde, 1988; Best, 1994) and the development of language-specific
speech categories has effects on the perception of native as well as non-native
speech sounds (Kuhl et al., 1992; Polka & Werker, 1994). Thus, the linguistic
environment affects infants’ speech perception at an early point during devel-
opment.

As Jusczyk (1993) and Best (1994) have already pointed out, it is the search
for a more efficient encoding of incoming signals that guides the process of de-
velopmental change. The acoustic analysis module is not speech-specific and it
processes all types of acoustic signals, speech as well as nonspeech. Therefore,
for the purpose of speech perception, it does not efficiently encode the incom-
ing signal, but provides higher levels of processing with far more information
than is actually necessary for the processing of speech signals from the native
language. Actually, an efficient encoding of speech input would mean that it in-
cludes only the information that is necessary to distinguish linguistic units, like
clauses, phrases, and words, of the particular language (for similar argumenta-
tion, see Jusczyk, 1993). Consequently, there has to be a subsequent module (or

42



phonetic space

Figure 3.2: Schematic diagram of the utterances “lala” and “mama” within a two-
dimensional acoustic space. Although the spectral characteristics of each of the [al's
in the utterances differ from each other, the model assumes that the traces have a com-
mon region within acoustic space that each of them passes through. This region forms
the prototypical region of the vowel category [a] and is characterised by repeated occur-
rence, and therefore an enhanced frequency rate, in the input.

subsequent modules) that filters the input according to the necessities of speech
perception. It is obvious that the filter properties of the module cannot be in-
nately given® — the infant does not know in advance which language will be his
or her native language. Therefore, it is the linguistic environment of the infant
that tunes the filter module and its properties to the characteristics of the native
language.

In MAPCAT, this kind of filter module is represented by the phonetic map.
Initially, the filter characteristics of the phonetic map are non-specific, i.e. they
are not directed to a particular language, so that two almost identical input sig-
nals usually result in quite different output patterns. However, as figure 3.1
indicates, each input signal — although initially processed by the selection and
integration module via the “acoustic” path — also passes through the “linguis-
tic” path and causes a change in the characteristics of the phonetic map. This
change in the characteristics is possible since it is assumed that the phonetic map
consists of adaptive elements. As a consequence of the exposure to utterances of
the native language, regions within the phonetic map arise in which the adap-
tive elements have learned the characteristics of particular speech sounds. The
development of such regions is initially mainly based on the distributional char-
acteristics of incoming signals and is the first step in the direction of language—
specific processing of speech.

Let me illustrate this point with a simple example. In figure 3.2 the traces
in acoustic space of the utterances “lala” and “mama” are sketched.!* The fig-
ure shows two things: First, each utterance of a word or syllable describes a
unique trace within acoustic space. And second, although each trace is unique,

® Although the properties of the filter module cannot be innately given, it is assumed that the
module itself is part of the innate endowment of an infant.

9The representation of the acoustic space by only two dimensions is just for illustrative pur-
poses. Actually, the number of dimensions is dependent on the length of the output vector from
the acoustic analysis module.
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utterances of the same phoneme in different contexts generate traces that run
through, or at least touch, a common region in acoustic space. The increased
frequency of very similar input signals within a limited region of the acous-
tic space are the trigger for the adaptive elements in the phonetic map to learn
particular characteristics of these input signals and to form an initial represen-
tation of the corresponding phonological category. This means that it is the dis-
tributional properties of incoming signals that initially guide the developmental
process, like frequency and correlation. Therefore, only phonological categories
develop which are present in the linguistic environment. However, it is not the
“linguistic” experience that is responsible for the development of phonologi-
cal categories, but the repeated exposure to similar auditory percepts. In this
sense, the development of phonological categories is initially based on a self-
organising process whereby the categories are not phonological but auditory. The
auditory categories represent neither the phonetics nor the phonology of the na-
tive language, since this information is not available from the acoustic analysis
module. However, as figure 3.1 shows, the phonetic map also gets input from
higher processing levels like the mental lexicon. These top—down connections
are an essential part of the model, since they provide the phonetic map with dis-
criminative information, i.e. with information that enables the phonetic map to
structure the auditory categories into phonological ones. For instance, assume
that based on the information of the acoustic analysis module, only one auditory
category developed for the phonemes /b/ and /p/. Therefore, the perception
of words like “bath” and “path” would result in very similar activation patterns
in the phonetic map. However, the recognition that the two words actually have
different meanings leads to the effect that the single auditory category is ulti-
mately split into two phonological categories. Therefore, it is the information
coming from the top-down connections that causes the development of phono-
logical categories.

3.2.3 The filter on top of the filter

In addition to the filter characteristics of the phonetic map, the model assumes
that the information going from the acoustic analysis module to the phonetic
map is filtered by an additional process. The idea of this additional filter is to
restrict the incoming information to the phonetic map in order to facilitate the
development of auditory categories (see also, Elman, 1991, 1993). Remember
that it is assumed that a self-organising process initially determines the develop-
ment within the phonetic map, i.e. the process is mainly guided by factors like
correlation and frequency and inherently assumes discrete regions within the
input space. However, speech is a complex signal that fails to meet the condi-
tions of linearity and invariance (Chomsky & Miller, 1963), even for only one
speaker. Therefore, phonetic categories do overlap in acoustic space and cannot
be described by separate regions. However, if the information coming from the
acoustic analysis module were restricted according to energy or temporal infor-
mation, the overlap of the phonetic categories in the acoustic space would be
strongly reduced. This would then facilitate the development of separate, au-
ditory categories. Thus, the additional filter has the property of reducing the
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inherent complexity of the information from the acoustic analysis module to the
phonetic map and hence of facilitating the developmental process. Although
this filter is initially quite restrictive and only allows information that has either
an inherent high energy or a long steady-state duration to pass to the phonetic
map, its characteristics change during development so that finally the informa-
tion from the acoustic analysis module is transmitted without loss to the pho-
netic map. This assumption is supported by psychoacoustic experiments with
infants (see Aslin (1987) for a summary). Although there is no technique to test
auditory thresholds in infants younger than three months, the data with infants
older than five months show that the absolute auditory thresholds are higher
than for adults.

3.2.4 The selection and integration module

The selection and integration module forms the processing stage at which the in-
formation from the “acoustic” path and the “linguistic” path converge. Its tasks
consist of the selection between the information coming from each path, the in-
tegration of the incoming information over time and the extraction of candidate
words for the word matching process. Actually, the selection and integration
module represents the interface between the input signal and secondary mem-
ory. Moreover, appropriate representations are stored in short-term memory so
that comparisons of different input signals can be performed.

Criteria for the selection between the “acoustic” and the “linguistic” path

The selection process is mainly determined by the criteria of efficiency and reli-
ability. As long as no auditory (phonological) categories have been developed
within the phonetic map, the output of the “linguistic” path does not represent
a source of reliable information since similar input signals will in general result
in quite different activation patterns within the phonetic map. This means that
it is the information transmitted by the “acoustic” path that the selection and
integration module selects and processes. This behaviour changes continuously
as soon as the first auditory categories develop within the phonetic map. The
auditory (phonological) categories introduce a new encoding scheme for the in-
put signal that is optimal with respect to the processing of utterances spoken in
the ambient language. This scheme abstracts away from the detailed acoustic
representation and concentrates on the properties of the ambient language. The
inherent tendency of the selection and integration module to use the informa-
tion that is transmitted by the “linguistic” path — as long as this information is
reliable — induces the smooth shift from the “acoustic” to the “linguistic” path
and therefore increases the efficiency of the whole speech perception process.
However, the input from the “acoustic” path is not neglected completely, but
is still available during the speech perception process. For instance, “acoustic”
path information is important for the processing of suprasegmental information
that is assumed to be partly filtered out in the “linguistic” path. In addition,
studies with adults have shown that speech perception is influenced by the ex-
perimental setup and that different levels of processing are tapped (e.g., Carney,
Widin, & Viemeister, 1977; Pisoni et al., 1982; Werker & Logan, 1985). While
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the selection and integration module in an everyday communication situation
relies on the more efficient, language-specific processing of speech sounds by
the “linguistic” path, this preference might change according to the demands of
the experimental conditions, like shorter interstimulus intervals, several train-
ing sessions, or simply by changing the instructions to the subjects. Therefore,
the selection process is influenced by what I call attentional processes that shift
preferences to the “acoustic” path. The possibility of a shift in the module’s
preferences is a further crucial assumption of the model. In its extreme, it means
that an adult can reach the discrimination performance that he or she already
had during infancy — after an appropriate period of training.

The segmentation problem: Where to begin?

The second important aspect of the selection and integration module is to pro-
vide integration of the information received from the two paths. By integration,
I do not only mean the creation of a sequenced input signal so that words like
“tea” and “eat” can be distinguished, but also the averaging of information over
time. This is necessary since the temporal resolution of the input signal coming
from the acoustic analysis module is assumed to be much too high for efficient
speech processing. That means that it is the responsibility of the selection and in-
tegration module to integrate the incoming information into appropriate units
for higher processing levels. In connection with this task, the module has to
overcome the segmentation problem: It has to recognise somehow, in the ab-
sence of explicit cues, the boundaries between the individual units of which the
utterance is composed.

To solve this problem, it is assumed that the selection and integration module
includes an adaptive process that is able to acquire the predominant rhythmic
properties of the ambient language. This process has a strong influence on the
integration part of the selection and integration module, pointing to possible
word and rhythmic unit boundaries. However, this information is not sufficient
to divide the speech stream into word candidates for lexical access. Therefore,
and that is the second point, the integration part also includes information from
other sources, like phonotactic constraints and distributional regularities, which
it can use in its decision to set a word boundary. That means that the term inte-
gration stands for two different kinds of processes: (1) the temporal integration
of information from the “acoustic” or “linguistic” path, and (2) the functional
integration of information for the segmentation process.

Taken together, the selection and integration module represents the interface
between the acoustic, unsegmented speech signal and secondary memory. Like
the phonetic map, it has to learn particular characteristics of the ambient lan-
guage in order to achieve efficient processing and encoding of the speech signal.
The necessary adaptability of this module has the consequence that higher pro-
cessing levels must be able to deal with — at least initially — variable types of
information.
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3.3 MAPCAT and the empirical findings of infants’ and
adults’ speech perception capacities —
A critical comparison

As I emphasised in the introduction to this chapter, MAPCAT represents a the-
oretical model that attempts to explain the developmental change in infants’
speech perception capacities during the first year of life. According to the model,
it is the development of representations of the sound system of the native lan-
guage within the phonetic map that affects the speech perception process and
directs it to the characteristics of the native language. Moreover, MAPCAT also
provides an explanation for the different effects that have been found in exper-
iments testing infants and mature listeners in their ability to discriminate non-
native speech contrasts. In the following, I compare the findings of infants” and
adults’ speech perception capacities with the characteristics of MAPCAT.

3.3.1 Implications of MAPCAT for young infants’ speech
perception capacities

The development of representations of the native language sound system within
the phonetic map reflects the change in infants’ speech perception capacities
during the second half of the first year of life. It is assumed that prior to this
point of development the phonetic map does not contain any categories. The
speech perception capabilities of young infants are therefore not yet affected by
the native language and are only dependent on the characteristics of the acoustic
analysis module. In other words, there are no special speech processing mech-
anisms involved in the perception process. Imagine a typical speech perception
experiment in which an infant is tested on two different syllables, like [ba] and
[pa]. While the infant is lying in a reclining seat, he or she hears the syllable
[ba] several times. The selection and integration module selects the information
coming from the “acoustic” path (i.e. the output of the acoustic analysis module)
and a representation of the syllable [ba] is stored in short-term memory. After
the infant gets habituated to the speech stimulus, the syllable [pa] is presented
to the infant. The description of the acoustic signal from the acoustic analysis
module is detailed enough so that the infant detects a difference between [pa]
and the representation in the short-term memory of the syllable [ba], and thus
shows a dishabituation effect. That means that no speech-specific processing
mechanisms are necessary to discriminate these items or the items of the native
language used in many other studies investigating infants’ discrimination capa-
bilities (for reviews, see e.g. Aslin, 1987; Kuhl, 1987; Jusczyk, 1995). To take this
argument even further, MAPCAT also accounts for particular effects that have
been observed in infant’s perception of speech sounds, such as the categorical
perception effect (e.g., Eimas et al., 1971; Eimas, 1974; Eimas & Miller, 1980a),
the effect that a categorical boundary is dependent on the rate of speech (e.g.,
Miller & Eimas, 1983), or the effect that acoustic cues are in a trading relation-
ship (e.g., Eimas, 1985; Levitt et al., 1988; Eimas & Miller, 1991). According to
the model, these effects are solely based on the characteristics of the acoustic
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analysis module and the selection and integration module. Since both mod-
ules are also passed by nonspeech signals, these effects must have correspond-
ing counterparts in infants’ perception of nonspeech sounds. Results of corre-
sponding studies investigating infants’ discrimination capabilities among non-
speech signals are in line with this explanation (e.g., Jusczyk et al., 1980; Jusczyk
et al., 1989). For instance, infants’ discrimination of contrasts from a TOT con-
tinuum was also categorical-like and the location of the category boundary cor-
responded to the location of the boundary along the VOT continuum (Jusczyk
et al., 1989, see also section 2.2.3).

Related to this issue is another implication of the model that determines
what kind of effects should not be observable in infant speech perception ex-
periments. Several studies have demonstrated that adults process the same
sounds in quite different ways, depending on whether they hear them as speech
or nonspeech sounds. Examples are the phenomenon of “duplex perception”
(Liberman et al., 1981) and studies that have employed ambiguous stimuli (e.g.,
Best et al., 1981). The findings of these studies support the hypothesis that spe-
cialised processing of speech sounds occurs in adults. However, according to
MAPCAT such specialised speech processing mechanisms only develop during
infancy. Consequently, all effects which are based on these mechanisms should
not be observable in corresponding studies with young infants.

A further conclusion from the assumption that young infants” speech per-
ception capabilities are mainly dependent on the characteristics of the acous-
tic analysis module is that the capacities of this module have to be language-
independent, i.e. they must be general enough so that an infant is able to learn
any language natively. Consequently, infants should not only be able to dis-
criminate phonetic contrasts from the native language, but also contrasts that
are not present in the ambient language environment. Moreover, studies in-
vestigating infants from different language environments on the same speech
contrast should reveal identical, or at least similar, results. Take for example the
robust phenomenon that the perception of certain types of phonetic contrasts,
like stop consonants, is categorical (Repp, 1984; Harnad, 1987). This means that
listeners can easily perceive speech contrasts that involve tokens from different
phonetic categories (like [ba] and [pa]), but have severe difficulties discriminat-
ing stimuli belonging to the same category, even though the acoustic differences
seemed comparable. Languages differ in the number and the location of cate-
gorical boundaries along acoustic continua. For example, although English and
Spanish have one perceptual boundary along the VOT continuum, the locations
of the boundaries do not coincide (Lisker & Abramson, 1970; Williams, 1977).
Other languages, like Thai, have three modes of voicing (Lisker & Abramson,
1964, 1970). However, according to MAPCAT infants from different language
environments should exhibit initial perceptual boundaries which are identi-
cal in number and location. This characteristic of the model has been con-
firmed at least for the voicing distinctions among stop consonants (cf. Lasky
et al,, 1975; Streeter, 1976; Aslin et al., 1981). A comparison of the results in-
dicate that infants divide the VOT continuum into three categories, whereby
the boundaries are consistently located at values that correspond to the voiced-
voiceless boundary in English and other languages and to the prevoiced—voiced
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boundary in e.g. Thai (see also section 2.2.2). Cross-linguistic investigations of
categorical boundaries among other acoustic continua should reveal a similar
pattern.

The single assumption of MAPCAT that infants” initial processing of speech
signals is identical to the processing of every other acoustic signal has quite strict
implications for the speech perception capabilities of young infants. These im-
plications are supported by recent experimental studies. During further devel-
opment, auditory categories within the phonetic map develop that mark the
starting point from language—independent to language—dependent speech per-
ception. In the following, I discuss the consequences of the development of
representations of the native language sound system within the phonetic map
on the speech perception capabilities of infants as well as adults.

3.3.2 Consequences of the development of a phonetic map
on the speech perception process

The development of clusters of adaptive units within the phonetic map is a con-
sequence of the exposure to utterances of the native language. The clusters rep-
resent particular native language speech sounds for which they show a high
activation pattern; the filter characteristics of the phonetic map are tuned to the
characteristics of the native language. However, the clusters show a high acti-
vation pattern not only for native, but also for similar non-native speech sounds.
According to MAPCAT, a listener perceives non-native speech sounds in terms
of their activation patterns within the phonetic map. This means that non-native
phonemes will be “assimilated” (a term that is used by Best, 1993) to native
phonemes which they are most similar to. Depending on the non-native con-
trast, it is therefore possible to determine whether a listener would easily per-
ceive the contrast or whether he or she would have difficulties with the contrast.

In order to compare the characteristics of MAPCAT to the results of empiri-
cal studies, I make use of a classification of the non—native speech sounds which
was developed by Best (1993). Best distinguishes between five possible constel-
lations which differ in the effect the native sound system has on listeners’ ability
to discriminate a non-native speech contrast. These include: (1) a Two—Category
(TC) contrast in which each of the non—native phones is mapped onto a different
native phonological category; (2) a Category Goodness (CG) contrast in which
the non-native phones are both mapped onto the same native phonological cat-
egory, but differ in their similarity to the native phoneme — one non-native
phone is more similar to the native phoneme than the other so that one can
speak of a “good” and a “poor” exemplar with respect to the native phonolog-
ical category (cf., Kuhl, 1991); (3) a Single Category (SC) contrast in which both
non-native phones are equally well or poorly mapped onto the native phonolog-
ical category; (4) a UNCategorizable (UNC) contrast in which one or both non-
native phones is not recognised as a phoneme, although they are perceived as
speech sounds; and (5) a Non-Assimilable (NA) contrast in which both sounds
are not perceived as speech and therefore fall outside the bounds of the native
phonological space. In the following, I compare the outcome of MAPCAT for
the different types of non-native speech contrasts with the empirical findings
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for mature listeners, 4- to 6-month-old infants, and 8- to 12-month—old infants.

Adults’ discrimination capabilities of non—native speech sounds

According to MAPCAT, a mature listener should easily discriminate a TC con-
trast, since each of the non-native phones is mapped onto a different native
phonological category, i.e. they induce two different activation patterns within
the phonetic map. A similar good discrimination, although slightly worse than
the TC contrast, is expected for a CG contrast. Both speech sounds are mapped
differently onto the same phonological category, and therefore induce slightly
different activation patterns. For an SC contrast, both non-native phones are
equally well or poorly mapped onto the native phonological category and in-
duce very similar activation patterns within the phonetic map. Therefore, the
mature listener should find it quite difficult to discriminate them. It is actually
the difference of the activation patterns within the phonetic map that determines
the ease or difficulty of discrimination. This becomes particularly clear for a
UNC contrast. If only one of the non—native phones is mapped onto an area of
the phonetic map where no native phonological category has been developed,
discrimination should still be good, since detecting the difference between an
activation pattern which contains a region of high activity and an activation pat-
tern which contains no region of high activity is quite easy. However, if this is the
case for both phones, discrimination should be very poor, since there is nearly
no difference in the flat activation patterns they produce. The last non-native
speech contrast concerns the NA contrast. In this case it is not the output of the
phonetic map that is evaluated by the selection and integration module but the
output of the “acoustic” path. That means that listeners’ discrimination capabil-
ities are dependent on the differences in acoustic space between the non—native
phones and should in general be quite good.

Before I compare the outcome of the model with the experimental results,
there is still one point that is crucial for the following evaluation. This emerges
when looking at the results of a study by Polka (1992). In one experiment, Polka
investigated English and Farsi native speakers on the glottalised velar/uvular
contrast /k'i/ vs. /q'i/ from Nthlakampx. English adults perceived these
sounds as either “funny” k’s, or as sounds that did not sound speech-like at
all (Werker, 1991), i.e. either as an SC contrast or an NA contrast. The pattern
was slightly different for Farsi adults. Although glottalised stops exist in nei-
ther Farsi nor English, Farsi contains a uvular-velar place distinction for stop
consonants that is not phonemic in English. Therefore, Farsi adults could per-
ceive these sounds as a TC contrast. The results showed that there were no
significant differences between English and Farsi speakers in overall discrim-
ination performance. However, a comparison of the performance for each of
the subjects showed substantial differences. Farsi speakers who perceived the
sounds as similar to two different sounds in their native language (TC contrast)
nearly reached the performance of native Nthlakampx speakers. In contrast, En-
glish and Farsi speakers who perceived the sounds as very similar to each other
(SC contrast) discriminated the contrast significantly worse. Thus, listeners’ dis-
crimination performance was dependent on how they perceived the non-native
speech sounds with respect to their phonological system. This point has to be
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taken into account for the following comparison.™
The following list summarises the experimental results with respect to the
different types of non-native speech contrasts:

TC contrast. (1) The Hindi voiced/voiceless aspirated dental stop contrast /d"a/
-/ f‘a / (Werker et al., 1981). This contrast represents a TC contrast on grounds
of the large VOT difference between both stimuli (+120 msec vs. —130 msec).
English-speaking adults showed only a low discrimination performance for
this contrast which greatly increased after a short training procedure. (2) The
Zulu voicing contrast between lateral fricatives /{e/—/ke/ (Best, 1990). The
discrimination performance of English—speaking adults was nearly as good as
for Zulu adults. (3) The English glide contrast /w/-/j/ that also occurs in
Japanese (only slightly different in their characteristics compared to English)
(Best & Strange, 1992). Japanese adults discriminated the contrast categorically,
as English adults do.

CG contrast. (1) The Zulu plain/ejective voiceless velar stop contrast /ka/—
/K’a/ (Best, 1990). This contrast represents a strong CG contrast in English (both
sounds are perceived as an English /k/, with the Zulu /k/ nearly identical to
the English /k/, and the Zulu /k’/ as a non—prototypical variant of it). English—
speaking adults discriminated this contrast better than chance, but not as well
as Zulu adults. (2) The English glide contrast /w/~/1/ (Best & Strange, 1992).
Japanese adults discriminated this contrast clearly above chance, but not as well
as English adults.

SC contrast. (1) The Hindi retroflex/dental stop contrast /ta/-/ta/ (Werker
etal., 1981; Werker & Tees, 1984). English-speaking adults perceived both non-
native sounds as the alveolar stop [t] and could hardly discriminate this con-
trast. (2) The Zulu voiced plosive/implosive bilabial stop contrast /bu/~/6u/
(Best, 1990). The discrimination performance of English-speaking adults was
only slightly above chance.

UNC contrast. The English glide contrast /1/-/1/ (Best & Strange, 1992). Both
non-native sounds are very dissimilar to related phonemes of the Japanese
sound system. Japanese adults’ discrimination performance was only slightly
above chance.

NA contrast. The Zulu lateral/apical click contrast ([ya] vs. [5a]) (Best et al.,
1988). English-speaking adults perceived these clicks as nonspeech sounds and
their discrimination performance was as nearly as high as for Zulu adults.

Hn her study, Polka performed a second experiment in which she investigated English adults’
perception of an uvular—velar Nthlakampx contrast and an uvular-velar Farsi contrast. It was
expected that English adults would make fewer errors on the Farsi contrasi (which corresponded
to a CG contrast) than to the Nthlakampx contrast (which corresponded to an SC or a UNC
contrast). Although the results of the overall performance were consistent with the predictions,
one problematic effect occurred. Namely, adults’ performance was strongly dependent on the
order of presentation, i.e. perception of the first contrast (e.g. the Farsi contrast) disrupted in
some way adults’ perceptual performance of the other contrast (e.g. the Nthlakampx contrast).
Moreover, the order effect was asymmetric, the disruption was greater when subjects were tested
on the Nthlakampx contrast after the Farsi contrast. It is at the moment unclear how this order
effect could be explained in MAPCAT.

51



In summary, the findings of these studies are in harmony with the character-
istics of MAPCAT. Adults’ discrimination performance on non-native speech
contrasts is affected by native phonological categories: their discrimination ca-
pabilities are in general defined by the differences between the activation pat-
terns that the non—native speech sounds generate. The only result that cannot
be explained by MAPCAT is the low performance of English—-speaking adults on
the potentially easy Hindi voicing contrast /d"a/—/t"a/, a TC contrast. It would
be interesting to know what kind of sounds the adults actually perceived. The
strong increase of discrimination after a short training procedure suggests that
not all of the subjects perceived the contrast initially as a TC contrast and there-
fore showed more difficulty in discrimination than expected.

4— to 6—month—old infants’ discrimination capabilities of non—native speech
sounds

The development of the structure of MAPCAT was, among other things, deter-
mined by the finding that the discrimination capabilities of 4- to 6~-month-old
infants were still hardly affected by the ambient language. This means that at
this point in time of the developmental process no categories in the phonetic
map have been developed and that the discrimination capabilities of the in-
fants are solely dependent on the characteristics of the acoustic analysis module.
Therefore, according to MAPCAT infants’ discrimination performance should
not differ with respect to the possible assimilation patterns but should rather be
good for most native as well as non-native speech contrasts.

The following list summarises the experimental results with respect to the
different types of non-native speech contrasts:

TC contrast. The Hindi voiced /voiceless aspirated dental stop contrast /d"a/-
/tha/ tested on 7-month-old American infants (Werker et al., 1981). This con-
trast represents a TC contrast on grounds of the large VOT difference between
both stimuli (+120 msec vs. —130 msec). The results suggested that infants eas-
ily discriminated between these non-native speech sounds.

CG contrast. The German (non-English) vowel contrasts /u/-/y/ and /u/-
/v / tested on 4 1/2-month—old English-learning infants (Polka & Werker, 1994).
In a previous identification task, English adults perceived the German front
vowels /y/ and /v/ as variants of the English back vowels /u/ and /v/. The
results showed that the infants were able to discriminate both contrasts.

SC contrast. The Hindi retroflex/dental stop contrast /ta/~/ta/ tested on 7-
month-old American infants (Werker et al., 1981). American adults perceived
both non-native sounds as the alveolar stop [t]. Again, infants were able to dis-
tinguish between both non-native sounds and their performance was not sig-
nificantly different from that of Hindi adults.

UNC contrast. The English glide contrast /1/-/1/ tested on 6~ to 8&month—old
Japanese infants (Tsushima et al., 1994). Both non-native sounds are very dis-
similar to related phonemes of the Japanese sound system. The overall results
indicated that the infants discriminated the English speech contrast.
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NA contrast. The Zulu lateral/apical click contrast ([ja] vs. [sa]) tested on 6~
month-old American infants (Best et al., 1988). American adults perceived these
clicks as nonspeech sounds. As predicted, infants’ behavior indicated that they
were able to discriminate the Zulu click contrast.

The overall pattern of the results of studies investigating infants’ initial discrim-
ination capabilities reveals that their performance is good for most native and
non-native speech contrasts. This coincides precisely with the characteristics
of MAPCAT. Moreover, according to the model, infants’ performance is based
on purely acoustic properties of the speech contrasts. Conclusively, MAPCAT
predicts that effects in adults’ speech perception that are based on the internal
structure of the phonological categories, such as the perceptual magnet effect
(Kuhl, 1991), should not be visible in the corresponding studies with young in-
fants. Future research has to verify the validity of this prediction of the model.

8- to 12-month—old infants’ discrimination capabilities of non-native speech
sounds

8- to 12-month-old infants show clear evidence of language-specific speech
perception (see section 2.3). Moreover, in comparison to the results of corre-
sponding studies with adults, infants” discrimination performance is worse for
particular non-native speech contrasts. MAPCAT explains infants’ perceptual
change at this age by the development of auditory categories which direct in-
fants” speech perception to native speech sounds. It is further assumed that
these categories are exclusively based on acoustic information so that the struc-
ture of these initial categories differs considerably from the phonological cate-
gories of adults. Of particular importance in this context is the additional filter
between the acoustic analysis module and the phonetic map. While it on the
one hand reduces the inherent complexity of the information from the acoustic
analysis module, it also inherently defines the temporal order of category de-
velopment. For example, assume that the filter characteristics are defined by an
energy threshold!?: incoming speech signals that have an energy value that is
larger than the threshold value pass the filter while signals that have an energy
value that is lower than the threshold value are filtered out. Therefore, under the
assumption that the underlying developmental process is a self-organising one,
such filter characteristics would predict that categories for speech sounds with
high energy values would develop at an earlier point in time than categories for
speech sounds with low energy values. A comparison of vowels and consonants
reveals that vowels have, in general, higher energy values than consonants since
they are produced with vibrations of the vocal cords and without obstruction of
the airflow from the lungs. This means that vowel categories should develop at
an earlier point in time during maturation than consonant categories — which is
totally in line with the results of available cross-linguistic studies. Moreover, the
filter characteristics also predict the order of development within the vowel and

2Both energy and temporal information are restricted by the additional filter module. Al-
though in the example I use information about the energy in the input signal, the following
argumentation remains the same for temporal information, since it is typically the case that
vowels have longer durations than consonants (Crystal & House, 1988).
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consonant categories, e.g. categories for fricatives should develop earlier than
categories for stop consonants.

A further important characteristic of MAPCAT is that the selection and inte-
gration module has the inherent tendency to use the information that is trans-
mitted by the “linguistic” path. As soon as the first auditory categories have
been developed, and the information that is transmitted by the “linguistic” path
therefore becomes reliable, the selection and information module switches the
focus to this input stream. The implication for infants’ discrimination capa-
bilities is that former discriminable speech contrasts become indiscriminable.
Therefore, MAPCAT defines the following scenario for 8- to 12-month~old in-
fants:

Infants’ performance is still good for NA contrasts since these sounds are not
perceived as speech sounds and discrimination results from information from
the “acoustic” path. However, as soon as the speech signals are processed by
the “linguistic” path, it is expected that the discrimination performance of the
infants is significantly worse compared to adults or younger infants. This has
to do with the assumption that infants’ auditory categories do not yet contain
the fine structure of adults’ phonological categories. Two similar sounds (or two
sounds that belong to the same phonological category) induce nearly identical
activation patterns within the phonetic map, which makes it impossible for the
infant to discriminate between the two sounds. Therefore, it is expected that in-
fants are not able to discriminate either CG or SC contrasts. They should also not
be able to discriminate a UNC contrast when both non-native phones induce ac-
tivation patterns within the phonetic map with no region of high activity. How-
ever, if only one of these sounds cannot be mapped onto the categories within
the phonetic map, discrimination should be good. As with these UNC contrasts,
one also has to differentiate between two cases for TC contrasts. A TC contrast
remains discriminable if each of the non-native phones is mapped onto different
auditory categories, i.e. they induce two different activation patterns within the
phonetic map. However, since the development of infants’ categories is based on
acoustic information and not on phonological information, it could be the case that
two non-native phones, although mapped by adults onto two different phono-
logical categories, are mapped onto only one auditory category by the infants,
and that phonological information from higher processing levels during further
development is necessary to split the one auditory category into two phonological
categories. In this case, the infants would no longer be able to discriminate the
non—-native speech contrast. Even worse, they would not even be able to dis-
criminate a corresponding native speech contrast, i.e. two native speech sounds
that are mapped onto the same auditory category. This means that according
to MAPCAT it is expected that infants” discrimination performance is not only
impaired for non-native, but also for native speech sounds.

The following list summarises the experimental results with respect to the
different types of non-native speech contrasts:

Strong TC contrast. The Ethiopian Tigrinya labial/alveolar ejective-stop con-
trast /p’e/—/t'e/ tested on 10- to 12-month—old American infants {Best, 1991).
American adults perceived these non-native speech sounds according to the En-
glish phonemes /p/ and /t/. The results suggest that infants easily discrimi-
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nated between the non-native speech sounds.

Weak TC contrast. The Zulu voiceless/voiced lateral fricative contrast /ie/—
/ke/ tested on 10~ to 12-month-old American infants. American mature lis-
teners perceived the voiceless sound as either /s/, /[/, or /8/, and the voiced
sound as either /z/, /3/, or /3/, or the approximant /1/ (Best, 1994). The infants
failed to discriminate the contrast, i.e. they mapped both non-native sounds
onto one auditory category.

CG contrast. The German (non-English) vowel contrasts /u/~/y/ and /u/-
/v/ tested on 6- to 8-month-old and 10- to 12-month—old English-learning
infants (Polka & Werker, 1994). In a previous identification task, English adults
perceived the German front vowels /y/ and /v/ as variants of the English back
vowels /u/ and /u/. The results showed that 35-40% of the 6- to 8-month-olds
and less than 20% of the 10- to 12-month-olds reached the discrimination cri-
terion. The results for the older age group is in accordance with the predictions
of the model: the activation patterns for the two speech sounds are too similar
to each other. The infants were therefore not able to distinguish between them.
The results for the younger infants showed that this process begins already be-
tween six to eight months of age — at an earlier point in time than for consonant
categories (cf. Werker & Tees, 1984; Best, 1994). This is in accordance with the
characteristics of MAPCAT.

SC contrast. The Hindi retroflex/dental stop contrast /ta/—/ta/ tested on 10—
to 12-month—old American infants (Werker et al., 1981). American adults per-
ceived both non-native sounds as the alveolar stop [t]. In contrast to 6~ to 8-
month—old infants, the older age group failed to discriminate this contrast.

UNC contrast. The English glide contrast /1/-/1/ tested on 10~ to 12-month-
old Japanese infants (Tsushima et al., 1994). Both non-native sounds are very
dissimilar to related phonemes of the Japanese sound system. In contrast to the
younger infants, the infants failed to discriminate the speech contrast — which
is in accordance to the characteristics of MAPCAT.

NA contrast. The Zulu lateral/apical click contrast ([3a] vs. [sa]) tested on 10-to
12-month-old American infants (Best et al., 1988). American adults perceived
these clicks as nonspeech sounds. As predicted, infants’ behavior indicated that
they were able to discriminate the Zulu click contrast.

The results of these studies show that infants were no longer able to discrimi-
nate a non-native speech contrast except when the sounds were mapped onto
two different auditory categories (strong TC contrast) or when they were not
perceived as speech at all (NA contrast). This is in line with the characteris-
tics of MAPCAT. Moreover, the empirical results also demonstrate a different
temporal order for the development of vowel and consonant contrasts. While
6~ to 8-month-old English-learning infants were still able to discriminate the
Hindi contrast /ta/~/ta/, an SC contrast, infants of this age showed consid-
erable difficulty in discriminating the German vowel contrasts /u/-/y/ and
/u/—=/v/, two CG contrasts, that should be — according to the model — easier
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to discriminate. However, under the assumption that vowel categories develop
at an earlier point in time than consonant categories, these results are in har-
mony with MAPCAT. While 4 1/2-month—-olds were still able to discriminate
both non-native contrasts, 6— to 8—-month-olds already showed an impairment
in their discrimination capabilities, and 10- to 12-month—olds finally failed in
discriminating both contrasts. This decline in discrimination for a vowel con-
trast corresponds to earlier findings for consonant contrasts, but at an earlier
point in time.

In summary, there is clear evidence for a language-specific impairment in
speech perception by 8 to 12 months of age. And, although perception of non~
native contrasts appears to be language-dependent, it has still not taken adult
form. However, further research has to verify the model’s predictions, espe-
cially with respect to the different temporal development of the categories. For
instance, the model predicts that categories for fricatives develop at a later mo-
ment in time than categories for vowels, but earlier than categories for stop con-
sonants. The results of a study by Best (1994) partly support this: 6- to 8-month~
old American infants initially failed to discriminate the Zulu fricative contrast
/te/-/ke/, but showed a significant discrimination using a “more stringent ha-
bituation criterion” (Best, 1994, p. 299). In my opinion, only studies testing in-
fants in longitudinal conditions (like e.g., Werker & Tees, 1984) can shed light on
this aspect of changes in infants” speech perception.

3.3.3 The perceptual magnet effect revisited

“Speech categories are organised around phonetic prototypes that form best ex-
emplars of the categories” (section 2.3.1, p. 32). This sentence characterises the
assumptions behind a study by Kuhl (1991), in which she demonstrates that the
internal structure of phonetic categories has an influence on human infants’ and
adults” speech perception processes. She called this effect a perceptual magnet
effect based on the perceptual effect which the prototype of a speech category
has on other category members. The findings that 6-month-old infants already
show this effect, but that monkeys do not (Kuhl, 1991), along with further re-
sults which support the hypothesis that the effect is due to experience in listen-
ing to a specific language (Kuhl et al., 1992; Polka & Werker, 1994), led Kuh!
(1991) to conclude that infants’ early vowel categories — like adults’ vowel cate-
gories — are internally organised around best category instances, or prototypes.
While this explanation assumes that the internal structure of infants’ phonetic
categories is nearly as detailed as the adults’ one from the beginning of life,
MAPCAT offers an alternative explanation, which I will lay out in what follows.

The results of the studies investigating the perceptual magnet effect show
that this effect is only “visible” in adults and infants between 6 and 8 months of
age. 5o far, infants younger than six months of age have not shown the effect
(Polka & Werker, 1994), and infants older than eight months of age fail to dis-
criminate the non-native vowel contrast at all (Polka and Werker, 1994; but see
Polka and Bohn, 1996). Although only future research can demonstrate whether
these (preliminary) results describe real facts, they are at least in harmony with
what is known from studies investigating infants’ discrimination capabilities
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with non—-native consonant contrasts.

According to MAPCAT, newborns and infants younger than 4 to 6 months
of age should not show language—specific discrimination effects since it is as-
sumed that this period is needed for the development of the first, auditory cat-
egories. Thus, before this period, infants’ perception is based on the “acoustic”
path and therefore MAPCAT predicts that infants younger than 4 to 6 months
of age should not exhibit a perceptual magnet effect. For infants older than 10
to 12 months of age, perception has shifted to the “linguistic” path. Categories
for native speech sounds have been developed with in the phonetic map and
discrimination is determined by the difference in the activation patterns within
the phonetic map. However, the categories are only broadly structured so that
discrimination of within—category differences is weak. That not only means that
there should be effects on the perception of native speech contrasts, but also that
infants older than 10 to 12 months — like the younger age group — should not*
exhibit a perceptual magnet effect. Further “linguistic experience” is necessary
to form the internal structure demonstrated in studies with adults.

When the younger and the older age groups do not give evidence for a per-
ceptual magnet effect, why, then, do infants between 6 and 8 months of age?
How can MAPCAT explain the influence of a prototypical region in a speech
category on infants’ perception when the model assumes that 10— to 12-month-
olds only have categories that are broadly structured?

According to MAPCAT, 6- to 8-month~olds also have only broadly struc-
tured categories within the phonetic map, maybe even less structured and even
less in number than older infants. But MAPCAT does not explain the magnet
effect on the basis of the structure of a category. Instead, it is explained on the
basis of the continuous transition of perception from the “acoustic” to the “lin-
guistic” path. Assume a typical experimental session, in which an infant sits
in a reclining chair perceiving a prototypical sound of a native vowel category.
The vowel sound induces an activation pattern within the phonetic map with
a region of high activity according to the vowel type. The activation pattern
within the phonetic map causes a shift in processing of incoming speech stimuli
from the “acoustic” to the “linguistic” path. After several presentations of the
prototypical stimulus, a variant of this vowel is presented. Depending on the
similarity of the sounds, the variant induces a nearly identical activation pattern
as the prototype. However, although the regions of high activity correspond
to each other, the activation pattern of the variant is only weak and not sta-
ble. Nevertheless, based on the previous presentation of the prototypical sound,
the stimuli are processed by the “lingustic” path and discrimination is there-
fore dependent on the difference between the two activation patterns. Since the
auditory categories are initially broadly structured, the infant fails to detect a
difference between both sounds. In contrast, if the nonprototypical stimulus is
presented as reference sound, the probability that the infant will discriminate
both sounds increases. The presentation of the nonprototypical sound induces
only a weak and unstable activation pattern, so that incoming speech stimuli
are still processed by the information from the “acoustic” path. This means that
in this case no shift to the “linguistic” path occurs and discrimination between
both stimuli is still possible.
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The consequences for the speech perception process in infants are diverse:
First, it depends on the activation pattern which the nonprototypical sound in-
duces whether a perceptual magnet effect is detectable or not. If prototypical
and nonprototypical sounds are too dissimilar, i.e. the nonprototypical sound
is mapped onto a different auditory category, no perceptual magnet effect is
expected. Second, the perceptual magnet effect is language—specific; it is de-
pendent on the auditory categories within the phonetic map. This prediction is
supported by the studies of Kuhl et al. (1992) and Polka and Werker (1994). And
third, the perceptual magnet effect is dependent on the development of auditory
categories: no perceptual magnet effect is expected for stimuli for which so far
no auditory category has been developed.

These predictions of the model have to be verified in future research. More-
over, further investigations are necessary to clarify the role and origin of the
perceptual magnet effect in infants” and adults’ speech perception. For instance,
is the effect really language—specific (Kuhl et al., 1992), or, as the results by Polka
and Bohn (1996) indicate, does it refer to a language—independent bias that in-
fants bring to the task of vowel perception? Further, is this effect special for the
perception of vowels or can it also be found in speech perception of particu-
lar consonant categories? And, is such an effect also visible in other perceptual
domains, like vision, which would indicate a more general cognitive effect?

3.3.4 The rhythm of a language: How infants might overcome the
segmentation problem

In the description of the components of MAPCAT, I characterised the phonetic
map as the adaptive module of the model. And this is reasonable with respect
to the model’s intention to explain the developmental change in infants’ speech
perception capacities during the first year of life. However, in the following, I
demonstrate that the structure of the model is in principle extendable and that
further adaptive elements can be included so that it can also deal with problems
like the segmentation of the speech stream or word recognition.

How adults overcome the segmentation problem

The segmentation problem for infants is strongly related to the issue of what
kind of procedures adult listeners use in segmenting the speech stream in order
to understand an utterance. Research during the last decade and a half by Cut-
ler and her associates has shown that mature listeners use a language-specific
strategy in segmenting the speech stream that is based on the rhythm of the lan-
guage. For instance, English adults were slower in detecting a real word (e.g.,
mint) in a nonsense bisyllable when it had two strong syllables (e.g., mintayve)
than when it had a strong and a weak syllable (e.g., mintef) (Cutler & Nor-
ris, 1988). This result suggests that English listeners segment speech at strong
syllables, and assume that strong syllables indicate the beginnings of words.
Further support for this conclusion that led to the “Metrical Segmentation Strat-
egy” for English (Cutler, 1990) came from corpus analysis (Cutler & Carter, 1987)
as well as from investigations of misperceptions of word boundaries (Cutler
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& Butterfield, 1992). In contrast to the English listeners, French adults favour
segmentation of the speech stream according to syllables (Mehler, Dommer-
gues, Frauenfelder, & Segui, 1981; Segui, Frauenfelder, & Mehler, 1981; Cutler
etal,, 1986), and Japanese adults according to a subsyllabic unit, the mora (Otake
et al.,, 1993; Cutler & Otake, 1994). In parallel to the English results, these units,
the syllable in French and the mora in Japanese, form the basis of the rhythmic
structures of these languages. Therefore, Cutler and Mehler (1993) proposed that
adults” segmentation of the speech stream might be rhythmic in nature across
languages and that infants have to acquire such a language-specific segmenta-
tion strategy.

Cues for infants to acquire a language—specific segmentation strategy

The proposal made by Cutler and Mehler (1993) is not only that language-
specific segmentation strategies have to be acquired by infants, but also that
suprasegmental information in the speech signal might direct the infants to
these strategies (see also Hirsh-Pasek et al., 1987; Jusczyk, 1993; Cutler, 1996).
That would mean that an infant not only has to be sensitive to language-specific
suprasegmental patterns, but also has to be able to detect that the predominant
rthythmic properties of the ambient language are cues for segmenting the speech
stream. It is mainly the first point that has been investigated by recent stud-
ies. 6-month-old infants are already sensitive to prosodic markers of the clausal
structure of the native language (Hirsh-Pasek et al., 1987), while at only 9 months
of age infants show a sensitivity to the organisation of units within clauses, like
subject or predicate phrases (Jusczyk, Hirsh-Pasek, Kemler Nelson, Kennedy,
Woodward, & Piwoz, 1992, see also section 2.3.2). The second point has just
begun to be explored. For instance, Jusczyk, Cutler, and Redanz (1993) tested
6—-and 9-month-old American infants with lists of bisyllabic words. The words
had a stress pattern that was either the predominant one (strong/weak) or not
(weak/strong). The results showed that only the 9-month-olds listened signif-
icantly longer to the words with the strong/weak stress pattern — even when
the words were low—pass filtered, suggesting that the infants responded to the
suprasegmental properties of the stimuli. Although these results indicate that
9-month-old, but not 6~-month-old American infants are sensitive to the pre-
dominant rhythmic properties of the ambient language, no further comparable
studies with infants from other language environments has been performed so
far. For instance, it would be interesting to know whether 9-month-old Japanese
infants start to show a preference for the rhythmic mora structure of Japanese.
Besides the rhythmic structure of a language, it has also been proposed
that the phonotactic constraints of a language constitute a further important
cue for the segmentation process, since they could direct the infant to possible
word-initial sound clusters (e.g., Brent & Cartwright, 1996). Recent research has
demonstrated that infants are already sensitive to this cue during the first year
of life (Friederici & Wessels, 1993; Jusczyk, Friederici, Wessels, Svenkerud, &
Jusczyk, 1993). Lists of unfamiliar words in two different languages that dif-
fer in their phonotactic properties (Dutch and English) were presented to 6-
and 9-month-old Dutch and American infants (Jusczyk, Friederici et al., 1993).
Only the 9-month—olds showed a preference for the list in their own native lan-
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guage, suggesting that they already have acquired language-specific phonotac-
tic knowledge. Moreover, 9-month—old infants in the study by Friederici and
Wessels (1993) were, under particular conditions, even able to distinguish be-
tween list of words that formed phonotactically legal sequences and list of words
that contained phonotactically illegal sequences. This means that infants at this
early age might be able to use this knowledge in the detection of word bound-
aries.

The integration of a segmentation strategy in MAPCAT

MAPCAT is in principle able to deal with the segmentation problem. To this
end, the structure of the model must be extended in such a way that the selec-
tion and integration module also includes adaptive elements, i.e. sub-modules
that are able to change their characteristics dependent on the input. According
to the above findings, these sub-modules should be able to learn particular char-
acteristics of the ambient language, like the rhythmic structure of the language
and its phonotactic constraints. This means that the structures which deal with
the segmentation of the speech stream are adaptive. The location of these struc-
tures in the selection and integration module is determined by the assumption
that the selection and integration module represents the interface between the
speech signal and secondary memory in the model and that it must segment the
incoming speech signals into appropriate units.

Therefore, it is in principle possible to extend MAPCAT to a model that ac-
counts for the development of a word recognition system. This is, in my opinion,
one of the strengths of the model. However, MAPCAT is not the only model
which can account for the development of speech perception capacities in in-
fants. The following chapter will put MAPCAT in the context of other models
which have been proposed.

3.4 MAPCAT in relation to other developmental
speech perception models

MAPCAT concentrates on the change in infants’ speech perception capacities
from language-universal to language-specific that have been found in several
cross—-linguistic discrimination and categorisation studies. Its structure and un-
derlying assumptions are mainly based on the findings of speech perception
experiments with infants and adults during the last three decades. However,
since the time that the first version of this model was created, other models and
theories have been proposed which either concentrate on a particular effect in
infants’ speech perception or describe a model which is “intended to account for
how the component processes that underlie word recognition in fluent speech
evolve during the course of language acquisition.” (Jusczyk, 1993, p. 5). Each of
these models and theories contributed to the current version of MAPCAT. In the
following, I will shortly describe the correspondences and differences between
each of the models/theories and MAPCAT.
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MAPCAT and the Perceptual Assimilation Model

The Perceptual Assimilation Model by Best (1993, 1994) concentrates on infants’
and adults’ perception of non-native speech contrasts and is based on the eco-
logical theory of speech (e.g., Best, 1984; Fowler, 1986, 1989, 1990). The basic
assumption of the model is that “both infant and adult listeners detect evidence
in speech about the articulatory gestures of the vocal tract that produces the
signal, consistent with Fowler’s arguments that perceivers recover information
from speech (and other sound-producing events) about the distal object and
actions that produced the sounds (...)"” (Best, 1993, p. 292). This means that
it is not the acoustic information which is processed by the auditory periphery
that forms the object of speech perception, but the articulatory information about
shape, movements, and positions of the different articulators along the vocal
tract.

According to the model, the development of native language phonological
categories is based on infants’ discovery of certain gestural coordination pat-
terns of phones that are used in their native language. However, these cate-
gories are based on gestural patterns of members within phonological categories
and not according to the linguistic function of these phonemes in the native
language. That is the reason why infants do not perform as well as adults in
recognising differences and similarities of speech patterns.

The model makes strong predictions about the capabilities of infant and adult
listeners to discriminate non-native speech contrasts. According to the model,
a listener perceives non-native speech sounds with respect to the similarity in
their articulatory gestures to native phonemes. This means that non-native
phonemes will be assimilated to the native phonemes they are most similar to.
And, although this leads to an information reduction, the assimilation process
is not expected to be all or none, so within—category discriminations are still
possible (Best, 1994). Depending on the non-native contrasts, the model pre-
dicts whether a mature listener would be able to easily perceive the contrast or
whether he or she would have major difficulties (see the description of possible
non-native speech contrasts in section 3.3.2).

The Perceptual Assimilation Model offers an attractive explanation for the
developmental change in infants’ speech perception and adults’ difficulty in
discriminating particular non-native speech contrasts. However, it still leaves
open several important issues with respect to the developmental process. For
instance, the model does not specify how infants recognise the linguistic infor-
mation in the speech signal. It also does not explain why the developmental
process starts at an earlier point in time for vowels than for consonants, or why
adults are able to perform better in discriminating particular non-native speech
contrasts after training. These issues are still outside the scope of this model.
It will be very interesting to see how future versions of the theory will handle
these issues.

MAPCAT and the Native Language Magnet (NLM) theory

The findings of Kuhl and her associates, that 6-month~old infants and adults
showed a perceptual magnet effect, but that monkeys did not (Kuhl, 1991), and
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Figure 3.3: Phase 1: Newborns’ speech perception is language—universal and defined
by phonetic “boundaries” that allow them to discriminate all phonetically relevant differ-
ences across languages.
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Figure 3.4: Phase 2: Linguistic experience has caused the formation of representations
that reflect the language—specific vowel system. Perceptual magnets have already been
developed by six months of age.

that this effect might be due to experience in listening to a particular language
(Kuhl et al., 1992) led to the formation of the Native Language Magnet (NLM)
theory (Kuhl, 1993a, 1993b). The theory focusses on this effect and is an attempt
to explain how language—dependent speech representations might alter infants’
speech perception and production. It consists of three phases in which each of
the phases describes a particular developmental stage:'

In Phase 1, infants’ speech perception is determined by “natural auditory-
perceptual boundaries” (figure 3.3) that are innately specified in auditory pro-
cessing and are not due to experience with a particular language. The perceptual
boundaries reflect the findings that infants’ discrimination is better for between-
category than within—category speech contrasts.

Phase 2 represents the stage at which infants have formed memory repre-
sentations as a result of language experience. This is illustrated in figure 3.4 for
6-month-old infants from three different linguistic environments. The repre-
sentations are the result of infants’ perception of language input and reflect the
distributional characteristics of the vowels they have heard. Each representation
forms a prototypical region of a category that behaves like a perceptual magnet
on neighbouring sounds. According to the theory, the magnetic “sphere of influ-

BThe following figures only illustrate schematically the underlying concept of the NLM the-
ory. Moreover, although the desription is restricted to vowels, the same principles apply to
consonant perception (Kuhl, 1993a).
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Figure 3.5: Phase 3: The development of perceptual magnets has the effect that certain
boundaries functionally disappear.

ence” of a prototype is constrained by the initial perceptual boundaries. What
is further important is the assumption that the resulting language-specific cate-
gorical system is acquired by a kind of self-organising process, without phono-
logical knowledge.

The magnet effect of each prototypical region is shown in figure 3.5 and rep-
resents phase 3 of the NLM theory. Perceptual distinctions near the prototypical
region of a category are minimised while they are maximised near the bound-
aries between two perceptual magnets. Kuhl emphasises:

“It is important to note, however, that even though these boundaries
have been erased, the model does not hold that sensory perception
has changed. Instead, it is argued that higher order memory and rep-
resentational systems have altered infants’ abilities. In other words,
magnet effects functionally erase certain boundaries — those relevant
to foreign but not native languages.” (Kuhl, 1995, p. 135).

The NLM theory is based on the assumption that the structure of speech cat-
egories are formed around prototypes that have an attraction effect on neigh-
bouring stimuli (Kuhl, 1991; Kuhl et al., 1992). Although MAPCAT does not
make this assumption — at least not for the auditory categories — the models
bear certain similarities. First, both claim that infants’ initial speech perception
capacities are due to general auditory mechanisms. In NLM, these mechanisms
are described by natural auditory boundaries that partition the acoustic space,
while in MAPCAT infants’ perceptual capacities are constrained by the charac-
teristics of the acoustic analysis module. Second, in both models it is infants’
experience with a particular language that is responsible for the developmen-
tal change in speech perception. Representations develop during maturation
which reflect the distributional properties of the ambient language on a percep-
tual level higher than sensory perception. However, this is also the point at
which both models begin to diverge.

The NLM theory assumes that infants’ perceptual representations are cen-
tered around prototypes that have a magnet effect on perceptually similar
speech stimuli. The initial auditory boundaries build the framework in which
the language-specific categories develop:

“Note also the importance of infants’ innately given perceptual
boundaries in this scheme: infants’ perceptual boundaries delimit
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the space incorporated by an individual magnet. Infants’ organi-
zation of language input is thus appropriately constrained so that
magnets reflect a single category rather than the entire vowel space.”
(Kuhl, 1993a, p. 130)

In contrast, MAPCAT assumes that the auditory categories are only broadly
structured and that the perceptual magnet effect in infants is an effect that is
related to the transition from the “acoustic” to the “linguistic” path. Moreover,
although the initial auditory boundaries in the NLM theory are equivalent to
the characteristics of the acoustic analysis module, they do only represent an in-
direct framework for the developmental process. In MAPCAT, it is possible —
unlike in NLM theory — that “boundaries” that are relevant for native speech
contrasts are “erased” by the development of auditory categories. Or in other
words, that the developmental process also has an influence on the discrimina-
tion of native speech contrasts. It is due to information from higher level pro-
cesses that phonological categories develop.

A further point of divergence between the two models is related to the per-
ception of non-native speech sounds. According to the NLM theory, infants will
fail to discriminate among speech sounds that they earlier discriminated among
because of the development of language-specific magnets that reflect the native
language phonetic categories. The development of a magnet has the effect that
similar speech sounds are “pulled” toward the magnet so that perceptual dis-
tances disappear. This means that it is the development of the magnets which
causes infants’ failure to discriminate among non-native speech sounds. How-
ever, Kuhl does not specify in detail the developmental process. The issue of
why infants between 6 and 8 months of age show a perceptual magnet effect,
but older infants between 10 and 12 months of age do not show such an effect
remains unanswered. In contrast, MAPCAT explains this developmental pro-
gression as a direct consequence of learning auditory categories which causes a
shift of the selection and integration module from the “acoustic” to the “linguis-
tic” path.

And finally, I do not see how particular speech perception effects in adults
could be explained without an additional “acoustic” path (or without assuming
a mechanism like selective attention as in Jusczyk’s WRAPSA model, see below).
It is difficult to see how the NLM theory could explain differences in adults’
speech perception performance due to e.g. different demands of experimental
conditions or different interstimulus intervals.

In summary, the NLM theory attempts to account for the development of the
perceptual magnet effect. In connection with this, it builds a framework for how
the developmental change in infants’ speech perception during the first year of
life might be explained. While the theory concentrates on the developmental
process of perceptual magnets, it neglects the integration of this process into a
general framework how speech perception might take place. Kuhl makes no
statements about the type of speech input, about the flow of information, or
the process of lexical access. Therefore, further refinements of the theory are
necessary.
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MAPCAT and the model of Word Recognition And Phonetic Structure Acquisition
(WRAPSA)

In his view of the development of speech perception capacities, Jusczyk stresses
the point that this process has to be put in the context of recognising words in
fluent speech. The development of an efficiently working word recognition sys-
tem is the actual aim of this process and phonological categories emerge during
this process because they make word recognition more efficient (Jusczyk, 1992,
1993, 1994). This is simultaneously the underlying assumption of his model of
Word Recognition And Phonetic Structure Acquisition (WRAPSA). The model
works as follows:

“The input undergoes a preliminary stage of auditory analysis that
extracts an array of basic properties from the signal. These properties
are grouped into syllable-sized units and weighted as to their impor-
tance in signaling meaningful distinctions in the language, then the
weighted representation is matched against lexical representations
stored in secondary memory. Weighting the representation amounts
to directing attention to certain properties in the signal. The weight-
ing scheme that is developed is not only particular to a given lan-
guage, but also, in all likelihood, to a particular dialect. Thus, mas-
tery of the sound structure of the native language entails acquiring
the appropriate weighting scheme.” (Jusczyk, 1992, p. 39)

The major components of the model are the following;:

Preliminary analysis of the acoustic signal. Inits first stage, the acoustic signal is
processed by an array of acoustic analysers which extract the spectral and tem-
poral features from the signal. Each of the analysers works specifically within a
particular spectral range and is independent of the other analysers. The analy-
sers are temporally synchronised according to syllable-sized units.

Development of a weighting scheme. The sensitivity to the characteristics of a
native language is reflected in weighting certain properties more strongly than
others in categorising the speech signal. The development of a language-specific
weighting scheme sets the focus of attention on the output of those analysers
which are relevant to recognising and distinguishing words in the language. It
is assumed that the acquisition of the weighting scheme is dependent on (1)
the distributional properties of the input, (2) the onset of attaching meaning to
speech, and (3) innately given structures.

Pattern extraction. The weighted speech stream is structured into candidate
words by integrating the information available through the individual analy-
sers. It is assumed that prosodic information in the input might have an impor-
tant role in this process.

Recognising and storing the representations. The representations provided by
the pattern extractor are structured in terms of syllable-sized units and con-
tain the salient features of the speech signal as well as prosodic markers. It is
assumed that the representations are not stored as prototypes but as individual
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members in a multiple trace model. Therefore, no abstract description of a cat-
egory is assumed but a category is represented as the set of individual traces in
memory.

WRAPSA represents a very attractive model of the development of speech per-
ception from earliest infancy to the mature, language—dependent adult system.
During the developmental process in early infancy, the central feature of the
model is the weighting scheme that focuses attention on the properties of the
native language that are relevant for an efficient word recognition process. In
Jusczyk’s view, weighting is equivalent to emphasising attention, and therefore
the development of a weighting scheme is equivalent to the development of
a scheme of focusing attention automatically on the output of particular analy-
sers. Therefore, what is learned during development is a particular default set-
ting of the system which can change in particular situations, for example, when
listeners are given instructions to hear speech or nonspeech sounds. Jusczyk
compares the focusing of attention on particular dimensions at the expense of
other dimensions to stretching or shrinking of distances in perceptual space, re-
ferring to Nosofsky’s Generalized Context Model (Nosofsky, 1986, 1987; Nosof-
sky, Clark, & Shin, 1989). In WRAPSA, selective attention elegantly explains
the different results when infants were exposed to “fine—grained” as opposed to
“coarse~grained” distinctions in the pre-shift phase of an experiment using the
HAS paradigm: (Jusczyk et al., 1990). It might also explain the role of training in
adults’ discrimination performance on non-native speech contrasts.

The development of the weighting system in WRAPSA is partly equivalent
to the development of categories within the phonetic map in MAPCAT. While
in WRAPSA, non-native speech contrasts drop out because they are different
in unattended dimensions, it is the similarity of the activation patterns within
the phonetic map in MAPCAT that causes infants to fail to detect a difference.
The differences in speech perception capacities between older infants and adults
could be explained by a refinement of the weighting system, similar to the re-
finement of the categories within the phonetic map. Therefore, both models
assume that infants’ initial speech perception is defined by the characteristics of
the acoustic analysers or acoustic analysis module and that exposure to linguis-
tic input leads to the development of a weighting system or system of categories
that directs perception towards the native language.

The differences between the models are a consequence of (1) the different as-
sumptions about what kind of information the weighting system finally repre-
sents in the model and (2) the absence of explicit representations of phonological
categories in WRAPSA. What is learned in WRAPSA is a weighting system that
is partly comparable to the phonetic map in MAPCAT, which is, however, not
intended to represent acoustic, phonetic, or phonological categories of the native
language. Its task is to filter the input stream with respect to those dimensions
which are critical in signaling meaningful distinctions in the language. It is one
of the main assumptions of the WRAPSA model that infants’ perceptual rep-
resentations of speech are based on “holistic” units and are not analysed into
phonetic segment-sized units. The development of phonological categories is a
process which develops at a high level in the word recognition network. Only
the discovery that words which share common initial segments are also similar
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in their acoustic onset characteristics leads to initial representations correspond-
ing to phonological categories.

What makes WRAPSA so attractive is the fact that it does not attempt to
model a particular effect that has been found in infant speech perception experi-
ments, but that it attempts to explain the development of a word recognition sys-
tem in infants in general. However, the model is still agnostic with respect to the
language-specific perception of infants during the first year of life. For example,
it gives no explanation for the effect that infants’” vowel perception is affected at
an earlier point in time by the ambient language than infants’ consonant per-
ception. Nor does it explain the perceptual magnet effect for 6- to 8-month-old
infants. Much in the development of the weighting scheme is dependent on the
characteristics of the process of selective attention and more details are required
about the developmental properties of this process.

3.5 Summary

In this chapter, I introduced a new theoretical model (MAPCAT) which accounts
for the processes that are responsible for the developmental change in infants’
speech perception capacities during the first year of life. The main feature of
MAPCAT is the development of a system of representations of phonological
categories within a phonetic map which directs infants’ perception to the native
language. However, the structure of the model is not limited to explaining just
the developmental change in infants, but can be extented to represent a model
that accounts for the development of a word recognition system. It is this prop-
erty which distinguishes it from the Perceptual Assimilation Model and the Na-
tive Language Magnet (NLM) theory.

An important feature of MAPCAT concerns the kind of information that de-
termines the development of the phonetic map. It is assumed that the devel-
opmental process is initially exclusively based on information from the speech
signal, leading to auditory categories within the phonetic map. At a later stage of
the developmental process, information from higher processing levels ensures
that the auditory categories are structured into phonological ones. In the follow-
ing chapters, I investigate the process of the development of auditory categories
in more detail. On the basis of MAPCAT, I developed an unsupervised neural
network model to simulate the initial developmental process in infants. The un-
derlying question was what kind of information can be acquired if the system is
exclusively guided by speech signals as input.
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UNSUPERVISED COMPETITIVE
LEARNING IN ARTIFICIAL
NEURAL NETWORKS

CHAPTER 4

4.1 The implications of MAPCAT

According to MAPCAT, the development of auditory categories is responsible
for the fact that young infants’ discrimination capabilities decrease during the
second half of the first year of life. The phonetic map acts as a filter in which
incoming speech signals are “assimilated” to native-language phonological cat-
egories so that previously discriminable speech contrasts become indistinguish-
able. The theoretical model claims that the developmental process is on the one
hand dependent on incoming speech signals — phonological categories only de-
velop for native-language speech sounds — and on the other hand dependent
on “feed-back” information from higher levels of processing. These top-down
connections form an essential part of the model since they provide the phonetic
map with discriminative information. However, the model assumes that such
top—down information only plays a role at a later stage in the developmental
process, and that the development of auditory categories is based on the dis-
tributional properties of incoming speech signals, guided by an unsupervised
learning process.

The power of artificial neural network models lies in their ability to provide
the user with information indicating whether such kinds of assumptions might
be plausible or not. Therefore, the aim of the following part of the thesis is to
investigate whether the assumption of an initial unsupervised learning process
is plausible and what the limits of this process are. Howeve~, it would be wrong
to blindly take one of the existing unsupervised learning algorithms, run it with
an appropriate input set, and evaluate the assumptions of the theoretical model
on grounds of the simulation results. This method of modelling concentrates
only on the final result of the learning process, neglecting intermediate stages.
But it is the intermediate stages that are important, since MAPCAT provides
strong constraints on the learning process itself, which are based on results from
psycholinguistic experiments and which have to be met by the artificial neural
network model. That means that apart from investigating what the limits of an
initial unsupervised learning process with respect to MAPCAT are, the learning
process itself must provide a description of the development of phonetic cate-
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gories that is in accordance with the specifications of MAPCAT.

4.2 Unsupervised competitive learning algorithms and
their possible applications

An unsupervised neural network approach is characterised by the fact that there
is no “teacher” for the network, i.e. no feedback from the environment is avail-
able that provides information about what the expected output is or whether
the output of the network is correct. An important constraint provided by the
input data with respect to unsupervised learning is that the characteristics of
the input space can only be recognised if the input data includes redundarncy.
Or, as Barlow (1989) has put it, redundancy provides knowledge, and without
redundancy, the input data would provide no information by itself.

In general, unsupervised learning algorithms make use of an adaptation
mechanism proposed by Hebb (1949):

“When an axon of cell A is near enough to excite a cell B and repeat-
edly or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A’s effi-
ciency, as one of the cells firing B, is increased.” (Hebb, 1949, p. 62)

That means that two associative relations between interconnected units form the
base for the learning process: (1) a sequential relation in which the activity in one
cell (the pre-synaptic cell) is followed by the activity in the other cell (the post-
synaptic cell), and (2) a simultaneous relation in which the connection between
the cells is strengthened according to the repeated simultaneous co—occurrence
of activity in the two cells.

In artificial neural network models, the Hebb rule is formulated as:

Pap(t+ 1) = pap(t) +€mamp 4.1

which says that when two units @ and b simultaneously have a high level of
activity (7, and n,, respectively), the connection strength ., between them is
increased. Typically, this rule is combined with a normalisation mechanism to
prevent the connection strengths from increasing indefinitely. In addition to the
adaptation process, unsupervised learning algorithms make use of some form of
lateral interactions between the units to concentrate the response of the network
in a specific set of units. It is a sort of competition, so that only one or a few units
respond to an input signal and therefore take part in the adaptation process.

Unsupervised competitive learning algorithms have been successfully ap-
plied to several different problems:

e Principle Component Analysis (PCA)
The aim of PCA is to determine a set of orthogonal vectors (eigenvectors
of the correlation matrix) within the input space that best account for the
variance of the input vectors;
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o Vector quantisation
For the purpose of data compression the input space is encoded in a set of
reference or “codebook” vectors in which each input vector is replaced by
the reference vector, and for which a particular distortion error is minimal;

o Clustering/Categorising
Similar input vectors are classified as being in the same cluster or category
so that the same output unit(s) in the network structure are active. The
categories must be isolated by the network itself from the correlations of
the input data;

o Feature mapping
Taking the geometrical organisation of the units into account, similar inp at
signals should activate the same or nearby output units in the network
structure. Such a topographic map is essentially a mapping that preserves
neighbourhood relations.

With regard to the aim of the thesis — the modelling of the initial process of the
development of phonetic categories by an unsupervised neural network model
—, it 1s the Clustering/Categorising task which corresponds most closely to the
phonetic categorisation process. The development of a cluster of units in the
network structure representing a particular input category is equivalent to the
development of an auditory category within the phonetic map. Therefore, the
unsupervised learning algorithm has to detect the correlations within the input
data and has to develop corresponding stable representations. In chapter 5 will
describe a new unsupervised neural network model which has been developed
with the aim of describing this process as closely as possible. Moreover, it con-
tains some new features that — to my knowledge — have not been used so far
in other learning algorithms.

It is always an exciting challenge to develop something new. Particularly
when it concerns a particular psychological process which is to be modelled,
there are usually several arguments for creating a new model that lie in the de-
tails of the underlying theory. However, that does not necessarily imply that
ex1s’tmb artificial neural network models are incapable of modelling this process
in a similar successful way. For this reason, in the following sections [ will de-
scribe a couple of existing unsupervised competitive artificial neural network
models and evaluate their characteristics with respect to the constraints of the
developmental process of auditory categories.

4.3 Self-Organising Feature Map (SOFM)

The Self-Organising Feature Map (SOFM) was originally developed by Koho-
nen (1982, 1989, 1993) to model the process of self-organisation of neural con-
nections between areas in the visual cortex and cells in the retina which are ex-
cited by external stimuli. This process is also called the refinotopic map prob-
lem and was already investigated by an earlier model by Willshaw and von der
Malsburg (1976). Willshaw and von der Malsburg used an architecture in which

71



the network units contained lateral connections of Mexican hat form and whose
learning algorithm followed a general Hebbian learning rule.

Kohonen'’s algorithm is an abstraction of this earlier model and builds neigh-
bourhood relations into the learning rule to achieve the effect accomplished in
the earlier model by lateral connections. Although the algorithm is recognised
as a gross simplification, it nevertheless serves as a useful functional model for
the development of topology-preserving maps which preserve neighbourhood
relations.

4.3.1 The learning algorithm

The network architecture of the model consists in general of a one- or two-
dimensional map of units A, in which each unit receives the same input vector
¢ at a given simulation step. The weight vector u; of a unit ; has the same
dimension as an input vector. The set of weight vectors W = {y,|i € A} defines
a mapping of the input space I onto the network structure A by:

Y I = A 4.2)
in which the “best matching” unit ¢,(§); € € I is defined by:

1600 — €Il = min{|p, - €] (4.3)
Thereby, || - || denotes the Euclidean distance metric. Each simulation step con-

sists of the adaptation of the weight vectors of the best matching unit and neigh-
bouring units in the direction of the current input vector:

pi(t+ 1) = g, (1) + e(t) hy, (1) (€ — p, (1) (44)

in which (t) is a gain function that defines the adaptation strength in the di-
rection of the current input vector, and h,, i(t) is a neighbourhood function that
defines the size of the neighbourhood around the best matching unit within the
network structure that also takes part in the adaptation process, in addition to
the best matching unit.

The self-organising algorithm of Kohonen has a striking characteristic: The
weight vectors are adapted during the learning process in such a way that the
resulting mapping of the input space I onto the network structure A attempts
to fulfil the following two conditions:

1. Preservation of topology

Similar input vectors must be mapped onto neighbouring or identical units
in the map. In addition, neighbouring units in the map must have similar
weight vectors. That means that if the receptive fields & (u,) and R ()
of two units u, and u; are adjacent within the input space I then the units
u, and u, are neighbours in the map of units (Veelenturf, 1995). However,
a complete topology preservation is only possible if the dimension of the
input space ! is equal to the dimension of the map of units, or if the high-
dimensional input vectors span a low-dimensional subspace that corre-
sponds to the dimension of the map of units.
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2. Preservation of distribution
Regions within the input space [ that have a high probability density p(£)
shall be represented by an equivalently large number of units, so that the
relative density of weight vectors in I corresponds to the probability den-

sity p(£)-

In order to achieve this goal in practice, the gain function €(f) and the neigh-
bourhood function #,. ,(t) have to change dynamically during learning under
the following conditions:

o The gain function has to be a monotone decreasing function with
C(t) € [0, 1] and rlim E(t) =0;
—x

¢ The neighbourhood function has to be a monotone decreasing function by
time and distance, i.e.

he,.(t) > h, (t+1),and
hlJ < }Inkt if }}i - jl’ > ,’i - k,,;

¢ The neighbourhood function has to be large in the beginning of the simula-
tion process so that nearly all units are involved in the adaptation process.

There are different possibilities for the specification of appropriate formulas for
the gain and the neighbourhood function. In the following, I will use an ap-
proach that was proposed by Ritter, Martinetz, and Schulten (1990) and has also
been used by Fritzke (1992)."*

The gain function is computed according to:

£ b
€(t) = € (i) (4.5)

€p

in which ¢, and ¢, define the begin and end value of ¢, respectively. The number
of simulation steps is specified by ¢,
The neighbourhood function is computed according to a Gauss function:
hap o

hy., () = exp 7 (4.6)
The function d(v,.7) defines a distance metric in the network structure A be-
tween the best matching unit u, , and unit u,. The actual range of the neighbour-
hood function is determined by the parameter o(t). Similar to the gain function,
o has the following temporal course:

t b
o(t) =0 (%) (47)

HThe functions for h(t), ¢(t), and «(t) fulfil the conditions of achieving a maximal ordered map
at the stable state of the Kohonen map (Ritter et al., 1990). Other functions have been proposed,
e.g. e(t) = (1 + t)"1.? (Veelenturf, 1995). However, under the assumption that the functions fulfil
the above conditions, the use of another function as gain or neighbourhood function does not
change the characteristics of the Kohonen algonthm.
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in which ¢, and o, define the begin and end value of o, respectively.

Figure 4.1 shows an example of mapping the two-dimensional input space
[-1,+1] x [-1,41] onto a network structure consisting of 10 x 10 units. The
input vectors were chosen randomly from the input space according to an un-
derlying uniform probability distribution. The weight vector of each unit was
initially assigned to a random point within the input space.

During the learning process, the initially random distributed weight vectors
(figure 4.1 (a)) are pulled apart by the sequence of input vectors and get organ-
ised into a squared grid (figures 4.1 (b)-(d)). If one were to proceed with the
learning process, the grid structure would become even more regular than in
figure 4.1 (d), filling nearly the complete input space.'

The Kohonen algorithm has been applied with success in many different ar-
eas. Examples are combinatorial optimisation (Fort, 1988), visuo-motor coordi-
nation of a robot arm (Ritter et al., 1990), representation of semantic relationships
(Ritter & Kohonen, 1989), recognition of phonetic units (Kohonen, 1988), infor-
mation retrieval (Scholtes, 1993), and recently the organisation of large collec-
tions of text files (Kohonen, Kaski, Lagus, & Honkela, 1996). This list of success-
ful applications of the algorithm to very different kinds of problems suggests
that the Kohonen algorithm might also be useful as an approach for modelling
the development of auditory categories in young infants. However, the follow-
ing section will show that the learning algorithm has particular characteristics
that are not in accordance with the specifications of MAPCAT.

4.3.2 The inappropriateness of the Kohonen algorithm
Specification of the input space

As in the previous simulation, the input space for the following simulations
consisted of the two—dimensional area [-1,+1] x [-1, +1]. However, the input
vectors were not chosen according to an underlying uniform probability dis-
tribution, but came from circular input categories ¢, which were positioned at
specific centre points m, and had a constant radius r. These categories formed
an abstraction of vowel categories in a speech context.

In order to simulate the characteristics of the utterance of a vowel in a
consonant-vowel-consonant (CVC) context, the probability distribution of the
input vectors within an input category was defined by particular traces through
the category (figure 4.2). Each trace consisted of a constant number of input
vectors, whereby each input vector of a trace was chosen according to a small
Gaussian distribution. The idea of using a trace-specified probability distribu-
tion instead of a uniform one was based on the fact that speech is a continuous
signal in which (1) the utterance of a vowel is dependent on its consonantal con-
text, and where (2) two utterances of the same word are never exactly identical
to each other. The result was a set of input files in which each file contained the
input vectors of a particular trace through a particular input category.

An important aspect of the simulations is the assumption that the input space
changes with respect to its “complexity” during a simulation. This behaviour is

3 As Kohonen (1989) pointed out, there will always be a boundary effect in which the density
of the weight vectors is correspondingly higher than within the network structure.
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Figure 4.1 The distribution of the weight vectors within the input space at different
points in ime during a simulation with the Kohonen algorithm. The input vectors were
chosen randomiy from the input space according o an underlying uniform probability
distribution.
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Figure 4.2 Possible traces through an input category within the two—dimensional input
space.

due to the assumption in MAPCAT that an additional filter initially strongly
restricts the input to the phonetic map and whose influence decreases during
the developmental process (see also section 3.2.3).

In order to include this aspect in the specification of the two—dimensional
input space, the parameter set for the input specification was expanded by:

1. The number of input levels

Each input level characterises a particular “complexity” of the input space
so that the set of possible input vectors is limited. In general, the input
space for an input level at the beginning of a simulation is less “complex”
than for the input level at the end of a simulation. That means, that the in-
put space at input level i forms a subspace of the input space at input level
i+ 1. In relation to MAPCAT, an input level corresponds to a particular
stage of the filter between the acoustic analysis module and the phonetic
map;

2. The number of simulation steps for each input level
This specifies how many simulation steps are performed at a particular
input level i before a switch to the next input level 7 + 1 occurs;

3. The number of zero vectors

Each input level is characterised by the number of zero vectors within an
input file. A zero vector is a vector that is neutral with respect to the adap-
tation process, i.e. no adaptation is performed upon processing such a vec-
tor. Zero vectors replace the original input vectors at the beginning and the
end of an input file. They are specified for each input category separately.
The higher the number of zero vectors, the more a trace within an input
file concentrates in the centre of an input category (see figure 4.3).

The simulation of the additional filter in the theoretical model corresponds to
a high number of zero vectors at the beginning of a simulation (input level 1)
and a gradual decrease in the number of zero vectors at subsequent input levels.
Moreover, by specifying different numbers of zero vectors for the input cate-
gories at an input level, it is possible to simulate the different influence of the
filter on each of the input categories.
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(a) Trace without {b) Trace with four {c) Trace with eight
zero vectors zero vectors zero vectors

Figure 4.3: Simulation of the influence of an energy filter by defining the number of zero
vectors of a trace.

Appendix A contains a complete list of the parameters that specify the input
space for the following simulations. The input came from input files that con-
tained a particular trace through one of four specified input categories consisting
of 21 input vectors. The input categories had no overlap and had a constant ra-
dius of 0.1 within the input space. Each simulation lasted 100, 000 simulation
steps and was divided into five input levels. At input level 1, input came only
from the first input category. At input level 2, input came from the input cate-
gories 1, 2, and 3, while at input level 3 only, input came from all four possible
input categories. At input level 5, the number of zero vectors was zero for all
input categories. This input space was used to investigate whether the Kohonen
algorithm is able to learn representations of the input categories and whether
this learning process is in accordance with the specifications of MAPCAT.

Simulation 1

The network structure consisted of a two-dimensional map of 20 x 20 units in
which the weight vector of each unit was initially assigned to a random point
within the input space. The gain and neighbourhood functions were specified
according to equations (4.5) and (4.6). The following start and end values were
used for o and €:

Ostart = 4.0 Oena = 1.0 €gqart = 0.5 €unq = 0.1

Figures 4.4 (a) - (d) show the distribution of the weight vectors within the input
space at particular moments in time during the simulation. Each dot represents
the position of a particular weight vector within the input space. In the be-
ginning of the simulation, the network only got input from one input category,
so that all weight vectors were concentrated in this region of the input space
(figure 4.4 (a)). After 2,000 simulation steps, two further input categories were
added. The representation of the first input category partly broke up and the
weight vectors distributed in input space according to the new constellation. At
the end of the simulation, representations for all four input categories had been
learned and the distribution within a category was clearly visible.
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Although the Kohonen algorithm is able to learn representations for all four
input categories, the figures show also particular characteristics of the learning
process that are not in accordance with the specifications of MAPCAT:

1. Querspecification of early input categories and redistribution of the weight vectors
after expansion of the input space with further input categories
In the beginning of the simulation the weight vectors of nearly all units
concentrated in a very limited region within the input space that corre-
sponds to the first input category. During the further development, the
first representation did break up and the weight vectors distributed within
the input space so that the additional input categories were represented,
too. With respect to MAPCAT, that would mean that an infant acquires
initial representations of sound structures which are more detailed than its
final version. This is in contrast to what is known from psycholinguistic
experiments and what I assume in the theoretical model.

2. Representation of an input category is dependent on the number of input cate-
gories
If the input space consisted of only one input category, all weight vectors
would concentrate in the corresponding region within input space. That
means that the representation of an input category is dependent on the
“complexity” of the input space — the more input categories it contains
the smaller is the number of units which represents an input category. This
is in contrast to MAPCAT, in which it is assumed that a representation of
a sound structure is only dependent on the characteristics of the sound
structure itself.

3. Representation of an input category is not stable during a simulation
Dependent on the parameters o and ¢, the representation of an input cat-
egory will only be stable at the end of a simulation. This characteristic of
the Kohonen algorithm becomes clear by comparing figures 4.4 (a) and (c)
with each other. While in figure 4.4 (a) the representation of the first in-
put category is overspecified, it is nearly lost in figure 4.4 (c). That would
mean that infants’ representations of sound structures are unstable dur-
ing development and will only develop their final structure at the end of
development. This is in contrast to what I assume in the theoretical model.

These criticisms of the Kohonen algorithm’s learning process are partly due to
the fact that I used learning parameters that attempt to learn a global topology-
preserving mapping. Consequently, if the input space changes during a sim-
ulation — due to the specification of the different input levels — previously
learned representations will also change, so that the global organisation of the
weight vectors correspond to a topological representation of the input space that
is characterised by the current input level.

But is there a necessity for a global topology—preserving mapping? Actually,
MAPCAT does not make any statements about the arrangement of the repre-
sentations in the phonetic map. In fact, it is not a global mapping of the input
space onto the network structure that MAPCAT specifies, but a developing set
of representations that is based on a changing input space and in which a new

78



Afferent weight vectors at step 3000
te T T T ’ T )

-10 -05 77‘(’)‘(’)\;7 ]T T
(a) after 3.000 simulation steps
Afferent weight vectors at step 25000
"o T, T T T T T
0.5~
oo~
~05
“1o _ - - - -
-0 -€5 G20 )

(c) after 25.000 simulation steps

Figure 4 4: The distribution of the weight vectors within the input space at particular

Afterert weight vectors ot step 5000

10
0s F
F S
LORRE I
. . c.
3
0o R
%
- .
g5~
10 -
-0 -0s 0c 95

(b) after 5.000 simulation steps

Afferent weigrt vectors ot step 100000

o

(d) after 100 000 simulation steps

moments in time during a simulation with the Kohonen algonthm (Simulation 1).
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Figure 4.5: An approximation of the Gauss function as new neighbourhood function.

representation develops independent of existing representations. Therefore, what
the network has to learn are local representations of the input categories that are
independent of each other. However, the Kohonen algorithm!® is not able to
learn local, independent representations as the results of the following simula-
tion will show.

Simulation 2

For this simulation, two changes were made to the parameter set in relation
to the first simulation. First, the neighbourhood function which was used in
the first simulation was replaced by the following approximation of the Gauss
function (figure 4.5):

1.0 00<d<é
hs fy, ug) =< (B-d)/(B3-48) <d<p (4.8
0.0 3<d

with d as the Euclidean distance between unit 1, and unit uy:

d = d(u,/,uk;) = \/(1_ k)Z +(]~ l)Z

This neighbourhood function was chosen because the original Gauss functior
never reaches the x-axis, i.e. any input value results in an output value that it
greater than zero. The consequence of this is that a representation of an input
category has a constant influence on other units in the network. In order to avoic
this effect, the new neighbourhood function h;_; was chosen. The function limit-
the influence of the best matching unit to the radius ;3; 3 > 1.0 within the two-
dimensional map.

The second difference in comparison to the first simulation was that the pa-
rameters ¢, §, and 3 were held constant during the simulation. The consequence

At this point, I have to emphasise that the following statements only concern the Koho-
nen algorithm in its “pure” form, i.e. without any further changes on the network structure o:
learning algorithm!
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of a decrease in one of the parameters would be that later acquired representa-
tions are less detailed than earlier ones.
The following values were used for ¢, 3 and §:

e=01 8=11 =05

Figures 4.6 (a} - (d) show the distribution of the weight vectors within the input
space at particular moments in time during the second simulation. After 4,000
simulation steps the first weak representations begin to develop consisting of
only a few weight vectors. During further development, the shape of the rep-
resentations gets more distinct until they achieve their “final” form at 100, 000
simulation steps. The figures indicate that the Kohonen algorithm was able to
learn representations for all input categories and that the learning process no
longer contains some of the characteristics of the previous simulation that were
not in accordance with the specifications of MAPCAT:

1. In the beginning of the simulation, the weight vectors do not concentrate
in a very limited region of the input space. Therefore, there is no redistri-
bution of the weight vectors caused by additional input categories within
the input space;

2. Once a representation is learned, it remains stable during the simulation,
Le. it is not the case that a previously acquired representation gets nearly
lost as in figure 4.4 ().

However, a closer look at the simulation results reveals that the representations
that are learned during a simulation still depend on the global organisation of
the units and that the number of input categories and the initial distribution
of the weight vectors have a strong influence on the learning process. The un-
derlying reason for these effects is the fact that the number of units that form
a representation of an input category continuously grows as long as the simu-
lation lasts — despite of the use of a neighbourhood function that is strongly
limited in its range of influence on neighbouring units.

Figures 4.7 (a) - (d) indicate why the effect of a global organisation still oc-
curs. The figures show the distribution of the weight vectors in a subset of
the network units at partlcuhr moments in time during the simulation. The
weight vector of a unit remains in the location within the input space that it is
initialised with at the beginning of the simulation, as long as none of its neigh-
bours becomes the best matching unit. However, each time that a neighbour
unit becomes best matching unit, the unit is also attracted to the input vector
This process lasts until the weight vector of the unit is located in the region of
one of the input categories and the unit itself becomes best matching unit. In
this case, the procedure repeats and the weight vectors of the neighbour units
of the new best matching unit are attracted to the input category. This process
continues until the weight vectors of the neighbour units are located in the re-
gion of one of the input categories and become best matching unit so that they
attract the weight vectors of their neighbour units to the input category, and so
on. However, this process gets more complicated it units in the neighbourhood
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Figure 4.6: The distribution of the weight vectors within the input space at particular
moments in time during a simulation with the Kohonen algorithm (Simulation 2).
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are attracted to different input categories. In this case, the weight vectors will
oscillate between both input categories, at last.

This effect is not dependent on the choice of values for the parameters 3, 4,
or ¢, but is an inherent characteristic of the Kohonen algorithm. For example,
smaller values for 5 and e only reduces the velocity of the attraction process, but
they do not change anything in the underlying mechanism.

Another point is related to the initial distribution of the weight vectors. Since
the influence on other units in the adaptation process is restricted to a small
neighbourhood within the two—dimensional map, adaptation is “localised” and
different initialisations of the weight vectors could result in different outcomes
of the learning process.

In summary, these investigations led to the conclusion that the Kohonen al-
gorithm cannot be used as a possible artificial neural network approach for the
development of auditory categories.

4.4 The Neural-Gas Algorithm

In order to obtain an optimal result with the Kohonen algorithm for a topology-
preserving mapping of the input space onto the network structure, the dimen-
sion of the network structure has to match the dimension of the input space.
However, this requires a priori knowledge about the input space that is not al-
ways available. This deficit of the Kohonen algorithm was the underlying mo-
tivation for the development of a more flexible approach that is “capable of (i)
quantising topologically heterogeneously structured manifolds and (ii) learning
the similarity relationships among the input signals without the necessity of pre-
specifying a network topology.” (Martinetz & Schulten, 1991, p. 398).

In the neural-gas algorithm developed by Martinetz (1991, see also Martinetz
& Schulten, 1991) the adaptation of the weight vectors occurs independently
of the arrangement of the units within the network structure. Actually, neigh-
bourhood relations between units are determined during the learning process
dependent on the location of the receptive fields of each unit.

441 The learning algorithm

The network architecture of the model consists of a set of units, in which each
unit receives the same input vector § at a given simulation step. The weight
vector p; of a unit u, has the same dimension as an input vector and is at the
beginning of a simulation assigned to a random point within the input space. In
addition to the set of units, a connection matrix C describes the connections that
exist between the units. An entry C,, can have the value 1 or 0 representing a
connection or no connection between unit u, and unit u /-

At each simulation step, an ordered list g = (Bigs oy - -+ s 1, ) of the weight
vectors is generated according to their distance to the current input vector £.
p,; k=0,...,N —1describes the weight vector for which k weight vectors ex-
ist whose distance to the current input vector is smaller than ||¢ — a1 Ik (€, p)
denotes the number k that is associated with weight vector y, then is the adap-
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tation of the weight vectors in the direction of the current input vector described
by:

it +1) = p,(t) + €(t) ki€, p) (€ — p, () (4.9)

in which €(t) is a gain function that defines the adaptation strength in the di-
rection of the current input vector, and hy(ki(&, 1)) replaces the neighbourhood
function hy, i(t) in the learning rule of the Kohonen algorithm (equation 4.4). The
value of h(ki(&, p)) is largest for the “best matching” unit u;, with k, = 0 and de-
creases to zero with increasing k;, such as e.g. h(k,(§, n)) = 7%/ 2 (Martinetz &
Schulten, 1991).

The connections between the units are determined during the learning pro-
cess. For each input vector, a connection is established between the best match-
ing unit u;, and the second best matching unit u,, i.e. the entry C,,, in the con-
nection matrix C is set to 1. Each connection has a maximal lifetime T. If the
connection between both units has not been re-established within the following
T simulation steps, the connection is removed, i.e. Cj, is reset to 0.

Martinetz has shown that the neural-gas algorithm leads to connections be-
tween the units that correspond to the edges of the “induced Delaunay trian-
gulation” which forms a perfectly topology—preserving map of the underlying
input space I, regardless of the topology of I. This is illustrated in figures 4.8
(@) — (d) in which four different topology—preserving maps of an input space
that consists of two separated areas are shown. The weight vector of each unit
is marked by a dot while the thick lines represent the connections between the
units. The thin lines mark for each unit #; its corresponding Voronoi region V,
that is defined as the set of input vectors for which the weight vector g, has the
smallest distance:

vi={eer|llm—el<llu-gl;j=1...,N} (4.10)

Only the graph in figure 4.8 (d) describes an “induced Delaunay triangulation”
of the weight vectors in which two units are connected with each other if their
Voronoi regions are adjacent and the corresponding weight vectors lie within
the same input area. Therefore, only this graph forms a perfectly topology-
preserving map of the input space /.

The neural-gas algorithm was developed with the aim of improving the vec-
tor quantisation capabilities in comparison to the Kohonen algorithm. This has
been demonstrated on particular examples (Martinetz & Schulten, 1991; Mar-
tinetz, Berkovich, & Schulten, 1993) and becomes especially clear when the input
space consists of a combination of subspaces of different dimensions (Martinetz
& Schulten, 1991). In addition, the algorithm has been successtully applied
in learning the visuo-motor coordination of a robot arm (Walter, Martinetz, &
Schulten, 1991).

4.4.2 The inappropriateness of the neural—-gas algorithm

The neural-gas algorithm shares several characteristics with the Kohonen al-
gorithm. The performance of the neural-gas algorithm is also dependent on a
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Figure 4.8: lllustration of the definition of a topology—preserving map by Martinetz
(1993). The grey—shaded area corresponds to the input space I in which the loca-
tion of a weight vector is marked by a dot. The thin lines represent the Voronoi region
for each weight vector. The graph of thick lines in each diagram represents a topology-
preserving map according to (a) Delaunay triangulation of the weight vectors; (b) min-
imum spanning tree; (c) minimum induced graph; (d) induced Delaunay triangulation
(adapted from Martinetz, 1993).
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gradual change of the parameters ¢, A, and T during the learning process. Con-
sequently, the use of learning parameters that attempt to learn a global topology—
preserving mapping of the input space would lead to the same effects seen for
the Kohonen algorithm and which are not in accordance with the specifications
of MAPCAT:

1. Early input categories are “overspecified” and the weight vectors are re-
distributed after the expansion of the input space with further input cate-
gories;

2. The representation of an input category is dependent on the number of
input categories;

3. The representation of an input category is not stable during a simulation.

However, what the network has to learn according to the theoretical model are
local representations of the input categories, for which the categories develop
independently of each other. This can only be achieved if (1) the neighbour-
hood function has a limited range of influence on other units in the network
and (2) the simulation parameters remain constant during a simulation (cf. the
argumentation on page 80). In contrast to the Kohonen algorithm, the neural-
gas algorithm is able to learn such local representations of input categories since
the neighbourhood function hy(k,(§, i)} is based on the similarity of the weight
vectors within the input space and not, as in the Kohonen algorithm, on the loca-
tion of the units within the network architecture. Therefore, it is possible to limit
the influence of the neighbourhood function on other units so that the learning
process converges at last. Figure 4.9 illustrates this point in more detail.

Each diagram in figure 4.9 shows the distribution of the weight vectors
within the input space in combination with the current input vector (marked
by the unfilled circle). The input vectors stem from the shaded circular area.
The diagrams from left above to right below show the effect of a neighbourhood
function that restricts the adaptation process to just the five units whose weight
vectors are nearest to the current input vector. Under the further assumption
that the neighbourhood function is zero for all other units, the range of influ-
ence is finally limited to the dashed halfircle in the last diagram. The dashed
half—circle has a radius that is three times as large as the radius of the shaded cir-
cle. Each unit which weight vector lies within this circle could become involved
in the adaptation process.!” Therefore, the representation of the shaded category
can consist in this example of at most ten units.

Although figure 4.9 demonstrates the ability of the neural-gas algorithm to
learn local representations of input categories, it simultaneously shows char-
acteristics of the approach that make it inappropriate for the modelling of the
development of auditory categories:

7The maximal distance between an input vector and a weight vector that already lies within
the input category can be two times the radius of the input category. According to the adaptation
process, all weight vectors within the input category could get concentrated in a very small
region. Therefore, all weight vectors that lie within the dashed area could become involved in
the adaptation process.
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Figure 4.9: Hlustration of the adaptation process of the neural-gas aigorithm if the neigh-
bourhood function is restricted to five units whose weight vectors are nearest 1o the
current input vector. The shaded area represents the input space, in which the current
input vector is marked by an unfilled circle. Only in the last diagram, when the number of
units whose weight vectors lie within the input area corresponds to the number of units
that are involved in the input area according to the neighbourhood function, can a radius
around the input category be drawn as the border of the influence of the neighbourhood
function.

e Representation of an input category does not become stable

The parameters for the adaption strength € and the size of neighbourhood
A have to remain constant during a simulation. The consequence of a de-
crease of one of the parameters would be that later acquired representa-
tions are less detailed than earlier ones. On the other hand, however, a
constant adaptation strength € leads to a continuous adaptation in the di-
rection of the current input vector so that no stable representation of an
input category can arise.

o Representations are dependent on the initial distribution of the weight vectors and
the size of influence of the neighbourhood function
The size of the neighbourhood function defines the minimal number of
units a representation of an input category consists of. However, the ac-
tual number of units is also dependent on the size of the input category
and the number of units whose weight vectors are located in the partic-
ular neighbourhood of the input category. For example, in figure 4.9 the
neighbourhood function restricted the adaptation process to just the five
units whose weight vectors are nearest to the current input vector. This
means that at each simulation step the weight vectors of just five units are
attracted to the input category so that the minimal number of units that
represents the input category is five. However, the actual number of units
is only determined at the moment at which the weight vectors of five units
lie within the area of the input category. Only at this moment in time can a
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radius around the input category be drawn as the border of the influence
of the neighbourhood function. All units whose weight vectors lie within
this radius (the dashed half—circle in the last diagram of figure 4.9) could
get involved in the adaptation process. Therefore, not only the size of an
input category has influence on its representation, but also the initial dis-
tribution of the weight vectors, as well as the size of the neighbourhood
function.

These points are the main reasons why the neural-gas algorithm is not an ap-
propriate neural network approach for the development of auditory categories.
However, as I will show in section 4.6.2, these characteristics disappear if the
learning algorithm is used in combination with the notion of a growing self-
organising network.

4.5 Laterally Interconnected Synergetically
Self~Organising Map (LISSOM)

One motivation for the development of the Self-Organising Feature Map (SOFM)
algorithm by Kohonen was to explain the development of topology-preserving
maps in the neocortex. Although biologically inspired, the algorithm itself is an
abstraction of this developmental process. Moreover, like the model of Willshaw
and von der Malsburg (1976) and the model of Miikkulainen (1991), it concen-
trates on the development of connections between the external input space and
the network units, assuming lateral connections between the units with short-
range excitation and long-range inhibition. With their Laterally Interconnected
Synergetically Self-Organising Map (LISSOM) algorithm, Sirosh and Miikku-
lainen (1994) demonstrate that the development of lateral connections can be
integrated into the self-organising learning process.

4.5.1 The learning algorithm

The network architecture of the model consists of a two-dimensional map of
units in which each unit receives the same input vector £ at a given simuI.ation
step. The weight vector p;; of a unit u,, has the same dimensicn as an input
vector and is at the beginning of a simulation assigned to a ra.n('iom point within
the input space. In addition to these connections, each unit is alsq connected
to its neighbours within distance d; with excitatory lateral conpectxons and to
its neighbours within distance d; with inhibitory lateral connec'tlons. In general,
the distances are chosen assuming d; = 3dg (Sirosh & Miikkulamexlx, ‘1993, 1'99'4).
At each simulation step, each unit in the network computes an initial activity
that is based on the scalar product of the input vector and the weight vector:

U:;(t) =0 (z Hajh ﬁh) (4.11)
h
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(a) Initial response (b} Final activation pattern

Figure 4.10: The effect of lateral interaction of the LISSOM algorithm on an unordered
map.

in'which the function o is a piecewise linear approximation of the sigmoid ac-
tivation function and introduces a nonlinearity into the response, so that the
output is limited to the range [0, 1]:

0.0 §>x
o) =8 (x=-8/(B-8) d<x<p 4.12)
1.0 x>p5

The initial activity of each unit is modified by lateral excitation and inhibition in
an iterative process so that the activation pattern in the map becomes sharpened:

1) = 0 | 3 wijn & +ve 2, B ualt = 1) — Y 2 Ljw il — 1) (4.13)
W M i

Eiju and I;j i describe the excitatory and inhibitory lateral connection between
unit uy; and unit uy, respectively, while v¢ and -y; represent corresponding scal-
ing parameters.

The primary effect of the iteration process is to increase the difference be-
tween areas of high and low activity. While at the beginning of the iteration pro-
cess the activity is widely spread over the map, it becomes iteratively focused
into a local area. Figures 4.10 and 4.11 illustrate this effect for an unordered and
ordered map, respectively. In figure 4.10 (a) the weight vectors are randomly dis-
tributed within the input space so that the initial distribution of activity in the
map is random. The iterated influence of the lateral connections slightly con-
centrates the activation pattern in the map (figure 4.10 (b)). This effect is more
distinct if the weight vectors become ordered (figure 4.11): the initial smooth
activation pattern (a) gets strongly focused in a local area finally (b).

Only after the activity in the map has stabilised to a final activation pattern
are the lateral connections adapted according to a Hebb rule. The weight vector

80



{a) Initial response {b} Final activation pattern

Figure 4.11: The effect of lateral interaction of the LISSBOM algorithm on an ordered
map.

f1;; of unit u;; is modified according to:
bt (¢35
ﬂ’:;,ii{ )+ i & (4.14)

\/Eh (i) + oy &)’

while the lateral connections of unit u;; are modified according to:*®

pijp(t+1) =

axlty -+ o 7
YisalE) + O M @15
S (Yij ) + oL 7 M)

An important aspect of the learning algorithm concerns the modification of the
activation function of a unit. The function determines on the one hand the size
of the receptive field of a unit via the parameter §. If the weighted sum is below
4, the activity n;; of a unit u;; is zero, and the weight vector will not be modified.
On the other hand, it specifies by the parameter 3 the slope of the function and
therefore the selectivity of a unit. The closer 4 and ¢ are to each other, the larger
the effect of small differences between the input and the weight vector is.

Sirosh and Miikkulainen (1994) introduced a modification of the activation
function that is dependent on the activity of each unit for each input vector: the
higher a unit’s activity, the larger the change of the function’s parameters. The
modification occurs according to the following formulas:

éif(i + 1) = min (5;() + a5 74, Omax) 4.18)
Bijt + 1) = max (Bi(t) — g Mij» Bruin) 4.17)

The effect of this modification is that the activation functions get more selective,
so that the activation patterns become more focused during the learning process.

Vil +1) =

BRecently, Sirosh (1995, see also, Sirosh & Miikkuilainen, 1997) has proposed using the same
function {equation 4.15) for the adaptation of the weight vectors and the lateral connections,
According to Sirosh, this is possible in case of a sparsely populated input space.
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A further characteristic of the learning algorithm concerns the deletion of
weak lateral connections. At the moment in the learning process at which the
weight vectors have become organised partially, distant areas in the map are
no longer simultaneously active. The lateral connections between these areas
get very small values so that they hardly have any influence on the adaptation
process anymore. That means that they can be deleted without disrupting the
self-organising process.”

LISSOM was developed as an approach that attempts to integrate lateral
connections in an unsupervised learning process. Moreover, the design of the
model was based on particular neurophysiological findings. It includes not
only the local learning process based on a normalised Hebbian learning rule,
but also further assumptions about the modification of the activation function
and the deletion of lateral connections. LISSOM has been successfully ap-
plied in modelling the development of topographic maps (Sirosh & Miikku-
lainen, 1994; Sirosh, 1995) and the development of ocular dominance (Sirosh,
1995; Sirosh & Miikkulainen, 1995, 1997).

4.5.2 The inappropriateness of the LISSOM algorithm

Investigations by van Harmelen (1993) have shown that the underlying charac-
teristics of the Kohonen algorithm and the LISSOM algorithm with respect to
the formation of a topographic map are quite similar:

¢ The initially randomly distributed weight vectors get concentrated in the
statistical mean of the input space based on the large influence of the neigh-
bourhood function and lateral connections, respectively;

¢ The weight vectors get ordered within the restricted area of the input
space;

o After the ordering process, the weight vectors get distributed over the in-
put space based on the decrease of the neighbourhood function and the
modification of the activation function, respectively.

Therefore, with respect to a global topology—preserving mapping, the LISSOM
algorithm would “inherit” the characteristics from the Kohonen algorithm that
are not in accordance with the specifications of MAPCAT:

1. Early input categories are “overspecified” and the weight vectors are re-
distributed after the expansion of the input space with further input cate-
gories;

2. The representation of an input category is dependent on the number of
input categories;

3. The representation of an input category is not stable during a simulation.

9 As van Harmelen (1993) has pointed out, the deletion of weak lateral connections is neces-
sary to achieve a better distribution—preserving mapping of the input space.
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However, in contrast to the Kohonen algorithm the learning rule of the LISSOM
algorithm is local and not dependent on global variables that change during
the learning process. Moreover, the LISSOM algorithm does not make use of a
global neighbourhood function that is dependent on a “best-matching” unit at
each simulation step, but determines the adaptation process for each unit from
the influence of the lateral connections. And although the result of the learning
process is strongly dependent on the modification of the activation function, this
modification process is based on local, unit-specific information. The question
therefore is whether the LISSOM algorithm is — in contrast to the Kohonen
algorithm — able to learn local representations of input categories in which the
learning process is in accordance with the specifications of MAPCAT.

In order to answer this question, it is important to look at the learning process
in more detail. With respect to the development of an appropriate topographic
map, the initial lateral excitatory radius has to be large enough so that a single,
localised area of activation is produced in the network for an input vector. That
means that the lateral excitatory radius should be comparable to the range of
activity correlations in the network. Sirosh (1995) has proposed starting with a
large excitatory radius and decreasing it gradually so that the receptive field gets
narrower -— similarly to the neighbourhood function in the Kohonen algorithm.
In comparison to a fixed excitatory radius, the result is a better topographic rep-
resentation.

Therefore, in order to achieve the learning of local representations, the exci-
tatory radius has to be defined as being small. This will lead to local centres
of activity so that a (distributed) representation of an input category develops.
Because of the small region of influence of excitatory connections, this represen-
tation will only consist of a limited number of units, so that further representa-
tions might develop without affecting previous ones. However, these theoretical
considerations are missing one point. The local centres of activity still have in-
fluence on neighbouring units which are adapted to the input category. Similar
to the process which was already observed with the Kohonen algorithm (see
section 4.3.2), the weight vectors of neighbouring units are attracted to the input
area as in an accumulative process.

Figures 4.12 (a) - (d) illustrate this point in more detail. Each figure shows
the distribution of the weight vectors of a 15 X 15 map of units at particu-
lar points in time during a simulation. The input space consisted of the area
[-0.5,+0.5] x [—0.5,40.5] in which the input vectors only came from a circular
area centred at position (—0.25, —0.25) with radius 0.1. The radius of excitatory
connections was set to 1 while the radius of inhibitory connections was set to 14.
Actually, it does not matter how the adaptation parameters are set, the global
process of adaptation remains the same.?’ Therefore, these results show that
with respect to the learning of local representations the LISSOM algorithm has
very similar characteristics as the Kohonen algorithm and is inappropriate as a
possible network approach for the development of auditory categories.

OThere are ways to restrict this type of global organisation. One possibility “_/ould be t}_\at in
the beginning only a small region of the map is allowed to adapt in the direction qf the input
vectors. This could be driven by a gating mechanism that specifies the “activei” units in the'map.
As development progresses, the gating mechanism expands to larger regions in the map (Sirosh,
personal communication).
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Figure 4.12: The distribution of the weight vectors within the input space at particular
moments in time during a simulation with the LISSOM algorithm. The input category
consists of a circular area that is centred at position (—0.25, —0.25) and has a radius of
0.1.
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4.6 Unsupervised Growing Cell Structures

Investigations with the Kohonen algorithm have shown that the dimension and
size of the network architecture imply strong limitations on the result of the
mapping at the end of a simulation (Fritzke, 1992, 1993a). However, the Koho-
nen algorithm requires that both parameters are specified in advance so that the
effect of a non—optimal specification is realised only at the end of a simulation.
That means, that a priori information is necessary to choose appropriate values
for the size and dimension of the network architecture, which is in many cases
not available.

Fritzke (1992, 1994a) provides a solution to this problem by the development
of an artificial neural network approach that determines the structure and size
of the network architecture during a simulation. It is based on an idea of Jokusch
{1990) who developed an approach which starts with a rectangular grid and in-
crementally extends the rows and columns of the structure during a simulation.
While Jokusch’s approach can lead to rather complicated structures, the inser-
tion of units in Fritzke’s approach occurs under the condition that the network
structure consists exclusively of k—-dimensional hypertetrahedrons — according
to the initial topology at the beginning of a simulation. Moreover, it also allows
the removal of units — if necessary.

4.6.1 The learning algorithm

The learning process starts with a network structure A that consists of one k-
dimensional hypertetrahedron whereby k remains constant during a simulation.
Each unit , of the initial structure has a weight vector p; attached which has
the same dimension as an input vector £ and is at the beginning of a simulation
assigned to a random point within the input space. Similar to the .Kohonen
algorithm, the set of weight vectors W = {u,|i € A} defines a mapping of the
input space { onto the network structure A by:

vl = A (4.18)

in which the “best matching” unit v, (£); § € 'is defined by:

b2, — El1 = min{lp, — €Il (£.19)

Thereby, || - || denotes the Euclidean distance metric. The basic idea of the learn-
ing algorithm is as follows:

1. Adapt the current network structure for a fixed number of simulation steps
A according to a Kohonen-like learning algorithm;

2. Insert a new unit to the network structure and connect the'umt \\"l}t‘h
other units so that the resulting structure again consists exclusively of k-

dimensional hypertetrahedrons.
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Similar to the Kohonen algorithm, the adaptation in the direction of an input
vector is dependent on the best-matching unit u, ). However, since the net-
work structure “develops” during a simulation according to the sequence of in-
put vectors, there is no need for a decrease of the simulation parameters. There-
fore:

o Instead of using a neighbourhood function k., ,(t), only the best-matching
unit and its direct neighbours within the network structure are adapted;

o The adaptation strength € remains constant during a simulation and is dif-
ferent for the best-matching unit (¢;,) and the neighbouring units (¢,).

In summary, a simulation step can be formulated as follows:

1. Adapt the best matching unit u,, () and its direct neighbours u, in the di-
rection of the current input vector € according to:

Byt +1) = py, () + €6 (§ — By (D) (4.20)
(1) = p,(H) +€n (€ — py(t) (foralln € N.) (421)

2. Increment the local counter variable 7., of )"
T = Tuue) +1 (4.22)

3. Decrease the local counter variables of all units by a fraction a:

T, =T, — QT (foralli € A) (4.23)

After a constant number of simulation steps A, a new unit is inserted in the
network structure. This is done by determining the unit u, that has the highest
relative signal frequency:

Tq

Ty

1€A

(4.24)

The underlying idea behind this criterion is that the more frequent a unit 1, is a
“best-matching” unit, the higher the relative signal frequency h, and therefore
the more likely it is that the receptive field of unit i, is too large in comparison
to the receptive fields of other units in the network structure.

In the following, a new unit u, is inserted between unit u; and unit u;
whereby the weight vector 1, of unit i has the longest distance to p, within
the input space from all direct neighbours of u,. The new unit u, is connected
to other units in such a way that the network structure consists exclusively of
k-dimensional hypertetrahedrons again. The local variables of unit u, are set as
if the unit had existed since the beginning of the learning process. That means
that:

21The function for the incrementation of the local counter variable T was used according to the
goal to find a good estimation of the unknown probability density of the input space. Dependent
on the goal of a simulation, cther functions are possible. For example, Fritzke (1993b) proposes
the function 7, = 7, + ||§ — p,||* for vector quantisation. The use of a different incrementation
function has the consequence that other criteria have to be used for the insertion procedure. This
point is set aside in the following discussion.
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1. The weight vector p, is set to:
pe =05 (1, + 1)) (4.25)

2. The local counter variable of all direct neighbours of u, is decreased by:

= (1— < ) 7 (4.26)

and

3. The local counter variable of unit «, is set to:

1
Tr= m 2 T (427)

€A,

Figure 4.13 illustrates the algorithm on a simple example. Each diagram shows
the current distribution of the weight vectors within the two-dimensional in-
put space. The input vectors came from the uniform distribution that is marked
by the large circle within the input space. After A simulation steps, the weight
vectors are distributed within the input area and a new unit is inserted to the
network structure. The new unit is connected to neighbouring units so that the
new network structure consists exclusively of triangles again. After the process
of insertion is completed, the following A simulation steps are performed, re—
distributing the weight vectors within the input area. The alternate process of
distribution of the weight vectors and insertion of a new unit is repeated until
a performance measure is fulfilled. Such measure could be a minimum thresh-
old for the distance between the “highest—frequency” unit 1, and unit u, which
weight vector p, has the longest distance to g, within the input space from all
direct neighbours of u,.

The unsupervised Growing Cell Structures algorithm has been applied with
success in many different areas. Examples are combinatorial optimisation
(Fritzke, 1992), visuo—motor coordination of a robot arm (Behnke, 1991), and
representation of semantic relationships (Fritzke, 1994a). The underlying idea
of a growing self-organising network has also been applied on existing algo-
rithms, which led to the Growing Neural Gas algorithm (Fritzke, 1993b, 1995¢)
and the Growing Grid algorithm (Fritzke, 19932), and has been extend.ed toa su-
pervised learning algorithm (Fritzke, 1994a, 1994b). Several comparisons \\'}th
existing learning algorithms have shown that the performance increases signiti-
cantly using a growing network approach (Fritzke, 1992, 1993a, 1994a, 1995b).

4.6.2 The (in)appropriateness of the Growing Cell Structures
algorithm

Growing self-organising network approaches like the Crm«ting Cell Str}lctu'res

or the Growing Neural Gas algorithm have several properties that distinguish

them from the previously described models:

1. The final network structure develops during the learning process accord-

ing to incoming input signals; o
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Figure 4.13: lllustration of the learning process of the unsupervised Growing Cell Struc-
tures algorithm. The network structure consists initially of a triangle marked by the
weight vectors of the units. The structure is adapted for a constant number A of simula-
tion steps according to the input signals stemming from the uniform distribution marked
by the large circle. Then a new unit (marked by a small white circle) is inserted in the
structure and connected to the neighbouring units so that the new structure consists ex-
clusively of triangles again. This procedure is repeated until a maximal number of units
is reached or another performance measure is fulfilled (adapted from Fritzke, 1994).

2
[

2. At each simulation step is the adaptation process only performed for the
“best matching” unit and its direct neighbours within the network struc-
ture;

3. All model parameters remain constant during the learning process.

This means that the learning process not only consists of the adaptation of
weight vectors in the direction of an input vector but that also the network struc-
ture itself is part of the learning algorithm. In the following I demonstrate the
consequences that such incremental learning has on a learning algorithm as the
Growing Neural Gas algorithm.#

In section 4.4.2, T concluded that although the original neural-gas algorithm
is able to learn local representations of input categories, it still has particular
properties that are not in accordance with the specification in the theoretical
model, namely:

¢ The representation of an input category does not become stable;

¢ The representations are dependent on the initial distribution of the weight
vectors and the size of influence of the neighbourhood function.

While the first property was based on the fact that the simulation parameters
have to remain constant during the learning process, the second property was
an effect of how the neighbourhood relation in the neural-gas algorithm was

A similar line of reasoning can be made for the Growing Cell Structures algorithm since the
adaptation and insertion process 1s identical in both algorithms. The algorithms only differ in
the constraints with respect to how a new mserted cell 1s connected to other cells in the network.
However, this 1ssue has no influence on the following description.
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defined. Therefore, if it is possible to integrate the properties of a growing self-
organising artificial neural network model into the neural-gas algorithm, the
underlying reasons for the inappropriate behaviour would no longer exist and
the modified neural-gas algorithm might represent an appropriate model of the
developmental process.

Fritzke (1995b, 1995¢) succeeded in the integration task and developed the
Growing Neural Gas algorithm in which the adaptation of the weight vectors
occurs according to the Growing Cell Structures algorithm, while the units are
connected with each other on the grounds of the neural-gas algorithm. I tested
this network model on an input configuration in which input categories were
represented as uniformly distributed circular areas of equal size and in which,
starting with only one input category, a new input category was added to the
input space after a fixed number of simulation steps. Figure 4.14 (a) shows the
constellation at the beginning of the simulation. The network structure only cor-
sists of two units which weight vectors were randomly distributed within the
area of the first input category. After every 200 simulation steps, a new unit was
added to the current network structure, which led to the intermediate stage in
figure 4.14 (b) after 2,000 simulation steps. At this moment in the simulation, a
new input category was added to the input space with the consequence that the
weight vector of one unit was attracted to the new input category and accord-
ing to the unit insertion process, a new representation developed (figures 4.14
(c), (d), and (e)). A similar behaviour was observed at simulation steps 4, 000
and 6,000 when a third and fourth input category was added. After 10.000 sim-
ulation steps, the representations were of equivalent size which was based on
the equal size and equal uniform distribution probability of each of the input
categories (figure 4.14 (f)).

The figures show that the Growing Neural Gas algorithm is able to learn lo-
cal representations that are in accordance with the specifications of MAPCAT.
Based on the incremental learning process, the addition of new input categories
to the input space has nearly no influence on already developed reprgsentatiogs.
A new input category produces the effect that the weight vectors of ne\«"um.ts
correspond to positions within the new input category, since thi§ category is still
under-represented in comparison to existing categories. Thererore?, new repre-
sentations become comparable in size to existing ones very soon after the 'addxf
tion of a new input category. This process is independent of the number of input
categories and leads to stable representations whose size is only dependent on
the distributional properties of the corresponding input categories.
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{a) at the beginning of the simula- {b) after 2,000 simulation steps
tion

(¢} after 2,050 simulation steps (d) after 2, 500 simulation steps

{e) after 4,000 simulation steps {f) after 10, 000 simulation steps

Figure 4.14: The distribution of the weight vectors within the input space at particular
moments in time during a simulation with the Growing Neural Gas algorithm. The grey—
shaded circular areas represent the input space. At the beginning of the simulation, the
input signals came only from the left input area. A new input area was added every
2,000 simulation steps, starting with the right input area, then the top, and finally the
bottom one. The sequence of pictures shows that the addition of a new input area had
nearly no influence on already developed representations.
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4.7 Conclusions

In the introduction to this chapter [ noted that it is always an exciting challenge
to develop something new. From this point of view, there is no need for an ar-
gument as to why I developed a new unsupervised neural network approach
for the modelling of the development of auditory categories. However, aside
from this challenge, it is of great interest whether existing learning algorithms
would in principle be able to model this developmental process in a way that is
In accordance with the specifications of MAPCAT. Looking at the results that
I presented in this chapter for several neural network approaches in more de-
tail, the approaches would probably be able to fulfil these specifications if they
did not carry the assumption that the input space changes with respect to its
“complexity” during a simulation. In the theoretical model it is assumed that an
additional filter initially strongly restricts the input to the phonetic map, causing
the filter’s influence to decrease during the dev clopmental process. This leads
to the effect that during a simulation, new input categories appear within the
input space, for which new representations have to be learned without affect-
ing existing ones. However, the development of such local representations is
not possible with existing unsupervised learning algorithms, except for grow-
ing self-organising neural network approaches. Thls is actually not a defect of
the individual artificial neural network model but is a result of the fact that they
have been developed for other purposes, like feature mapping and vector quan-
tisation. That it is actually possible to learn local representations by an unsuper-
vised artificial neural network model based on a Hebbian learning rule and a
pre-defined two-dimensional map of units will be shown in the next chapter.
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MODELLING THE DEVELOPMENT OF
PHONETIC CATEGORIES:

A NEW ARTIFICIAL NEURAL
NETWORK APPROACH

CHAPTER 5

5.1 The general idea

The development of a new artificial neural network model presented in this
chapter was guided by the specifications of MAPCAT. However, as | already
mentioned in the introduction to chapter 4, it was not my goal to transfer the
complete theoretical model with all its details in an artificial neural network
model, but to concentrate on the modelling of the development of auditory cat-
egories within the phonetic map. This developmental process is responsible for
the change in infants” discrimination capabilities.

The learning algorithm of the new artificial neural network is based on a
Hebbian learning rule. The general aim of the learning process is to learn local
representations of the input categories within the input space without taking
into account the global organisation of these representations within the network
structure. A central assumption is that learning, i.e. the adaptation of the weight
vectors, is not only determined by the current input signal, but also by an un-
derlying stochastic process. Each unit has a kind of “self-propulsion” so that a
unit’s weight vector is not only adapted in the direction of an input vector, but
also in a random direction.

The learning algorithm can be described as follows: As long as a unit is not
a member of a stable representation of an input category, its weight vector is
mainly adapted in a random direction. This kind of “Brownian movement” of
each unit leads to initial clusters in which the weight vectors of neighbouring
units slightly resemble each other. If these weight vectors are at the same time
similar to the current input vector, the initial clusters become more stable and
will finally represent the corresponding input category. This scenario represents
the underlying idea of the learning process and will be specified in more de-
tail in the remaining part of this chapter. For reasons of convenience, the new
learning algorithm is called the Self-Propulsion Clustering (SPC) algorithm in
the following.
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Figure 5.1: Sketch of the neural nstwork architecture. Each unit receives the same
input vector at a simulation step and computes two types of local variables that give
information about (1) whether the unit is sensitive o the current input vector, and (2)
whether it belongs to a representation of an input category. According to these values
and the information from other regions within the network, the weight vector of a unit is
adapted to the current input vector.

5.2 The network architecture

The architecture of the artificial neural network model consists of a two—
dimensional map of units in which each unit receives the same input vector
at each simulation step (figure 5.1). The input to a unit u;; is weighted by a
weight vector gy which is initially located at a random point within the input
space. In addition to this external input, each unit also receives input from other
units in the map via short-range excitatory and long-range inhibitory lateral
connections. Excitatory lateral connections only exist between a unit and its di-
rect neighbours in the map. In contrast, inhibitory lateral connections connect
each unit &, with a particular number of other units. These latter units are ran-
domly chosen from the set of units which have a distance that is greater than a
specified radius ¥, to unit u;; in the map.

For the determination of excitatory and inhibitory lateral connections in the
map of units, the map is considered to be a wrap—around map, i.e. the set of direct
neighbours A ;; of a unit 1y, is computed according to the following formula:

Nij = {upy | k € {(k ~ 1) mod m,, (k + 1) mod Mk
Le {(I - 1) modm,,(I+1)mod My bt ©-1)

in which m, and m1, represent the number of units in x- and v—dimension of the
map, respectively. ’
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5.2.1 Unit variables

At each simulation step, two types of local variables are computed for each unit:
(1) activity—type variables which describe the selectivity of a unit to the current
input vector &, and (2) cluster—type variables which indicate whether the current
unit is a member of a cluster, or not. A cluster is characterised by neighbouring
units which have similar weight vectors and represent a particular input cate-
gory.

Given a weight vector p;; and an input vector §, the local variables of unit u,,
are computed according to the following equations:

1. The single activity n;, describes the Euclidian distance of the weight vector
4 to the current input vector §:

m, = fG.alkyg — €l (5.2)

2. The average activity 1;, describes the average over the single activities of
the current unit u,, and the units which lie in its direct neighbourhood AL
within the network structure. In order to assign the single activity of the
current unit a higher priority, the single activities of neighbour units are
multiplied by 0.5:

S 4 )
my=fon | M5 2 m (5.3)
he

3. The single cluster quality o, describes the distance of the weight vector py
to the weight vectors gy, of units 1, which lie in the direct neighbourhood
A,; of unit 1, within the network structure:

o =il D iy — tall (5.4)
(kD=2

4. The average cluster quality o}, describes the average over the single cluster
qualities of the current unit 1,, and the units which lie in its direct neigh-
bourhood A/, within the network structure. In order to assign the single
cluster quality of the current unit a higher priority, the single cluster qual-
ities of the neighbour units are multiplied by 0.5

R S
o, = fuayn| o+

U1
Jt
=

> o (

TN

YO

In the formulas above, || - || denotes the Euclidean distance metric. The function

fis. 3 1s a piecewise linear approximation of the sigmoid activation function and
introduces a nonlinearity into the response o that the output is limited to the

105



output
activity

1.0 +

05 ¢

) B input activity

Figure 5.2: The unit’s activation and cluster quality functions.

range [0, 1].2* The function f7 5, has similar characteristics and is just a mirror of
fo.maty=0.5:

0.0 6>x
fea(x) = (x - 5)/(,3 §) d<x<p (5.6)
x>
1.0 d>x
fonx) = - x)/(ﬁ d) d<x<p (5.7)
x> 3

The function f§ ; in formula 5.2 limits the single activity to the range [0,1]. The
parameter 3 of this function defines the maximal possible distance between a
weight vector of a unit and a current input vector which will yield an activity
value greater than zero. Moreover, for a given (3, the parameter § defines the
slope of the activity function. If § is close to §, the unit is more nonlinear and
small differences in the distance between a weight vector and the input vector
will result in large differences in the output values of the activation function.
The function f 5 in formula 5.4 has a similar effect with respect to the single
cluster quality. The smaller the distance between the weight vector of a unit
and the weight vectors of its direct neighbours within the network, the greater
the output value of function f{j ;,. The parameter 3 determines how “close” the
weight vectors have to be in input space so that the single cluster quality of a
unit has a value greater than zero.

The average activity and the average cluster quality of a unit, respectively,
are the result of the summation of the single activities and the single cluster
qualities, respectively, over the direct neighbours within the two-dimensional

HThe decision to use a linear approximation instead of the original sigmoid function is based
on the consideration that the sigmoid function never reaches the x—coordinate, i.e. that each
input results in an activity and cluster quality value above zero. This means that by using a
Hebbian learning rule in which the strength of adaptation is dependent on the activity and
cluster quality values, each unit in the map is adapted at every simulation step in the direction of
the input vector. In order to avoid this behaviour and in order to strongly restrict the adaptation
in the direction of an input vector to a limited number of units, it is absolutely necessary that the
activity as well as the cluster quality values could be zero.
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map. Similar to the function f{} ;, the function f; s limits the output to the
range [0, 1] and defines the minimum input required to generate an output value
larger than zero.

5.2.2 The network dynamics
The learning rule

The underlying idea of the learning rule is that the change of the location of a
weight vector in input space is not only dependent on the sequence of input
vectors during a simulation, but that a unit is also subject to a kind of “self-
propulsion”.** This mechanism changes the location of the weight vector of
each unit in a random direction at each simulation step. This means that without
the presentation of input vectors, a weight vector would constantly change its
position within the input space in a random direction.

Based on the “self-propulsion” of units, initial clusters will develop during a
simulation in which the weight vectors of units which are neighbouring within
the network are slightly similar to each other. These initial clusters are weak
and temporary and will in most of the cases disappear again during a simula-
tion due to the “self-propulsion” of the units since the corresponding weight
vectors describe in general a region in input space that does not correspond to
one of the input categories. However, if it is the case that the weight vectors of
these initial cluster units form a region which corresponds to one of the input
categories, then they are slightly but constantly adapted in the direction of this
category. This adaptation process reduces the distance between the weight vec-
tors so that the cluster quality values of the cluster units increase. Consequently,
the adaptation of the weight vectors of the cluster units in a random direction
is reduced, which leads to a strengthening of the cluster. Following input vec-
tors from this input category during the learning process further strengthens the
cluster so that it will finally form a stable representation of the input category.

To summarise, the learning rule consists of the following two processes:

1. Brownian movement:

The weight vector of a unit is slightly adapted in a random direction in-
dependently of the current input vector. The amount of adaptation is de-
pendent on the similarity of weight vectors of units in the direct neigh-
bourhood of the unit within the network. The higher the similarity, the
higher the probability that the units describe a representation of an input
category and therefore the smaller the amount of adaptation in a random
direction. Consequently, units would “walk” randomly through the input
space when no input vectors were presented.

*The idea to introduce a “self-propulsion” to each unit of the artificial neural network orig-
inates from a property of real neurons. In general, a neuron generates a sequence of random
activation potentials, although it was not excitatorily stimulated by other neurons. Therefore, a
neuron is not only a passive element, reacting on external stimuli from other neurons, but also
exhibits a kind of “self-propulsion”. However, although originating from the property of real
neurons, the “self-propulsion” mechanism in the SPC algorithm is a large abstraction away from
its neurophysiological original, mainly emphasising that each unit possess an additional active
component.
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2. Adaptation to an input vector:

According to a general Hebbian learning rule, the weight vectors are
adapted in the direction of the current input vector. This adaptation step
is dependent on two factors: (1) the strength of correlation between the
weight vector and the current input vector, and (2) the strength of correla-
tion between the weight vectors of neighbouring units within the network,
i.e. the cluster quality. This means that only units which are sensitive to the
current input vector and which build a potential representation of an input
category are adapted in the direction of the input vector.

A further factor which influences the adaptation to an input vector are inhibitory
connections. Without inhibitory connections, the number of clusters which rep-
resent the same input category is not limited and could increase constantly. To
avoid this behaviour and to restrict the development of clusters which represent
the same input category, each unit in the map is connected to a constant number
of randomly chosen inhibitory units. Under the condition that one of the in-
hibitory units is already a cluster unit with a high activity for the current input
vector, the adaptation of the current unit to the input vector is suppressed.?

Each of the two processes — the “Brownian movement” and the adaptation
in the direction of the current input vector — is represented by an additive term
in the learning rule. The adaptation in a random direction is described by a
stochastic term, the adaptation in the direction of the current input vector is de-
scribed by a correlation term:

pij(t + 1) = stochastic termy(f) + correlation termy () (5.8)

Stochastic term  The stochastic term describes the strength of the adaptation of
a weight vector p;; of a unit u,, in a random direction within the input space.
The random direction of adaptation is defined by a vector vj; which has a length
equal to one. The strength of adaptation is determined by two factors: (1) a
global constant o; which determines the maximal possible strength of adapta-
tion, and (2) the cluster quality values ¢f, and gf, of unit 1, The higher the
cluster quality values are, the smaller the adaptation in a random direction will
be:

oo (B +a, 00 ()
cry{f)y = — TP 0« cry (B <1

stochastic term;j(t) = a (1.0 — (1)) vy(t) (5.9)

By means of the parameters . and «,, each of the cluster quality values might
be weighted differently. The divisor &, + a, guarantees that the value of cr (h)
stays within the given range {(assuming that both parameters are greater than
zero!). '

o L T .
“*Since the only task of the inhibitory connections is to restrict the development of lusters
that represent the same input categors. 1t 15 not necessary to fully interconnect the network.
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Correlation term The underlying idea of the equation for the correlation term
is the following: Only those units which are sensitive to the current input vector
and are a member of a cluster are adapted in the direction of the input vector.
These units are characterised by a high average activity and a high average clus-
ter quality value. Therefore, the product of both values indicates a sensitive
cluster unit. However, if at another place in the network structure a cluster ex-
ists which is sensitive to the current input vector, the adaptation in the direction
of the input vector must be prevented. Units of this other cluster are also char-
acterised by a high average activity and a high average cluster quality value.
Information about the existence of another sensitive cluster is provided by the
inhibitory connections. Since a high product value of only one inhibitory unit
already indicates the existence of another sensitive cluster, only the maximum
value of all inhibitory product values is used in the following formula:

(“"J(t) = f+ (ntrzi Qf/ -y ({x})é)j( G Qi/))
Aﬂij(t) = a, av,(t) §(1)
Hij(t) + Apy(h)
\// zlz(uu‘h(t) + Aﬂl;,h(l‘)):

correlation term;(t) =
with

o= {5021

I, represents the set of inhibitory connections, a, determines the maximal in-
hibitory effect, and a, determines the maximal strength of adaptation.

Figure 5.3 depicts the underlying idea of the learning rule. The figure shows
the development of a cluster in four steps. Ateach step, the following four items
are shown: (1) the current position of the weight vectors of the units within the
input space, (2) the position of the current input vector within the input space,
(3) the direction and strength of adaptation of the weight vectors according to
the learning rule, and (4) the average cluster quality value of each unit as indi-
cated by the darkness of its position in the map of units. In the beginning of
the process the weight vectors are randomly distributed within the input space
and the units have very low cluster quality values (diagram 1). Therefore, at this
stage of the learning process the change in the weight vectors is mainly deter-
mined by adaptations in random directions. This random process leads to the
development of an initial cluster in which the weight vectors of neighbouring
units are slightly similar to each other (diagram 2). The units which describe this
initial cluster are characterised by increased cluster quality values which lead,
according to the learing rule, to reduced random adaptations of the weight
vectors. If the cluster units are also sensitive to the current and following input
vectors, their weight vectors are adapted in the direction of the input vectors (di-
agram 3). This process increases, on the one hand, the similarity of the weight
vectors of the cluster units to each other and, on the other hand, the similarity of
the weight vectors of the cluster units to input vectors from this particular input
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Figure 5.3 lllustration of the development of a cluster. Fach diagram shows, for a
specific time step in the jearning process, the position of the weight vectors of the units
and the position of the current input vector within the input space, in combination with
the direction and strength of adaptation of the weight vectors according to the | earming
rule. Each weight vector is labelled by the position of the unit in the map of units. The
darkness of a unitin the map corresponds to its average cluster quality value: the darker
the unit, the higher the cluster quality value.
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category. In this way, the cluster units get continuously higher cluster quality
values and are adapted more strongly in the direction of input vectors from that
input category than in random directions. Finally, the cluster will become stable
and will form a representation of the input category (diagram 4).

This learning process is sufficient to form representations of the categories
within the input space. However, the process lacks particular characteristics
with respect to the quality of a representation:

e The development of initial clusters requires that initially each unit in the
network structure has a broad receptive field, i.e. that the activity values of
a unit are greater than zero for a large area within the input space.™ How-
ever, in order to develop a representation which is special for a particular
input category, it is necessary that the receptive fields of cluster units grad-
ually become more focused and therefore more localised.

¢ The internal structure within a representation, i.e. the organisation of the
weight vectors of cluster units within the input space, is only affected by
excitatory information. Consequently the weight vectors of cluster units
would concentrate in the statistical centre of an input category so that in-
formation about the internal structure of that category finally gets lost.

To correct for this, two additional mechanisms are added to the learning process:
a mechanism which modifies the activation function of a unit, and a so—called
repelling mechanism.

Modification of a unit's activation function

For the development of clusters during the simulation process, it is important
that the initial receptive field of a unit is large. This is necessary because the
development of a cluster is dependent on two underlying processes: (1) the de-
velopment of an initial weak cluster based on the random adaptation process,
and (2) the adaptation in the direction of the current input vector of the units
which form the initial cluster. This means that the larger the receptive field of a
unit, the higher the probability that an initial cluster will develop as a represen-
tation of an input category. However, an initial large receptive field which stays
constant during the further learning process implies that the receptive fields of
cluster units will largely overlap in the end. This will lead to a concentration of
the weight vectors of the cluster units in the statistical mean of an input category
and therefore to an insufficient representation of the input category by the clus-
ter units. Moreover, if two input categories lie in close neighbourhood within
the input space, a unit with a constant large receptive field would be attracted
to both input categories, resulting in an unstable cluster.

The receptive field of a unit 1, is primarily determined by the parameter J
of its activation function f¥ . This parameter is used for the computation of the

single activity 17, (see figure 5.2) and it defines the maximal possible distance

T This definition of a receptive field 15 shghtly different to the detinution m Veelenturf (1995)
Veelenturf defined the receptive field of a umit a< the area within the input space to which 1ts
weight vector has the smallest distance i comparison to the weight vectors of the other unuts.
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between the unit’s weight vector p;; and the current input vector £ which will
induce an activity value greater than zero. Only input vectors which are close
enough to the unit's weight vector will yield a high single activity value and
will strongly contribute to the unit’s average activity value 7;,. As 3 decreases,
the unit’s receptive field selectively reduces to smaller areas of the input space.
Therefore, in order to achieve an appropriate representation for each input cate-
gory, lintroduced a mechanism which modifies the activation function of cluster
units. The idea stems originally from Sirosh and Miikkulainen (1994), although
[ used a different modification function (see also equation 4.16 in section 4.5.1).

Since only the activation function — and therefore the receptive field — of
cluster units will be modified, the decrease of J in the learning algorithm is
dependent on the average cluster quality value ¢f, of a unit ,.*” The criterion
for a change of J is that the average cluster quality value must have reached
a particular threshold 6, and must have been above this threshold value for a
specified number of simulation steps. If the criterion is met, 3 is changed at each
of the following simulation steps according to the following formula:

j(t) - dmm .

: = 3(t) —
H(t+1) = 3(1) P

,‘31111' > 10/ )3(0) > ‘Bmm (511)
in which J,,,, determines the minimum value J can reach, and 3,,, determines
the slope of the value change. As soon as the average cluster quality value falls
below the threshold ,, 3 is again increased by the inverse function of equa-
tion 5.11:

e S (3 R (1)
t+1) = (5.12)
H0) 30t > 3(0)

This modification of the activation function of cluster units results in a better
representation of the input categories. Moreover, since the mechanism only con-
cerns cluster units, it has no influence on the process of the developmJent of
initial clusters.

The repelling mechanism

The average activity value 5% of a unit u,, is determined by the function f;
which gets as input the sum of the single activity values n°, of unit u,, and its
direct neighbours in the two~dimensional map. The summation of the single
activity values is equivalent to excitatory lateral connections with the conse-
quence that the activity pattern gets smoothed. This leads to the effect that the
weight vectors of cluster units get concentrated in the statistical centre of the
corresponding input category. Consequently, the clusters do not contain infor-
mation about the size and structure of the original input categories.

“Other parameters are possible, such as te product of the average activity and the average
cluster quality values, which 15 used 1n the correlation term of the learning rute. However,
experience has shown that the average cluster quality vatue 1s <ufficient for ths purpose.
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Figure 5.4: Depiction of the repelling mechanism.

In order to avoid the development of such “unstructured” clusters, a repelling
mechanism is introduced. Its purpose is to prevent the adaptation of a weight
vector in the direction of the current input vector if this adaptation would put
the weight vectors of neighbouring units too close together within the input
space. The characteristics of the repelling mechanism are determined by two
pararmeters: the repelling radius +, and the repelling distance ;. The mechanism
adds a constraint to the learning process which requires that a weight vector of
a unit which has a distance 4 in the two—dimensional map to the unit u;; must
have at least a distance d * 1), to the weight vector p;; of unit u;; within the input
space (see figure 5.4). This constraint must hold for all units whose distance
on the map to unit u;; is smaller than ¢,. Therefore, the repelling distance ¥,
defines the minimal possible distance of weight vectors within the input space,
and the repelling radius ¢, defines the sphere of influence of the constraint in
the two-dimensional map of units.

The repelling mechanism introduces a strong constraint on the adaptation
process in the direction of an input vector and provides for an ordered organisa-
tion of the cluster units. The simulation results in the following section demon-
strate that an ordered organisation emerges from the gradual development of a
cluster. An alternative way to achieve an organisation of the cluster units would
be to introduce lateral connections of Mexican hat form, similar to the mod-
els of Willshaw and von der Malsburg (1976) and Miikkulainen (1991). How-
ever, additional lateral connections would strongly increase the complexity of
the learning process and are replaced by the repelling mechanism for the sake of
simplicity. Nevertheless, this alternative has to be kept in mind when discussing
the simulation results.
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5.3 Investigation of the properties of the
SPC algorithm

Before the new artificial neural network approach was used as a model for the
development of auditory categories (see chapter 6), it was tested on an input
configuration within a two—dimensional input space. The underlying motiva-
tion for this step was twofold: First, the simulation results should demonstrate
that the properties of the SPC algorithm are in accordance with the specifica-
tions of MAPCAT. And second, the new network approach was investigated
with respect to the behaviour of the learning process in general. The low dimen-
sionality of the input space has the advantage that it allows a better control of
the input configurations as well as the depiction of the current positions of the
weight vectors within the input space.

5.3.1 The appropriateness of the SPC algorithm

In section 4.3.2, I introduced an input configuration which was developed with
the idea to approximate the effect of an energy filter on digitised speech signals
(see also appendix A for a detailed specification of the input configuration). The
input space consisted of the two-dimensional area [~1,+1] x {1, +1] within
which four input categories were defined. The input vectors were generated ac-
cording to particular traces through an input category. In order to simulate the
influence of an energy filter on the input space, the input vectors at the begin-
ning and at the end of a trace were replaced by zero vectors whereby the num-
ber of replacing zero vectors decreased during the learning process. Simulations
with the Kohonen algorithm on this input configuration demonstrated that the
algorithm was able to learn representations for all four input categories. How-
ever, a closer look at the results showed that the learning process had particular
characteristics that were not in accordance with the specifications of MAPCAT.
In order to investigate the properties of the SPC algorithm, the same input con-
figuration was used for the following simulations.

As in the simulations with the Kohonen algorithm, the network structure
consisted of a two-dimensional map of 20 x 20 units in which the weight vector
of each unit was initially assigned to a random point within the input space. The
number of simulation steps was set to 100, 000. Appendix B contains a complete
list of the simulation parameters.

Figures 5.5 (a) ~ (d) show the distribution of the weight vectors within the
input space at particular moments in time during the simulation. Each dot rep-
resents the position of an individual weight vector within the input space. After
10, 000 simulation steps (figure 5.5 (b)), initial clusters have developed for three
of the four input categories which is indicated by a concentration of weight vec-
tors in a region which corresponds to the centre of an input category. The input
category, which is not represented so far, is the one for which the input speci-
fication is most restrictive and which appears in comparison to the other input
categories at the latest point in the input stream. After 25,000 simulation steps
all four input categories were represented by the neural network, though still
by units whose weight vectors are mainly concentrated in the centre of an in-
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put category. During the following learning process, this picture changes and
the internal structure of an input category becomes partly visible through the
distribution of the corresponding weight vectors (figure 5.5 (d)).

In the following section, I investigate whether the development of the clus-
ters is in accordance with the specifications of MAPCAT. This is done on basis
of the properties of the artificial neural network models of chapter 4 which were
not in accordance with the specifications of MAPCAT. I show that the SPC algo-
rithm does not possess these properties.

Overspecification of early input categories

At the beginning of the first simulation with the Kohonen algorithm (see fig-
ures 4.4 (a) - (d) on page 79) the weight vectors of nearly all units concentrated
in a very limited region within the input space which corresponded to the first
input category. The appearance of further input categories in the input stream
led to a redistribution of the weight vectors.

The distribution of the weight vectors in figures 5.5 (a) — (d) clearly shows
that the SPC algorithm does not show such a characteristic. In contrast, the
representations of the input categories do develop gradually according to the
underlying learning process. A further important observation is the effect that
an initial representation corresponds to the centre of an input category and that
only during the further development the border areas of an input category be-
come represented. Actually, this effect is a consequence of the shape of the traces
which have been specified through an input category. Each trace crosses the
centre of a category so that the central region represents the statistical mean of a
category to which the weight vectors are attracted most.

Representation of an input category depends on the number of input categories

A further characteristic of the Kohonen algorithm is that a representation of an
input category depends on the “complexity” of the input space, i.e. the more
input categories the input space contains the less explicitly each of them is rep-
resented. This characteristic is due to the fact that, in the end, the weight vectors
of all units in the map are attracted to one of the input categories. In an extreme
case, in which the input space contains just one input category, all weight vectors
would concentrate in the corresponding region within the input space.

Figures 5.5 (a) - (d) do not clearly show whether the SPC algorithm possesses
this property or not. There is an obvious difference in the number of units which
form a representation between figure 5.5 (c) and figure 5.5 (d). Therefore, it
might be the case that the number of units which form the representation of
an input category continuously grows as long as the simulation lasts — which
finally leads to the same effect as in the Kohonen algorithm. However, the fact
that the number of units which represent a cluster remained constant during the
last 20, 000 simulation steps indicates that the development of a cluster reaches
a final state.

I investigated this issue by running a simulation with an input configuration
which consisted of just one input category — centred at position (0.5, 40.5)
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Figure 5.6: The distribution of the weight vectors within the input space at different
moments in time during a simulation with the SPC algorithm. The input configuration
consisted of only one input category which was centred at position (—0.5,+0.5) within
the input space.
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within the input space — while keeping the rest of the parameters constant. Fig-
ures 5.6 (a) - (d) show the results. There are two things to note when evaluating
these figures. First, the size of the cluster seems to remain constant between sim-
ulation step 25,000 and simulation step 50, 000. This impression is confirmed by
an analysis of the number of units the cluster contains: the number of units in-
creases from 21 units at simulation step 10,000 to 29 at simulation step 25,000,
and decreases again to 24 units at simulation step 50,000. Actually, between
simulation step 20,000 and simulation step 50,000 the number of units varies
between 24 and 30 units with a mean of 27 units. This effect is based on the un-
derlying stochastic process, i.e. the adaptation in a random direction. Already
attracted units at the border of the input category have only a slightly enhanced
cluster quality so that they are still adapted in a random direction. This random
adaptation is somewhat greater than the adaptation in the direction of the cur-
rent input vector so that the position of their weight vectors is highly variable.
Finally, this leads to a dynamic balance of power between the attraction to and
the distraction from the cluster, so that the number of cluster units slightly varies
around a mean.

The second remarkable point concerns the weight vectors of the units which
are not part of the cluster. They are still uniformly distributed within the input
space at simulation step 50,000, as they were at the beginning of the simulation.
This means that they are still “available” for the development of further clusters.
Therefore, the SPC algorithm is able to learn local representations of an input
category and is capable of developing further clusters at later moments in time
during a simulation — mostly independently of existing clusters.

Representation of an input category is not stable during a simulation

The first simulation with the Kohonen algorithm had the characteristic that a
representation of an input category became stable only at the end of the simu-
lation when the learning parameters reached their final low values. At interme-
diate stages of the simulation process, established representations disappeared
and re-appeared at a later moment in time during the simulation. This effect
was due to the learning parameters ¢ and e whose initially large values were
the reason for the instability of the representations. The second simulation did
not show this effect since the parameters could be specified constant and small.

Figures 5.5 (a) — (d) clearly show that the instability effect, as seen in the
first simulation with the Kohonen algorithm, does not occur with the SPC algo-
rithm. However, since learning in the SPC algorithm is based on an underlying
stochastic process, a related effect could occur which would affect the stability
of a cluster during a simulation. The possible effect is related to the property
of the neural network which was demonstrated by the simulation in the previ-
ous section. The analysis of this simulation showed that the number of units
which form a cluster fluctuates around a mean value. Therefore, it might be
the case that the units which form a cluster initially are different from the units
which form the cluster at the end of a simulation. The cluster would form a kind
of “shift register” in which on the one side units are attracted according to the
adaptation in the direction of the current input vector, while one the other side
they are distracted according to the adaptation in a random direction.
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Figure 5.7: The distribution of the weight vectors within the input space for the cluster
which represents the input category at position (+0.5, —0.5) at different moments in time
during a simulation with the SPC algorithm. The weight vector of each unit is marked by
the unit's map coordinates.
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Tinvestigated this issue by comparing the map coordinates of the units which
form a cluster at different moments in time during the simulation. Figures 5.7 (a)
~ (d) illustrate this for one of the clusters. The figures clearly show that a cluster
remains stable during a simulation: the units which form the cluster at simu-
lation step 25,000 are still the units which form the cluster at simulation step
50,000 and 100, 000, respectively. Therefore, a “shift” of the units as described
above does not take place.

Representations are dependent on the initial distribution of the weight vectors

Previous investigations on the neural-gas algorithm have shown that under par-
ticular circumstances the size of a representation of an input category is depen-
dent on the distribution of the weight vectors at the beginning of a simulation
(see section 4.4.2). This means that the final representation does not represent
the behaviour of the learning rule in general, but just one of many possible re-
sults. Although the same effect as in the neural-gas algorithm cannot occur in
the SPC algorithm, the underlying stochastic process might have an influence
on the outcome of a simulation at all. Therefore, I investigated the question
whether the network is able to learn representations for all four input categories
independent of the initial distribution of the weight vectors. For this purpose,
I ran ten additional simulations with a parameter set that only differed in the
value of the seed of the random function and therefore in the initial distribution
of the weight vectors. The outcome of four of these simulations — which repre-
sent the general result of all ten simulations — is shown in the figures 5.8 (a) -
(d).

The figures clearly show that in each of the simulations the artificial neural
network was able to learn a representation for each of the input categories. Ac-
tually, this happened in all ten simulations. This means that the result of the
simulation which is shown in figures 5.5 (a) — (d) represents the behaviour of
the learning rule in general and that the development of a representation for an
input category is independent of the initial distribution of the weight vectors
within the input space.

A preliminary summary

The simulation results from the previous sections have demonstrated two im-
portant things: (1) in contrast to the neural network models of chapter 4, the
SPC algorithm does not possess those characteristics which were not in accor-
dance with MAPCAT, and (2) the SPC algorithm is able to learn local represen-
tations of the input categories within the input space as required by MAPCAT.
Therefore, these results suggest that the SPC algorithm is an appropriate com-
putational model for the simulation of the development of auditory categories
(see chapter 6).
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sets differed only by the value for the seed of the random function.
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5.3.2 The behaviour of the learning process

Despite the appropriate simulation results from the previous section, there re-
main some questions concerning the behaviour of the learning process in gen-
eral. For example, one outcome of the simulation which is shown in figures 5.5
(a) - (d) was that each input category was not represented equally well. While
the input category which is centred at position (+0.5, —0.5) is represented quite
well and its shape is clearly visible by the order of the corresponding cluster
units (see figure 5.7 (d)), the representation of the input category at position
(—0.5,+0.5) is obviously not as good and consists, moreover, of fewer units.
What is the reason for this difference? Does the difference possibly disappear
after 100,000, 200, 000, or 400,000 additional simulation steps? A second point
concerns the repelling mechanism. To what extent does this mechanism affect
the size of a representation of an input category? Is the choice of the repelling
parameters critical to the learning process? In the following sections, I will try
to answer these questions, beginning with a detailed description of the learning
process.

The learning process in detail

The learning process starts with the assignment of a random position to the
weight vector of each unit. Therefore, the weight vectors of neighbouring units
are in general initially quite distant from each other, so that the units possess
low or medium cluster quality values. This means that in the beginning of the
learning process, the adaptation in a random direction generally dominates the
adaptation in the direction of an input vector. This kind of random “movement”
leads to initial clusters, i.e. to a concentration of weight vectors of neighbouring
units within the input space. The corresponding units possess temporarily in-
creased cluster quality values which have the effect that their adaptation in a
random direction is decreased. If the weight vectors of these units form a region
within the input space which corresponds to one of the input categories, they
are consequently strongly adapted in the direction of this input category. This
leads to a further increase in the cluster quality values of these units and there-
fore to a further decrease of the adaptation in a random direction. However, if
the weight vectors of these units lie in a region of the input space which is out-
side of each input category, the adaptation in a random direction still dominates
the adaptation in the direction of an input vector. The consequence is that the
initial cluster will disappear.

The stability of a cluster is also dependent on the number of units which
form the cluster. This number is initially low so that the corresponding units do
not have maximal cluster quality values. This means that their weight vectors
are still adapted in a random direction. However, cluster units form a region
of attraction for neighbouring units in the map. Based on the computation of
the average cluster quality and average activity values, the cluster quality and
activity values of neighbouring units also increase so that they are slightly, but
constantly, attracted in the direction of the input category which the cluster units
represent. This leads to an increase in the number of cluster units so that they
get maximum cluster quality values and finally form a stable representation of

122



the input category.

The process of cluster units attracting neighbouring units is limited by two
factors. First, the receptive field of cluster units decreases until a minimal recep-
tive field is reached which leads to a localisation of a unit’s response. Second,
the repelling distance parameter ensures that the weight vectors of cluster units
keep a particular minimal distance within the input space from each other. Both
factors have the effect that cluster units finally form a distributed representa-
tion of the input category so that the attraction process of neighbouring units
converges.

From this description of the learning process it becomes clear that for the
development of an initial cluster two events have to occur in temporal synchro-
nisation: (1) the weight vectors of neighbouring units have to form a limited
region within the input space and (2) this region must correspond to one of the
input categories. During further development, the stability of a cluster is mainly
dependent on the characteristics of the input category which it represents, i.e. its
size and probability density. However, as figures 5.5 (a) - (d) indicate, additional
factors seem to play a role resulting in the representation of the input category
at (—0.5,+0.5) being worse than the other representations. In order to explore
these factors, the simulation was continued and stopped after 500, 000 simula-
tion steps. The final clusters at the end of the simulation are shown in figures 5.9
(@) - (d).

The figures illustrate two things: First, even after 500, 000 simulation steps,
the representation of the input category at position (—0.5,+40.5) is still worse
in comparison to the other representations. And second, the cluster units are
ordered: neighbouring units have similar weight vectors so that similar input
vectors are mapped onto neighbouring or identical units in the map. In the
following section, I discuss these issues in more detail.

Differences in the goodness of a representation

In order to find an explanation for the effect that the representation of the input
category at position (—0.5, +0.5) did not develop as well as the other representa-
tions, the complete course of the simulation has to be taken into account. In this
connection, I will concentrate on the region of the critical input category within
the input space.

A first cluster for the critical input category developed between simulation
step 15,000 and 20, 000. Shortly thereafter, a second cluster for this input cat-
egory developed whereby this cluster was localised in a different region of the
input category than the first cluster. The first cluster did not become stable and
disappeared, while the second cluster (for the sake of convenience, I will call it
cluster ) attracted further units and oriented towards the centre of the input
category. Although this cluster did not disappear by the end of the simulation,
it became neither stable nor as large as the other representations. This has to
do with the fact that, nearly immediately after its appearance, a further cluster
(cluster ‘B) developed within this region of the input category which affected
the development of cluster 4 by its inhibitory connections. At first, cluster B
remained small and unstable so that the receptive fields of the units which form
this cluster did not get localised. Consequently, the units of cluster B had com-
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paratively high average activity values for input vectors in the neighbourhood of
their weight vectors. The combination of inhibitory connections to cluster 4 and
comparatively high average activity values disturbed the stabilisation process of
cluster A in several ways. The inhibitory connections to some of the neighbour-
ing units of cluster 4 had a strong influence on the adaptation of these units in
the direction of the input category. Actually, the adaptation process was partly
suppressed. Moreover, if neighbouring units of cluster A were nevertheless at-
tracted to the cluster, these units were still strongly affected by the inhibitory
connections to units of cluster B. The reason is that on grounds of the inhibi-
tion these new cluster units did not achieve maximal cluster quality values so
that they were still attracted in a random direction. And since the attraction in
the direction of the input vector was decreased by the inhibitory connections,
the random “movement” got still more weighting which finally led to a higher
probability that a unit leaves the cluster. The result of this competition effect is
that neither of the two clusters developed a stable representation of the corre-
sponding input category.

This effect cannot be avoided at all. According to the learning rule, there will
always be a small chance that, during a simulation, two clusters will develop for
the same input category within a short temporai period. However, although it is
not possible to exclude such a situation, it is possible to minimise its probability
by choosing appropriate values for particular simulation parameters. For ex-
ample, an increase in the number of inhibitory connections n/, an increase in the
strength of the influence of inhibitory connections ¢, or a decrease in the general
probability of the development of initial clusters lead to a decrease in the prob-
ability of such a situation occurring. This is demonstrated by a simulation in
which the number of inhibitory connections was increased to n; = 200 and the
strength of influence of the inhibitory connections was increased to «; = 0.75.
Figures 5.10 (a) — (d) show the distribution of the weight vectors of the cluster
units within the input space after 250,000 simulation steps. In contrast to the
previous simulation, all representations finally became stable and consist of a
comparable number of units.

The ordering of the weight vectors of cluster units

The ordering of the weight vectors of cluster units is an inherent characteristic
of the learning process. An initial cluster consists of a small number of units
which are direct neighbours in the map. In general, the mutual influence of
these units on the adaptation process ensures that the distances between the
weight vectors of cluster units reflect the neighbourhood characteristics in the
map of units. However, this kind of organisation is not always guaranteed, as
figure 5.9 (b) illustrates. In this case the cluster remains unstable until it finally
becomes organised.

The critical phase of development starts directly after an initial cluster has
developed. Each of the cluster units affects its direct neighbours and forms a
kind of attraction centre for these units. Consequently, the direct neighbours
are slowly but constantly attracted in the direction of the input category during
the following learning process. In connection with this process it is important
that a cluster unit mostly affects its direct neighbours. This ensures a gradual
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Figure 5.10: The distribution of the weight vectors of the cluster units within the input
space after 250,000 simulation steps for a simulation with the SPC algorithm. The pa-
rameter sets differed by the number of inhibitory connections n; and the value for the
strength of influence of the inhibitory connections «;. The weight vector of each unit is
marked by the unit's map coordinates.
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development of a cluster and indirectly also the ordering of the weight vectors.
Therefore, the organisation of a cluster is the consequence of a slow, but constant
attraction of direct neighbours of cluster units.

The repelling parameters and their influence on the outcome of a simuiation

The purpose of the repelling mechanism is to prevent the weight vectors of clus-
ter units from collapsing into the statistical mean of an input category. This is
achieved by prohibiting the adaptation of a weight vector in the direction of a
current input vector if this would lead to a situation in which the weight vectors
of neighbouring units are located in close proximity within the input space. The
two parameters which determine the effect of the repelling mechanism are the
repelling radius ¢, and the repelling distance ¥,. The repelling radius ¢, de-
fines the sphere of influence of the repelling constraint in the two-dimensional
map of units. Moreover, it simultaneously determines the radius within which
no inhibitory connections to a current unit can exist. This means that the dis-
tance on the map between a unit u,; and a unit uy to which u, ; has an inhibitory
connection is greater than the repelling radius v,.

While the repelling radius 9, determines the range of the repelling mech-
anism within the map of units, the repelling distance ¢; defines the minimal
distance that weight vectors of units must have within the input space: weight
vectors of two cluster units which have a distance d in the two—dimensional map
of units must have at least a distance d * %, within the input space, where d is
smaller than or equal to the repelling radius #,. In the following discussion,
I will investigate to what degree the repelling mechanism affects the size of a
cluster and how critical the choice of the repelling parameters is to the learning
process.

Figures 5.11 (a) — (d) show the results of four simulations whose parameter
sets differed only by the value for the repelling radius #,. In all cases, the re-
pelling distance 1; was set to 0.016, the number of inhibitory connections n;
was set to 100. The figures clearly illustrate that the repelling radius has an ef-
fect on the learning process. While the representation of the input category in
figure 5.11 (d) consists of a coherent group of units within the map, i.e. of a sin-
gle cluster of units, the representations in figures 5.11 (a) - (¢) are more localised
in the centre region of the input category and it seems that they consist of units
which are distributed over the map. However, a closer look at the developmen-
tal process which led to the final representations in the figures 5.11 (b) and (c)
reveals some regularities in the units which form these representations. First,
the final representations consist of two and three coherent groups of units (clus-
ters), respectively. This means that the units which form the representations are
not that unstructured as it might seern at first glance. And second, the clusters
develop in succession and only form a representation in the centre of the input
category.

From the course of the learning process, the development of several clusters
for an input category can be explained as follows: The initial development of a
cluster forms a point of attraction for additional, neighbouring units. However,
since the repelling radius is small in comparison to the number of inhibitory con-
nections, this does not prevent from the development of further clusters within
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of the repelling radius ¢, on the representation of

an input category. Each diagram shows the distribution of the weight vectors within the
input space after 100,000 simulation steps. The units which form the cluster represent
the input category at position (4-0.5, —0.5). The weight vector of each unit is marked by

the unit's map coordinates.
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Figure 5.12: lllustration of the influence of the repeliing radius 1, on the representation
of an input category. The diagram shows the distribution of the weight vectors within
the input space after 100,000 simulation steps. The repelling radius , was set to 4,
the number of inhibitory connections was set to 300. The units which form the cluster
represent the input category at position (+0.5, —0.5). The weight vector of each unit is
marked by the unit's map coordinates.

this region of the input space. This means that it could happen that an addi-
tional cluster would develop to which the current cluster has no or only very
few inhibitory connections. I investigated this aspect by simply increasing the
number of inhibitory connections to 300 to see whether this prevented the de-
velopment of additional clusters. The result is shown in figure 5.12. The figure
demonstrates that an increase of the number of inhibitory connections indeed
leads to the development of just one cluster for an input category, preventing
the development of additional clusters. This means that the repelling radius ¢,
and the number of inhibitory connections 7, are interdependent as well as de-
pendent on the total number of units in the map. Figure 5.12 illustrates another
interesting point: If the repelling radius %, and the number of inhibitory connec-
tions n; have appropriate values, the size of a cluster seems to be — to a large
part — independent of the repelling radius.

This observation is confirmed by figures 5.13 (a) - (d) which show the result
of two simulations after 100,000 simulation steps whose parameter sets only
differed by the value for the repelling distance ;. The repelling distance de-
fines the distance between the weight vectors of neighbouring units. There-
fore, a smaller repelling distance will lead to an increase in the “density” of the
weight vectors of cluster units. Moreover, a comparison of figures 5.13 (c) and
(d) demonstrates that this also leads to an increase in the number of cluster units
despite the fact that the value for the repelling radius was equal in both simula-
tions.
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(c) The distribution of the weight
vectors within the input space after
100. 000 simulation steps with repelling
distance 1y = 0.016. The cluster rep-
resents the input category at position
(+0.5.-0.5). The weight vector of
each unit is marked by the unit's map
coordinates.

Figure 5.13: lllustration of the influence of the repelling distance v, on the representation

of an input category.
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coordinates.



5.4 Summary

In this chapter, 1 introduced a new unsupervised neural network model. The
learning algorithm is based on the idea that each unit of the network structure is
equipped with a kind of “self-propulsion” which causes a change of the location
of a weight vector in a random direction at each simulation step. Based on this
process, initial clusters develop in which the corresponding cluster units possess
similar weight vectors. An initial cluster becomes stronger and finally stable if
the location of the weight vectors of the cluster units correspond to the location
of an input category. The investigations of the behaviour of the learning process
with an input configuration from a two—dimensional input space have shown
that the SPC algorithm is able to learn local representations of the specified in-
put categories. Moreover, the development of the representations for the input
categories is in accordance with the specifications of MAPCAT. In the following
chapter, the SPC algorithm is applied to the modelling of the development of
auditory categories in young infants.
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MODELLING THE DEVELOPMENT OF
PHONETIC CATEGORIES:
SIMULATION RESULTS

CHAPTER 6

6.1 The specification of the simulation constraints

A primary constraint for the following simulations was the use of digitised (real)
speech signals as input data. The use of real speech instead of isolated phonemes
specified by a phonological feature vector was strongly demanded by the task
itself. The modelling of the development of auditory categories makes no sense
if the input already consists of a sequence of separated phonemes. One of the
most interesting questions of the thesis is to what extent the speech signal it-
self provides infants with information which is sufficient to acquire a system of
language-specific categories — at least in the initial phase. This would hardly
be possible with an input space consisting of phonological feature vectors.

The use of digitised speech as input signals led to a considerable increase in
the complexity of the input space. In natural speech there is substantial varia-
tion in the realisation of an individual speech sound, even for a single speaker.
Numerous factors have an influence on the pronunciation, e.g. speaking rate,
speaking style, prosody, and context, to name only a few. However, according
to MAPCAT, most of these factors are compensated for by the acoustic analysis
module which analyses the speech signal according to its acoustic and supraseg-
mental properties. Therefore, it is assumed that the input to the phonetic map is
“normalised” with respect to these factors. Moreover, [ emphasised the impor-
tance that infant-directed speech has for the developmental process and used
utterances which had a slow tempo, an increased rhythmicity, and which were
clearly articulated. Although recent investigations have shown that infant-
directed speech only amounts to about 12-16% of all speech sounds which an
infant perceives (van de Weijer, to appear), it is the high acoustic dominance
of these utterances in combination with the assumption of the additional fil-
tering of the output of the acoustic analysis module which motivates this further
complexity-reducing step.

A further constraint with respect to the input space concerns the number and
types of phonetic categories which were under investigation. In order to limit
the complexity of the simulation task, I concentrated on the seven long vowels
of the Dutch vowel system. Although the set of long vowels is only a small sub-
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set of the Dutch sound system, it allows the investigation of several important
aspects of the developmental process. For example, the vowels differ in their
acoustic dominance and therefore, according to the theoretical model, they also
differ in their temporal development. In addition, some of the vowel categories
have a common, overlapping region within the acoustic space which raises the
question whether a separate representation for each of the vowel categories will
develop.

6.2 The transformation of the input data

6.2.1 The speech data

The input data consisted of consonant-vowel-consonant-vowel (CVCV) words
in which the consonant and vowel remain constant within the word. The set of
consonants consisted of the phonemes /b/, /d/, /f/, /1/, and /m/, and the set
of vowels consisted of the seven long vowels of the Dutch vowel system: /a/,
/e/, /i/, o/, /e/, /u/, and /y/ (Booij, 1995). All combinations of possible
CVCV-words were individually produced four times by a female speaker in a
noise—attenuated room. The first three utterances of each word were used for
the training process, while the fourth utterance was used for test purposes. The
utterances were recorded on a DAT tape with a SONY 55 ES DAT recorder, using
a Sennheiser ME 80 microphone. They were digitised with a sample frequency
of 16 kHz and afterwards spliced at the begin and end of each utterance of a
word.

6.2.2 The preprocessing of the speech data

The further preprocessing of the digitised speech data consisted of a smoothing
step by a Hamming window? of length 256 and a Fourier transformation of or-
der 8 which converted the smoothed, sampled speech data to the frequency do-
main. Since successive windows had an overlap of 128 frames, each output vec-
tor of the Fourier transformation finally represented 8 msec of the speech signal.
An output vector consisted of 256 complex coefficients for each analysis frame
in which the coefficients represented amplitudes of the frequency components
in the speech signal on equidistant points in the range of [-16 kHz, +16 kHz].
From psychoacoustics it is known that the spectral resolution of hearing de-
creases with frequency (Zwicker, 1982). Furthermore, for the amplitude levels
typically encountered in conversational speech, hearing is more sensitive in the
middle frequency range of the audible spectrum than in its border frequency
ranges. In a recent study, Hermansky developed a preprocessing method in
which the power spectrum of speech is transformed to an auditory-like spectral
representation (Hermansky, 1990). The algorithm consists of mainly three steps:

] also tried Hamming windows of length 128 and 512 but got worse results with respect to
the distribution of the vowel categories in the final input space, i.e. the vowel categories showed
a greater amount of overlap within the input space.
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1. Convolving the power spectrum of the speech signal with a simulated
critical-band masking pattern and resampling the critical-band spectrum
at approximately 1-Bark intervals;

2. Pre-emphasis by a simulated fixed equal-loudness curve;

3. Compression of the resampled and pre—emphasised spectrum simulating
the intensity-loudness power law.

The preprocessing method was used in combination with a following compu-
tation of the coefficients of a filterbank to achieve a 16-dimensional Acoustical
Band Spectrum (ABS) representation of the spectral representation of the speech
signals. In a recent paper, Hermansky and Pavel (1995) show the similarities of
the behaviour of this algorithm to that of the human auditory system.

6.2.3 The implementation of an energy filter

An important aspect of the following simulations is the assumption that the in-
put to the phonetic map is additionally filtered by an energy or temporal filter
(see also section 3.2.3). The underlying idea was that the additional filter reduces
the inherent complexity of the information stream from the acoustic analysis
module to the phonetic map and therefore facilitates the developmental pro-
cess. The filter is initially quite restrictive and only permeable for information
which has either an inherent high energy or a long steady-state duration. How-
ever, the characteristics of the filter change during development so that finally
the information from the acoustic analysis module is transmitted without loss to
the phonetic map.

In order to include such a filter in the simulation process, I first computed the
vector length for each data sample. Since each element in the vector represents
the energy of a particular frequency band, the length of a vector corresponds to
the “energy” of the data sample. Based on these energy values, the data samples
were filtered with respect to different energy threshold values. Data samples
were set to zero if they fulfilled the following conditions:

1. There were at least three consecutive data samples whose energy value
was lower than the threshold value, or

2. The number of consecutive data samples whose energy value was greater
than or equal to the threshold value was smaller than three.?”

The effect of such an energy filter for different threshold values is illustrated in
figure 6.1. The figure shows the waveform of an utterance of the word “lolo”,
with the cursors marking the areas which fulfil an energy threshold condition.
The areas for three different energy threshold conditions are shown, where the

BThere is no underlying objective reason why I chose the length three as a condition for suc-
cessive data samples. It was the smallest number which ensured that small variations in energy
around the threshold value had only little effect on the continuity of successive data samples.
On the other side, the length three did not constitute an additional strong filter restriction which
would prevent a large number of data samples from passing the filter.
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Figure 6.1: The waveform of an utterance of the word “lolo”. The cursors mark the areas
for different energy threshold values which fulfil the threshold condition.

corresponding threshold values are specified at the right side of the figure. The
figure shows what is well-known and is cited in phonetic introductory literature
(e.g., Ladefoged, 1993): Vowels — which mark in general the syllable nuclei —
contain data samples with the highest energy values. The lower the threshold
value the larger the area which passes the energy filter.

Iapplied this energy filtering procedure with a number of different threshold
values to the ABS representation of the speech signals. The result was a num-
ber of input files in which each input file contained the ABS representation of a
particular CVCV-word filtered with a particular energy threshold value by the
above procedure. The effect of the filtering procedure becomes clear by com-
paring the input files for different threshold values of a particular CVCV-word.
The files are equal in the number of vectors they contain. Moreover, each vec-
tor which is not set to zero after filtering with a high threshold value is also an
element of the file which represents the same speech signal after filtering with a
low threshold value. Consequently, the only difference between these files is the
number of zero vectors they contain. The higher the threshold value, the higher
the number of zero vectors. This property is important for the interpretation of
the statistics in the following section.

During the last step of the transformation process, the input vectors were
normalised to a length of one. This step is a consequence of the adaptation rule
of the network approach (see equation (5.10) on page 109). The adaptation in
the direction of an input vector is based on a generalised Hebbian learning rule
which normalises each weight vector after the adaptation to a length of one.
This means that the self-organising process cannot differentiate between input
vectors which point in the same direction. Therefore, all input vectors have to
be normalised at the end of the transformation process.
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6.3 Statistics on the input data

In this section, I present some statistics about the transformed speech data which
were used for the simulations. The statistics are important for the interpreta-
tion of the simulation results and are performed with the following questions in
mind:

e How are the vowel categories distributed within the 16~dimensional input
space?

o Are there vowel categories which might be “difficult” to acquire, i.e. which
have a large overlap with other vowel categories within the input space?

e Are there vowel categories which are more dominant with respect to the
energy values than others?

e What effect does the energy filter have on the distribution of the vowel
categories within the input space?

In addition, I present a comparison of the similarities of the vowels’ phonologi-
cal features to their similarities within the input space. Actually, these results are
of no direct importance for the interpretation of the simulation results. However,
they provide information about possible differences between the use of phono-
logical feature vectors and digitised speech signals.

For the interpretation of the statistics, the following points are important:

o The statistics are based on the Euclidean distance metric within a 16—
dimensional input space. The use of this metric is in accordance with the
distance metric which is used in the artificial neural network model.

¢ Each input vector is labelled according to the vowel of the utterance that
the corresponding input file represents. For example, if the input file rep-
resents an utterance of the word “lala”, then each input vector of this file
is labelled by an “a’. This means that the statistics on the vowel category
/a/ include all input vectors which were labelled with an ‘a’, so that they
might partly include information about the context dependent on the en-
ergy threshold value.

e The term intra—category vectors refers to input vectors which have the
same label as the mean vector or the vowel category which is mentioned
in this context. In contrast, the term inter—category vectors refers to input
vectors which have a different label than the mean vector or the input cat-

egory.

6.3.1 The distribution of the vowel categories within the input
space

In order to compute the statistics on the distribution of the vowel categories
within the input space, I first selected by hand only those vectors from the input
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mean vector of vowel category
vowel category fa/™ fe/™ fi™  fof™ o™ fu/™ NyM™

la/ 0.035 0.166 0.201 0.148 0.127 0.175 0.157
lel 0.166 0.040 0.065 0.157 0.087 0.152 0.083
i/ 0.202 0.065 0.040 0.173 0.120 0.161 0.100
o/ 0.154 0.163 0.178 0.053 0.136 0.072 0.155
le/ 0.127 0.088 0.119 0.130 0.041 0.127 0.059
/ 0.177 0.155 0.164 0.068 0.129 0.049 0.139
Iyl 0.159 0.085 0.101 0.151 0.060 0.138 0.043

Table 6.1: Average distance of input vectors of a vowel category to the mean vector of a
vowel category. The mean vector of a category is labelled by / /™.

files that belonged to one of the vowel categories. The aim of this selection was
twofold: First, I wanted to ensure that the consonantal context is excluded from
the analysis. And second, the analysis had to be applied to input vectors which
are also part of the set which is used for the following simulations. Therefore, I
did not relabel the speech files according to vocalic information but selected the
corresponding vectors directly from the input files. Consequently, the result of
the following analysis on this subset describes the distribution of just the input
vectors which correspond to one of the vowel categories. The result will further
serve as reference for evaluating the effect of an energy filter on the category
distribution.

Average distance to the mean vector of a vowel category

A first indication of the distribution of the vowel categories in input space pro-
vides a comparison of the average distance of the input vectors of a vowel cate-
gory to the mean vector of the same or a different vowel category. In this context,
the mean vector of a vowel category corresponds to the mean of all input vectors
which possess the same label. The results are interesting in two respects: First,
they provide information about the distances of input vectors within a vowel
category, i.e. about intra—category distances, and therefore about the “compact-
ness” of a vowel category. And second, they provide information about the
distances of input vectors between different vowel categories, i.e. about inter—
category distances.

The results are shown in table 6.1. Each row in the table represents the av-
erage distance of the input vectors of the indicated vowel category to each of
the mean vectors. Numbers which are important in the following are marked in
bold. The intra~category distances correspond to the diagonal in the table. The
data show that the intra—category distance is smallest for the vowel category
/a/, while the vowel categories /0/ and /u/ have comparatively large values.
The numbers are especially interesting in comparison to the inter-category dis-
tances. The difference between intra- and inter-category distances is quite small
for the vowel pairs /e/-/i/, /o/-/u/,and /8/-/y/. Moreover, although some-
what larger, the difference is also remarkably small for the vowel pairs /e/~/o/
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distance to mean vector

vowel category 0.04 0.05 0.06 0.08
fal 73.74 90.25 95.71 99.46
lel 56.50 76.76 91.46 98.41
1 60.17 80.49 90.25 97.53
lof 36.76 57.68 73.03 88.48
lal 57.21 81.90 90.67 97.83
h/ 38.62 58.72 77.85 92.86
lyl 52.72 77.12 86.06 96.41

Table 6.2: Percentage of intra—category vectors whose distance to the mean vector is
smaller than 0.04, 0.05, 0.06, and 0.08, respectively.

and /e/-/y/.

Therefore, the results indicate that the vowel category /a/ is quite distant
from the other vowel categories within the input space. In contrast, the vowel
categories /e/ and /i/, /o/ and /u/, and /eo/ and /y/ seem to be quite close
to each other and are possibly strongly overlapping within the input space.

The overlap between different vowel categories within the input space

In order to determine the overlap of the categories in more detail, I compared
the percentage of intra—category and inter—ategory vectors which have a dis-
tance to the mean vector which is smaller than a particular radius for each vowel
category. The data for the intra~category vectors are shown in table 6.2. They
support one of the two results from the previous section: The “compactness” of
the vowel categories /0o/ and /u/ is not as strong as the “compactness” of the
other categories. This becomes clear when comparing the percentage data for
the distance 0.05. While a radius of this distance around the category-specific
mean vector only contains 57.7% and 58.7% of the intra—category vectors for the
categories /o/ and /u/, respectively, it contains between 75% and 82% of the
intra—category vectors for the other vowel categories (and even 90% for the cat-
egory /a/). The data might also be interpreted from another point of view: In
order to ensure that at least 73% of the intra—category vectors lie within the circle
(for each category!), the radius of the circle has to be 0.06.

The same computation as for the intra—category vectors was performed for
the inter—ategory vectors. The data indicate the strength of overlap between
the vowel categories for a particular distance around a mean vector. Table 6.3
shows the results in which I concentrated on the inter—ategory vectors of the
vowel category whose overlap with the vowel category which the mean vector
represents was maximum (see also appendix G). The data support the second
result from the previous section: The vowel pairs /e/-/i/, /o/~/u/, and /a/-
/y/ show a strong overlap within the input space. This means that within a
circle around the mean vector of category /e/, the vectors of category /i/ form
the majority of vectors which do not belong to the category /e/, and vice versa.
Moreover, the data also indicate that the overlap is largest for the vowel pair
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distance to mean vector

vowel category 0.04 0.05 0.06 0.08
fal 0.0 0.0 0.0 0.0
fel 32(/i/) 175(/i/y 421(/i/) 83.5(/i/)
1/ 3.9(/e/) 23.9(/e/) 462(/e/) 79.2(/e/)
lol 1.9 (/u/) 12.1(/u/) 37.9(/u/) 76.8(/u/)
lol 53(/y/) 267(/y/) 60.8(/y/) 89.0(/y/)
I/ 3.7(/o/) 11.1(/o/) 28.2(/o/) 75.6(/o/)
Iyl 5.7(/e/) 254(/o/) 56.8(/e/) 93.9(/e/)

Table 6.3: Maximal percentage of inter~category input vectors whose distance to the
mean vector is smaller than 0.04, 0.05, 0.06, and 0.08, respectively.

/8/-/y/ and smallest for the vowel pair /o/-/u/.

To sum up, the statistics which I have presented so far provide information
about the first two questions which I posed at the beginning of this section. They
show that, except for the categories /o/ and /u/, the vowel categories form
quite compact regions within the input space. However, although compact, the
data further indicate that particular vowel categories strongly overlap with each
other. Under the assumption that the acquisition of vowel categories is initially
determined by an unsupervised learning mechanism these results question the
possibility that separate clusters of each of the categories can be acquired.

6.3.2 The effect of an energy filter on the distribution of the vowel
categories

The statistics from the previous section were based on data which was man-
ually selected from the input data set. The special labelling method ensured
that the data set consisted exclusively of input vectors which represented one
of the vowel categories. In the following section, I compare these results with
the statistics on an input space which was previously filtered by an energy filter.
By comparing these data with each other, the effect of an energy filter on the
distribution of the vowel categories within the input space becomes clear.?

The difference in the inherent energy of a vowel category

In the description of the theoretical model in chapter 3, 1 referred to the fact,
that vowels in general have higher energy values than consonants since they are
produced with vibrations of the vocal cords and without much obstruction of
the airflow from the lungs. The conclusion therefore was that vowel categories
should develop earlier than consonant categories — a conclusion which is in line
with psycholinguistic studies so far. This line of reasoning can also be applied

*Both methods, the special labelling method as well as the energy filtering method, operate
on the same underlying input data set. Therefore, any differences in the statistics are solely
based on a difference in the subset from the original input data set which was selected by the
two methods.
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Figure 6.2: The distribution of the energy values of an utterance of the words *lala” and
“lili", respectively. The lower diagrams show the waveforms of both utterances.

to the temporal development within the set of vowel categories. The higher the
energy values of the input vectors of a vowel category, the earlier this category
will be represented in the phonetic map.

An example of the difference in the energy values is shown in figure 6.2. Here
we see the waveforms of an utterance of the words “lala” and “lili”, respectively,
in connection with the distribution of the energy values. The horizontal dotted
lines in the upper diagram mark the energy thresholds 80, 90, and 97, respec-
tively. On the one hand, the figure clearly shows that vowels build areas in
the speech signal with high energy values. They are the only part of the sig-
nal which remains after filtering with a corresponding high energy threshold.
On the other hand, the figure also shows that vowels are not equal with respect
to their energy values. The energy values for the vowel /a/ in “lala” are con-
sistently larger than for the vowel /i/ in “lili”. That this effect is not due to
the choice of the utterances is demonstrated by the data in table 6.4. The table
shows for each vowel category the number of input vectors which have an en-
ergy value which is greater than a particular threshold value. For example, for
an energy threshold of 80, the number of input vectors are comparable for the
vowel categories /a/, /e/, and /y/, slightly smaller for the categories /i/ and
/u/, and slightly greater for the categories /o/ and /e/. However, this picture
changes as the energy threshold increases. For an energy threshold of 97, the
numbers are comparable for the vowel categories /e/ and /o/, slightly greater
for the category /a/, but clearly smaller for the categories /o/ and /y/, and
even smaller for the categories /i/ and /u/. Since the contextual information
was the same for all vowels, this result can only be due to the difference of the
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energy threshold
vowel category by hand 80 90 97 100

faf 933 1249 1057 898 834
le/ 1007 1250 1046 723 418
fi/ 851 1114 726 123 0
fol 1042 1330 923 477 163
lal 1061 1368 1032 737 532
ha/ 826 1178 642 96 9
Iyl 918 1236 781 300 76

Table 6.4: The number of input vectors of each vowel category which have an energy
value which is greater than the energy threshold 80, 90, 97, or 100, respectively, in
comparison to the number of input vectors after labelling by hand.

inherent energy of the vowel categories.

Therefore, the data in table 6.4 indicate that under the conditions that the
development of the auditory categories is initially based on an unsupervised
learning process, that the vowels have an equal frequency distribution within
the input space, and that there is a gradual increase of the input space during
the further development (due to an additional filter mechanism), the develop-
ment of auditory categories for the vowels /a/, /e/, and /a/ should begin at
an earlier point in time than for the vowels /o/ and /y/. Moreover, the devel-
opment of auditory categories for the vowels /o/ and /y/ should begin at an
earlier point in time than for the vowels /i/ and /u/.

The effect of an energy filter on the distribution of the vowel categories

The underlying idea of the introduction of an additional filter between the
acoustic analysis module and the phonetic map was to restrict the incoming
information to the phonetic map and therefore to reduce the overlap of the cat-
egories within the input space in order to facilitate the development of auditory
categories. The expectation that the complexity of the input space decreases as
the threshold of the energy filter increases was investigated by a classification
and regression tree (CART) analysis. The intention behind the application of a
CART analysis to the different input datasets was to get a measure for the over-
lap of the vowel categories in the input set. Such a measure is the overall mis-
classification (error) rate. Under the assumption that the CART analysis is applied
with identical parameters to the different input datasets, a high overall misclas-
sification (error) rate indicates that the underlying input dataset has a relatively
high complexity in which the vowel categories strongly overlap.

The CART analysis is a tree-based statistical method. The method is based
on a binary recursive partitioning whereby the input dataset is successively split
into increasingly homogeneous subsets until it is not feasible to continue. The
terminal subsets form a partition of the input space I and are designated by
a class label. The partition corresponding to the classifier is gotten by putting
together all terminal subsets corresponding to the same class.
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energy threshold

by hand 80 90 97
error rate 7.46% 15.14% 9.75% 3.85%
mean deviance 0.42 0.84 0.56 0.23
terminal nodes 25 44 22 15

data samples 6,638 8,725 6,207 3,354

Table 6.5: The outcome of a CART analysis on four different input datasets.

The entire construction of a tree-based analysis resolves around three ele-
ments:

1. The selection of splits;

2. The decision about when to declare a node or subset as terminal or to con-
tinue splitting it; and

3. The assignment of each terminal node or subset to a class.

The fundamental idea is to select each split of a subset so that the data in each of
the descendant subsets are “purer” than the data in the parent subset. The four
elements needed for the construction of an initial tree classifier are (Breiman,
Friedman, Olshen, & Stone, 1984):

1. Aset Q of binary questions of the form {Isx € A ?}, A C I for categorical
variables or a set Q of binary questions of the form {Is x,, < c},c € I. The
result is a set S of splits s of every node ¢ in which the split s* is selected
which maximises the goodness of split criterion ®(s, t);

2. A goodness of split criterion ®(s,t) which can be evaluated for any split s
of any node ¢;

3. A stop-splitting rule. The rule can be combined with a successive pruning
step in which the resulting tree is selectively recombined upward, getting a
decreasing sequence of subtrees. Cross—validation or test sample estimates
are used to pick out the subtree having the lowest estimated misclassifica-
tion (error) rate;

4. A rule for assigning every terminal node to a class in connection with the
estimation of misclassification.

I applied a CART analysis to four different input datasets. The first three
datasets were the result of a filtering with different energy thresholds, the fourth
one corresponded to the manually labelled dataset. The analysis was performed
by using the implemented algorithm which is included in the statistic program
S-PLUS with its default parameter set and default functions. The results are
shown in table 6.5.

As expected, the data demonstrate that the higher the energy threshold, the
smaller the misclassification rate and the residual mean deviance. In addition,
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the tree structure becomes less complex which indicates a less complex input
space and therefore a smaller overlap of the vowel categories. Therefore, the
data confirm the initial assumption that a filter with a high threshold value re-
duces the “complexity” of the input space.

6.3.3 Comparison of the similarities in phonological features to
the similarities within the input space

Since digitised speech signals form a quite complex input signal, a correspond-
ing representation in terms of phonological features has often been used in con-
nectionist models instead (e.g., Elman, 1990). Therefore, it might be interesting
to compare the similarities of the phonological features of the vowel categories
to the similarities that the vowels have within the input space. Table 6.6 shows
the characteristic phonological features for each vowel (Booij, 1995). Features
which can be predicted by the values of other features are circled. For example,
long mid vowels are always high so that the feature high is circled for the vowels

/e/, /o/,and /a/.

Tl lel il ol lel Tu Iyl
cons — — 9~ - - - -
high © & + & @& + +
md © + - + + - -
back + - - + — + -
md - - - @& + & +

Table 6.6: Phonological feature chart for the Dutch long vowels.

According to the table, there are 7 vowel pairs which differ in only one fea-
ture (/e/-/i/, /e/-/e/, /i/~/y/, /o/-/e/, /o/-/u/, /a/-/y/, /u/~/y/), 8
vowel pairs which differ in two features (/a/-/i/, /a/-/u/, /e/-/0/, /e/-
Iyl li/-/e/, /i/-/u/, Jo/-1y/, /8/-/u/), 5 vowel pairs which differ in three
features (/a/-/e/, /a/-/o/, /a/-/y/, /e/=/u/, /i/-/0/), and just one vowel
pair which differs in four features (/a/—/2/). Comparing the data in the fea-
ture chart with the results of the previous sections, it is obvious that similarities
in the phonological feature space do not exactly correspond to similarities (i.e.
small distances) in the input space. For example, the vowel pair /a/-/@/ is the
only one which differs in four features, but when looking at the distribution of
the vowel categories within the input space, it is the vowel category /o/ which
has the smallest distance to the vowel category /a/. Another example concerns
the vowel categories /o/ and /@/. Although they only differ by one phonologi-
cal feature, the vowel category /@/ has a similar distance to the vowel category
/o/ within the input space as the vowel categories /a/, /e/, /i/, and /u/ do,
which differ by two and three features from the category /o/, respectively.

The picture of the differences in the similarities of the vowel pairs in the
two domains changes slightly, if the kind of features in which the vowel pairs
differ is considered instead of the number of phonological features. First, vowel
pairs which show the highest amount of overlap in the input space (/e/-/i/,
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/o/-/u/,and /e/-/y/), have also a close similarity in the phonological feature
space. These vowel pairs differ by just one phonological feature, namely the
feature mid. Second, vowel pairs which only differ by the phonological feature
back (/o/-/e/ and /u/-/y/) have a large distance within the input space. And
third, the vowel category /a/ differs from the other vowel categories at least in
the phonological feature high. The results of the statistics of the previous section
show that the category /a/ is quite distant from all other vowel categories.

In summary, there is no direct correspondence between a difference in the
number of phonological features and the distance within the input space. And
although this picture changes slightly if the different kinds of phonological fea-
tures are included in the comparison, the general result still is that both domains
have quite different characteristics. This result has to be taken into account when
using the phonological feature space as input for connectionist models.

6.4 Simulation results

In this section, I present the results of a simulation which best characterises the
developmental process. The results are analysed with respect to the following
considerations:

o How are the average cluster quality values distributed on the map of units
during the simulation?

o How are the vowel categories represented by the units on the map?

o How are the average activity values distributed on the map of units for a
particular utterance?

o How do the clusters of the vowel categories develop in comparison to their
frequency distribution?

The input data for the simulation consisted of the normalised 16-dimensional
ABS representation of the speech utterances. However, only the first three utter-
ances of each CVCV-word were used for the training process, while the fourth
utterance was used for the evaluation of the simulation results. Based on the
ABS representation, filtered versions of an utterance were generated according
to the algorithm of section 6.2.3. The versions differed in the energy threshold
which was applied on the input data.

During a simulation, the current energy threshold decreased from a maxi-
mal initial value to zero, simulating the characteristics of the additional filter
between the acoustic analysis module and the phonetic map in MAPCAT. The
current energy threshold determined the set of possible input files at a particular
moment during the simulation. Only the filtered versions which corresponded
to the current energy threshold were included in the set. From this set, an input
file was chosen at random. And only after all vectors of this file were processed,
a following input file was chosen from the set — again at random. Appendix C
contains the algorithm for the computation of the next input vector during a
simulation. In addition, appendix D contains a complete list of all simulation
parameters.
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6.4.1 The distribution of the average cluster quality values on the
map of units

Coherent regions of high average cluster quality values in the map of units in-
dicate that the corresponding units have similar weight vectors and therefore
form a cluster, or representation of a vowel category. This means that the distri-
bution of the average cluster quality values of the units on the map during the
simulation process provides information about the development and stability of
a cluster. Only if a cluster remains constant in size and position within the map
of units, does it form a stable representation of an input category. Figures 6.3
(a) — (i) show the distribution of the average cluster quality values in the map at
different moments in time during the simulation. The higher the average cluster
quality value of a unit, the darker the square which represents a unit.

The pictures show that the first cluster developed between simulation step
10,000 and 15,000 and that by the end of the simulation three coherent regions
of high average cluster quality values developed (figure 6.3 (i)). A closer look at
the developmental process indicates that the large coherent region at the right
side of the map consists of two clusters which developed at different moments in
time during the simulation. Therefore, at the end of the simulation four clusters
of comparable size have developed. Moreover, the pictures indicate that each
cluster remains constant in size and stable in position within the map of units
and that the development of a new cluster seems to have no influence on existing
clusters in the map.

6.4.2 The representation of the vowel categories by the clusters

Further investigation of the simulation results is directed to the question of
whether an individual cluster forms a representation of one of the vowel cat-
egories and whether this representation shows a stable pattern of activation for
the corresponding vowel. Moreover, a further interesting question is why only
four clusters developed although the input configuration contained seven vowel
categories. In order to answer these questions 1 used the remaining fourth utter-
ance of each CVCV-word to test the sensitivity of each cluster and to compute
the average activity of each unit for each input vector of an utterance. The un-
derlying line of reasoning was that if a cluster forms a stable representation of
a vowel category the corresponding units will exhibit a constant pattern of high
activation for input vectors from this category.

In figures 6.4 (a} - (i), [ averaged over the average activity values of each unit
for the input vectors of a CVCV-word. The higher the mean average activity
value of a unit, the darker the square which represents the corresponding unit.
The distribution of the mean average activity on the map of units not only illus-
trates for which vowel a cluster is sensitive but also displays the units of each
cluster which are most sensitive to the corresponding vowel.

Figures 6.4 (a), (b), and (c) show the distribution of the mean activity for
utterances of three different words which all contain the vowel /a/. It is notable
that the region of high activation in the map is constant in size and position.
A comparison of the individual mean activity values of each unit supports this
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{a) after 10,000 simula- (b} after 15,000 simula- {c) after 20,000 simula-
tion steps tion steps tion steps

{d} after 25,000 simula- {e) after 30,000 simula- {f) after 40,000 simula-
tion steps tion steps fion steps
T
. &

%

e

{g) after 50,000 simula- {h) after 75,000 simula- {i} after 100,000 simula-
tion steps tion steps tion steps

Figure 6.3 The distribution of the average cluster quality on the map of units at different
moments in ime during the simulation. Each square represents a unit in the map: the
darker the square, the higher the average cluster quality value.
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B !

{a) /dada/ (b} fafa/ (¢} fmama/

»

(d} /dede/ {e) /didi {f} dodo/

. &

{g) /dode/ {h} /dudu/ (i)} /dyay/

Figure 6.4: The distribution of the mean average aciivity on the map of units for different
words. Each square represents a unit on the map: the darker the square, the higher the
mean of the average activity values. The values in the brackets specify the unit with the
highest average activity value.
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observation (see also appendix F). Therefore, the neural network was able to
learn a stable representation for the vowel category /a/. Moreover, figures 6.4
(d) - (i) demonstrate that each vowel category induces a region of high activation
in the map of units. Therefore, although at first glance only four clusters have
developed, all seven vowel categories are represented by the network structure.

The fact that the four clusters in the map represent the seven vowel cate-
gories within the input space means that at least one cluster represents more
than one vowel category. A comparison of the mean average activity patterns
reveals that three of the four clusters represent two vowel categories. The figures
also show that this only concerns vowel categories which possess, according to
the statistics from section 6.3, a high amount of overlap within the input space.
This means that vectors from the input categories /e/ and /i/ induce a simi-
lar activation pattern in the map, as well as vectors from the input categories
/o/ and /u/, and vectors from the input categories /o/ and /y/. However,
although input vectors from two similar vowel categories are mapped onto the
same cluster, this does not automatically mean that they are also mapped onto
the same units within a cluster. For example, a comparison of the mean aver-
age activity values for an utterance of the words “dede” and “didi” (figures 6.4
{(d) and (e), respectively) reveals that the location of the centre of high average
activity is slightly different (see also appendix F).

I analysed the sensitivity of the units in the map in more detail by an ap-
proach from the signal detection theory (Macmillan & Creelman, 1991). The
result of this analysis is a measure which conveys the “goodness” of represen-
tation of a unit with respect to a vowel category — in other words: how well
does a unit represent the vowel category /a/, /e/, ..., or /y/, respectively?
The starting point of the analysis is the assumption that a unit belongs to a clus-
ter which represents a particular vowel category (/a/, /e/, ..., or /y/). For
reasons of convenience, I will call such a unit an /a/—unit (or /e/-unit, ..., or
/y/-unit). This assumption and the definition of an activity threshold 8 make it
possible to compute the following values for each unit:

e hyy: number of hits
a hit corresponds to the event that the activity value of the unit for the
current input vector is higher than the threshold value # AND that the

assumption that the unit is an /a/-unit (or /e/-unit, ... , or /y/-unit)
corresponds to the vowel category which the current input vector repre-
sents.

o iy number of false alarms
a false alarm corresponds to the event that the activity value of the unit
for the current input vector is higher than the threshold value § BUT that
the assumption that the unit is an /a/-unit (or /e/-unit, ... ,or /y/-unit)
does not correspond to the vowel category which the current input vector
represents.

e hyp: number of misses
a miss corresponds to the event that the activity value of the unit for the
current input vector is lower than the threshold value § BUT that the as-
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sumption that the unit is an /a/-unit (or /e/~unit, ... , or /y/-unit) cor-
responds to the vowel category which the current input vector represents.

o hy: number of correct rejections
a correct rejection corresponds to the event that the activity value of the
unit for the current input vector is lower than the threshold value § AND
that the assumption that the unit is an /a/-unit (or /e/-unit, ... ,or /y/-
unit) does not correspond to the vowel category which the current input
vector represents.

According to the signal detection theory, these values are combined in an equa-
tion which computes the value A’ for each unit. The value A’ indicates how
“well” a unit represents a particular vowel category (see e.g., Macmillan & Creel-
man, 1991, p. 107):

h
h, o
hoo + hor
hyg
L
10+
(1= fr)x(1.0+1,— fr)
Y 05+ m2f 1
- 0.5 (fr=h)x(1.04+f—h) h (6 )
5+ W r < fr

Figure 6.5 shows the distribution of the A’ values on the map of units for
the threshold value # = 0.5! The analysis was performed over all input vec-
tors which belonged to a vowel category. The vowel categories are specified
by different colours while the goodness of the representation is specified by the
intensity of a colour. Each unit is marked by the vowel category for which it
showed the highest A’ value.

The result of the analysis confirms the previous observations. First, although
at first glance only four clusters developed by the end of the simulation, each
vowel category is represented in the map of units. And second, if a cluster rep-
resents two similar vowel categories (e.g., /e/ and /i/), these categories are
mapped onto different regions within the cluster. This means that the neural
network was able to learn representations for each of the vowel categories and
that vowel categories which have a strong overlap within the input space also
have a corresponding overlap on the map of units.

*IThe choice of the threshold value # is not critical for the following analysis. The picture is
nearly identical for smaller and larger values of 6.
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brown corresponds to vowel category /a/

iy red corresponds to vowel category /e/
yellow corresponds to vowel category /i/
[ green corresponds to vowel category /o/
& magenta corresponds to vowel category /o/
- blue corresponds to vowel category /u/

cyan corresponds to vowel category /y/

Figure 6.5: The distribution of A’ values on the map of units for the threshold value
8 = 0.5. The colour specifies the vowel category for which a unitis sensitive, the intensity
of the colour indicates the goodness of representation.
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'
(a) after 15,000 (b) after 20.000 (c) after 25,000 (d) after 50,000
simulation steps simulation steps simulation steps simulation steps

[ )

I

Figure 6.6: The distribution of the mean average activity on the map of units for an
utterance of the word “dede” at different moments in time during the simulation. Each
square represents a unit on the map: the darker the square, the higher the mean of the
average activity values.

6.4.3 The sensitivity of an “ambiguous” cluster

The results from the previous section have shown that at the end of the simula-
tion, two similar vowel categories are mapped onto the same cluster. An inter-
esting question related to this characteristic is whether this ambiguity of a cluster
already exists at the initial stage or whether it develops during the simulation
process. For instance, the first cluster which developed between simulation step
10,000 and 15,000 (figure 6.3 (b)) represents at the end of the simulation the
vowel categories /e/ and /i/ (figure 6.5). Did it have this ambiguity from the
beginning or was the cluster first sensitive to, for instance, the vowel /e/ and
only later also became sensitive to the vowel category /i/?

An answer to this question is given in the figures 6.6 (a) ~ (d) and 6.7 (a) —
(d) which show the mean of the average activity values in the map for an utter-
ance of the words “dede” and “didi”, respectively, at different moments in time
during the simulation. The higher the mean average activity value of a unit, the
darker the square which represents the corresponding unit. What the figures
show and what a following analysis confirmed is that the initial cluster repre-
sented a region within the input space which corresponded to the overlapping
area of both vowel categories. Therefore, the cluster showed an initial small
sensitivity to both vowel categories which became larger during the simulation
process. The increase in sensitivity to both vowel categories is based on the at-
traction of further units to the cluster during the following learning process.

As the figures further show, the increase in sensitivity does not develop
equally for both vowel categories. A comparison of figures 6.6 (b), (c) and 6.7
(b), (c) demonstrates that the sensitivity of the cluster to the vowel category /i/
develops faster than its sensitivity to the vowel category /e/. However, the
development of the sensitivity of a cluster is dependent on global factors like
the location of the weight vectors of neighbouring units and the information in
the input stream. Therefore, different simulation parameters might reverse the
development of a cluster’s sensitivity. At the end of the simulation, an “am-
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(a) after 15,000 (b) after 20,000 (c) after 25,000 (d) after 50.000
simulation steps simulation steps simulation steps simulation steps

Figure 6.7: The distribution of the mean average activity on the map of units for an
utterance of the word “didi” at different moments in time during the simulation. Each
square represents a unit on the map: the darker the square, the higher the mean of the
average activity values.

biguous” cluster is equally sensitive to both vowel categories and its centre rep-
resents the overlapping region of both vowel categories within the input space.

6.4.4 The temporal development of the clusters

As I already described in section 5.3.2, two events have to occur in temporal
synchronisation for the development of an initial cluster: (1) the weight vectors
of neighbouring units have to form a limited region within the input space, and
{2) this region must correspond to one of the input categories. The stability of an
initial cluster is dependent on a following process in which the weight vectors
of neighbouring units are attracted to the region within the input space which
is formed by the weight vectors of the initial cluster. However, this process
assumes that the input stream contains sufficient vectors from a corresponding
input category so that an initial cluster finally becomes stable.

Simulations with different values for the seed of the random function and,
therefore, different initial distributions of the weight vectors have revealed the
following developmental picture: the first cluster develops about simulation
step 15,000 and shortly thereafter (until simulation step 25,000) two further
clusters develop. A fourth cluster develops only later during the simulation
process, between simulation step 35, 000 and 40, 000. The first two clusters are
sensitive to the vowel categories /e/ and /i/, or /o/ and /y/, respectively, and
it is not predictable for which of the vowel categories a cluster emerges first.
The third cluster is sensitive to the vowel category /a/ while the fourth clus-
ter is sensitive to the vowel categories /0/ and /u/. However, in one of the
simulations, the second cluster which developed was sensitive to the vowel cat-
egory /a/ while only shortly later a cluster developed which was sensitive to
the vowel categories /e/ and /i/.

The developmental sequence of clusters for the vowel categories corresponds
globally to the vowels’ frequency characteristics (see also table 6.4). The pe-
riod between simulation step 10,000 and 15,000 corresponds to input which is
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Figure 6.8: The distribution of the average activity on the map of units at different mo-
ments in time during an utterance of the word “didi”.

filtered by an energy threshold 95. From this energy threshold to the energy
threshold 90, the sum® of the number of input vectors for the vowel categories
/e/ and /i/, and /@/ and /y/ are comparable, slightly larger than the num-
ber of input vectors for the vowel category /a/, and clearly larger than the sum
for the vowel categories /o/ and /u/. Therefore, the probability that a cluster
would develop at first for the vowel categories /e/ and /i/,or /o/ and /y/, re-
spectively, is larger than for the other vowel categories. In section 7.1, I discuss
the possible consequences of this result on the developmental process which is
specified by the theoretical model.

6.4.5 The distribution of the average activity values
during an utterance

Although the network was able to learn stable representations for each of the
vowel categories, this does not automatically mean that each input vector from
a vowel category induces a pattern of high activation in the map of units. This
issue is illustrated in figure 6.8. The figure shows the waveform of an utterance
of the word “didi” in connection with the distribution of the average activity in
the map of units for particular input vectors. As in the previous figures, a dark
square corresponds to a high average activity value of the corresponding unit.

*Since an “ambiguous” cluster represents both similar vowel categories, [ used the sum of
the number of input vectors of each of the vowel categories for the following comparison.
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The vertical lines which cross the waveform mark the region in the speech signal
which the corresponding input vector represents.

The different activation patterns demonstrate two things: First, the cluster
units exclusively represent a particular vowel category. Input vectors which be-
long to the consonantal context of a vowel do not induce an activation pattern
on the map. This means that information about the consonants is still not rep-
resented on the map which is basically due to the influence of the energy filter
(see also section 6.4.6). And second, there is strong variability in the activation
patterns for different input vectors from the vowel category. This illustrates that
a cluster not only represents a kind of prototype of a vowel category, but also
the category’s distributional properties within the input space.

6.4.6 The influence of an energy filter on the simulation result

An issue in the theoretical model which plays an important role in nearly every
chapter of the thesis is the assumption that the information passed from the au-
ditory analysis module to the phonetic map is filtered by an additional process.
The underlying idea of this additional filter was to restrict the incoming infor-
mation to the phonetic map in order to facilitate the development of auditory
categories. And indeed, the results of the previous sections have shown that in
a simulation which makes use of this assumption, the neural network was able
to learn stable representations for each vowel category. But, what happens if the
same simulation is performed without such an energy filter? Is the assumption
of an additional energy filter necessary at all?

I'ran a further simulation which had the identical parameter set as the simu-
lation of the previous sections, but in which no energy filter restricted the input
space. That means, the energy threshold § was set to zero at the beginning of the
simulation. The distribution of the average cluster quality on the map of units
at the beginning, in the middle, and at the end of the simulation are shown in
figures 6.9 (a) — (c). The higher the average activity value of a unit, the darker
the square which represents the corresponding unit. The pictures show that al-
ready immediately at the beginning of the simulation clusters developed and
served as a starting point for the development of further clusters which formed
a chain of high average cluster quality values within the map of units. This de-
velopmental process reached a stage in which the number of clusters within the
map of units did not increase further (figure 6.9 (b)). During the further learning
process, the clusters are in a kind of competition and remain unstable until the
end of the simulation.

An analysis of the sensitivity of the clusters revealed that clusters developed
exclusively for vowel categories, but not for consonant categories, and that in
general, several clusters developed for a vowel category. In addition, the clus-
ters did not remain stable during the simulation, neither in size nor in their
sensitivity to a particular vowel category. The chaotic structure in the develop-
mental process and the variability in the sensitivity of the clusters provide strong
arguments in favour of a filtering process. Actually, the results demonstrate that
the introduction of an energy filter helps the neural network in learning repre-
sentations of the different vowel categories.
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{a) after 1,000 simula- {b} after 50,000 simula- {c) after 100, 000 simula-
tion steps tion steps tion steps

Figure 8.9: The distribution of the average cluster quality on the map of units at different
moments in time during a simulation without an energy filter. Each square represenis a
unit in the map: the darker the square, the higher the average cluster quality value.

6.5 Summary

In this chapter, [ demonstrated that the new neural network approach is able
to model the development of auditory categories for the long vowels of the
Dutch vowel system. According to their distribution within the input space,
several clusters developed during the simulation process whereby vowel cate-
gories which have a strong region of overlap within the input space are mapped
onto the same cluster. Further analysis of the developmental process showed
that the clusters form stable representations and correspond to the central re-
gion of each vowel category. The outcome of an additional simulation in which
no energy filter restricted the input space showed that the energy filter is a nec-
essary assumption for the learning process.

In the following chapter I discuss these results in connection to the devel-
opmental process in infants. In particular, I evaluate the resulis in connection
to the specifications of MAPCAT and to findings from psycholinguistic experi-
ments. Finally, I discuss the possible extensions of the presented artificial neural
network approach.
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DISCUSSION

CHAPTER 7

The results of the previous chapter have demonstrated that the SPC algorithm
is able to learn representations for each vowel category on the basis of digitised
(real) speech as an input signal. The presentation of different vowels in the in-
put stream results in corresponding different activation patterns in the map of
units so that successive modules are able to differentiate between the vowel cat-
egories. This result demonstrates that the acquisition of representations for the
long vowel categories of the Dutch vowel system can generally be explained by
a self-organising process.

While the results demonstrate the applicability of the new artificial neural
network model in general, I discuss in the following the plausibility of the sim-
ulation results in the context of the developmental process. In this regard, I ex-
plore the implications of the simulations for the theoretical model and to what
extent the results lead to further predictions with respect to the course of the
developmental process. In addition, I further discuss how well the simulation
results accord with the results from psycholinguistic experiments, and whether
itis possible to apply the SPC algorithm to a larger group of phonetic categories
than to just the long vowels.

7.1 The simulation data in the context of the
theoretical model

According to the theoretical model (MAPCAT), the development of auditory
categories in the phonetic map marks the change from language-independent
to language—dependent processing of speech signals by an infant. The phonetic
map acts like a perceptual filter, whose filter characteristics are provided by the
acquired categories. It provides higher levels of processing with just the in-
formation that is necessary for the processing of speech signals from the target
language. The simulations from chapter 6 were performed in order to model the
development of auditory categories within the phonetic map. Therefore, the re-
sults provide further constraints on the developmental process and expand the
specifications of the model with respect to issues concerning the structure of the
categories and their temporal development.

First of all, the simulation results support the assumption of an additional
filter between the acoustic analysis module and the phonetic map. The results
clearly demonstrate that the SPC algorithm was able to learn stable represen-
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tations for the vowel categories only if the input was previously filtered by an
energy filter whose permeability increases during the simulation process. How-
ever, despite the use of such an energy filter, some of the clusters that developed
during the simulation process were initially sensitive to two (similar) vowel cat-
egories. This means that on the basis of the activation patterns within the map of
units, at that moment in the simulation process no distinction between the two
similar vowels was possible. Only during the further course of the simulation
did different regions of sensitivity for the two vowels within an “ambiguous”
cluster evolve. According to the theoretical model, the selection and integration
module has an inherent tendency to prefer the information that is transmitted
by the “linguistic” path — under the assumption that this information arises
from a stable activation pattern within the map of units. Therefore, the emer-
gence of the first clusters leads to a continuous shift in information processing
by the selection and integration module from the “acoustic” to the “linguistic”
path. The consequence of this shift is that the emergence of two identical acti-
vation patterns within the phonetic map for two different speech sounds results
in a discrimination failure by the perceptual system. Therefore, the simulation
results imply that infants would have a (short) period during their language
development in which their discrimination capabilities decreases not only for
non-native speech contrasts, but also for native speech contrasts.

A further issue concerns the time course of the developmental process. The
results of speech perception experiments with infants indicate that language—
specific influences are evident from the age of six months and that the devel-
opmental reorganisation occurs earlier for vowel categories than for consonant
categories (see also section 2.3). This last point is confirmed by the simulation
in which no energy filter has been used. In addition, the simulation results sug-
gest that there is also a developmental difference within the vowel group, since
the development of a cluster for a sound category is dependent on the sounds’
acoustic and frequency characteristics. Therefore, clusters for more dominant
speech sounds emerge earlier during development than clusters for less dom-
inant speech sounds. For instance, the simulation results suggest that Dutch
infants should reveal an effect in their discrimination capabilities at an earlier
stage for the vowels /e/ and /i/ than for the vowels /o/ and /u/.

In summary, in the context of the theoretical model, the simulation results
provide a further refinement of the process of the development of initial audi-
tory categories. They suggest that although each vowel category is finally rep-
resented in the phonetic map, there is a stage during the development in which
no distinction between similar vowels can be made.

7.2 The simulation data in the context of
psycholinguistic results

The majority of the cross-linguistic and developmental work with infants con-
sists of studies investigating their discrimination capabilities of syllable pairs
that differ in the syllable—initial, -medial, or —final stop consonant or fricative.
This work clearly demonstrates that infants possess some innate abilities to dis-
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criminate many different kinds of speech contrasts. However, the focus of the
studies investigating infants’ vowel perception lies on the specification of initial
vocalic categories’ structure, rather than merely testing whether infants are able
to discriminate the vocalic speech sounds.

While the theoretical model was developed to account for results from both
types of studies, the previous section demonstrated that the simulation results
provide a further refinement of the developmental process that is specified by
the theoretical model. Therefore, it is necessary to re—evaluate the characteristics
of the theoretical model in comparison to the empirical data. In the following, I
discuss the results of the studies investigating infants’ vowel perception in view
of the theoretical model and the outcome of the simulations from chapter 6.

Kuhl (1979)

In her study, Kuhl (1979) investigated whether 6-month-old infants are able
to categorise the vowels [a] and [i] produced by different speakers and with
different pitch contours. The results showed that infants consistently categorise
the stimuli on the basis of vowel colour over and above differences in speaker.
Although MAPCAT assumes that the input to the phonetic map is “normalised”
with respect to differences in speaker and pitch counter, the simulation results
(at least) demonstrate that both vowels induce a different activation pattern in
the phonetic map. Therefore, the categorisation effect of this experiment can be
explained by a mapping of the vowel categories onto different representations
within the phonetic map.

Kuhl (1983)

In a following experiment, Kuhl replicated the categorisation effect in 6-month—
old infants with the vowels [al and [o] (Kuhl, 1983). According to Kuhl, “the
data provide strong support for the notion that 6~month—old infants recognize
equivalence classes that conform to vowel categories.” (Kuhl, 1983, p. 281). This
result is interesting in the sense that the two vowels are adjacent in the vowel
space and that productions of these vowels produced by different kind of speak-
ers (men, women, children) showed considerable overlap in their first two for-
mants (Peterson & Barney, 1952). Since 1 did not use the vowel category [o] as
input for a simulation, I can only speculate about the outcome of a correspond-
ing simulation. According to the simulation results, similar vowel categories are
mapped onto different regions of one cluster. Therefore, I would expect an iden-
tical result for the similar vowel categories [a] and [5]. One cluster will develop
in which both vowel categories are represented by different regions within the
cluster. Moreover, the simulation results further predict that there will be a stage
in early development in which infants are not able to keep the two vowels apart.

Kuhl and Miller (1982)

Kuhl and Miller (1982) demonstrated in their study that 4- to 16-week—old in-
fants were able to discriminate speech stimuli when a change in vowel identity
or pitch contour occurred. That means, the infants detected a change from the
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vowel [a] to the vowel [i], as well as a change from an [a] with a monotone
pitch contour to an [a] with a falling pitch contour. Moreover, the infants also
detected a difference between the vowels [a] and [i] when the stimuli varied in
pitch contour. With respect to the studies of Kuhl (1979, 1983), these results show
that infants are able to categorise the stimuli according to vowel colour. These
results are a challenge for the theoretical model, because they suggest that 4
weeks-old infants already possess representations for the vowel categories [a]
and [i]. However, a closer look at the experimental setup and the results shows
that the outcome of this study can also be explained by the use of different foci
of attention (see also section 2.2.6, as well as Jusczyk et al. (1990)). That means
that if the speech stimuli during the pre—shift phase of an experiment are per-
ceptually similar to each other, then infants will direct their focus to the fine
distinctions between the stimuli — as is indeed the case when the stimuli in the
pre—shift phase of the experiment consist of identical vowels, only differing in
pitch contour (monotone and falling fundamental frequency). Therefore, the in-
fants are able to detect the difference in vowel colour between the stimuli in the
pre—shift and the post-shift phase. However, if the stimuli during the pre-shift
phase of an experiment are perceptually dissimilar then infants will direct their
focus to the coarse distinctions between the stimuli — as is the case when the
stimuli in the pre—shift phase consist of two vowels with identical pitch contour.
This leads to the effect that infants will be likely to miss the difference in pitch
contour between the stimuli in the pre—shift and in the post-shift phase.

Kuhl et al. (1992)

The first study that demonstrated the influence of the ambient language on in-
fants” perceptual capabilities of vowels was performed by Kuhl et al. (1992).
They tested 6-month—old infants from English-speaking and Swedish-speaking
environments on native-language and foreign-language vowel sounds: an
American English /i/ as in “fee” and a Swedish /y/ as in “fy”. The experimen-
tal results revealed that American infants perceived a prototype of the Ameri-
can English /i/ as identical to variants of the prototype on 66.9% of all trials. In
contrast, they perceived a prototype of the Swedish /y/ as identical to variants
of the prototype on only 50.6% of the trials. The picture was reversed for the
Swedish infants. Therefore, these results suggest that linguistic experience al-
ready alters phonetic perception of vowels at an age of six months — at a consid-
erably earlier stage than for stop consonants (e.g., Werker & Tees, 1984; Werker
& Lalonde, 1988). Following the simulation results, the language-specific per-
ception can be explained by the development of different categories in Amer-
ican and Swedish infants based on their different linguistic experience. Since
the prototypes of the American English /i/ and the Swedish /y/ lie in close
proximity within the acoustic space, the foreign-language stimuli will also in-
duce an activation pattern in the phonetic map. However, this activation pat-
tern will be in general less distinct than for the native-language stimuli. The
(reduced) activation for foreign-language stimuli leads to the two effects the ex-
periment showed: First, foreign-language stimuli also perceptually assimilate
similar sounds, and second, this assimilation effect is in general smaller than for
native-language stimuli.
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Polka and Werker (1994)

Polka and Werker (1994) have recently begun to investigate in more detail the
developmental changes in cross-linguistic vowel perception. They tested 6- to
8-month—old and 10- to 12-month—old English-leaming infants in a discrimina-
tion experiment on the two German vowel contrasts /dut/ vs. /dyt/ and /dut/
vs. /dyt/ (see section 2.3.1 for a more detailed description of their experimental
setup). The results showed that the infants performed significantly worse than
English-speaking or German-speaking adults. In addition, while there was no
evidence that the older infants were able to discriminate either vowel contrast,
the discrimination rates of the younger infants were significantly better. In con-
trast, a follow-up experiment with 4- and 6-month—old infants revealed that
4-month—olds, but not 6-month-olds were able to discriminate both German
vowel contrasts.

According to the theoretical model, 4-month—old infants discriminate the
speech sounds through information from the “acoustic” path. Consequently,
they are able to discriminate both foreign-language vowel contrasts without
difficulty. In contrast, 10~ to 12-month-old English-learning infants already
possess categories for the English vowels /u/ and /u/, but no categories for the
foreign-language vowels /y/ and /v/. Therefore, according to the theoretical
model, the foreign-language as well as the native-language vowels must induce
an identical activation pattern within the phonetic map, so that the infants are
no longer able to discriminate the vowel contrasts. That means that the older in-
fants perceive the speech sounds through information from the “linguistic” path
and are therefore hardly able to detect a difference between the vowel contrasts.
More complicated is the situation for the 6- to 8-month—old infants. They are
in a stage in which the first categories within the phonetic map have developed,
and have therefore begun to process the speech sounds by information from
the “linguistic” path. As I explained in detail in section 3.3.3, the continuous
transition in information processing from the “acoustic” path to the “linguistic”
path provides an explanation for the discrimination results of 6-to 8~month-old
infants.

Although theoretically plausible, the simulation results put some question
marks behind this explanation. The statistics of the input data revealed that the
vowels /u/ and /y/ are quite distant within the input space and that during
the simulation two different clusters developed for these vowel categories. That
would mean that for English-learning infants, the foreign-language vowel /y/
would not induce an activation pattern within the phonetic map, and therefore
no processing of the information via the “linguistic” path would occur. Conse-
quently, according to the simulation results, English~learning infants should be
able to discriminate both vowel contrasts independent of their age. That means
that the experimental results contradict the simulation results. This suggests that
the theoretical model or the artificial neural network model are wrong in some
respect. However, the results of the study by Polka and Bohn (1996), which I
will discuss next, turn the focus of interest to the utterances that were used as
input.
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Polka and Bohn (1996)

Polka and Bohn (1996) used a complete cross-language design in which they
confronted 6- to 8-month-old and 10- to 12-month—old English-learning and
German-learning infants with the German (non-English) vowel contrast /dut/
vs. /dyt/ and the English (non—-German) vowel contrast /det/ vs. /deet/. In
contrast to the study of Polka and Werker (1994), Polka and Bohn found no evi-
dence for a decline in discrimination for either of the two non—native vowel con-
trasts. Moreover, they found no evidence for a difference in discrimination per-
formance between the language groups: German-— as well as English-learning
infants performed similar on both vowel contrasts, independent of whether the
vowel contrast was part of their native language or not. Therefore, with re-
spect to the vowel contrast /dut/ vs. /dyt/, these results contradict the results
of Polka and Werker. A possible explanation might be that the stimuli in the
two studies were not the same (see also section 2.3.1). While in the Polka and
Werker study the vowel contrast was produced by a native German speaker
from Southern Germany, Polka and Bohn asked a North German to produce the
vowel contrast. A comparison of American adults’ identification rates revealed
that the vowels produced by the South German were perceived as much more
similar to each other than the vowels produced by the North German. There-
fore, it might be the case that the difference between the two vowel contrasts
was responsible for the discrepancy in discrimination by the American infants
in both studies.

According to the simulation results, the outcome of this experiment for the
German vowel contrast /dut/ vs. /dyt/ was as expected. The German infants
were able to discriminate the German vowel contrast on the basis of different
activation patterns for each of the vowels within the phonetic map, i.e., by infor-
mation through the “linguistic” path. For English-learning infants, the pattern
looks a bit different. The German vowel /u/ is very similar to the English /u/,
so it also induces an activation pattern within the phonetic map. In contrast, the
German vowel /y/ is processed through the “acoustic” path, since none of the
English vowels is similar to it; it therefore induces no activation pattern within
the phonetic map. That means that the German vowel contrast /dut/ vs. /dyt/
is processed in English-learning infants by information from the “acoustic” and
the “linguistic” path. All in all, infants from both language environments and
both age groups are able to discriminate the German vowel contrast. A similar
line of reasoning holds for the English vowel contrast /det/ vs. /deet/.

Another factor investigated by Polka and Bohn, which I also discussed in
connection with the perceptual magnet effect (see section 3.3.3), is the hypothe-
sis that infants’ discrimination depends on the vowel that serves as the reference
stimulus. The results of the study by Polka and Bohn (1996) showed that infants
from both language groups and both age groups exhibited better discrimination
of the English vowel contrast if the /¢/ served as the reference vowel, and they
exhibited better discrimination of the German vowel contrast if the / y/ served
as the background vowel. These results contradict the results of the study by
Kuhl et al. (1992) and also the predictions of the theoretical model. The theo-
retical model predicts a corresponding effect only for 6~ to 8-month—old infants
whose processing of incoming information is in the transitional stage from the
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“acoustic” to the “linguistic” path. Moreover, the effect should — according to
the theoretical model — only be visible if the native-language vowel serves as
the background vowel. Therefore, further investigations are necessary to clarify
the role and origin of the directional asymmetries in infants” vowel perception.

In summary, the comparison of the studies that investigated infants’ vowel per-
ception with the simulation results and the further specification of the theoreti-
cal model support the assumption that infants’ discrimination of speech sounds
is dependent on the differences in the activation patterns within the phonetic
map that are induced by the input stimuli. Speech sounds that are mapped onto
the same category and whose activation patterns are therefore very similar to
each other become less discriminable. However, the results of Polka and Werker
(1994) and Polka and Bohn (1996) which are partly contrary to the results found
by the simulations, demonstrate that some (essential) pieces of the puzzle are
still missing. In this context, further empirical research is necessary.

7.3 Candidate extensions of the new artificial neural
network model

The use of just long vowels in the modelling of the developmental process con-
siderably limited the complexity of the simulation task. Although this subset
still allows the investigation of several important aspects of the developmental
process, it is still open whether the SPC algorithm can handle the complete set
of phonetic categories. In this regard, the kind of input that is used during the
simulation and the characteristics of the different speech sounds play a critical
role.

The input for the simulation consisted of a sequence of vectors in which each
vector formed an Acoustical Band Spectrum (ABS) representation of a short pe-
riod of the speech signal. No further information was provided, such as segmen-
tation cues that point to phoneme and syllable borders, or additional markers
that classify the input into static and transition spectra (cf., Markey, 1994). This
means that the SPC algorithm is able to learn categories only for speech sounds
which are characterised by a stable spectral period. This holds for vowels and
fricatives, but certainly not for nasals and stop consonants. Nasals and stop con-
sonants are associated with formant transitions when they are produced in the
context of other speech sounds (Kent & Read, 1992). Therefore, it is the dynamic
information in the transitional period that characterises nasals and stop conso-
nants — and this comprises more than just one input vector. Consequently, the
current neural network model does not represent a general approach. However,
there are possibilities for extending the network’s architecture in order to inte-
grate contextual information.

From research in Automatic Speech Recognition (ASR), several artificial neu-
ral network models have been proposed that are able to deal with dynamic infor-
mation, like recurrent neural networks (RNN), which make use of a recurrent in-
ternal state that is a function of the current input and the previous internal state
(e.g., Kuhn, Watrous, & Ladendorf, 1990}, or time—delay neural networks (TDNN),
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which use several preceding activation values instead of recurrent loops fe.g.,
Waibel, Hanazawa, Hinton, Shikano, & Lang, 1989). However, the recurrent
neural network as well as the time—delay neural network employ a supervised
learning algorithm. Since I assume in the theoretical model that the develop-
mental process is based on an unsupervised learning process, these network
models are not appropriate for the modelling task. Nevertheless, they form the
basis for recent artificial neural network models which successfully integrate
context and temporality in an unsupervised learning algorithm (e.g., Chappell
& Taylor, 1993; van Harmelen, 1993). These new approaches are in general an ex-
tension of the Kohonen algorithm, which work by retaining an activation poten-
tial from earlier simulation steps (Chappell & Taylor, 1993), or by including re-
current transition connections in the network architecture (van Harmelen, 1993).
Van Harmelen (1993) has demonstrated the applicability of such an approach in
learning of different response patterns for CV-words differing in their initial
consonant.

According to these results, the following extension of the architecture of the
current artificial neural network model might be promising in learning tran-
sient speech sounds. In addition to the existing map of units, a second map
is connected in parallel to it, with a slightly different architecture and learning
rule. New transition connections are added which connect units in a particular
neighbourhood with each other. The transition connections transmit informa-
tion about the activity of a unit at earlier simulation steps. For example, if the
distance between unit u;, and unit uy is d within the map of units, then unit
u;; gets information about the activity of unit uy at time step ¢ — d through the
transition connection 7,; . The range of the transient connections is limited and
smaller than the size of the map of units. The transition connections are also
subject to a learning process, so that connections between units which represent
information at successive time steps are strengthened. While the computation of
the cluster quality values of a unit remains the same as in the first network, the
computation of the activity values changes by taking into account the activity
values of neighbour units at corresponding earlier simulation steps weighted
by the transition weights. Consequently, the activity of a unit does not repre-
sent its selective sensitivity to a single input vector, but to a sequence of input
vectors.

In order to learn transient speech sounds by an artificial neural network
model, it is not sufficient just to include dynamic information into the learning
algorithm. The network also needs information about the critical time period
that includes the dynamic information. In other words, it needs a kind of ex-
ternal “trigger” to determine when to start and stop learning. That means that
additional information is necessary which is not included in the input stream.
The idea is that the activation pattern within the first map — in which cate-
gories for vowels and other static speech sounds are represented — forms such
an external trigger via a gate between the first and the second map. Therefore,
dynamic information in the input stream is characterised by the period in which
no stable activation pattern in the first map appears. During this period, the
gate between both maps is open and learning in the second map occurs. In this
sense, the gate simulates a so—called brute—force target function as used in re-
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current neural networks (e.g., Wittenburg & Couwenberg, 1991).

It is obvious that such a model makes explicit use of the empirical finding
that the native language environment appears to have an earlier effect on in-
fants’ vowel perception than on infants’ consonant perception. To what degree
this model is able to learn representations for transient speech sounds has to be
evaluated in the future. Nevertheless, this description of a possible extension of
the current artificial neural network model indicates the network’s potential.

7.4 An initial link

After 25 years of research on infant speech perception, many surprising skills
of newborns and infants have been discovered. Initial theoretical models of
these skills are now emerging that ty the experimental results to a description
of the development of a word recognition system in infants. MAPCAT is one of
these, concentrating on the developmental change in infants’ perceptual capaci-
ties during the first year of life. While relying on and profiting from the immense
experimental work of the last decades, it shows that many pieces in the puzzle
are still missing and many issues remain to be explored. But not only by ex-
perimental psychologists. I hope to have shown that computational models in
general, and artificial neural networks in particular, form additional frameworks
within which particular specifications and hypotheses of theoretical models can
be formulated and assessed. Therefore, computational modellers are also asked
to contribute to research in infant speech perception, and to strengthen the initial
link between the two fields that has been forged by this thesis.
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A Chapters 4 and 5:

Input configuration for the simulations within a
two—dimensional input space

number of input categories 4
radius of each input category 0.1
number of input vectors per file 21
number of input levels 5
number of simulation steps 100,000
input level 1 2,000
input level 2 2,000
input level 3 2,000
input level 4 4,000
input level 5 90,000
input category 1 input category 2
centre (-0.5,-0.5) centre (-0.5,40.5)
number of zero vectors number of zero vectors
input level 1 16 input level 1 21
input level 2 10 input level 2 16
input level 3 6 input level 3 10
input level 4 0 input level 4 4
input level 5 0 input level 5 0
input category 3 input category 4
centre (+0.5, ~0.5) centre (+0.5,+0.5)
number of zero vectors number of zero vectors
input level 1 21 input level 1 21
input level 2 16 input level 2 21
input level 3 6 input level 3 18
input level 4 0 input level 4 10
input level 5 0 input level 5 0

Table A: The input configuration for simulations with the Kohonen algorithm (sec-
tion 4.3.2) and the SPC algorithm (section 5.3.1): Four input categories with equal radius
were defined within a two—dimensional input space. For each of the input categories the
number of zero vectors at each input level was specified separately, simulating a differ-

ent influence of the energy filter on each input category.
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B Chapter 5:
Simulation parameters

Symbol Description Value
My number of units in each direction of the two—dimensional map 20
May number of simulation steps 100,000
Is number of successive speech input vectors 90
In number of successive noise input vectors 90
o strength of adaptation in direction of input vector 0.1
ay strength of adaptation in random direction 0.025
o strength of influence of inhibitory connections 0.5
ny number of inhibitory connections 100
(¥ repelling distance 0.016
Yy repelling radius 6
57 value of 4 for function f§j 5 of single activity n° 0.025
87 value of 3 for function f('g‘ 3 of single activity »° 0.4
ar minimal possible value of 3 0.05
5:;1 determines the slope of the value change of 8 10.0
57 value of § for function fi; 3y of average activity 7° 0.25
B value of 3 for function f; 3, of average activity 7* 2.0
5;’;, maximal possible value of § 1.0
5;’72, determines the slope of the value change of § 10.0
Qs strength of single cluster quality ¢° in computation of stochastic 3.0
term
ay strength of average cluster quality ¢° in computation of stochastic 1.0
term
5o value of § for function f} 3) of single cluster quality ¢° 2.5
3 value of J for function ffj 5 of single cluster quality ¢° 5.5
57 value of § for function f; 3 of average cluster quality o° 12
Jile value of 3 for function fi5 3, of average cluster quality o° 35
ot threshold for average cluster quality ¢” indicating a modification 0.8
of unit’s activation function
Oc number of simulation steps that average cluster quality ¢ must 50
exceed threshold value p; so that unit’s activation function is
modified

Table B: The simulation parameters of the new artificial neural network approach that
were used in chapter 5.

189



C Chapter 6:
Algorithm for the computation of the next
input vector during a simulation

Algorithm 1 Computation of the next input vector
create an array with the names of all possible utterances (baba-1, baba-2, baba-3, ... ,
mumu-1, mumu-2, mumu-3);
create an array with the different threshold values;
create an array with the number of simulation steps for each threshold value;
determine next utterance from the array by a random process;
set current threshold value to the first entry in the array;
open input file according to the name of the utterance and the current threshold value;
read first input vector;
while number of maximal simulation steps is not reached do
if maximal number of simulation steps for threshold value is reached then
close current input file;
determine next utterance from array by random process;
set the current threshold value to the following value;
open input file according to name of utterance and current threshold value;
read first input vector from file;
else if end of current input file is reached then
close current input file;
determine next utterance from array by random process;
open input file according to name of utterance and current threshold value;
read first input vector from file;
else
read next input vector from file;
end if
end while
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D Chapter 6:
Simulation parameters

Symbol Description Value
y number of units in each direction of the two—dimensional map 50
Himax number of simulation steps 100,000
I number of successive speech input vectors 90
Iy number of successive noise input vectors 90
o strength of adaptation in direction of input vector 0.1
oy strength of adaptation in random direction 0.1
o strength of influence of inhibitory connections 0.5
ny number of inhibitory connections 300
Ya repelling distance 0.015
: Py repelling radius 5
i 5 value of § for function f{ ; of single activity n° 0.025
) g7 value of 3 for function ff7 ;, of single activity ° 0.4
ﬁz:i " minimal possible value of § 0.065
ﬁg:v determines the slope of the value change of 3 10.0
57 value of § for function f; 3 of average activity 7* 0.25
g value of 3 for function f5 35, of average activity n* 2.0
6,',,’aax maximal possible value of § 1.0
(53:; determines the slope of the value change of § 10.0
: as strength of single cluster quality ¢° in computation of stochastic 3.0
; term
k oy strength of average cluster quality ¢® in computation of stochastic 1.0
term
| 5957 value of § for function f¥ ; of single cluster quality ¢’ 2.3
‘ ¢ value of 3 for function 7 ; of single cluster quality ¢° 55
: 5¢ value of § for function f; 35y of average cluster quality ¢ 1.4
8¢ value of 3 for function f; 3, of average cluster quality o* 4.0
ot threshold for average cluster quality ¢” indicating a modification 0.8
of unit’s activation function
Oc number of simulation steps that average cluster quality ¢* must 50
exceed threshold value g; so that unit’s activation function is
modified

: Table D: The simulation parameters of the new artificial neural network approach that
! were used in modelling the development of auditory categories in chapter 6.
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E Chapteré6:
Input parameters

Symbol Description Value
ng  number of different energy thresholds 9
i=1:100
i=2:97
1=3:95
1=4:92
6 absolute thresholds of the energy function i=5:90
i=6:87
1=7:85
1=8:80
L 1=9:0

5,000:i < 4
Nge number of simulation steps for each threshold 10,000:4 <i<8
value 6¢ 40,000:i =9

Table E: The input parameters that were used in modelling the development of auditory
categories in chapter 6.
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F Chapter 6:
List of most active units for different words

Utterance Unit  Activity Utterance  Unit  Activity
/dede/ (38,24) 0.9374 /didif (41,25) 0.9550

(39,24) 0.8795 (40,25) 0.9016
(38,25) 0.7940 (41,24) 0.8946
(38,23) 0.7913 (42,25) 0.8820
(39,23) 0.7597 42,24) 0.8732
/dodo/  (23,9) 0.5816 Jdudw/  (24,12) 0.7636
(24,9) 0.5638 (23,12)  0.7609
(22,9) 0.5118 (23,11) 0.7503
(24,10) 0.5037 (24,11) 0.7068
(23,10) 0.4928 (22,11) 0.6356
Jdedel/  (25,34) 0.9057 Jdydy/  (24,31) 0.9570
(26,34) 0.8791 (24,30) 0.9229
(25,35) 0.8261 (23,30) 0.8708
(25,33) 0.8221 (23,31) 0.8673
(26,35) 0.8049 (24,32) 0.8255
/dada/  (35,20) 0.9964 ffafal (35,20)  0.9638
(34,21) 0.9691 (34,20) 0.9373
(35,21) 0.9665 (35,21) 0.9066
(34,20) 0.9653 (34,21) 0.8919
(36,20) 0.8735 (34,19) 0.8877

Jmama/ _ (35,21) 0.9383
(35,20) 0.9294
(35,22) 0.9160
(36,21) 0.9140
(34,21) 09134

Table F: Units that showed the highest mean average activity values for different words
(a unit is marked by its coordinates within the network structure).
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G Chapter6:
Percentage of input vectors within a particular
radius of a mean vector of a vowel category
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Figure G: The distribution of the vowel categories within the input space with respect
to the mean vector of one of these categories. The values on the x—axis describe the
distance to the mean vector, while the values on the y-axis describe the percentage of
category vectors whose distance to the mean vector is smalier than the radius value.
The percentage rates are computed for intra—category vectors as well as inter-category
vectors.
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Figure G: The distribution of the vowel categories within the input space with respect
to the mean vector of one of these categories. The values on the x-axis describe the
distance to the mean vector, while the values on the y—axis describe the percentage of
category vectors whose distance to the mean vector is smaller than the radius value.

The percentage rates are computed for intra—category vectors as well as inter—category
vectors.
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SAMENVATTING

Onderzoek naar de ontwikkeling van spraakperceptie bij baby’s is erg fascinerend. Niet
alleen zijn de laatste 25 jaar zeer interessante resultaten gevonden, maar ook de experi-
mentele methoden waarmee onderzoek bij baby’s wordt uitgevoerd is heel boeiend. In
een veel gebruikt spraakperceptie—experiment ligt een twee maanden oude baby in een
speciale stoel en zuigt aan een kunstmatige speen waarmee de zuigfrequentie kan wor-
den gemeten. Elke keer wanneer de baby aan de speen zuigt, wordt een regelmatig her-
haalde syllabe (bijvoorbeeld [ba]) aan de baby gepresenteerd. De zuigfrequentie gaat
daardoor eerst omhoog maar zakt al snel weer af, omdat de baby aan de presentatie
van de syllable gewend raakt. Nadat de zuigfrequentie onder een bepaalde waarde is
gedaald, wordt een nieuwe syllabe (bijvoorbeeld [pa}) aan de baby gepresenteerd. Het
verschil tussen de zuigfrequentie voor en na de presentatie van de nieuwe syllabe geeft
aan of de baby in staat was het verschil tussen de twee syllaben te herkennen. Onder-
zoek gebaseerd op deze en vergelijkbare methoden heeft aangetoond dat baby’s in staat
zijn het verschil tussen klanken van hun toekomstige moedertaal te herkennen. Maar
dat niet alleen. Ook tussen klanken van andere talen, waarmee hun ouders erg veel
moeite hebben, herkennen zij de verschillen. Bovendien heeft onderzoek aangetoond
dat de discriminatieve vaardigheden van baby’s uit verschillende taalculturen erg op
elkaar lijken. In het algemeen kunnen we concluderen dat baby’s vanaf hun geboorte
initiéle discriminatieve vaardigheden bezitten, die gebaseerd zijn op aangeboren per-
ceptuele mechanismen en gelijk zijn voor verschillende taalculturen.

De initiéle spraakperceptievaardigheden zorgen ervoor, dat baby’s in staat zijn elke
taal te kunnen leren. Aangezien volwassenen verschillen tussen bepaalde klanken uit
andere talen nauwelijks kunnen ontdekken, veranderen dus blijkbaar de initiéle taalon-
afhankelijke spraakperceptievaardigheden van een baby zich in de loop van de taal-
ontwikkeling in de richting van de moedertaal. Uit onderzoek waarbijna de discrimi-
natieve vaardigheden van baby’s op verschillende leeftijden met elkaar vergeleken wor-
den, blijkt dat dit proces al binnen het eerste levensjaar begint: oudere baby’s kunnen
geen verschil meer tussen klanken ontdekken die zij enkele maanden eerder nog wel
konden discrimineren. Deze vermindering van de discriminatieve vaardigheden werd
alleen gevonden voor klanken die geen deel uitmaken van de taal die in de omgeving
van de baby wordt gesproken. Bovendien blijkt dit proces voor klinkers in een vroeger
ontwikkelingsstadium te beginnen dan voor medeklinkers. In deze dissertatie probeer
ik een verklaring voor dit ontwikkelingsproces te geven, waarbij ik mij vooral concen-
treer op de vraag tot in hoeverre een baby de klanken van de moedertaal kan leren op
basis van wat hij of zij dagelijks hoort. Alvorens op dit onderzoek in te gaan, geef ik
in hoofdstuk 2 een overzicht van de resultaten die tot dusverre over de spraakpercep-
tievaardigheden van baby’s op verschillende leeftijden bekend zijn.

In hoofdstuk 3 wordt met behulp van een door mij ontwikkeld theoretisch model
(MAPCAT) verklaard, hoe de veranderingen in de spraakperceptievaardigheden bij
baby’s tot stand kunnen komen en welke processen daarbij een rol spelen. In het
theoretische model wordt ervan uitgegaan dat het perceptuele proces begint als het
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spraaksignaal het auditieve systeem bereikt en wordt geanalyseerd met betrekking tot
zijn akoestische eigenschappen door een akoestisch analyse module. Het resultaat van
de akoestische analyse is een representatie die zowel informatie over de energie van
bepaalde frequentiebanden bevat, als ook informatie over eigenschappen zoals spreek-
snelheid, ruis en toonhoogte. Deze informatie wordt verder geleid via twee paden naar
een selectie en integratie module. Het ene pad, het “akoestische” pad, leidt de informatie
van de akoestische analyse module direct verder naar de selectie en integratie module,
terwijl het andere pad, het “linguistische” pad, er nog een zogenaamde fonetische kaart
tussen heeft. Deze kaart werkt als een aanvullende perceptuele filter. Het is een adaptief
element in het model en zorgt als zodanig voor het verwerven van het klankensysteem
van de moedertaal. Het model gaat ervan uit dat in het begin van het ontwikkelingspro-
ces de filtereigenschappen van de fonetische kaart nog niet gespecificieerd en dus nog
niet aan een bepaalde taal aangepast zijn. In dit stadium van het proces wordt het
spraaksignaal via het “akoestische” pad door de selectie en integratie module verwerkt.
Dit betekent dat de akoestische verschillen tussen klanken uit welke taal dan ook voor
de baby herkenbaar zijn.

De spraaksignalen die de baby percipieert hebben invloed op de eigenschappen van
de fonetische kaart zodat zich uiteindelijk categorieén zullen vormen voor de klanken
van de taal die in de omgeving van de baby gesproken wordt. De spraaksignalen wor-
den vervolgens gefilterd op basis van de verworven categorieén zodat de output van
de fonetische kaart een optimale codering van het spraaksignaal met betrekking tot de
moedertaal representeerd. In het model is de verwerving van de categorieén in de fone-
tische kaart verantwoordelijk voor de vermindering van de discriminatieve vaardighe-
den bij baby’s. Uitspraken in een andere taal dan de moedertaal worden namelijk door
de fonetische kaart gefilterd op basis van de verworven categorieén, zodat de sub-
tiele verschillen in de klanken van de vreemde taal verloren gaan. Dit veronderstelt,
dat de selectie en integratie module in dit geval de informatie die binnenkomt via het
“linguistische” pad, verkiest boven de informatie die binnenkomt via het “akoestische”
pad. Wanneer zich categorieén voor de klanken van de moedertaal hebben gevormd,
zal dit inderdaad het geval zijn, aangezien de informatie via het “linguistische” pad
uniteindelijk efficiénter te verwerken is dan de informatie via het “akoestische” pad.

De resultaten die bekend zijn van de in hoofdstuk 2 besproken onderzoeken naar
discriminatie en categorisatie en het eruit resulterende ontwikkelingsproces, wordt
in het vervolg van hoofdstuk 3 vergeleken met de consequenties van het hierboven
beschreven theoretische model. Het ontwikkelingsproces zoals door het theoretische
model wordt beschreven, stemt overeen met de empirische data voor de verschillende
leeftijdsgroepen. Bovendien maakt het model voorspellingen mogelijk over het tijdstip
van de verwerving van klanken, wat tot dusverre niet eerder onderwerp van onderzoek
was.

Het theoretische model uit hoofdstuk 3 vormt de basis voor het tweede gedeelte
van het proefschrift. In het tweede gedeelte wordt een bepaald aspect van het theo-
retische model onderzocht, namelijk tot in hoeverre de verwerving van de categorieén
in de fonetische kaart gebaseerd zou kunnen zijn op een zogenaamd zelf-organiserend
proces. Of anders uitgedrukt: Wat voor soort informatie kan het systeem verwerven als
de enige informatiebron gevormd wordt door de uitspraken die een baby in het eerste
levensjaar hoort? Deze vraag heb ik onderzocht met behulp van een neuraal netwerk.

In hoofdstuk 4 onderzoek ik of bestaande zelf-organiserende neurale netwerken,
zoals bijvoorbeeld de Self-Organising Feature Map van Kohonen (1982, 1989, 1995) of
het Neural-Gas algorithme van Martinetz (1991), gebruikt zouden kunnen worden om
het ontwikkelingsproces dat door het theoretische model wordt beschreven, te kunnen
modelleren. Ik kom tot de conclusie dat dit niet het geval is, wat vooral ligt aan één
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eigenschap van deze algorithmen. De algorithmen gaan ervan uit, dat de inputruimte
over de tijd niet verandert en daarmee van begin tot einde van een simulatie hetzelfde
blijft. Maar in het theoretische model neem ik aan, dat tussen de akoestische analyse
module en de fonetische kaart nog een aanvullende filter bestaat. Deze beperkt de in-
formatiestroom en vergemakkelijkt door deze reductie van de complexiteit van de input
de ontwikkeling van categorieén in de fonetische kaart (Elman, 1991, 1993). De beper-
king van de informatiestroom is in het begin van het proces het sterkst en wordt in de
loop van de tijd zwakker. Doordat de eigenschappen van de filter athankelijk van de
tijd zijn, blijft de inputruimte tijdens het proces niet hetzelfde, maar wordt “complexer”
naarmate het proces langer duurt.

Aangezien bestaande zelf-organiserende neurale netwerken niet in staat zijn om
het ontwikkelingsproces bij baby’s in overeenstemming met het theoretische model
te modelleren, ontwikkelde ik een nieuw zelf-organiserend neuraal netwerk, dat in
hoofdstuk 5 beschreven wordt. Het leeralgorithme van dit netwerk bestaat uit twee
processen. Het eerste proces beschrijft de verandering van de gewichtsvector van een
adaptief element in de richting van een input vector en is gebaseerd op een Hebbregel.
Het tweede proces beschrijft de verandering van de gewichtsvector van een adaptief
element in een toevallige richting. Op grond van deze “eigenbeweging” vormen zich
tijdens een simulatie initigle clusters. Een dergelijk cluster bestaat uit adaptieve ele-
menten, die binnen het netwerk in elkaars buurt liggen, en van wie de gewichtsvectoren
zich binnen een beperkt gebied van de inputruimte bevinden. In het algemeen verdwij-
nen dergelijke initiéle clusters weer. Echter, in het geval dat het gebied waarin zich de
gewichtsvectoren bevinden overeenkomt met één van de inputcategorieén, worden de
gewichtsvectoren verder in de richting van deze inputcategorie aangepast. Hierdoor
wordt de initiéle cluster verder versterkt, zodat uiteindelijk representaties van de input-
categorieén binnen het neurale netwerk ontstaan.

Om de eigenschappen van het nieuwe neurale netwerk te toetsen heb ik het netwerk
met een twee—dimensionale inputruimte getest, zoals al eerder voor de simulaties met
de neurale netwerken uit hoofdstuk 4 is gedaan. De resultaten van de verschillende
simulaties laten zien dat het netwerk in staat is om locale representaties van de cate-
gorieén in de inputruimte te leren. Bovendien zijn de eigenschappen van het leerproces
in overeenstemming met de ontwikkeling die je op basis van het theoretische model zou
verwachten.

In hoofdstuk 6 heb ik het nieuwe neurale netwerk model op de onderzoeksvraag,
toegepast, waarbij ik de vraag beperkt heb tot de verwerving van de zeven lange klin-
kers van het Nederlands: Kan een baby de fonetische categorieén van de zeven lange
klinkers van het Nederlands verwerven wanneer zijn of haar enige informatiebron
gevormd wordt door uitspraken, die hij of zij in zijn of haar eerste levensjaar te horen
krijgt? Als invoer voor de simulaties gebruikte ik gedigitaliseerde uitspraken van een
vrouwelijke spreker. De simulaties laten zien dat het netwerk in staat is representaties
voor de zeven klinkers te verwerven. Hoewel er maar vier clusters tijdens het leerpro-
ces ontstaan, representeren drie van de vier clusters telkens twee verschillende klinkers.
Dit is in overeenstemming met de statistieken over de inputruimte, die laten zien dat
van de zeven klinkers er drie paren zijn, die elkaar in de inputruimte overlappen.

Een analyse van de sensitiviteit van een cluster tijdens het leerproces laat zien dat
een cluster in het begin één representatie vormt voor de twee klinkers en zich pas later
tijdens het proces verschillende regionen binnen de cluster ontwikkelen. Deze simu-
latieresultaten voorspellen dat er een stadium tijdens de ontwikkeling van een baby is
waarin hij of zij geen verschil kan herkennen tussen akoestisch gelijksoortige klanken
uit de moedertaal. De klinkerparen die dit betreft waren tot dusverre niet eerder onder-
werp van onderzoek.
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