Table S1. Testing the Effect on –1PRF of the aa-tRNAs Decoding mRNA Downstream of the Frameshifting Site, Related to Figure 1

Ternary complex concentration, μM		Rate, s ^{-1 a}		−1PRF, % ^b
Val	Phe	Val, –1-frame	Phe, 0-frame	
1.5	1.5	0.3 ± 0.05	0.09 ± 0.01	75 ± 10
0	1.5	_	0.07 ± 0.02	_
1.5	0	0.2 ± 0.05	_	_
1	4	0.5 ± 0.06	0.06 ± 0.02	80 ± 10
4	1	0.3 ± 0.05	0.05 ± 0.01	80 ± 10

^a Rates of incorporation of Val and Phe into peptide, as determined by global fitting of kinetic data similar to those shown in Figure 1D-H.

^b Average –1PRF efficiency calculated from end levels of Val and Phe incorporation.

Table S2. Testing the Functionality of Fluorescence-Labeled Ribosome Complexes, Related to Figures 2 and 4

Step	Rates, s ⁻¹				
	Wild-type ^c	L12/EF-G ^d	S13/tRNA ^{Leu e}		
Tyr ^a	9.9 ± 0.5	9.5 ± 0.4	15.8 ± 0.6		
Tl _{MY} ^b	2.7 ± 0.1	2.0 ± 0.1	3.1 ± 0.1		
Leu ^a	13.6 ± 3.2	14.9 ± 2.5	9.8 ± 1.2		
Lys ^a	5.1 ± 0.4	6.0 ± 0.7	5.7 ± 0.3		
Val ^a	0.2 ± 0.05	0.5 ± 0.1	0.5 ± 0.03		
Phe ^a	5.3 ± 0.6	4.0 ± 0.5	3.3 ± 0.2		

^a Rates of incorporation of various amino acids into peptide on –/– mRNA.

^b Rate of the 1^{st} translocation event (Tl_{MY}; translocation of MY-tRNA^{Tyr} from the A to P site).

^c Unmodified ribosomes and tRNAs.

^d Ribosomes reconstituted with L12(Alx) and EF-G(QSY).

^e Ribosome complexes contained S13(AttoQ) and tRNA^{Leu}(Flu).

Table S3. Fitting of Fluorescence Changes upon MYLK-tRNA^{Lys} Translocation by Numerical Integration, Related to Figures 2 and 4

Observables	Rate, s ⁻¹				
	-/- mRNA, +K	-/- mRNA, +K/V/F	+/+ mRNA, +K	+/+ mRNA, +K/V/F	
FRET L12–EF-G					
k_{Lys}	4.8ª		4.8 ^a		
k _{EFG1} (EF-G binding)	>10 ^b		4.8 ± 0.1		
k_{EFG2} (EF-G release)	3.0 ± 0.2		0.2± 0.01		
ΔF of tRNA ^{Leu}					
k_{Lys}	4.9ª	4.9 ^a	4.9 ^a	4.9 ^a	
k_{app1}	_c	_c	>10 ^{b,d}	>10 ^{b,d}	
k_{app2}	9.0 ± 0.2^{e}	9.8 ± 0.6^{e}	$0.9 \pm 0.1^{\rm f}$	$0.9 \pm 0.1^{\rm f}$	
k_{app3}	3.0 ± 0.2^{g}	3.3 ± 0.1^{g}		0.2 ± 0.02^{g}	
FRET S13-tRNA ^{Leu}					
k_{Lys}	5.7ª	5.7ª	5.7ª	5.7 ^a	
k_{app1}	9.0	9.0	0.9	0.9	
k_{app2}	3.4 ± 0.2^{g}	3.3 ± 0.3^{g}	0.25 ± 0.03^{g}	0.21 ± 0.1^{g}	

Apparent rate constants were determined by numerical integration using the following reaction sequences:

 $POST_{Leu} \xrightarrow{k_{Lys}} PRE_{Lys} \xrightarrow{k_{EFG}} PRE_{EFG} \xrightarrow{k_{EFG2}} POST + EF - G$, for binding and release of EF-G, which corresponded to the minimum number of steps required for fitting, and

 $POST_{Leu} \xrightarrow{k_{Lys}} PRE_{Lys} \xrightarrow{k_{EFG}} PRE_{EFG} \xrightarrow{k_{app1}} POST1 \xrightarrow{k_{app2}} POST2 \xrightarrow{k_{app3}} POST3$, for tRNA translocation with the minimum number of k_{app} terms required for fitting, two or three as appropriate. Fitting to a smaller number of steps did not yield satisfactory fits.

^aThe values for k_{Lys} were determined by quench flow (Table S3) and used as a fixed parameter for fitting.

^b As EF-G binding precedes translocation, EF-G recruitment step was included in fitting the FRET changes for +/+ mRNA (4.8 s⁻¹, taken as a fixed parameter in fitting). For the -/- mRNA this was not necessary, because EF-G recruitment was relatively rapid.

^c–, not observed.

 $^{^{}d}$ The lowest estimate compatible with the fit; the step represents the transition from PRE_{EF-G} to POST1 (see main text).

^e Represent translocation from PRE_{EF-G} to POST1/2 on -/- mRNA; the rate corresponding to k_{app1} observed for the +/+ mRNA was not resolved, as the rates, $>10 \text{ s}^{-1}$ and $9-10 \text{ s}^{-1}$, were too similar. The steps are distinguished based on the differences in the fluorescence change of $tRNA^{Leu}$ (Fig. 4H and I, see also Discussion).

^f Transition POST1 to POST2 for +/+ mRNAs; represents the sum of the rate constants at the kinetic partitioning branch (Figure 5).

^g Transition from POST2 to POST3, which entails dissociation of EF-G, tRNA^{Leu}, and the backward rotation of the 30S head.