Table S1. Testing the Effect on –1PRF of the aa-tRNAs Decoding mRNA Downstream of the Frameshifting Site, Related to Figure 1 | Ternary complex concentration, μM | | Rate, s ^{-1 a} | | −1PRF, % ^b | |-----------------------------------|-----|-------------------------|-----------------|-----------------------| | Val | Phe | Val, –1-frame | Phe, 0-frame | | | 1.5 | 1.5 | 0.3 ± 0.05 | 0.09 ± 0.01 | 75 ± 10 | | 0 | 1.5 | _ | 0.07 ± 0.02 | _ | | 1.5 | 0 | 0.2 ± 0.05 | _ | _ | | 1 | 4 | 0.5 ± 0.06 | 0.06 ± 0.02 | 80 ± 10 | | 4 | 1 | 0.3 ± 0.05 | 0.05 ± 0.01 | 80 ± 10 | ^a Rates of incorporation of Val and Phe into peptide, as determined by global fitting of kinetic data similar to those shown in Figure 1D-H. ^b Average –1PRF efficiency calculated from end levels of Val and Phe incorporation. Table S2. Testing the Functionality of Fluorescence-Labeled Ribosome Complexes, Related to Figures 2 and 4 | Step | Rates, s ⁻¹ | | | | | |-------------------------------|------------------------|-----------------------|---------------------------|--|--| | | Wild-type ^c | L12/EF-G ^d | S13/tRNA ^{Leu e} | | | | Tyr ^a | 9.9 ± 0.5 | 9.5 ± 0.4 | 15.8 ± 0.6 | | | | Tl _{MY} ^b | 2.7 ± 0.1 | 2.0 ± 0.1 | 3.1 ± 0.1 | | | | Leu ^a | 13.6 ± 3.2 | 14.9 ± 2.5 | 9.8 ± 1.2 | | | | Lys ^a | 5.1 ± 0.4 | 6.0 ± 0.7 | 5.7 ± 0.3 | | | | Val ^a | 0.2 ± 0.05 | 0.5 ± 0.1 | 0.5 ± 0.03 | | | | Phe ^a | 5.3 ± 0.6 | 4.0 ± 0.5 | 3.3 ± 0.2 | | | ^a Rates of incorporation of various amino acids into peptide on –/– mRNA. ^b Rate of the 1^{st} translocation event (Tl_{MY}; translocation of MY-tRNA^{Tyr} from the A to P site). ^c Unmodified ribosomes and tRNAs. ^d Ribosomes reconstituted with L12(Alx) and EF-G(QSY). ^e Ribosome complexes contained S13(AttoQ) and tRNA^{Leu}(Flu). Table S3. Fitting of Fluorescence Changes upon MYLK-tRNA^{Lys} Translocation by Numerical Integration, Related to Figures 2 and 4 | Observables | Rate, s ⁻¹ | | | | | |-----------------------------------|-----------------------|---------------------|-----------------------|-----------------------|--| | | -/- mRNA,
+K | -/- mRNA,
+K/V/F | +/+ mRNA,
+K | +/+ mRNA,
+K/V/F | | | FRET L12–EF-G | | | | | | | k_{Lys} | 4.8ª | | 4.8 ^a | | | | k _{EFG1} (EF-G binding) | >10 ^b | | 4.8 ± 0.1 | | | | k_{EFG2} (EF-G release) | 3.0 ± 0.2 | | 0.2± 0.01 | | | | ΔF of tRNA ^{Leu} | | | | | | | k_{Lys} | 4.9ª | 4.9 ^a | 4.9 ^a | 4.9 ^a | | | k_{app1} | _c | _c | >10 ^{b,d} | >10 ^{b,d} | | | k_{app2} | 9.0 ± 0.2^{e} | 9.8 ± 0.6^{e} | $0.9 \pm 0.1^{\rm f}$ | $0.9 \pm 0.1^{\rm f}$ | | | k_{app3} | 3.0 ± 0.2^{g} | 3.3 ± 0.1^{g} | | 0.2 ± 0.02^{g} | | | FRET S13-tRNA ^{Leu} | | | | | | | k_{Lys} | 5.7ª | 5.7ª | 5.7ª | 5.7 ^a | | | k_{app1} | 9.0 | 9.0 | 0.9 | 0.9 | | | k_{app2} | 3.4 ± 0.2^{g} | 3.3 ± 0.3^{g} | 0.25 ± 0.03^{g} | 0.21 ± 0.1^{g} | | Apparent rate constants were determined by numerical integration using the following reaction sequences: $POST_{Leu} \xrightarrow{k_{Lys}} PRE_{Lys} \xrightarrow{k_{EFG}} PRE_{EFG} \xrightarrow{k_{EFG2}} POST + EF - G$, for binding and release of EF-G, which corresponded to the minimum number of steps required for fitting, and $POST_{Leu} \xrightarrow{k_{Lys}} PRE_{Lys} \xrightarrow{k_{EFG}} PRE_{EFG} \xrightarrow{k_{app1}} POST1 \xrightarrow{k_{app2}} POST2 \xrightarrow{k_{app3}} POST3$, for tRNA translocation with the minimum number of k_{app} terms required for fitting, two or three as appropriate. Fitting to a smaller number of steps did not yield satisfactory fits. ^aThe values for k_{Lys} were determined by quench flow (Table S3) and used as a fixed parameter for fitting. ^b As EF-G binding precedes translocation, EF-G recruitment step was included in fitting the FRET changes for +/+ mRNA (4.8 s⁻¹, taken as a fixed parameter in fitting). For the -/- mRNA this was not necessary, because EF-G recruitment was relatively rapid. ^c–, not observed. $^{^{}d}$ The lowest estimate compatible with the fit; the step represents the transition from PRE_{EF-G} to POST1 (see main text). ^e Represent translocation from PRE_{EF-G} to POST1/2 on -/- mRNA; the rate corresponding to k_{app1} observed for the +/+ mRNA was not resolved, as the rates, $>10 \text{ s}^{-1}$ and $9-10 \text{ s}^{-1}$, were too similar. The steps are distinguished based on the differences in the fluorescence change of $tRNA^{Leu}$ (Fig. 4H and I, see also Discussion). ^f Transition POST1 to POST2 for +/+ mRNAs; represents the sum of the rate constants at the kinetic partitioning branch (Figure 5). ^g Transition from POST2 to POST3, which entails dissociation of EF-G, tRNA^{Leu}, and the backward rotation of the 30S head.