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Abstract
This paper addresses the question how to compare reaction

times computed by a computational model of speech compre-
hension with observed reaction times by participants. The ques-
tion is based on the observation that reaction time sequences
substantially differ per participant, which raises the issue of how
exactly the model is to be assessed. Part of the variation in reac-
tion time sequences is caused by the so-called local speed: the
current reaction time correlates to some extent with a number
of previous reaction times, due to slowly varying variations in
attention, fatigue etc. This paper proposes a method, based on
time series analysis, to filter the observed reaction times in or-
der to separate the local speed effects. Results show that after
such filtering the between-participant correlations increase as
well as the average correlation between participant and model
increases. The presented technique provides insights into rele-
vant aspects that are to be taken into account when comparing
reaction time sequences.
Index Terms: reaction times, local speed, participant-model
comparison, computational modeling, spoken word recognition

1. Introduction
In psycholinguistic experiments, reaction times (RTs) are fre-
quently used as directly observable measures of the mecha-
nisms underlying speech comprehension [1]. RTs are in general
straightforward to measure, but difficult to interpret. They are
the result of a number of partially concurrent cognitive and ex-
ecution processes and therefore RT sequences may have a com-
plex structure, as the vast literature shows (e.g. [2]; [3] and
references therein, [4]; [5]).

One may expect to be able to better understand the com-
plexity of RT sequences by comparing them with the RT se-
quences generated by computational models that simulate the
underlying cognitive processes e.g. [3, 6, 5]. In this paper we
address the question how RT sequences from participants and
from a model can be evaluated. In [7], we introduced an end-to-
end model of auditory speech comprehension that can simulate
a participant in experiments where RT is the main Dependent
Variable (DV). We reported low correlations between the RT se-
quences generated by this model and from human participants.
Importantly, however, closer inspection of the human RT se-
quences showed that the correlations among them are also low.

In this paper, we will investigate the causes of these low
correlations. We hypothesize that they result from effects that
are independent of the mechanisms underlying the comprehen-
sion process. We test this hypothesis by investigating whether
filtering of the RT sequences increases the correlations among
participants. Moreover, we examine whether filtering also im-

proves the correlations between the participants’ RT sequences
and those generated by DIANA, an extension of the model de-
scribed in [7] (cf. Section 4).

RTs are the result of different mechanisms. The effects that
best reflect the underlying processing mechanisms result from
the specific characteristics of the stimuli. The precise trial-to-
trial effect depends on the type of experiment; for example, in
lexical decision experiments, the lexical status of the stimulus,
its morphological complexity, the density of its lexical neigh-
borhood, and the word or lemma frequency play a role (cf. [8]).
DIANA, similar to other models of auditory word comprehen-
sion such as Shortlist-B [9] and SpeM [10] only accounts for
these stimulus effects.

In addition, participants’ RTs are affected by their physi-
cal and mental condition, age, gender, handedness, and general
cognitive abilities ([11]), which mainly affect the participant’s
average RT in a session [12]. Next, there is a third group of fac-
tors that affect RT sequences which are not fixed for the dura-
tion of a session but play a role on the intermediate term. These
factors become manifest in the form of ’local speed’ [13]. The
local speed effect is thought to be caused by slowly fluctuating
change in e.g. attention, learning effects, and fatigue. Finally, a
fourth group of factors, such as a change in a participant’s strat-
egy, may cause sudden changes in the local average RT. Not
surprisingly, the interplay between all these factors has resulted
in several competing approaches in mathematical psychology to
modeling RT sequences (e.g. [2, 3, 14, 4, 5, 15] and references
therein).

Arguably, the most prominent mechanisms that reduce the
correlation between RT sequences from different participants
are those that have effect on the intermediate term. This is es-
pecially true in experiments in which all participants process
stimuli in a different order, since different trial histories lead
to different local speed effects influencing the RT on a certain
stimulus. We expect the removal of local speed effects to also
have an effect on the match between RT sequences from DI-
ANA and from participants, since DIANA does not model local
speed and occasional strategy changes.

In this paper we assume that these effects can be captured
by an Auto-Regressive-Moving-Average (ARMA) model, the
parameters of which can be estimated from the raw RT se-
quence. Filtering the raw RT sequence by the inverse of that
ARMA model should yield an RT sequence that better re-
flects the short-term, stimulus-dependent reaction times. We
prefer ARMA models over models based on the theory of
self-organized criticality (SOC) [16, 17, 18] mainly because
we do not know how to derive an inverse filter from a SOC
model, while deriving an inverse filter from an ARMA model is
straightforward. As an aside, we will discuss a relation between
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ARMA modeling and mixed effect regression models that are
commonly used in the analysis of RTs.

2. Method
We consider the RT sequence obtained in a psycho-linguistic
experiment as the superposition of the underlying processing
mechanisms, local speed effects, long term effects and partic-
ipants’ strategies. We use an ARMA model to filter the local
speed effects from these raw RT sequences.

Estimating the optimal parameters of an ARMA model
from noisy data is as much an art as a science. The estima-
tion does not only involve the values of the parameters of the
AR and MA parts, but also the estimation of the number of
parameters (order) of the AR and MA parts. It is known that
estimating the parameters of the AR part, given some order,
is more robust than estimating the parameters of the MA part.
Some approaches to ARMA model estimation divide the pro-
cess into two steps; the first step estimates the AR parameters,
after which the MA parameters are estimated from the error sig-
nal that remains after inverse filtering. Other approaches at-
tempt to estimate the AR and MA parameters simultaneously.
Parameter estimation is complicated because the additive noise
may not be completely white (contrary to the assumption in the
mathematical theory) and because the actually underlying pro-
cess may not be an ARMA model. For example, if a partic-
ipant’s behavior is partly characterized by a SOC model, the
ARMA model cannot be completely correct.

In this paper, we focus on estimating the AR part of the fil-
tering process, since this AR part can be directly interpreted
as weighted estimation of previous RT values (local speed).
This estimation can be performed in two ways: on the entire
group of participants, or per participant. More details will be
given in section 5. We will show that it is possible to es-
timate the parameters of an AR model such that, after filter-
ing, the between-participant’s correlation as well as the average
participant-DIANA correlation increase.

Within the field of psycholinguistics, RTs are often ana-
lyzed for the presence of the effect of a certain variable (e.g. a
word’s frequency of occurrence or semantic transparency). This
is mostly done by means of regression analyses, which often in-
corprate the reaction time on the previous stimulus as a control
variable, accounting for the effect of local speed (cf. [13, 19]).
We will briefly discuss how ARMA modeling may also improve
this analysis of RTs. The ARMA filter represents more noise re-
sulting from local speed than is captured by the single use of the
RT on the previous trial. In fact, the previous RT can be seen as
a special case of an ARMA filter.

3. Word recognition experiment
For assessing the RTs from participants and DIANA, we con-
ducted a word recognition experiment.

3.1. Participants and materials

Twenty native listeners (10 male, 10 female, 18 to 23 years)
without reported hearing problems were paid to participate in
this recognition experiment.

The stimuli of this experiment consist of 613 Dutch real
words. All words were chosen from the Spoken Dutch Corpus
(CGN) dictionary ([20]). They have single bi-syllabic stems,
and include plurals of nouns, inflected forms of adjectives, past
tense and past participle forms of verbs. The list contains words

of very low, medium and high frequency, with a bell-shaped
distribution on the log-frequency axis.

To obtain the auditory stimuli, all 613 words were carefully
read aloud by one single female native speaker. Words were
spoken in isolation. The duration of the words varies from 273
to 947 ms, with a mean of 552 ms. For each participant, a list
was created such that all stimuli could be presented in a random,
participant-specific ordering.

3.2. Procedure

Participants were asked to press a button as soon as they thought
they had recognized the word. They then had to repeat the word;
this could be done without time pressure, after the button was
pressed. The responses were recorded and used to compute the
proportion correct responses; during the experiment no feed-
back about correctness was presented to the participant.

Stimuli were presented via headphones, and the experiment
took place in a sound-attenuated room. The button box used was
connected to a dedicated stand-alone PC with E-prime as single
main process. The auditory presentation immediately stopped at
the moment the button was pressed. The list of 613 stimuli was
split into four sublists and participants were offered the oppor-
tunity to take a short rest between sublists. One experimental
session (covering the entire list of 613 stimuli) took approxi-
mately 50 minutes.

4. DIANA: A computational model of
speech comprehension

DIANA, the computational model to be assessed in this paper,
simulates participants’ behavior in experiments in the field of
spoken word comprehension. DIANA has much in common
with the model described in [7]. In line with the architecture
common to many other models (see e.g. [11]), DIANA consists
of three components: a word activation component, a decision
component, and an execution (effector) component. Contrary
to the model described in [7], where activation and decision
formed a pipeline, in DIANA activation and decision operate
in parallel. DIANA is an end-to-end model, which means that it
simulates the entire processing from the acoustic input up to the
key press and the output of the word that was recognized. The
time between the onset of the word and the button press is the
RT, measured in real time.

The activation component takes as its input the acoustic sig-
nal, unfolding over time, and computes the activation of internal
word representations that are stored in DIANA’s lexicon. Its im-
plementation is based on HTK [21]. The activations, which are
updated each 10ms, are given by

logP (signal|word) + λ log(P (word)) (1)

λ governs the balance between the bottom-up acoustic informa-
tion (first term) and the top-down linguistic information (second
term). For this paper, we determined the value for λ (λ = 2.5)
by optimizing DIANA’s recognition accuracy on a different set
of words produced by the same speaker.

DIANA’s activation component builds a time-varying
ranked list of word hypotheses which is constructed in DIANA’s
word search space. For each time t between stimulus onset and
stimulus offset, this ranked hypothesis list is accessible for DI-
ANA’s decision component, which is tightly coupled with the
activation component. Here, a decision about the winning word
hypothesis is made on the basis of whether the activation of
a provisional winning word hypothesis at time t exceeds the
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Figure 1: Correlation between the raw and filtered RT se-
quences as a function of α. The solid line shows the correlation
by applying one filter optimized on the entire group of partici-
pants; the dashed lines indicate the standard deviation from the
mean of all correlations on the basis of individual participants.
The value α = 1 always is equal to an effect of only the previous
RT.

activations of all competing words with a specified threshold
θ. This decision (which takes place at time RTdec) initiates
DIANA’s execution component. In the current simulation, DI-
ANA’s execution component is assumed to simply add RTexe (in
the current simulations fixed to 100ms) to simulate the execu-
tion time between the mental decision and the overt behaviour
(key press). Eventually, DIANA’s output consists of a triplet:
a reaction time [RTdec+ RTexe], the word that was recognized
(the winner at the moment of decision), and the total activation
score (determined by the activation component on the basis of
the match between signal and internal representations).

The computed RT depends on the stimulus, on the set-
tings in DIANA’s activation component (the underlying acous-
tic model, the value of λ, the prior probabilities of the words
in the language model), and on θ. For the experiment reported
here, the settings of the activation component are all fixed. The
threshold θ governs the long-term effects in the simulated RT
sequence: the smaller θ, the smaller RTdec (and the greater the
risk that a response is incorrect). For this paper we used a num-
ber of different values for θ, but its value was always fixed dur-
ing a simulation run. Its eventual value was chosen on the basis
of the optimization of correlations between the humans’ RTs
and those generated by the model (see section 5).

5. Analysis and Results
Prior to filtering, implausible RTs in the participant data (faster
than 200ms after word onset and slower than µ+2σ after word
onset, where µ and σ were determined on the complete se-
quence produced by one participant) were excluded. The re-
sulting raw RT sequences are depicted in Fig. 2, left panel. The
figure clearly shows an enormous difference between partici-
pants, both across and within the course of the experiment.

Next, the local speed filtering was done. We applied an AR
filter, parametrized by one parameter α, on the raw RTs, and
investigated for which α the correlation between the raw and
the filtered RT sequences was maximal in order to optimally

Figure 3: The horizontal axis presents participants, with DI-
ANA as number 21. The vertical axis displays correlation. The
figure displays three cases: no filtering (the lower open cir-
cles), group-based filtering (closed circles) and individual fil-
tering (upper open circles).

capture local speed effects. Fig. 1 shows the average correlation
between the raw and AR-processed RTs across participants as
a function of α, with an optimum around 0.19-0.21. This value
corresponds to an average history of the 1/α ≈ 5 recent RT
values required to optimally predict the current RT. This is in
agreement with findings reported in other reaction time studies
where typical ranges are 5–10 ([15], p. 409). The left and right
panel in Fig. 2 show (per participant) the raw RT data and the
RT data after this local speed filtering, respectively.

Since removal of local speed effects amounts to reducing
the effects of factors that are not directly related to spoken word
recognition proper, it is to be expected that the correlations be-
tween the individual participants will increase after subtracting
the estimated local speed (as obtained from the AR analysis)
from the raw RTs. Moreover, because DIANA does not model
the effect of local speed at all, the correlations between DI-
ANA and human participants are likely to increase as well. That
this is indeed the case is shown in Fig. 3. The figure presents
the average correlation between each participant with other par-
ticipants (columns 1 to 20) and the average correlation between
DIANA (as a virtual participant) and all human participants (the
right-most column). The lower open circles represent the cor-
relations obtained without filtering. In this case, the average
correlation between the RT sequences of any pair of partici-
pants is low (r = 0.16); the average human-DIANA correla-
tion is slightly higher (r = 0.28). The closed circles corre-
spond to the situation after filtering; the correlations increase to
r = 0.22 and r = 0.35, respectively. The eventual value of θ
in DIANA’s decision component was chosen to optimize these
human-DIANA correlations. Clearly, filtering increases the av-
erage correlation between human RTs as well as the average
human-DIANA correlations.

In all cases, the human-DIANA correlation exceeds the av-
erage human-human correlation. Since DIANA only simulates
processes that are directly involved in spoken word recognition
and decision making, this suggests that DIANA is able to cap-
ture, at least to a large extent, the effects from spoken word
recognition processes as used by the participants in generating
their RT sequences.
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(a) Raw RT sequences (b) Filtered RT sequences

Figure 2: RTs (vertical axes) before filtering (left) and after inverse filtering with an AR-1 model (right), as function of stimulus index
(horizontal axes). Each cell represents a participant.

These correlations can be further improved (to r = 0.29
between participants, and to r = 0.41 for participants versus
DIANA) when the parameter of the AR filter is estimated per
participant instead of on the entire group (shown by the upper
open circles in Fig. 3). It appears that the optimal values of α
differ substantially across participants; they range from about
0.11 to 0.80, showing substantial differences between partici-
pants with respect to their estimated local speed.

The value α ≈ 0.2 is interesting because it reappears when
the AR filter is incorporated in regression models predicting raw
RTs. We observed this by contrasting pairs of regression mod-
els that all share the predictors ’duration of stimulus’, ’log word
frequency’ as fixed predictors, and stimulus and participant as
random effects, but pairwise only differ in the way the AR filter
is incorporated: as fixed effect (i.e. participant independent) or
as random slope under participant (participant dependent). In
this way, six different model pairs were compared (by varying
the presence versus absence of interactions). Consistently the
AIC of the model with the AR filter as random slope is lower
than the AIC of the alternative model with the AR filter as fixed
effect only, but only if α > 0.17. This shows again that while
almost all participants’ RTs are correlated with the preceding
two, three RTs, some participants show much longer term lo-
cal speed effects. In addition, the analysis shows that the AIC
of these regression models can be improved by replacing the
predictor ’previous RT’ by a proper AR filter.

6. Discussion and Conclusion
RT sequences are relatively easy to obtain, but are intrinsically
complex to model. They are influenced by factors at several
different levels, each with a different time domain. We ex-
plored ways for estimating an AR filter (e.g. [12]) that removes
part of the effects on RT sequences other than those directly
related to stimuli (and thus the underlying speech comprehen-
sion process). The results showed that this filtering significantly
increases both the correlations between individual participants
and between participants and DIANA, our end-to-end model of
speech comprehension. This strongly suggests that DIANA is
able to simulate RTs as if they were coming from a cognitive
process that underlies the RTs from all participants. The time

domain of the local speed effect as estimated for the entire group
is 5 stimuli, but this domain largely varies across participants.
This might of course call into question how much sense it makes
to estimate the time domain on the basis of all participants’ RTs.
Indeed, although Fig. 3 shows that correlations between partic-
ipants and DIANA increase on the basis of group-based estima-
tions of this domain, the best improvements can be achieved by
proper participant-dependent analysis.

The analysis in this paper may have impact on how local
speed is dealt with in regression models analysing the effect of
specific predictors on RTs. Our analyses show that local speed
is better captured by an AR filter with α = 0.2 than with RT to
the previous stimulus as predictor (which is in fact an AR filter
with α = 1). Regression models using an AR or ARMA filter as
predictor result in better fits with the data (and lower AICs).

In DIANA we replaced the Linear Ballistic Accumulator
model diffusion model of the decision process (e.g. [5, 22]),
which we used in the predecessor model in [7], by a simple
threshold on the distance between the activations of the top
word hypothesis and the runner-up. While we believe that acti-
vation and decision making are indeed parallel, rather than se-
quential processes, future research is necessary to see whether
some features of diffusion models can be integrated in DI-
ANA and whether this will make it possible to increase even
further the correlation between the RTs generated by the model
and by human participants in a principled way.

In conclusion, this paper has shown that human participants
show low correlations among their RTs in speech comprehen-
sion tasks due to local speed effects (e.g. learning, fatigue, etc.).
Moreover, due to these effects, computational models of speech
comprehension, which do not incorporate these effects, cannot
show high correlations with participants’ behavior. Therefore,
the effects of the underlying processing mechanisms can only
be well investigated after the local speed effect has been par-
tialled out per participant (for instance, with an ARMA filter).
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