Antiproton–to–electron mass ratio determined by two-photon laser spectroscopy of antiprotonic helium atoms

A. Sótér1,\footnote{\textit{e-mail: Anna.Soter@mpq.mpg.de}}, M. Hori1, D. Barna2,3, R. Hayano2, A. Dax4, S. Friedreich5, B. Juhász5, T. Pask5, E. Widmann5, D. Horváth3, L. Venturelli6, and N. Zurlo5

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
2Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
3Wigner Research Center of Physics, H-1525 Budapest, Hungary
4Paul Scherrer Institut, CH-5232 Villigen, Switzerland
5Stefan Meyer Institut für Subatomare Physik, Boltzmanngasse 3, Vienna 1090, Austria
6Dipartimento di Ingegneria dell’Informazione, Università di Brescia and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, I-25133 Brescia, Italy

Abstract. The ASACUSA collaboration of CERN has recently carried out two-photon laser spectroscopy of antiprotonic helium atoms. Three transition frequencies were determined with fractional precisions of 2.3–5 parts in 109. By comparing the results with three-body QED calculations, the antiproton-to-electron mass ratio was determined as 1836.1526736(23).

1 Introduction

Antiprotonic helium (\bar{p}He+) is a three-body atom [1–4] consisting of a helium nucleus, an electron in the 1s state, and an antiproton occupying a Rydberg state with high principal and angular momentum quantum numbers $n \sim \ell + 1 \sim 38$. The transition frequencies of \bar{p}He+ have been calculated by QED calculations to fractional precisions of 1×10^{-9} [5]. The calculations included relativistic and radiative recoil corrections up to order $m_e c^2 \alpha^6 / h$, and nuclear size effects. By comparing the measured and calculated transition frequencies, the antiproton-to-electron mass ratio was determined [4] as 1836.1526736(23).

We have previously measured some \bar{p}He+ transition frequencies with a fractional precision of $10^{-7} - 10^{-8}$, by single-photon laser spectroscopy [6–9]. The precision was limited by the Doppler broadening of the resonance lines which arose from the thermal motions of the \bar{p}He+. Recently [4], two-photon transitions of the type $(n, \ell) = (n - 2, \ell - 2)$ [Fig. 1(a)] were excited using two counterpropagating laser beams, such that the Doppler broadening was partially canceled [10].

2 Experiment and results

The two-photon transitions were induced between \bar{p}He+ states with microsecond and nanosecond-scale lifetimes against Auger emission of the electron. After Auger decay, the remaining two-body
The \overline{p}^4He$^+$ ion [11] was destroyed by Stark collisions with other helium atoms in the experimental target. The charged pions emerging from the resulting antiproton annihilations were detected by Cherenkov detectors [12] placed around the target. The two-photon resonance condition between the laser and \overline{p}^4He$^+$ was revealed as a sharp spike in the rate of antiproton annihilations [Fig. 1 (b)].

Two sets of Ti:Sapphire lasers [13] of pulse length 30-100 ns with a spectral linewidth of ~ 6 MHz and a pulse energy of 50–100 mJ were used to excite the antiprotonic transitions. The system included continuous-wave (cw) lasers whose frequencies were measured to a precision of $< 1 \times 10^{-10}$ against a femtosecond optical frequency comb [14].

The experiments were carried out at the Antiproton Decelerator (AD) facility of CERN as part of its atomic physics [15] program. The AD provided 200-ns-long pulsed beams, which contained $\sim 10^7$ antiprotons of kinetic energy 5.3 MeV. The antiprotons were decelerated to ~ 70 keV using a radiofrequency quadrupole decelerator [7]. Secondary electron emission detectors measured the spatial profiles of the beam [16]. The \overline{p}^4He$^+$ atoms were produced by stopping the antiprotons in a target filled with 4He or 3He gas at temperature $T \sim 15$ K and pressure $p = 0.8 - 3$ mbar. Two horizontally-polarized laser beams of energy density ~ 1 mJ/cm2 fired through the target excited the two-photon transitions.

The Cherenkov signal corresponding to some $10^7\overline{p}^4$He$^+$ atoms is shown in Fig. 1(b), as a function of time elapsed since the arrival of antiproton pulses at the experimental target. Lasers of wavelengths $c/\nu_1 = 417$ and $c/\nu_2 = 372$ nm were tuned to the two-photon transition $(n, \ell) = (36, 34) \rightarrow (34, 32)$, so that the virtual intermediate state lay $\Delta\nu_d \sim 6$ GHz away from the real state (35, 33). This arrangement strongly enhanced the transition probability. The annihilation spike which corresponds to the two-photon transition can be seen at $t = 2.4\mu$s. The intensity of the spike reflects the number of antiprotons populating state $(36, 34)$ [17, 18]. When the 417-nm laser was tuned some ~ 0.5 GHz off the two-photon resonance condition, the signal disappeared as indicated in the same figure.

Fig. 2(b) shows the resonance profile measured by detuning the ν_1 laser to $\Delta\nu_d = -6$ GHz, whereas the ν_2 laser was scanned between -1 and 1 GHz around the two-photon resonance defined by $\nu_1 + \nu_2$.

Figure 1. Energy level diagram of \overline{p}^4He$^+$ involved in the two-photon transition $(n, \ell) = (36, 34) \rightarrow (34, 32)$ (a). Cherenkov detector signals for two-photon transition (b). Experimental layout (c). From Ref. [4].
Figure 2. Single-photon resonance $^{(36,34)} \rightarrow ^{(35,33)}$ of $\bar{p}^4\text{He}^+$ (a). Sub-Doppler two-photon profiles of $(36,34) \rightarrow (34,32)$ (b) and $(33,32) \rightarrow (31,30)$ (c) of $\bar{p}^4\text{He}^+$, and $(35,33) \rightarrow (33,31)$ of $\bar{p}^3\text{He}^+$ (d). Solid lines indicate best fit of theoretical line profiles (see text) and partly overlapping arrows the positions of the hyperfine lines. From Ref. [4].

Figure 3. Fractional deviation between theoretical (squares) and experimental (circles) transition frequencies of $\bar{p}\text{He}^+$ isotopes measured by two-photon laser spectroscopy. From Ref. [4].

The linewidth (~200 MHz) of this two-photon resonance is more than an order of magnitude smaller than the Doppler- and power-broadened profile of the single-photon resonance $(36,34) \rightarrow (35,33)$ [Fig. 2(a)]. The two-peak fine structure arises due to the interaction between the electron spin and the orbital angular momentum of the antiproton. We also detected the $(33,32) \rightarrow (31,30)$ and $(35,33) \rightarrow (33,31)$ resonances of $\bar{p}^4\text{He}^+$ and $\bar{p}^3\text{He}^+$, respectively [Fig. 2(c)–(d)]. The latter resonance profile contains eight partially-overlapping hyperfine lines, which arose from the spin-spin interactions of the three constituent particles. The spin-independent transition frequencies ν_{exp} were obtained by fitting these measured profiles with a theoretical lineshape (solid lines in Fig. 2) which was determined by numerically solving the rate equations of the two-photon process [10]. The positions of the hyperfine lines were fixed to the theoretical values [19], which have a precision of < 0.5 MHz.

The experimental transition frequencies ν_{exp} (filled circles with error bars in Fig. 3) agree with the theoretical frequencies ν_{th} (squares) within a fractional precision of $(2.3 - 5) \times 10^{-9}$. The calculation
uses the fundamental constants compiled in CODATA2002 [20], such as the 3He- and 4He-to-electron mass ratios, the Bohr radius, and Rydberg constant. The charge radii of the 3He and 4He nuclei give relatively small corrections to ν_{th} of 4 – 7 MHz [5]. The correction from the antiproton radius is less than 1 MHz. The theoretical precision of ν_{th} is now mainly limited by the uncalculated radiative corrections of order $m_e c^2 \alpha^8 / h$ [5]. When the antiproton-to-electron mass ratio M_P/m_e in these calculations was increased by a relative amount of 10^{-9}, the ν_{th}-value changed by 2.3–2.8 MHz. By minimizing the difference between ν_{th} and ν_{exp} and considering the systematic errors, we obtained the above antiproton-to-electron mass ratio which yielded the best agreement between theoretical and experimental frequencies. The uncertainty includes the statistical and systematic experimental, and theoretical contributions of 18×10^{-7}, 12×10^{-7}, and 10×10^{-7}. This is in good agreement with previous measurements[21–24] of the proton-to-electron mass ratio (Fig. 4). Under the assumption that CPT invariance is valid (i.e, $M_P = M_P = 1.00727646677(10)$ u), we derived a value for the electron mass, $m_e = 0.0005485799091(7)$ u [4].

Acknowledgements
This work was supported by the European Research Council (ERC-StG), European Science Foundation (EURYI), Monbukagakusho (grant no 20002003), Hungarian Research Foundation (K72172), and the Austrian Federal Ministry of Science and Research.

References