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Abstract. We present a new formulation of Einstein’s equations for an axisymmetric
spacetime with vanishing twist in vacuum. We propose a fully constrained scheme and use
spherical polar coordinates. A general problem for this choice is the occurrence of coordinate
singularities on the axis of symmetry and at the origin. Spherical harmonics are manifestly
regular on the axis and hence take care of that issue automatically. In addition a spectral
approach has computational advantages when the equations are implemented. Therefore we
spectrally decompose all the variables in the appropriate harmonics. A central point in the
formulation is the gauge choice. One of our results is that the commonly used maximal-
isothermal gauge turns out to be incompatible with tensor harmonic expansions, and we
introduce a new gauge that is better suited. We also address the regularisation of the coordinate
singularity at the origin.

1. Introduction

In this paper we consider the vacuum Einstein equations under the assumption of axisymmetry,
i.e. there is an everywhere spacelike Killing vector field with closed orbits, ∂ϕ in spherical polar
coordinates (t, r, ϑ, ϕ) adapted to the symmetry. As an initial step we further assume that ∂ϕ is
hypersurface-orthogonal (or twist-free), so there is no rotation.

The motivation for considering this situation comes from the obvious fact that due to the
reduced dimensionality, it is much less computationally demanding than the case without
symmetries. On the other hand we are not oversimplifying too much in the sense that our
situation shares important features and properties of the full theory such as the existence of
gravitational waves. In fact it was shown in [1] that it is not possible to assume any further
reasonable symmetry in the given situation when demanding gravitational radiation. Due to the
so-called Birkhoff theorem (for interesting historic remarks see [2]), vacuum spherical symmetry
is non-dynamical and thus not of interest to us.

We focus on isolated systems here, i.e. we assume spacetime is asymptotically flat. This
provides us with appropriate fall-off conditions that can be used at an artificial boundary far
away from the situation of interest.

There are many interesting applications we have in mind. These include the collapse of
gravitational waves, in particular critical phenomena. Up to date there are, to the best of
our knowledge, only two successful implementations finding critical phenomena for the vacuum
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axisymmetric Einstein equations [3, 4]. These studies obtained rather different results for
different initial data, and further investigations are needed. Another interesting question in
mathematical relativity is the one of stability of solutions such as black holes. Our setup will
allow us to study the evolution of perturbations compatible with our symmetry assumptions.

Our aim here is to derive a fully constrained formulation in spherical polar coordinates which
may be implemented by making use of a spectral approach for the angular part. A well-known
fact is that only six of the ten Einstein equations are of dynamical character, the other four are
constraints. An approach that is often applied to numerical investigations of Einstein’s equations
is to solve the constraints only on an initial hypersurface and then to evolve the system according
to the remaining evolution equations. This gives rise to the so-called free evolution. Analytically
the constraints remain preserved, which justifies the approach. Numerically, on the other hand,
there may exist constraint-violating modes, which cause instabilities. Therefore our approach
consists in enforcing the constraints at each timestep. By construction there are no constraint-
violating modes then. Such formulations are called fully constrained, for previous publications
see e.g. [5, 6] for the case without symmetries and [7] for the case of axisymmetry. A disadvantage
of solving the constraints is that they are of elliptic nature and hence computationally much
more involved. We will introduce ideas how to save computational cost at other points in the
formulation.

This brings us to the choice of a coordinate system. At least for the implementation it is very
common to introduce a fixed coordinate system. In contrast to many previous formulations for
similar situations which use cylindrical polar coordinates, we choose spherical polar coordinates
(t, r, ϑ, ϕ). Besides the motivation from astrophysics, where many objects have an approximate
spherical shape, the main reason is a mathematical one. If spacetime has a topology M2 × S2

then spherical harmonics Yℓm(ϑ,ϕ) form an appropriate system for the spectral expansion on the
sphere S2. Another nice property is that fall-off conditions to be imposed at the outer boundary
are usually given as an expansion in inverse powers of r. For the choice of spherical coordinates
and spectral expansion in general relativity see for example [8, 9, 10].

In these proceedings we mainly focus on conceptual issues of the formulation, in particular
the gauge choice. In section 2 we introduce our spectral expansion. It will be applied in
section 3, where we describe the derivation of the nonlinear equations, further their linearisation
and regularisation. In particular we focus on the gauge choice and investigate two possibilities
in detail. In the last chapter we briefly summarize and give an outlook on work in progress.

For us general relativity is given by the Einstein equations on a four-dimensional Lorentzian
manifold (M4, g) which is metric compatible, torsion-free and globally hyperbolic. Indices i, j

run from 1 to 3.

2. Spectral approach

A general problem when using non-Cartesian coordinates is the occurrence of coordinate
singularities at the origin (r = 0) and the axis of symmetry (ϑ = 0, π). As an example consider
the flat Laplacian in spherical coordinates,

△ = ∂2
r +

2

r
∂r +

1

r2

(

∂2
ϑ +

cos ϑ

sinϑ
∂ϑ

)

. (1)

In fact many equations contain operators that have some similarity with the Laplacian, which
is why we will take it as a model to illustrate our ideas.

Since spherical harmonics are regular on the axis, they take care of that issue automatically.
Because of the assumed twist-free axisymmetry, all quantities are ϕ-independent. This implies
in particular that the spherical harmonics reduce to the m = 0 harmonics

Y := Yℓ(ϑ) =

√

2ℓ+ 1

4π
Pℓ(cos ϑ) (2)



with Legendre polynomials Pℓ(cos ϑ). We shall omit the index ℓ if it is clear from the context.
However general relativity is a tensor theory. We need to know the particular behaviour of each
component of a scalar function, a vector and a symmetric two-tensor [11, 12]. Let ĝAB be the

round metric on the unit sphere and ∇̂ its covariant derivative (A,B = ϑ,ϕ). The general even

parity quantities are YA := ∂AY and YAB := [∇̂A∇̂BY ]tf , the odd parity quantities play no role
because of hypersurface-orthogonality. In the case of twist-free axisymmetry the relevant basis
harmonics are given by

Y = 0Y, (3a)

Yϑ = −
1

2

√

ℓ(ℓ+ 1) (1Y −
−1Y ) , (3b)

Yϑϑ = −

[

cos ϑ

sinϑ
Yϑ +

ℓ(ℓ+ 1)

2
Y

]

=
1

4

√

(ℓ− 1)ℓ(ℓ + 1)(ℓ + 2) (2Y −
−2Y ) , (3c)

where we have used the properties of the Legendre functions to eliminate the second ϑ-derivatives
in (3c). For completeness we have also given the expressions in terms of the spin-weighted
harmonics sY [12]. In the following we will refer to Y , Yϑ and Yϑϑ as the scalar, vector and
tensor harmonics, respectively. Fields expanding in those harmonics will be called scalar, vector
and tensor quantities.

We explicitly give the expansion of some components of the spatial metric γij needed in the
following:

γrr = HY, (4a)

γϑϑ = r2
(

K −
ℓ(ℓ+ 1)

2
G

)

Y − r2
cos ϑ

sinϑ
GYϑ = r2 (KY +GYϑϑ) , (4b)

γϕϕ = r2 sin2 ϑ

(

K +
ℓ(ℓ+ 1)

2
G

)

Y + r2 cos ϑ sinϑGYϑ = r2 sin2 ϑ (KY −GYϑϑ) , (4c)

where H,K and G are functions of t and r only and a sum over ℓ is implied.

3. Formulation

Our starting point is the usual 3+1 decomposition of general relativity (M4, g) 7→ (Σ3, γ,K)
[13, 14]. Here Σ3 is a level set of three dimensional spacelike hypersurfaces and γ and K are
their first and second fundamental forms. The evolution takes place along the timelike vector
field t (recall that (M4, g) is globally hyperbolic by assumption). The line element is given by

ds2 = −α2dt2 + γij
(

dxi + βidt
) (

dxj + βjdt
)

, (5)

where α is the lapse function and βi the components of the shift vector. We obtain six evolution
equations each for γij and Kij , a Hamiltonian constraint and three momentum constraints.

Now, in this setting, twist-free axisymmetry means that all variables are ϕ-independent,
γrϕ = γϑϕ = 0 and βϕ = 0. These identities are preserved under time evolution. It follows that
also Krϕ and Kϑϕ have to vanish and the ϕ-momentum constraint is identically satisfied.

The diffeomorphism invariance of general relativity is encoded in the lapse and shift. To fix
the gauge we have to choose a slicing condition and two spatial gauge conditions.

3.1. Choice of a gauge

An evident choice is the so-called maximal-isothermal gauge, see [15] for a review. This is a
combination of maximal slicing, K = 0 = ∂tK, and the quasi-isotropic condition. The latter
one consists of the diagonal gauge,

γrϑ = 0 = ∂tγrϑ, (6)



and a condition that separates the remaining ϕ-part of the spatial metric by relating the other
components as

γϑϑ = r2γrr, (7)

which is also preserved in time, ∂t
(

γϑϑ − r2γrr
)

= 0. This is a widely used gauge in axisymmetric
simulations [3, 16, 17, 7] and also analytically well studied [15]. As we will see later in section 3.2
after the linearisation and expansion in spherical harmonics, the maximal-isothermal gauge is
unfortunately not an appropriate gauge for our purposes. In order to find a well-suited condition
we decide to keep maximal slicing and the diagonal gauge as before but to come up with a new
condition for the other components of γii, namely

γϑϑ = r4 sin2 ϑ γϕϕ(γrr)
2. (8)

This gauge should also be preserved in time, ∂t
(

γϑϑ − r4 sin2 ϑ γϕϕ(γrr)
2
)

= 0. Note that the
nonlinear condition (8) relates all the remaining components of the spatial metric. We will show
in section 3.2 that this is indeed an appropriate gauge for our purposes. The three preservation
equations in t for the gauge choices give us further elliptic equations to be solved at each time
step in the fully constrained system.

Having the new gauge condition at hand we can now follow the usual procedure in the 3 + 1
formulation of general relativity to derive the nonlinear constraints and evolution equations. For
obvious reasons one should choose variables in a way that their linearisation has a convenient
expansion in scalar, vector and tensor harmonics in the sense explained at the end of section 2.
We note that it is sometimes useful to add appropriate multiples of the constraints (which vanish
for a solution to Einstein’s equations) to some of the equations such that the linearisation of the
equations also expand in a definite way.

We have eight variables, namely the lapse function, two components of shift vector, two
components of the spatial metric and three components of the extrinsic curvature. On the
other hand we have six constraints, the Hamiltonian and two momentum constraints, the
preservation of maximal slicing, the diagonal gauge condition (6) and the newly introduced
gauge condition (8). Since we are looking for a fully constrained formulation, we will explicitly
solve all of these constraints in our scheme. Furthermore we have five evolution equations for the
remaining components of the spatial metric γij and the extrinsic curvatureKij . Thus the system
is overdetermined. In the following we will concentrate on those two evolution equations for the
components of γij and Kij that expand in the linearisation in tensor harmonics. Besides being
reasonable to choose two canonically conjugated variables as evolved fields, we expect the tensor
quantities to carry the gravitational wave degrees of freedom (at least in linearised theory). The
other evolution equations may be used for consistency checks but will not be considered in the
remainder of this paper.

3.2. Linearisation

Having derived the equations, we next linearise them about a flat background spacetime. This
means we expand all quantities in the form f = f |flat + ǫf̃ and just keep terms of linear order
in ǫ, ignoring higher-order terms. We obtain two evolution equations and six constraints, all
dependent on (t, r, ϑ). As expected we are faced with singularities both on the axis and at the
origin. One should think of the Laplacian in (1) as a model operator.

On the linearised level we expand all variables in the corresponding spherical harmonics as
given at the end of section 2. E.g. for a variable f̃ that expands in scalar harmonics, we have

f̃(t, r, ϑ) =
∑

ℓ

f̂ℓ(t, r)Yℓ(ϑ). (9)



Applying the expansion of the metric coefficients (4) to the quasi-isotropic condition (7), one
finds

r2
(

H −K +
ℓ(ℓ+ 1)

2
G

)

Y − r2
cosϑ

sinϑ
GYϑ = 0, (10)

which implies G = 0 and hence H = K. Thus only one degree of freedom for the spatial metric
remains. Therefore the only situation that is compatible with this choice is the one of spherical
symmetry.

On the other hand, linearising (8) about flat space leads to the condition

γϑϑ = 2r2γrr −
γϕϕ

sin2 ϑ
(11)

and hence, again by using (4),

2r2(K −H)Y = 0. (12)

Therefore H = K and G arbitrary are two remaining degrees of freedom, which shows that these
conditions are indeed well suited.

The ϑ-dependence is completely absorbed in the spherical harmonics. Thus the interesting
part is now contained in f̂ℓ in (9), which depends on (t, r) only. On the linear level one expects
a decoupling of all the different ℓ-modes. This is indeed the case provided one considers the
“correct” nonlinear equations as explained in the previous subsection 3.1, adding appropriate
multiples of the constraints. Therefore we obtain, for each ℓ-mode, a (1+1)-dimensional system
of equations in (t, r). The equations are still formally singular at the origin r = 0.

3.3. Regularisation

In order to regularise the just obtained equations at the origin r = 0, we follow a procedure
proposed e.g. in [18, 19]. Let us again take the Laplace operator (1) as an example. After
expansion in (scalar) spherical harmonics, the Laplace equation reads

∂2
r f̂ℓ +

2

r
∂rf̂ℓ −

ℓ(ℓ+ 1)

r2
f̂ℓ = 0. (13)

This equation can be solved explicitly. Its solution is a superposition of a singular part
proportional to r−(ℓ+1) and a regular part proportional to rℓ. Since we only consider solutions
that are smooth at r = 0, we require the integration constant of the part proportional to r−(ℓ+1)

to vanish. If we isolate the leading-order behaviour by setting f̂ℓ(t, r) =: rℓf̄ℓ(t, r), we can
continue to work with the barred quantities, which expand, close to the origin r = 0, in even
power series in r. Therefore (13) is now manifestly regular,

∂2
r f̄ℓ +

2

r
(ℓ+ 1)∂r f̄ℓ = 0. (14)

For our set of equations we have to pull out factors of either rℓ, rℓ+1 or rℓ+2 to obtain similar
results, but indeed, the system can be completely regularised in this way.

A further nice property is that, with a little bit of rearranging, one obtains a hierarchy of
equations. For the implementation we evolve, from one time step to the next, the two tensor
variables by using the evolution equations. Here we remark that, when taking the second
time derivative of the tensor component of γij and using the evolution for the corresponding
component of Kij, the principal part of the equations is just the ordinary wave equation.
Then, on the new time level, we solve successively the constraints to obtain the remaining



variables on that time slice before stepping to the next slice. Given the tensor part of γij , the
Hamiltonian constraint gives us the scalar component of γij , while the preservation of maximal
slicing determines the lapse function. Given the tensor contribution to Kij , the two momentum
constraints allow us to determine the remaining (scalar and vector) components of the extrinsic
curvature. Finally the preservation of the spatial gauge conditions determines the components
of the shift vector.

4. Conclusion

We have formulated Einstein’s equations for an isolated system in twist-free axisymmetry. Key
features of our formulation are that the scheme is fully constrained and uses a spherical polar
coordinate system. In its linearisation about a flat background, a spectral expansion in spherical
harmonics may be used and the resulting equations are fully regularisable. A central result
presented in this paper is the fact that the well-understood and frequently applied maximal-
isothermal gauge is not compatible with tensor spherical harmonic expansions. Instead we
proposed another gauge condition which is well-suited. Currently we are in the process of coding
the linearised system and finding a proper way to include the non-linearities. Possible directions
for further studies include a deeper analysis of the properties of the system, the inclusion of a
non-vanishing twist to allow for rotating spacetimes and, ultimately, the application of the code
to physically and mathematically interesting situations such as those mentioned in section 1.
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