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ABSTRACT

Motivation: Runs of homozygosity (ROH) are sizable chromosomal

stretches of homozygous genotypes, ranging in length from tens of

kilobases to megabases. ROHs can be relevant for population and

medical genetics, playing a role in predisposition to both rare and

common disorders. ROHs are commonly detected by single nucleo-

tide polymorphism (SNP) microarrays, but attempts have been made

to use whole-exome sequencing (WES) data. Currently available meth-

ods developed for the analysis of uniformly spaced SNP-array maps

do not fit easily to the analysis of the sparse and non-uniform distri-

bution of the WES target design.

Results: To meet the need of an approach specifically tailored to WES

data, we developed H3M2, an original algorithm based on heteroge-

neous hidden Markov model that incorporates inter-marker distances

to detect ROH from WES data. We evaluated the performance of H3

M2 to correctly identify ROHs on synthetic chromosomes and exam-

ined its accuracy in detecting ROHs of different length (short, medium

and long) from real 1000 genomes project data. H3M2 turned out to

be more accurate than GERMLINE and PLINK, two state-of-the-art

algorithms, especially in the detection of short and medium ROHs.

Availability and implementation: H3M2 is a collection of bash, R and

Fortran scripts and codes and is freely available at https://sourceforge.

net/projects/h3m2/.
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1 INTRODUCTION

Runs of homozygosity (ROH) are chromosomal stretches that in

a diploid genome appear in the homozygous state, that is, display

identical alleles at multiple contiguous loci.
The study of ROH can be relevant for both population and

medical genetics. Genomic ROH patterns are governed by a

number of factors, among which population genetic history

(e.g. historical bottleneck, geographic isolation and population

size), evolutionary forces (e.g. selective sweeps) (Sabeti et al.,

2007) and cultural habits or historical and geographical factors.

Recent parental relatedness favors the formation of long ROH

(several megabases) that occur because of IBD (identity by des-

cent, when the two alleles at a locus match because they originate

from the same common ancestor), as opposed to identity by state

(when the two alleles at a locus match simply by coincidence).

Homozygosity originating from the occurrence of individual

IBD regions owing to parental relatedness (autozygosity) is

known to possibly contain recessive highly penetrant deleterious

disease-causing mutations surrounded by an unusually long

homozygous haplotype. This is the principle that inspired homo-

zygosity mapping in the study of rare recessive disorders affect-

ing inbred individuals (Lander and Botstein, 1987). In outbred

individuals, short (up to few hundreds of kilobases) or medium-

sized ROH (from hundreds of kilobases to a few megabases) can

surround disease-causing mutations as well (Hildebrandt et al.,

2009), playing a role in predisposition to disease through the

effect of mildly deleterious recessive variants (Wang et al., 2009).
To date, ROH detection has been achieved by microarray-

based technologies. Currently available single nucleotide poly-

morphism (SNP)-array platforms contain millions of markers

from the HapMap Project (International HapMap Consortium,

2003) and have amean SNP-to-SNP distance of around 3 kb. The

past few years have seen the emergence of several next-generation

sequencing (NGS) platforms that are capable to sequence a full

human genome per week at a cost 400-fold less than the previous

methods. The advent of NGS platforms has revolutionized our

ability of studying human genetic variation (Wang et al., 2009)

allowing the achievement of large-scale re-sequencing projects,

such as the 1000 Genomes Project (1000GP) (1000 Genomes

Project Consortium et al., 2010) and the Cancer Genome Atlas

(www.cancergenome.nih.gov). Recently, the 1000GP consortium,

by combining low-coverage whole-genome sequencing (WGS)

and high-coverage whole-exome sequencing (WES) of 1092 indi-

viduals from 14 populations, has genotyped �38 million single

nucleotide polymorphic positions (1000 Genomes Project

Consortium et al., 2012). This provided a genetic map character-

ized by a mean SNP-to-SNP distance of 73 bp and with475% of

the inter-marker distances under 200bp. This catalog captures up

to 98% of accessible SNPs with minor allele frequency of �1%.*To whom correspondence should be addressed.
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At present, the cost and the computational complexity still limit

the routine use of WGS and makeWES an effective alternative that

has been successfully used for the discovery of single-nucleotide vari-

ants (Ng et al., 2009), short indels and copy number variants (Magi

et al., 2013) and that can be applied to the detection of ROH

(Pippucci et al., 2011). However, the sparse nature of the WES

target design makes this latter application challenging. The distance

between adjacent 1000GP exomic SNPs ranges from 1bp to 26Mb

(with an average value of around 500bp), and consequently, large

ROH may be covered by few and not uniformly spaced SNPs,

whereas small and isolated ROH may display exceptionally high

marker density. Currently available sliding-window methods, such

as PLINK (Purcell et al., 2007) or GERMLINE (Gusev et al., 2009),

were developed for the analysis of uniformly spaced SNP-arraymaps

and do not fit easily to the analysis of the sparse and non-uniform

distribution of WES SNP maps. The identification of long ROH,

typically those detected in a context of consanguinity, may be faced

by applying these methods to WES data (Pippucci et al., 2011).

However, medium or short ROH cannot be as easily captured

from WES data by using traditional sliding-windows approaches.
To meet the need of an approach specifically tailored to WES

data, which could overcome the inherent limitations of currently

available tools, we developed a novel computational approach

[homozygosity heterogeneous hidden Markov model (HMM),

H3M2] for the identification of ROH. The algorithm is based

on a heterogeneous HMM that, incorporating the distance be-

tween consecutive polymorphic positions into the transition

probabilities matrix, is able to detect with high sensitivity and

specificity ROH of every genomic size. The key feature of the

algorithm is its heterogeneity, which makes it well-suited for

WES data. To evaluate the capability of this novel method to

detect ROH of different sizes, we applied it to the analysis of a

synthetic dataset and compared its performance with that of

PLINK and GERMLINE on real WES data. Another method

for homozygosity IBD detection from sequences based on a

HMM algorithm, IBDseq, has recently been reported

(Browning and Browning, 2013). We did not compare H3M2

with IBDseq because this latter method is conceived explicitly

for genome sequences and has never been applied to WES data.

As a whole, the results we obtained in these analyses demon-

strated that H3M2 has the potentiality to capture most of the

genomic ROH that overlap regions covered by exomic targets,

and that it outperforms the existing algorithms especially in the

detection of medium and short ROH.

2 METHODS

2.1 B-allele frequencies

As a measure of the homozygous/heterozygous genotype state of each

polymorphic position i, we adopted the B-allele frequency (BAF). BAFi is

defined as the ratio between B-allele counts (NB, the number of reads that

match with the 1000GP alternate allele at position i) and the total number

of reads mapped to that position (N, the depth of coverage):

BAFi=
NB

N
ð1Þ

BAFi may thus assume values that belong to the interval [0,1]: when

BAFi=0, all the reads aligned to position i match with the major allele;

when BAFi=1, all the reads match with the minor allele; and when

BAFi 6¼ 0; 1, some reads match with the major allele, whereas some

others match with the minor allele (see Supplementary Methods). It fol-

lows that BAFi can predict the homozygous/heterozygous genotype state

of each polymorphic position i:

� when BAFi � 0, the polymorphic position is homozygous reference;

� when BAFi � 0:5, the polymorphic position is heterozygous; and

� when BAFi � 1, the polymorphic position is homozygous alternate.

To the scope of the present work, the use of the BAFmeasure has some

advantages compared with that of NGS genotype calls. First, BAF cal-

culation does not require computationally intensive steps like binary

sequence alignment/map (Li et al., 2009) file realignment and recalibra-

tion, which are widely adopted to improve reliability of variant calls.

Second, genotype calling is usually performed for variant sites only,

thereby an additional genotype calling step would be needed to cover

also non-variant sites.

2.2 Map construction

To create a map of exomic SNPs, we included all the polymorphic pos-

itions discovered by 1000 Genomes Project Consortium (2012) falling

into the range of the 1000GP exomic target regions (downloaded at

http://www.1000genomes.org/) plus 1000bp of sequences flanking both

sides of each target region. As a result of this procedure, we selected

4 163299 SNPs: the distance between adjacent SNPs ranged from 1bp

to 22 Mb with mean and median values of 47 and 686bp, respectively,

(and �75% of the distances under 110bp).

2.3 H3M2 model and algorithm

To identify homozygous DNA segments, we decided to model BAF data

by means of a discrete state HMM with continuous output. A discrete

HMMwith continuous output is characterized by the following elements:

� The number of hidden states, K, in the model. The states are denoted

as S=fS1; :::;SKg while qi denotes the actual state at position i

(1 � i � n).

� The observed data O=fO1; :::;ONg.

� The initial state distribution, �, where �1k=Pðq1=SkÞ.

� The emission probability distributions bkðiÞ, that is, the probability

of observing Oi at position i given the state Sk: bkðiÞ=P½Oijqi=Sk�.

� The transition matrix, A, giving the probability of moving from one

state to another, Alm=Pðqi+1=Smjqi=SlÞ for 1 � i � n� 1 and

1 � l;m � K.

To model our problem, we used a two-state HMM (K=2) where the

hidden states represent non-homozygous (S1=non�Hom) and homo-

zygous (S2=Hom) states of the genome, and the observations are the

BAF values at each polymorphic position i (BAFi). The emission distri-

butions are mixture of truncated Gaussian density with the following

form:

� PðBAFijqi=S1Þ=c1g
u
l ðBAFi; �1Þ+c2g

u
l ðBAFi; �2Þ+c3g

u
l ðBAFi; �3Þ

� PðBAFijqi=S2Þ=c1g
u
l ðBAFi; �1Þ+c3g

u
l ðBAFi; �3Þ

where ck is the proportion of the k-th component in the mixture withX3

k=1
ck=1 and �1=ð�1=0;F 	 �1Þ; �2=ð�2=0:5; �2Þ and �3=ð�3=1;

F 	 �3Þ are the means and the variances of the three truncated Gaussians. The

lower andupperbounds are l=0andu=1for the three truncatedGaussians.

F is a parameter used to modulate the spread of the two truncated

Gaussian distributions with mean �1=0 and �3=1. F can take values in

the range ½1;1�, and the larger is its value the larger is the probability to

include in homozygous regions BAF values that strongly deviate from 0

and 1. In practice, the parameter F allows our model to recognize ROH
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taking into account sequencing and alignment errors that, in complex

regions of the genome, could generate BAF values that belong to the g2
distribution (heterozygous state). The expression of a truncated Gaussian

density g with lower bound l and upper bound u can be easily derived

from the density of a non-truncated Gaussian:

gul ðBAFi; �Þ=
fðBAFi; �Þ

Fðu; �Þ � Fðl; �Þ
Iul ðBAFiÞ; ð2Þ

where fð�; �Þ and Fð�; �Þ represent the density and cumulative distribution

functions of a non-truncated Gaussian of parameter �=ð�; �2Þ and Iul ðB

AFiÞ=1 if BAFi belongs to the interval ½l; u� and Iul ðBAFiÞ=0 otherwise.

Finally, to take into account the distance between consecutive poly-

morphic positions d=ðd1; d2; :::; :dn�1Þ, we decided to incorporate them

into the transition probabilities matrix Ai defined for 1 � i � n� 1:

Ai=
1� p1ð1� e�fi Þ p1ð1� e�fi Þ

p2ð1� e�fi Þ 1� p2ð1� e�fi Þ

 !
ð3Þ

where p1 (p2) represents the probability of moving from State 1 to State 2

(from State 2 to State 1) in the homogeneous HMM, fi=di=dNorm and

dNorm is the distance normalization parameter. The parameter dNorm
modulates the effect of genomic distance di on the transition probabilities:

the larger is dNorm the smaller is the probability to jump from one state to

another.

To estimate the parameters of the heterogeneous HMM, we developed

a two-step computational recipe based on expectation-maximization

(EM) and Viterbi algorithms. In the first step, we estimate the variances

�k and the proportions ck of the mixture of three truncated Gaussians,

whereas in the second step we estimate the best state sequence (we asso-

ciate each BAF value to particular states) by using the Viterbi algorithm.

The inputs to the algorithm are the sequence of BAF values

BAF=ðBAF1;BAF2; ::;BAFNÞ, the distance between consecutive poly-

morphic positions d=ðd1; d2; :::; :dn�1Þ, the values of the parameters F,

p1, p2 and dNorm, and the output are genomic regions with consecutive

SNPs in homozygous and heterozygous states. We decided to use the two

transition probabilities p1 and p2 as algorithm parameters instead of

estimating them with an EM algorithm, as we do believe that they can

be useful in setting the resolution of our algorithm (the capability of our

computational method to detect ROH of different size and with different

number of SNPs).

To estimate the parameters �k and ck of the Gaussian mixture model,

we make use of the classical EM algorithm (Dempster et al., 1977). In

brief, denoting with Zki the hidden state for BAFi (Zki is a random vari-

able equal to 1 if BAFi belongs to state k and 0 otherwise), we can define

the conditional probabilities �ki=PrðZki=1jBAFiÞ. The basic ingredient

of the EM family of algorithms is the iterative application of an expect-

ation step followed by a likelihood maximization step. EM starts with

initial values (c
ð0Þ
k ; �

ð0Þ
k ) for the parameters and iteratively performs the

two steps until convergence. In the E-step, the conditional probabilities

�ki are computed. Given the parameters estimated at h-th iteration, c
ðhÞ
k

and �ðhÞk =ð�ðhÞk ; �
ðhÞ
k Þ, the conditional probabilities �

h+1
ki are obtained with

the following formula:

�h+1
ki =

c
ðhÞ
k gul ðmi; �

h
kÞXN

i=1

ckg
u
l ðmi; �lÞ

: ð4Þ

In the M-step, the proportions of the components in the mixture and the

empirical estimators of the mean and the variance are computed. In par-

ticular at the iteration ðh+1Þ of the M-step, we compute �ðh+1Þ
k and c

ðh+1Þ
k

with the following formulas:

�ðh+1Þ
k =

XN

i=1
�h+1
ki ðmi � �

ðh+1Þ
k Þ

2XN

i=1
�h+1
ki

; ð5Þ

cðh+1Þ
k =

XN

i=1
�h+1
ki

N
: ð6Þ

Finally, once all the parameters of the mixture of Gaussians have been

estimated, we apply the Viterbi algorithm to find the best state sequence

and consequently to associate each BAF value to one of the two (non-

homozygous/homozygous) states, thus identifying ROH.

3 RESULTS

3.1 BAF properties and distributions

To evaluate the capability of BAF to predict the homozygous/

heterozygous SNP state, and of BAF profiles to discriminate

between homozygous and heterozygous DNA segments, we stu-
died the distribution of BAF values by analyzing WES data of

three individuals (NA12878, NA12891 and NA12892) sequenced

by the 1000GP consortium and previously genotyped with SNP-

array technologies by the HapMap consortium (see

Supplementary Methods). For each position i of the SNP-map,

we compared the BAF value with HapMap genotypes and with

genotypes independently generated by SAMtools (Li et al., 2009)
and the Genome Analysis ToolKit (GATK) (McKenna et al.,

2010) on WES data (see Supplementary Methods). All the ana-

lyses were performed by progressively filtering out SNPs covered

less than a defined threshold (5
, 10
, 15
 and 20
). The re-

sults of these comparisons are reported in panels a, b and c of

Figure 1 and Supplementary Figures 1–3, and clearly show

strong correlation between BAF and SNP genotypes calls. The

‘Violin Plots’ reported in panels a, b and c of Figure 1 illustrate
the capability of BAF values to predict the genotype calls made

by SAMtools (R=0.988), GATK (R=0.993) and SNP-array

data (R=0.99). Moreover, as expected, higher the coverage over

the polymorphic position higher the correlation between BAF

and genotype calls (Supplementary Figs 1–3). Based on these

results, we performed all the downstream analyses by using

only SNPs covered � 10.
As a further step, to evaluate the capability of BAF profiles to

discriminate between homozygous and non-homozygous regions

of the genome, we studied the distributions of BAF in different
sets of genomic regions. To this end, we defined as homozygous

and non-homozygous gold standard regions, those classified as

such by PLINK on HapMap calls (see Supplementary Material).

The four sets in which we studied BAF distribution were (i) all

the regions of the genome, (ii) the homozygous regions only, (iii)

the non-homozygous regions only and (iv) the non-pseudoauto-

somal X chromosome of male individuals. The results reported

in panels d, e, f and g of Figure 1 reveal that the BAF distribution
across all the polymorphic positions can be well approximated by

a mixture of three truncated normal distributions:

gul ðBAFi; c; �Þ=
X3
k=1

ckg
u
l ðBAFi; �kÞ; ð7Þ

where ck is the proportion of the k-th component in the mixture

with
X3

k=1
ck=1 and �k=ð�k; �kÞ are the means and the vari-

ances of the three Gaussians with �1=0; �2=0:5 and �3=1.

The lower and upper bounds are l=0 and u=1 for the three

truncated Gaussians.
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Figure 1 also shows that in non-homozygous regions (Fig. 1e)

ck 6¼ 0 for all the three distributions, whereas in homozygous

regions (Fig. 2f and g) c2=0. Thus, homozygous and non-homo-

zygous regions can be discriminated based on BAF distribution

as signature. Genomic regions with BAF values generated by

Equation 7 with c2 6¼ 0 can be classified as non-homozygous,

whereas genomic regions with BAF values generated by

Equation 7 with c2=0 can be classified as homozygous.

3.2 Synthetic validations

To test the ability of H3M2 to detect ROH of different sizes and

constituted by different number of SNPs as a function of the

distance between consecutive markers, we performed an intensive

simulation based on synthetic data. To this end, we generated

synthetic chromosomes starting from the BAF data of the three

samples used in previous section. BAF data from the non-pseu-

doautosomal X chromosome of the male individual NA12891

were used to simulate homozygous DNA segments, whereas

BAF data from the autosomal chromosomes of all the three

samples were used to simulate heterozygous segments.

Each synthetic chromosome was generated as a stretch of 2000

polymorphic positions in which:

� Homozygous segments were simulated as N consecutive

data sampled from the BAF values of the non-pseudoauto-

somal X chromosomes regions of male individuals.

� Non-homozygous segments were simulated by sampling

ð2000�NÞ data from the BAF values of the autosomal

chromosomes of the three aforementioned individuals.

Heterozygous segments were imposed to have SNPs in a

heterozygous/homozygous ratio of 1:9. To this end, we

sampled one BAF value from SNPs called as heterozygous

by GATK every nine sampled SNPs called as homozygous

by GATK.

The 1:9 ratio was imposed to simulate at best the actual het-

erozygous/homozygous proportion and to prevent the emergence

of false-positive (FP) homozygous segments. To reproduce the

complex architecture and distribution of homozygous and het-

erozygous WES regions, we generated distances between adja-

cent SNPs as follows:

� The distances between consecutive SNPs in non-homozy-

gous regions are sampled from the distribution of the dis-

tances between adjacent WES polymorphic positions.

� The distances between adjacent polymorphic positions in

homozygous regions are fixed to a predefined distance D.

We performed simulations with N= (50, 100, 200, 300, 400,

500, 600, 700, 800, 900 and 1000) and D= (10bp, 100bp, 1 kb,

10 kb and 100 kb), and for each combination of N and D we

generated 100 synthetic chromosomes: all the synthetic datasets

were analyzed by using different values of the parameter dNorm

(dNorm=103, 104, 105 and 106), p1 and p2 (from 0.05 to 0.8 by

0.05).
To evaluate the performance of H3M2 for different parameter

settings, we calculated sensitivity (true-positive rate, TPR) and

specificity (1-FPR, false-positive rate). TPR was defined as the

number of markers inside the synthetic ROH called by H3M2 as

homozygous divided by the total number of markers inside the

synthetic ROH. FPR was defined as the number of markers

outside the synthetic ROH called by H3M2 as homozygous

divided by the total number of markers outside the synthetic

ROH. The results of these analyses are summarized in Figure 2.

Figure 2a and b report the sensitivity and specificity for all the

combinations of the p1 and p2 parameters. Figure 2a shows that

(a)

(d)

(f) (g)

(e)

(b) (c)

Fig. 1. BAF data distribution. Panels a, b and c show the distributions of

BAF values against the genotype calls generated by the HapMap con-

sortium on SNP-array data (a), the genotype calls made by SAMtools (b)

and the genotype calls made by GATK (c). For each genotype caller, the

distribution of BAF values is reported for homozygous reference calls

(HMr), heterozygous calls (HT) and homozygous alternative calls

(HMa). R is the Pearson correlation coefficient. Panels d–g show the

distribution of BAF values in all the regions of the genome (d), in het-

erozygous regions (e), in homozygous regions (f) and in the X chromo-

some of male individuals (g). For each panel, the main plot reports the

zoomed histogram, the left subplot shows the BAF values against gen-

omic positions, whereas the right subplot shows the entire histogram of

BAF values

(a)

(c) (d) (e)

(b)

Fig. 2. H3M2 algorithm and parameter settings on synthetic chromo-

somes. The contour plots of panels a and b show the sensitivity and

specificity of H3M2 for different combinations of values of p1 and p2
parameters. Panel c and d show the sensitivity and specificity of H3M2

against dNorm. Panel e shows the performance of H3M2 as a function of

the parameter F
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the larger p2 the smaller the range of p1 values that ensure high
sensitivity. In particular, when p2=0:1, almost any value of p1
guarantees the best performance in term of sensitivity. On the

other hand, Figure 2b demonstrates that for values of p140.4
the specificity of our method drastically decreases. In summary,
because global performance of H3M2 is a result of the trade-off

between sensitivity and specificity, we argue that the best per-
formance can be obtained by setting p1=0:1 and p2 2 ½0:1; 0:3�.
Figure 2c and d report the results of this analysis as a function of

the dNorm parameter and show that dNorm has strong effect on
global performance of H3M2: the larger is dNorm the smaller
(larger) is sensitivity (specificity).
To study the effect of the parameter F in modulating the cap-

ability of H3M2 to tolerate sequencing and alignment errors in
the detection of ROH, we built another synthetic dataset. The
synthetic chromosomes of this dataset were generated with the

same procedure described above, apart from the central SNP of
the homozygous stretch. With the purpose of reproducing
increasing error rates, BAF values ranging from 0.1 to 0.9 were

assigned to the central SNP. We applied H3M2 to this synthetic
dataset using different values of the parameter F (F 2 ½1; 20�),
and the results are reported in the contour plot of Figure 2e.

Each point in the plot represents the fraction of times the algo-
rithm detects a unique ROH instead of splitting it in two ROH.
These results show that larger F values make H3M2 more toler-

ant of positions characterized by higher sequencing and align-
ment error rates that appear to be heterozygous sites: as an
example, F=10 induces the algorithm to include in a homozy-

gous region BAF values as large as 0.35.
As a further test, to evaluate the capability of H3M2 to detect

ROH of different size and comprising different number of SNPs,

we calculated TPR and FPR as follows: a detected ROH is con-
sidered a true positive if it has any overlap with a synthetic ROH,
whereas it is considered a FP if it has no overlap with a

synthetic ROH. These analyses were performed by setting
p2=0:1; p1 2 ½0:05; 0:3� and dNorm=ð10

3; 104; 105; 106Þ. As ex-
pected, the results (Fig. 3) show that the larger the number of

SNPs falling within a given ROH the higher the probability to
correctly identify the homozygous region. The same holds, con-
sidering the distance between adjacent positions (D): the larger D

the higher the probability to call the region as homozygous.
A detailed analysis of Figures 3a and b reveals that the sensi-

tivity of H3M2 increases with increasing values of the parameter

p1. However, setting p1 � 0:1 has little effect on the resolution of
H3M2 (i.e. the capability of the algorithm to detect ROH con-
stituted by a small number of SNPs), while it favors the detection

of FP events (Fig. 3c). On the other hand, the results of
Figure 3d–f show that the parameter dNorm strongly affects the
performance of the H3M2 algorithm in terms of both sensitivity

and specificity: the smaller dNorm the higher the probability to
detect small ROH (ROH characterized by high SNP density) and
FP events. The results of these analyses (Supplementary Figs

4–8) also show that the parameter dNorm rules the capability of
H3M2 to detect homozygous segments characterized by variable
SNP densities. When dNorm is set to large values (105; 106),H3M2

is not able to detect homozygous segments made of even hun-
dreds of densely distributed SNPs and increasing p1 has poor
effect on the resolution of the algorithm. On the contrary,

when dNorm is set to small values (103; 104), H3M2 is able to

detect homozygous segments made of densely distributed

SNPs, and increasing p1 has a relevant effect on resolution.
Taken as a whole, these results suggest that to detect large

homozygous segments and limit the false discovery rate, large

values of dNorm (105, 106) and small values of p1 (0.1) should be

used. On the other hand, to detect homozygosity with a high

level of resolution, small dNorm (103, 104) and large p1 values

(0.2, 0.3) are recommended.

3.3 Real data analysis

To test the proposed computational pipeline for the identifica-

tion of homozygous segments on real data, we analyzed the WES

data of 15 individuals (five CEU, Utah residents with ancestry

from Northern and Western Europe, five JPT, Japanese in

Tokyo, and five YRI, Yoruba in Ibadan) sequenced by

1000GP consortium (see Supplementary Methods) by using the

following parameter settings: p2=0:1; p1=½0:1; 0:2; 0:3� and

dNorm=½10
3; 104; 105�.

First, we studied the detected ROH in terms of both cumula-

tive global size and fraction of SNPs within them. As expected

(Fig. 4a–f), the larger the value of the parameter p1 the larger the

total size of the detected ROH, and accordingly the larger the

total fraction of SNPs within the detected ROH. Conversely, the

smaller is dNorm the larger is the total size and the total fraction of

SNPs detected by H3M2. By setting the most conservative set of

parameters (dNorm=105 and p1=0:1),H3M2 detected an average

of around 160Mb (10% of SNPs) in the YRI individuals,

330Mb in the CEU (18% of SNPs) and 380 in the JPT (21%

of SNPs), whereas using more inclusive parameters

(dNorm=103; p1=0:3), we detected 860 Mb (38% of SNPs) for

YRI, and around 1.25Gb for both CEU and JPT individuals

(50% of SNPs).

Subsequently, we compared the results of H3M2 with those

obtained by PLINK and GERMLINE on the GATK calls. To

allow for a comprehensive evaluation of the performance of the

two tools, we defined six different parameter configurations for

each of the tools (see Supplementary Methods). By using the

most conservative configuration, PLINK (--homozyg-snp

500 and --homozyg-window-het 0) detected around 11Mb

(a) (b) (c)

(d) (e) (f)

Fig. 3. Performance evaluation of theH3M2 algorithm in the detection of

ROHs on synthetic chromosomes. Panels a–c report the performance of

H3M2 as a function of parameter p1, whereas panels d–f as a function of

parameter DNorm. Panels a and d show TPR versus the number of SNPs

within the detected ROH. Panels b and e show the TPR as a function of

the distance between consecutive polymorphic positions in the detected

ROH. Panels c and f show the number of FP ROH detected by theH3M2
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(1% of the analyzed SNPs) of ROH for the YRI individuals,

26Mb (3% of SNPs) for the CEU and 53 Mb (4% of SNPs) for

JPT, whereas GERMLINE (-bits 500 and err_het 0) iden-

tified 32Mb (2% of analyzed SNPs) for the YRI, 141Mb (8% of

SNPs) for CEU and 202 Mb (11% of SNPs) for JPT. On the

other hand, using the less stringent configuration (--homozyg-

snp 50, --homozyg-window-het 1 for PLINK and -bits

50, -err_het 1 for GERMLINE), PLINK detected around

1.35Gb (60% of analyzed SNPs) for each YRI, 1.7Gb (76%

of SNPs) for CEU and 1.62Gb (73%) for JPT, whereas

GERMLINE identified 2.6Gb (90% of analyzed SNPs) for

YRI, 2.7Gb (94.5% of SNPs) for CEU and 2.65Gb (92% of

SNPs) for JPT.

The total ROH length per individual detected with the most
conservative parameter setting of H3M2 is in general agreement
with previously published work that studied homozygosity at a

population level (Auton et al., 2009; Kirin et al., 2010;
Pemberton et al., 2012). The YRI population has the shortest
ROH per individual, reflecting the longer time over which re-

combination has been breaking haplotypes in this sub-Saharan
African population, whereas the individuals in East Asia popu-
lations (JPT) have a slightly greater cumulative length of ROH

than the other populations, which most likely reflects smaller
founder population sizes in these populations.
Subsequently, we studied the properties of the detected ROH

by classifying them into three classes: ROH smaller than 500 kb

(A), ROH in the interval (500 kb, 1.5Mb) (B) and ROH41.5
Mb (C), grossly following the classification adopted by
(Pemberton et al., 2012). The first class (A) gathers short ROH

mainly governed by local LD patterns; the second class (B) is
that supposedly resulting from background relatedness in the
population; and finally the third class (C) includes ROH origi-

nated from recent parental relatedness. The results obtained in
this analysis completely reflect those of the synthetic data. When
dNorm is large (105), increasing p1 poorly affects the total amount

of ROH detected in the three classes: Class A ranges between 101
and 141Mb, Class B between 176 and 233Mb and Class C be-
tween 232 to 310Mb. Conversely, when dNorm is small (103) the

parameter p1 has strong effect on the total size of ROH detected
in each of the three classes: Class A ranges from 200 to 460Mb,
Class B ranges from 311 to 520Mb and Class C from 392 and

567Mb. With regard to SNP proportions (Fig. 4b, d and f),
when dNorm is large, increasing p1 has little effect on the total
fraction of SNPs involved in ROH regions (independently of the

class), whereas for small values of dNorm, increasing p1 drastically
inflates the total fraction of SNPs within Class A ROH but has
limited effect on the other two classes. All these results are ex-

plained by the fact that dNorm dictates the resolution of the algo-
rithm. Large values of dNorm enable the algorithm to detect only
large ROH or small ROH featuring a large number of SNPs. In

this situation, increasing p1 only improves the capability to detect
Class B or C ROH containing a small number of markers. On
the other hand, small dNorm values enable H3M2 to efficiently

detect also Class A ROH. In this case, increasing p1 enables H
3

M2 to identify the huge amount of small ROH made of small
number of markers. On the three ROH class analysis, PLINK

provided results similar to those of the present approach, while
GERMLINE efficiently detected only large ROH.
As a further step, to study the accuracy of the three algo-

rithms, we examined the proportion of heterozygous variants
independently called by GATK that in each of the 15
HapMap individuals overlapped the ROH detected by each of

the three methods. Globally, as well as for any ROH class sep-
arately, ROH detected by H3M2 are characterized by the smal-
lest fraction of heterozygous GATK calls, with the sole exception

of Class B ROH where one of the PLINK parameter configur-
ations (--homozyg-snp 500 and --homozyg-window-het
0) performs slightly better (Fig. 4g–j). These results demonstrate

the capability of our algorithm in detecting genuine homozygous
segments with respect to the other methods.
Finally, to evaluate H3M2 ability to identify ROH from WES

data and to compare its performance with respect to the other

(a) (b)

(c) (d)

(e) (f)

(g)

(k) (l) (m)

(h)

(j)

Fig. 4. Performance comparison between H3M2, GERMLINE and

PLINK on the WES data of the 15 individuals sequenced by the 1000

Genomes Project Consortium. The bar plots of panels a, c and e show the

total length of ROH detected by the three approaches in the YRI (a),

CEU (c) and JPT (e) individuals. The bar plots of panels b, d and f show

the total percentage of SNPs that belong to the ROH detected by the

three approaches in the YRI (b), CEU (d) and JPT (f) individuals. Each

bar of the bar plot is colored with three different graduated shading: dark

shading represents small ROHs (ROHs � 500kb), lighter shading repre-

sents medium ROHs (500kb5ROHs � 1500Kb) and light shading repre-

sents large ROHs (ROHs41500kb). The bar plots of panels g–j report

the fraction of heterozygous single nucleotide variants that belong to all

(g), small (h), medium (i) and large (j) ROHs detected by the three algo-

rithms. The performance of the H3M2 algorithm have been reported for

different settings of the DNorm (103; 104; 105) and p1 (0:1; 0:2; 0:3) param-

eters. The performance of PLINK have been reported for different values

of heterozygote allowance (PL-H=0and PL-H=1) and different values

of SNP threshold to call a ROH/sliding window size in SNPs (-snp=50,

250 and 500). The performance of GERMLINE has been reported for

different values of mismatching heterozygote allowance (G-H=0 and

G-H=1) and different window size in SNPs (-bits=50, 250 and 500).

Panels k–m report the results of the precision–recall analysis for small,

medium and large ROHs, respectively
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two state-of-the-art methods, we used the ROH detected by

PLINK on the HapMap data as gold standard regions. The

1.6 million HapMap SNPs are rather uniformly distributed

across the entire genome with a mean SNP-to-SNP distance of

around 2 kb. Conversely, the 4.2 million SNPs that we used are

densely clustered in the exome target regions with a mean dis-

tance of 686bp. It follows that these two different experimental

designs may show limited overlap, making it difficult to compare

results obtained by the respective analysis. To overcome this

drawback, we evaluated only those polymorphic positions inter-

rogated by both platforms and calculated precision and recall in

the following manner:

� To calculate precision, we considered all the polymorphic

positions called in ROH by each of the three methods that

belong to the HapMap dataset, and we then calculated the

fraction of these positions that were called as homozygous

also in the gold standard dataset.

� To calculate recall, we considered all the polymorphic pos-

ition called in ROH in the gold standard dataset that belong

to WES experimental design, and we then calculated the

fraction of these positions called as homozygous by each

of the three state-of-the-art methods.

These analyses were performed for the three A, B, C ROH

classes separately and the results are reported in Figure 4k–m.

The precision–recall plots of Figure 4 show that the combination

of large values of p1 (0.2, 0.3) and small values of dNorm (103, 104)

increases the recall rate at the expense of the precision of H3M2.

On the other hand, the combination of small p1 values (0.1) and

large dNorm values (105) increases the precision of H3M2, while it

decreases the recall rate. Moreover, changes in parameter con-

figuration significantly perturb the performance of H3M2 for

Class A, but not for Class B and C, ROH. The combination

of parameters that ensure the best trade-off between precision

and recall is p1=0:1 and dNorm=105. UnlikeH3M2, the perform-

ance of the two state-of-the-art algorithms is profoundly altered

by changes in parameter configurations, whatever the ROH

class. The high recall rate reached by GERMLINE and

PLINK with less stringent parameter settings (-bits 50,

--homozyg-snp 50) is obtained paying a tremendous cost in

terms of precision at least for A and B ROH classes. On the other

hand, attempts to improve precision adopting conservative par-

ameter configurations (-bits 500 and --homozyg-snp 500)

lead to a drastic deterioration of recall rates. With its best par-

ameter configuration (--homozyg-snp 250, --homozyg-
window-het 1), PLINK achieves a performance comparable

with H3M2 in the detection of Class C ROH (Fig. 4m), but

not of Class A and B (Fig. 4k–l). Taken as a whole, these results

disclose how H3M2 outperforms the existing state-of-the-art

methods in terms of both precision and recall (sensitivity and

specificity), and how H3M2 performances are more robust with

respect to changes in parameter configurations.

4 DISCUSSION AND CONCLUSION

In this article, we present a novel approach for the detection of

ROH from individual WES data. The major computational issue

we had to deal with was the non-uniform distribution of DNA

markers in the exomic space. Current state-of-the-art methods
for ROH detection have been conceived to be used with SNP-
array data, which in principle rely on genomic maps featuring

equally spaced SNPs. This represents an intrinsic limitation to
the application of such approaches to SNP maps retrieved from
exome-targeted designs. If this issue can be overcome when

focusing on ROH as large as megabases (Class C in the present
article) (Pippucci et al., 2011), it can be less easily resolved when
handling regions of smaller size (Class A and B in the present

article). To meet the need of an approach tailored to WES data
and develop a method that could efficiently capture exomic
ROH of any size, we designed the H3M2 algorithm that incorp-

orates the distances between consecutive SNPs into the transition
matrix of the heterogeneous HMM.
We compared H3M2 performances with those of two methods

based on sliding–window algorithms, GERMLINE and PLINK.

Previous application of GERMLINE to WES data offered poor
specificity/sensitivity trade-offs to isolate even long IBD seg-
ments beyond 10 cM (Zhuang et al., 2012). We confirmed this

observation: the highest recall rates reached by GERMLINE
were obtained at a tremendous expense in precision.
Conversely, demanding higher precision caused an indiscrimin-

ate fall of recall rates (Fig. 4k–m). As expected, based on what
was already reported for SNP-array data (Howrigan et al., 2011),
PLINK algorithm holds well even on WES data, and behaved

better than GERMLINE independently of the ROH class
(Fig. 4k–m).H3M2, using the parameter configuration that guar-
antee the most appropriate F-measure according to the synthetic

data analysis (p1=0:1 and dNorm=105), outperforms both
GERMLINE and PLINK for A and B classes. The previously
reported (Pippucci et al., 2011) ability of PLINK to detect long

exomic ROH emerges also from the present analysis, where its
performance in the detection of Class C is excellent with two
different parameter configurations (--homozyg-snp 50,

--homozyg-window-het 0 and --homozyg-snp 250,
--homozyg-window-het 1) and highly comparable with
that of H3M2. Survey of the heterozygous genotypes independ-

ently called by GATK within detected regions emphasized how
H3M2 ensures the most accurate global ROH identification. The
gain in performance of H3M2 in the detection of Class B and

Class A ROHs should not be undervalued. As it has been re-
cently highlighted, despite their small size, such regions may be
biologically relevant (Pemberton et al., 2012) and surround a

causative mutation (Hildebrandt et al., 2009).
In ROH studies, it might be useful to take into account for

LD, especially for Class A ROHs. This has been done in different

ways (McQuillan et al., 2008; Nothnagel et al., 2010). Similarly,
it might be desirable to identify autozygous ROHs according to
the probability of ROHs to be IBD (Pemberton et al., 2012). H3

M2 detects all ROHs, without making such functional distinc-
tions. All these approaches can be applied to ROHs identified by
H3M2 as part of downstream analysis.

A notable advantage of H3M2 is that its performance appears
to be little altered by changes in parameter configuration. This is
a particularly important property in the context of WES-based

analyses, where the number and distribution of markers can vary
extensively according to target design and experimental yield.
Performance of sliding-window methods appears to be severely

affected by this variability. Parameter changes affect H3M2
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performance less drastically than they do for PLINK and

GERMLINE, indicating that H3M2 results are robust across a

wide range of parameter configurations. This is more evident for

Class B and C, where all the F-measures fall in the range

½0:7; 0:8�, than in Class A, where F-measures span the range

½0:5; 0:7�.
Another important feature of H3M2 is its fast computational

performance and its basic hardware requirements. Relying on

BAF profiles instead of NGS genotype calls for the detection

of ROH, the analysis of an aligned WES experiment with a

mean coverage of 100
 requires around 20 min on a single

2.4GHz processor with 2Gb of RAM. Conversely, preparation

of input genotype calls for tools like GERMLINE or PLINK

requires at least few hours in the same machine.
In conclusion, H3M2 is a WES-based ROH-detection algo-

rithm well-suited for direct identification and classification of

exon-rich homozygous regions of every size. It outperforms

GERMLINE and PLINK applied to the same training dataset,

and most importantly it is less sensitive to parameter specifica-

tion, ensuring that analysis results are not severely affected by the

chosen parameter configuration as in GERMLINE and PLINK.

The present work supports the use of H3M2 for homozygosity

mapping where it can efficiently replace SNP-arrays, and in stu-

dies of ROH variation and variation content across individuals

in human populations.
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