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PLINK appears to be well-suited for the detection of ROH, 
especially of the long ones. As a method specifically tailored 
for WES data,  H  3  M  2  outperforms existing algorithms espe-
cially on short and medium ROH. We conclude that, notwith-
standing the irregular distribution of exons, WES data can be 
used with some approximation for unbiased genome-wide 
analysis of ROH features, with promising applications to ho-
mozygosity mapping of disease genes, comparative analysis 
of populations and epidemiological studies based on con-
sanguinity.  © 2014 S. Karger AG, Basel 

 Introduction 

 In a single diploid genome, runs of homozygosity 
(ROH) can be defined as sizeable stretches of homozy-
gous genotypes at consecutive polymorphic DNA marker 
positions [1]. Several ROH definitions have been pro-
posed to date, which vary from the minimal genomic/
genetic length (measured in base pairs, units of genetic 
recombination or cM, respectively) to the minimal num-
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 Abstract 

 Runs of homozygosity (ROH) are sizeable stretches of homo-
zygous genotypes at consecutive polymorphic DNA marker 
positions, traditionally captured by means of genome-wide 
single nucleotide polymorphism (SNP) genotyping. With the 
advent of next-generation sequencing (NGS) technologies, 
a number of methods initially devised for the analysis of SNP 
array data (those based on sliding-window algorithms such 
as PLINK or GERMLINE and graphical tools like Homozygosi-
tyMapper) or specifically conceived for NGS data have been 
adopted for the detection of ROH from whole exome se-
quencing (WES) data. In the latter group, algorithms for both 
graphical representation (AgileVariantMapper, HomSI) and 
computational detection ( H  3  M  2 ) of WES-derived ROH have 
been proposed. Here we examine these different approach-
es and discuss available strategies to implement ROH detec-
tion in WES analysis. Among sliding-window algorithms, 
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ber of markers required to label a given region of the ge-
nome as ROH  [2–6] . In general, consensus criteria for 
defining and classifying ROH are lacking, leading to dis-
crepancies between the approaches used and consequent-
ly to difficulties in the interpretation and comparison 
among different studies  [7] .

  At least in part this variability of definitions reflects the 
technical constraints that influence the resolution of the 
genetic map used, and consequently the reliability of the 
identified regions. When the most densely spaced poly-
morphic markers available were microsatellites, the map 
density of typical genome-wide scans was approximately 
1 marker every 10 cM, allowing the detection of only very 
long homozygous segments (40 cM)  [8] . With the advent 
of denser genome-wide single nucleotide polymorphism 
(SNP) array platforms, more than 1 million SNP per in-
dividual genome can be simultaneously genotyped pro-
viding average map densities of 1 SNP every 3 kb or less. 
It follows that there is now virtually no limit to the mini-
mal ROH size that can be theoretically detected.

  However, if, on one hand, the availability of highly 
informative SNP maps has enormously increased the 
sensitivity in mapping ROH of every size, on the other 
hand, it has introduced a number of factors that poten-
tially affect the specificity with which genomic regions 
are correctly recognized as ROH. First, genotyping errors 
of SNP array platforms may introduce spurious hetero-
zygous genotypes in an otherwise continuous stretch of 
homozygous SNP, causing the ROH to be incorrectly 
broken. The error rates of the most widely adopted geno-
typing platforms are usually around 0.1%  [9] , and such 
events should therefore be taken into account in the 
ROH definition. One can refer to Howrigan et al.  [7]  and 
Ferenkakovic et al.  [10]  for a deeper treatment of this 
matter. Second, although the SNP included in genotyp-
ing platforms are in principle evenly distributed all along 
the genome, it is always possible that poorly represented 
chromosomal regions occur for which the homozygous/
heterozygous state cannot be accurately inferred. This 
may lead to the inclusion of DNA segments in ROH that 
would otherwise be classified as heterozygous if investi-
gated over a larger number of polymorphic loci. Finally, 
the tremendous increment in the number of interrogated 
markers, and consequently in the resolution of the avail-
able platforms, magnifies the inadequacy of a ROH defi-
nition that is expressed solely in terms of size and/or SNP 
numbers.

  With the advent of next-generation sequencing (NGS) 
technologies, the map of the human genome is virtually 
complete. All accessible bases can now be genotyped and 

millions of polymorphisms, from the most common to 
the most private ones, can be obtained for each individu-
al genome. This has a predictable impact on the extent to 
which homozygosity can be identified, providing the 
highest possible map resolution and marker information. 
Nonetheless, the challenges in the analysis of high den-
sity SNP arrays may even increase in this novel context.

  The higher the SNP density, the higher the probability 
to detect stretches of many consecutive SNP that occur as 
homozygous due to linkage disequilibrium (LD). Strong 
LD typically extends up to a few hundred kb. Conse-
quently, especially short ROH are distributed throughout 
the genome and occur commonly in individuals of all 
populations. Different approaches have been proposed 
for accounting for LD, which have been adopted in ROH 
studies: imposing a cutoff for the length of ROH at 500 kb 
 [11] ; weighting individual ROH by the internal level of 
LD approximated by the squared genotypic correlation 
coefficient g2  [1] . Conversely, Pemberton et al.  [12]  ap-
plied the autozygosity LOD score method proposed by 
Broman and Weber  [8]  and later by Wang et al.  [3] . How-
ever, it is important to notice that LD properties across 
the whole exome sequence (WES) target are poorly stud-
ied (at least to the best of our knowledge) and may not 
reflect those known for the genome.

  Autozygosity is that particular type of homozygosity 
that reflects ‘identity by descent’ (IBD) and results from 
the co-occurrence at a given locus of the same allele deriv-
ing from a common ancestor, by way of nonrandom mat-
ing (inbreeding). When the two alleles derive from non-
common ancestors (random mating), the genotype is said 
to be allozygous and the two alleles are ‘identical by state’. 
Autozygosity is a crucial concept in homozygosity map-
ping  [13] . Pemberton et al.  [12]  noticed that, despite their 
small size, short ROH can reflect autozygosity.

  The above-mentioned analytical advancements intro-
duced by NGS technologies improve the detection of 
small ROH, paving the way to the effective adoption of 
homozygosity mapping in contexts characterized by low 
inbreeding levels. The application of methods such as the 
autozygosity LOD score enhance the ability to discrimi-
nate whether the identified ROH are likely disease-asso-
ciated or not  [12] , and it can be generally applied as a 
measure of significance of the identified ROH.

  To date, a number of methods initially devised for the 
analysis of SNP array data or specifically conceived for 
NGS data have been adopted for the detection of ROH 
from WES data. The former ones are reknown algorithms 
for SNP array genotyping data analysis, such as PLINK 
 [14]  or GERMLINE  [15] , while the latter group includes 
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original methods that exploit B allele frequency (BAF) or 
NGS genotype data measures to infer homozygosity from 
WES-aligned reads. In a NGS alignment output, BAF can 
be calculated as the ratio between reads carrying the B al-
lele and total reads at a given polymorphic position. Two 
of these approaches  [16, 17]  basically provide graphical 
outputs that highlight regions of extended WES homozy-
gosity along the chromosomes. A third approach presents 
an original algorithm that relies on a heterogeneous hid-
den Markov model (HMM) to incorporate SNP-to-SNP 
distances in the detection of ROH of every genomic size 
 [18] .

  The purpose of this review is to examine all the com-
putational approaches tested to date for the ROH detec-
tion from WES data, discuss the various approaches pro-
posed to implement this strategy and outline the future 
perspectives they open for homozygosity mapping of dis-
ease genes, population analysis and epidemiological stud-
ies.

  Approaches for the Graphical Visualization of ROH 

 An initial demonstration that homozygosity informa-
tion could be retrieved directly from WES data was given 
by Becker et al.  [16]  examining individuals affected with 
autosomal recessive osteogenesis imperfecta (OMIM 
613982). They calculated the BAF of hundreds of thou-
sands of dbSNP (http: //ncbi.nlm.nih.gov/SNP) positions 
scattered across the WES-targeted regions, and plotted 
the obtained ratios against the chromosomal coordinates. 
Without performing SNP arrays, they were able to isolate 
the regions corresponding to extended ROH by visualiz-
ing chromosomal BAF profiles. In an affected individual, 
one of these regions harbored a homozygous truncating 
mutation of SERPINF1 (OMIM 172860), which was sub-
sequently demonstrated to be the cause of the disorder.

  The web-based tool HomozygosityMapper, originally 
tailored for an assortment of SNP array platforms, has 
been extended to integrate variant call format files (the 
standard file format for storing NGS genotype variant 
calls) as input, and bed extensible data files (the standard 
file format for storing genomic features by coordinates) 
as output containing placements of the identified ROH 
 [19] . HomozygosityMapper offers an online intuitive 
graphical interface allowing users to interactively analyze 
NGS data for homozygosity mapping in humans and a 
number of species.

  Two downloadable softwares have been designed for 
the graphical representation of autozygous regions de-

tectable from WES data. Following the assumption that 
WES data can simultaneously catalogue the autozygous 
intervals and all candidate deleterious variants within 
these intervals, Carr et al.  [17]  developed a suite of two 
computer programs, namely AgileGenotyper and Agile-
VariantMapper. These two programs differ in the two al-
ternative ways by which they identify autozygosity: Agil-
eVariantMapper uses genotype call data of only variant 
positions originally detected by WES variant calling anal-
ysis, whereas AgileGenotyper deduces genotypes from 
BAF measure at >0.5 million a priori fixed exonic posi-
tions corresponding to polymorphisms previously dis-
covered by the 1000 Genomes Project (http://www.
1000genomesproject.org).

  With the former approach, some tens of thousands of 
variant genotypes will be included in the analysis, with a 
predictable high proportion of false positive heterozy-
gous genotypes; with the latter, the risk of false positives 
is lower but for the vast majority (approximately 95%) of 
the tested polymorphic positions, the minor allele fre-
quency will be very low. This is expected, since these 
markers were identified by the 1000 Genomes Project, 
where SNPs can be rare variants found in few individuals 
or even private ones observed only once. There are about 
4 million 1000 Genomes Project SNPs within or sur-
rounding coding regions. On one hand, the inclusion of 
these SNPs is useful to enhance map density at an unprec-
edented resolution, but on the other hand, it increases the 
probability to identify stretches of nearly unvariable loci, 
at which all individuals can display homozygous refer-
ence genotypes. The identification of ROH formed by 
these stretches of consecutive homozygous reference al-
leles can be uninformative.

  By comparing the graphical outputs of each of the two 
programs with that obtained by SNP array genotype anal-
ysis on a small set of offspring of consanguineous unions 
affected with rare recessive disorders, Carr et al.  [17]  no-
ticed that regions derived from WES data (with any of the 
two different approaches) generally result noticeably 
more fragmented and consequently less clearly delineat-
ed with respect to those obtained with SNP microarray 
data. This situation occurs regularly with very small ROH, 
but it is a common feature also of substantially long (sev-
eral Mb) ROH that surround the mutated gene. The au-
thors concluded that autozygosity detection relying sole-
ly on WES data can replace SNP array data but can re-
quire a massive use of subjective data interpretation.

  Recently, another graphical software, namely HomSI 
[20] has been presented, exploiting variant call format 
files to identify ROH with a sliding-window approach. 
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Similarly to AgileVariantMapper, it has been conceived 
for the concurrent identification of ROH and mutations 
in consanguineous families.

  Sliding-Window Algorithms 

 Methods such as PLINK or GERMLINE have origi-
nally been developed for the analysis of SNP array data. 
These are known as sliding-window algorithms, since 
they scan the chromosomes by moving a window of a 
fixed size along their whole length in search of stretches 
of consecutive homozygous SNP.

  The PLINK software package  [21]  implements such a 
sliding-window algorithm that can be invoked with the 
option –homozyg and that allows the user to set the de-
sired size (in terms of SNP number or physical genomic 
length) for the window that slides along the chromosome. 
The window moves forward from the 5 ′  to the 3 ′  extrem-
ity of a chromosome on a SNP-per-SNP basis; at each 
given SNP, the proportion of overlapping windows that 
appear homozygous is calculated in order to classify the 
SNP as being in a homozygous segment or not. If this pro-
portion is higher than a defined threshold (default value: 
0.05), the SNP is designated as being in a homozygous 
segment. A variable number of heterozygous (default val-
ue = 1) or missing (default value = 5) SNP per window 
can be specified by the user in order to tolerate genotyp-
ing errors and failures. Subsequently, PLINK calls ROH 
if: (a) the amount of consecutive SNP in a homozygous 
segment exceeds a predefined threshold in terms of SNP 
number (default value = 100) and/or covered chromo-
somal length (default value = 1,000 kb); (b) the SNP den-
sity is higher than a user-specified threshold (default val-
ue = 1 every 50 kb), or (c) the SNP-to-SNP distance is 
never greater than a user-specified threshold (default val-
ue = 1,000 kb).

  GERMLINE  [22]  is a tool mainly designed for IBD cal-
culation. For ROH detection, it adopts a sliding-window 
algorithm that can be invoked with the option –homoz
or –homoz-only and that, like PLINK, is flexible with re-
spect to several parameters such as window size, mini-
mum length of the ROH and tolerance for heterozygous 
mismatches. Unlike PLINK, GERMLINE breaks up SNP 
stretches into non-overlapping windows of a user-speci-
fied length in terms of SNP, and only if several consecu-
tive windows tagged as homozygous exceed a threshold 
in terms of physical or genetic distance, the region is la-
beled as homozygous.

  In a proof of principle paper, Pippucci et al.  [14]  intro-
duced the use of sliding-window algorithms for WES-
based ROH detection by applying PLINK to the WES data 
of two siblings born to first-cousin parents who were af-
fected with dysmyelinating leukodystrophy and spastic 
paraparesis (OMIM 612319) caused by an already known 
splice-site homozygous mutation in FA2H (OMIM 
611026)  [23] . They named their approach EX-HOM 
(EXome-HOMozygosity) – an approach that made use of 
all exonic or periexonic autosomal dbSNP sites and of all 
novel SNV regions retrieved in at least one of the two sib-
lings to create a genetic map consisting of more than 
100,000 markers. By adapting PLINK parameters to the 
map in use, they sought ROH shared by the two siblings. 
EX-HOM regions >1 Mb in length showed a substantial 
overlap with those identified as LOD score peaks by link-
age analysis, leading to the conclusion that the EX-HOM 
approach can correctly identify disease-related long ho-
mozygous regions.

  Based on a similar assumption, Zhuang et al.  [15]  com-
pared the performances of GERMLINE in the detection 
of IBD regions from WES and high-density SNP array 
data of a dataset of Ashkenazi Jewish individuals, in order 
to empirically measure the accuracy of this algorithm on 
WES data. They reported a poor overlap of IBD discov-
ered by applying GERMLINE to genotyping data of the 
same dataset, even when focusing on IBD segments as 
extended as tens of Mb. Due to this lack of concordance 
between WES and SNP array-based analyses, Zhuang et 
al.  [15]  argued that WES data are of limited utility for IBD 
detection and homozygosity mapping. They ascribed 
these limitations mainly to the scattered distribution of 
WES data that generate stretches of irregularly spaced 
SNP, and commented on the need to adapt detection al-
gorithms to the density variations and decreased allelic 
diversity typical of WES data.

  HMM Algorithms 

 State-of-the-art ROH detection methods have been 
conceived to be used with equally spaced SNP maps. The 
SNP distribution in exome targets is much more irregular 
and sparse. This represents an intrinsic limitation to the 
application of such approaches to WES data, particularly 
in the detection of medium and short ROH. To meet the 
requirement for a computational approach that could 
more efficiently identify ROH of any size in WES, Magi 
et al.  [18]  developed a method exploiting a heterogeneous 
HMM. Such an algorithm, named  H  3  M  2  (homozygosity 
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heterogeneous HMM), takes BAF measures over all 1000 
Genomes Project exome target variant positions rather 
than genotype calls as input.

  The originality of this algorithm consists in its capabil-
ity to incorporate distances between consecutive SNPs to 
discriminate between the homozygosity and the hetero-
zygosity states. This feature of  H  3  M  2  offers advantage in 
the detection of small-sized (<500 kb) and medium-sized 
(between 500 and 1,500 kb) ROH  [18] . Differently,  H  3  M  2  
and PLINK show similar performances in the WES-based 
detection of long ROH (>1,500 kb).

  As AgileGenotyper,  H  3  M  2  exploits all 1000 Genomes 
Project SNPs in the targeted exome, thus possibly incur-
ring in the identification of uninformative ROH. In addi-
tion, SNPs in the targeted exome can be extremely close 
to each other, and consequently LD can be extremely 
high. Similarly to other ROH detection methods, at pres-
ent,  H  3  M  2  does not account for LD, nor does it weight 
detected ROH according to their haplotype frequency. 
The implementation of such measures in the method 
would be particularly important for ROH detection in the 
context of WES data.
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  Fig. 1.  Chromosomal ROH detection by  H  3  M  2  ( a ), GERMLINE 
( b ) and PLINK ( c ). Distribution of BAF and genotype calls along 
physical coordinates of chromosome 3. At each interrogated 
marker locus, BAF is expressed as the ratio between the number of 
reads carrying the alternate allele and the number of total reads 
covering that site. The corresponding genotype call is expressed as 

0 (homozygous reference), 0.5 (heterozygous) or 1 (homozygous 
alternate). Of note, the largest ROH, spanning about 18 Mb, is suc-
cessfully identified by any of the 3 methods. The overall view of 
chromosome 3 shows the highest overlap between ROH detected 
by  H  3  M  2  and PLINK. 
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  Other methods based on HMMs exist that are de-
signed to detect autozygosity of IBD regions: IBDSeq  [24]  
and GIBDLD [25]. The former has been conceived for 
NGS whole genome data, the latter for SNP arrays, but 
neither of the two has been tested on WES data yet.

  Homozygosity Mapping 

 The results so far summarized emphasize that homo-
zygosity mapping of rare autosomal recessive disorders 
can be conducted with no need of SNP array data. A num-
ber of available tools are able to simultaneously perform 
homozygosity mapping and the identification of candi-
date mutations using WES as a single source of data, as 
previously discussed  [14, 16] .  Figure 1  shows that all ap-
plied method (PLINK, GERMLINE,  H  3  M  2 ) successfully 
identified a 18-Mb autozygous region harboring the 
CACNA2D2 (OMIM 607082) homozygous mutation re-
sponsible of epileptic encephalopathy in a single offspring 
to consanguineous parents  [26] .

  In general, exceptionally large regions, such as those 
commonly observed in the offspring of consanguineous 
unions, are easily identified by any of the available algo-
rithms. The methods, however, can greatly differ in the 
overall accuracy.  Figure 1  shows the higher concordance 
between  H  3  M  2  and PLINK compared to GERMLINE. 
The choice of the more accurate approaches in the detec-
tion of small and medium ROH is particularly relevant 
when the expected size of the disease-related ROH is 
smaller than that resulting from consanguineous unions 
 [27] . The use of such approaches open promising per-
spectives for WES-based homozygosity mapping also in 
non-inbred individuals.

  Population Analysis 

 Up to now, an analysis of WES data has never been 
used in the study of ROH in populations. We evaluated 
the potentiality of WES data to explore genomic patterns 
of homozygosity in human populations by applying  H  3  M  2  
to a dataset of samples from 100 individuals of 5 popula-
tions sequenced by the 1000 Genomes Project (see Ap-
pendix).

  Following the model established by Pemberton et al. 
 [12] , we analyzed the ROH sizes as a mixture of three nor-
mal distributions representing three distinct ROH class-
es: class A (<500 kb), class B (between 500 an 1,500 kb) 
and class C (>1,500 kb).

  The results of the clustering analysis reported in  figure 
2 a, b show that the mean of each class and the boundaries 
between the different classes vary across the 5 popula-
tions. Total lengths and total numbers of ROH per indi-
vidual across the 5 populations are represented as violin 
plots in  figure 2 c–j. Several patterns emerge from the 
comparison of the total lengths and total numbers of 
ROH per individual across the populations (see  table 1 ).

  First, the total length of ROH increases with the dis-
tance from Africa ( fig. 2 c). Second, also the total length of 
each of the three classes increases with the distance from 
Africa and in all populations: class A contributes 15% of 
the total amount of ROH, class B 40% and class C 45% 
( fig. 2 d–f). Third, the total numbers of ROH per individ-
ual ( fig. 2 g) show similar patterns to those observed for 
total lengths. For each of the populations, class A ac-
counts for 55% of the total numbers of ROH, class B for 
35% and class C for 10% ( fig. 2 h–j).

  These results are in general agreement with previously 
published work that examined SNP array-based homozy-
gosity at a population level  [5, 12] . However, the total 
length and total number of class C ROH are surprisingly 
high for outbred populations. These values seem to be 
inflated, likely reflecting an excess of regions character-
ized by low marker density. These regions can be present 
in an exome-targeted map, where they correspond to re-

 Table 1.  Summary statistics for the WES data generated by the 
1000 Genomes Project consortium

 Ethnic group

 YRI TSI CEU JPT CHS

Mean lengths of homozygous segments
Class A, kb 118 233 208 179 163
Class B, kb 407 731 661 561 571
Class C, Mb 1.67 2.58 2.3 2.0 2.1
Boundary sizes between
Class A and B, kb 226 450 407 346 334
Class B and C, Mb 0.94 1.6 1.47 1.23 1.28
Length of homozygous segments for each population, Mb
Total 203 418 415 435 481
Class A 26.6 73.5 75.7 78.8 79.3
Class B 81.2 171.8 168.8 174.4 192.3
Class C 95.4 172.8 170.4 182.6 209.4
Number of homozygous segments for each population
Total 458 586 658 800 871
Class A 231 321 370 447 491
Class B 178 208 226 275 297
Class C 50 57 63 78 84
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gions void of genes (exons). Probably, these regions 
would be otherwise identified as heterozygous if interro-
gated over an adequate number of polymorphic posi-
tions. This observation highlights how the sensitivity of 
 H  3  M  2  leads to the identification of regions with few sparse 
SNPs, which are likely spurious ROH calls. Therefore, 
further research is required to assess the full applicability 
of WES-based methods such as  H  3  M  2  to population data.

  Potential Impact on the Estimation of the Inbreeding 

Coefficient F 

 In addition to the usefulness of WES-derived ROH in 
medical and population genetics, a comprehensive cata-
logue of individual and population genomic patterns of 
homozygosity may be helpful in the field of genetic epi-
demiology, especially of rare recessive monogenic disor-

ders. Here, we limit the discussion of these possible ap-
plications to the contribution that WES data can give to 
the calculation of the homozygosity index (HI). Origi-
nally proposed by Ten Kate et al.  [28]  and by Gialluisi et 
al.  [29] , HI was to infer allelic frequencies (q) of autoso-
mal recessive disorders based on the relative proportion 
of homozygous patients in a sample population, the in-
breeding coefficient (F) and the mutational spectrum of 
even a relatively small sample (n = 25) of affected indi-
viduals  [29, 30] .

  Intuitively, for any autosomal recessive disorders, the 
ratio of homozygotes versus compound heterozygotes for 
any given disease allele reflects the frequency of that dis-
order in the population. One can roughly say that the 
higher the proportion of homozygotes, the rarer the dis-
order in a given population. This method (see Appendix) 
has been demonstrated to accurately estimate qs for phe-
nylketonuria, familial Mediterranean fever  [29]  and Wil-
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  Fig. 2.  Genomic patterns of homozygosity in 5 human popula-
tions.  a  Gaussian kernel density estimates of the ROH size distri-
bution in each of the 5 populations (YRI, TSI, CEU, JPT and CHS). 
 b  Mean of each ROH class (A, B and C) and the boundaries be-
tween classes A and B and classes B and C for each of the 5 popula-
tions. Dotted lines and ⚫ define the limits and mean size of class 
A (small) ROH; continuous lines and  ■  define the limits and mean 
size of class B (medium) ROH; dashed lines and  ◆  define the lim-

its and mean size of class C (large) ROH.  c–f  Distribution of total 
ROH lengths over all individuals in each of the 5 populations, for 
all three classes combined ( c ), for class A ( d ), for class B ( e ) and 
for class C ( f ).  g–j  Distribution of the numbers of ROH over all 
individuals in each of the 5 populations, for all three classes com-
bined ( g ), for class A ( h ), for class B ( i ) and for class C ( j ).  c–j  Data 
are shown as violin plots: each violin contains a vertical black line 
(25–75% range) and a horizontal white line (median). 
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son disease  [30]  in highly consanguineous or endoga-
mous populations. This approach has the advantage over 
traditional descriptive epidemiology to generate esti-
mates that are not affected by biases related to underdi-
agnosis and incomplete epidemiological records of vast 
and remote areas  [29, 30] . Moreover the HI approach 
does not require the collection of additional mutation 
data from the general control population but relies only 
on the analysis of mutations identified in a small group of 
patients.

  Difficulties in obtaining accurate F estimates represent 
the major limitation for the correct estimates of q by this 
approach. This is particularly problematic when analyz-
ing samples of affected individuals born to apparently un-
related parents, for which the estimates of F, usually based 
on demographic data, are often unreliable and outdated. 
Even for samples of patients born to consanguineous 
matings, classical estimates based on pedigree recon-
struction seem to underestimate the factual levels of in-
breeding  [31] . Therefore, estimates based on genomic 
data are generally better to retrieve reliable F values. To 
this end several experimental methods have been pro-
posed to accurately estimate F from the interrogation of 
hundreds of thousands or millions of polymorphisms 
that can be obtained with SNP array platforms. The ma-
jority of these methods compute F relative to the propor-
tion of ROH longer than a given minimal threshold in the 
individual genome  [11, 32] . A statistically based estima-
tion of F from lengths of ROH exploiting a maximum-
likelihood approach has also been formulated  [33] .

  With WES data, a likewise large number of polymor-
phisms can be interrogated, covering a much broader 
spectrum of allele frequencies. The opportunity to access 
alleles rarer than those offered by SNP array platforms, 

including those alleles that are represented only or main-
ly in the examined population(s), may be beneficial to the 
more accurate discrimination between autozygous and 
simply homozygous regions, in turn leading to the more 
accurate calculation of F based on genomic estimates. An 
additional benefit that can be contributed by WES data is 
a higher sensitivity in detecting rare disease-related alleles 
compared to diagnostic screening panels, thus increasing 
the accuracy in the calculation of HI  [29] . Further re-
search is needed to evaluate which of the presently avail-
able methods for ROH detection based on WES data are 
more suitable to the scope of obtaining an accurate F es-
timate. Implementation of such an approach along with 
the classical application of WES to variant calling could 
globally improve performance of the HI method.

  In conclusion, due to the central role of consanguine-
ous marriages in a large proportion of the global popula-
tion [34], the HI method represents a combined approach 
of molecular and genetic epidemiology based on consan-
guinity which is useful to assess the need of genetic screen-
ing for autosomal recessive disorders and to establish pri-
orities for genetic testing at the population level. At the 
same time, the collection of data related to WES-based 
homozygosity and rare polymorphisms in appropriate 
databases can improve epidemiological estimates based 
on the HI method.

  Conclusive Remarks 

 In this review, we tried to outline the state of the art of 
currently available methods for ROH detection from 
WES data. A handful of algorithms, initially designed for 
SNP array data or originally conceived for WES data, 

 Table 2.  Summary of the tools for homozygosity mapping

Tool Algorithm Input data Accurately
detected ROH

Output

PLINK sliding window genotype calls B and C classes PLINK output file
GERMLINE sliding window genotype calls C class GERMLINE output file
AgileGenotyper frequentistic genotype 

assignment
B allele frequency C class colour-based visualization

H3M2 HMM B allele frequency A, B, C classes bed extensible data file
HomozygosityMapper sliding blocks genotype calls C class colour-based visualization 

(and bed extensible data file)
HomSI sliding window genotype calls C class colour-based visualization

 Class A = ROH <500 kb; class B = 500 kb < ROH < 1.5 Mb; class C = ROH >1.5 Mb.
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have been proposed to date (see  table 2 ). Sliding-window 
approaches, exploited by methods designed for SNP ar-
rays, can generally detect long ROH even when applied to 
WES data, with PLINK ensuring higher sensitivity/speci-
ficity trade-offs.

  Of the graphical visualization tools, Homozygosity-
Mapper has recently been extended to process WES data 
in addition to SNP array data. AgileGenotyper and Hom-
SI are algorithms for the visualization of ROHs that can 
be useful, easy-to-use and simple tools to obtain a qualita-
tive measure of homozygosity surrounding the locus of 
interest.  H  3  M  2  is a HMM algorithm which among the 
present methods is the most extensively tested for the de-
tection of ROH of any size.

  For the purpose of homozygosity mapping, all these 
methods seem to be suited for the identification of large 
ROHs, corroborating the idea that homozygosity map-
ping could be successfully performed without support of 
SNP array data. The higher accuracy in the detection of 
short and medium ROHs by  H  3  M  2  is promising for the 
application of WES-based homozygosity mapping in out-
bred individuals.

  As a first attempt to exploit WES data in population 
analysis, we tested  H  3  M  2  over 100 samples of 5 different 
human populations, finding general agreement with pre-
viously reported trends for patterns of homozygosity. A 
major concern regarding the application of WES data to 
the quantitative estimation of genomic homozygosity is 
the inadequate coverage of exon-devoid regions, which is 
likely a source of both false positive and false negative 
calls. Further research is needed to assess the reliability of 
WES-based measures in this specific field.

  Finally, mutations causing autosomal recessive disor-
ders identified by WES or by any other molecular genetic 
approach are a valuable source of data for genetic epide-
miology, as exemplified by the HI method, which offers 
an inexpensive way of assessing the need of genetic 
screening for specific autosomal recessive disorders in 
specific populations.

  In conclusion, notwithstanding the sparse and irregu-
lar distribution of exons in the genome, WES data can be 
used with some approximation for unbiased genome-
wide analyses of genomic features, as already widely dem-
onstrated for structural variations  [35] .

  Undoubtedly, whole genome sequencing will allow 
more accurate and regular mapping of every type of ge-
nomic variations and features. However, the analysis of 
whole genome sequencing is still not free of challenges, 
starting from data interpretation. The continuously de-
creasing cost and increasing accessibility of WES, along 

with its ability to provide a virtually exhaustive catalogue 
of functionally relevant variations such as coding muta-
tions, have opened the way to the exploitation of WES 
data for different uses. With regard to ROH, in this review 
we tried to show what is currently feasible with WES data 
and what can be improved in the future.

  Appendix: Methods 

 Population Analysis 
 Our sample consisted of 100 individuals from 5 different hu-

man populations: 20 YRI (Yoruba from Ibadan, Nigeria), 20 CEU 
(Utah residents with Northern and Western European ancestry 
from the CEPH collection), 20 TSI (Tuscans in Italy), 20 CHS 
(Han Chinese, South China) and 20 JPT (Japanese in Tokyo, Ja-
pan).

  Boundary sizes between classes A and B and between classes B 
and C were estimated using the following formulas:

2

2

i i
max mini

AB

i i
max mini

BC

A B
CB

B C
CB

  where  A  i  max ,   B   i  min ,  B  i  max , and  C  i  min  are the minimum and maximum 
ROH sizes for the three classes for population  i , respectively. The 
total lengths and total numbers of ROH per individual across the 
three classes were calculated, and their distributions for each pop-
ulation were subsequently studied. 

 HI Method 
 The HI approach consists in computing q of a given autosomal 

recessive disorder as:

2

1
,

1i

F HI
q

HI q F
 

  where HI is of the subset (i.e. the frequency of homozygotes rela-
tive to the total of homozygotes and compound heterozygotes 
among patients) and  q  i  is the relative frequency of the  i -th disease 
allele (with  i  = 0, 1, 2, ...,  n  – 1,  n ). 
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