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Abstract

We sketch four applications of Marr’s levels-of-analysis methodology to the relations between

logic and experimental data in the cognitive neuroscience of language and reasoning. The first part

of the paper illustrates the explanatory power of computational level theories based on logic. We

show that a Bayesian treatment of the suppression task in reasoning with conditionals is ruled out

by EEG data, supporting instead an analysis based on defeasible logic. Further, we describe how

results from an EEG study on temporal prepositions can be reanalyzed using formal semantics,

addressing a potential confound. The second part of the article demonstrates the predictive power

of logical theories drawing on EEG data on processing progressive constructions and on behav-

ioral data on conditional reasoning in people with autism. Logical theories can constrain process-

ing hypotheses all the way down to neurophysiology, and conversely neuroscience data can guide

the selection of alternative computational level models of cognition.
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1. Introduction

Marr (1982) argued that cognitive systems should be understood at three independent

levels of analysis: a computational level, specifying the goal and logic of the computa-

tion; an algorithmic level, providing a representation for the input and output, and an

algorithm for the transformation; and a level of physical implementation, describing how

the algorithms can be realized in physical machines. We present four case studies in the
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cognitive science of language and reasoning, showing that computational level theories

based on formal logic can predict and explain patterns of neurophysiological and behav-

ioral data, and that such types of data can help with selecting among alternative computa-

tional theories.

2. The explanatory power of logic in neuroscience

2.1. Bayesian and logical theories of conditional reasoning

To show how neural data can guide the selection between computational level theories,

we compare probabilistic and logical theories of conditional reasoning. The Bayesian

treatment considers a conditional to be semantically interpretable as a conditional proba-

bility. Logical models favor some kind of defeasible (i.e., non-monotonic) logic in which

certain conclusions may be withdrawn if a disabling condition is added to the initial pre-

mises, as in the example below. Both models aim to be computational level theories of

behavior on tasks such as modus ponens (MP) reasoning. In Pijnacker et al. (2011), there

are two conditions, neutral and disabling:

MP-Neu

Lisa has recently bought contact lenses (neutral condition N)

If Lisa is going to play hockey, she will wear contact lenses (conditional premise)

Lisa is going to play hockey (categorical premise)

Lisa will wear contact lenses (conclusion)

MP-Dis

Lisa probably lost a contact lens (disabling condition D)

If Lisa is going to play hockey, she will wear contact lenses (conditional premise)

Lisa is going to play hockey (categorical premise)

Lisa will wear contact lenses (conclusion)

In the study by Pijnacker, Geurts, van Lambalgen, Buitelaar, and Hagoort (2011), par-

ticipants endorsed modus ponens with a neutral condition in � 90% of the cases, as

opposed to � 50% with a disabling condition. This is one variant of the so-called sup-

pression effect (Byrne, 1989). In the original task, the possibly disabling information

comes in the form of a conditional second premise, which would in this case be: “If Lisa

hasn’t lost her contact lenses, she will wear them.”
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The original “suppression task” was used by Oaksford and Chater (2003) to argue for

a Bayesian model of conditional reasoning and against a logical approach. Bayesian prob-

ability is said to be the proper computational level theory for conditional reasoning

because conditionals are never certain and “probability is the calculus of uncertainty.”1

Moreover, it is suggested that the Bayesian treatment fits the data more closely than any

logical analysis.

Below we provide Marr-type analyses of logical and Bayesian reasoning in this condi-

tional task and compare these to ERP (event-related potential) data on the time course of

processing.

2.1.1. Logical analysis at the computational level
Our aim here is to represent the premises in such a way that inferences can be drawn

(or not drawn). The appropriate notion of validity for non-monotonic reasoning is as fol-

lows: view the premises of the argument as a discourse; this needs to be integrated, and a

coherent discourse model must be constructed; it then has to be computed whether the

putative conclusion holds in the discourse model.

2.1.2. Logical analysis at the algorithmic level
Here processing considerations come to the fore, in particular the “principle of imme-

diacy”—the notion that computation “starts immediately with what it derives on the basis

of the bottom-up input and the left context” (Hagoort, 2007).

For the disabling condition the computation proceeds as follows, where ¬ab means

nothing abnormal is the case:

1. D [disabling condition: “Lisa probably lost a contact lens”];

2. H [categorical premise: “Lisa is going to play hockey”];

3. H ^ :ab ! W [conditional; W is “Lisa will wear contact lenses”];

D ^ :ab0 ! ab [integrating disabling condition and conditional];

4. ?W [is W true in discourse model?]; it is argued in van Lambalgen and Hamm

(2005) that computation here proceeds “backwards”:

5. W is true if H ^ :ab is true; we know H is true, and if D constitutes an uncondi-

tional abnormality for H ^ :ab ! W (meaning that ¬ab0 holds), ab follows, and the

antecedent H ^ :ab cannot be satisfied, whence W cannot be made true in the dis-

course model. On the other hand, if it is judged that D constitutes an abnormality

only in special circumstances, we have that the antecedent of D ^ :ab0 ! ab is

false, hence so is the consequent ab, from which it follows that W;

6. The computation in the neutral condition N does not introduce D ^ :ab0 ! ab
together with D; since we don’t have information about ab, we assume ¬ab, and
the modus ponens argument goes through.

The supposition ¬ab is an instance of the closed world assumption, which allows one

to take as true the negation of all propositions which are not entailed by the premises and

by background knowledge.

G. Baggio, M. van Lambalgen, P. Hagoort / Topics in Cognitive Science 7 (2015) 289



2.1.3. Bayesian analysis at the computational level
As in the logical theory, we see defeasible reasoning as involving the construction of

discourse models. In the Bayesian account, however, discourse models carry a joint prob-

ability distribution specifying, for instance, the conditional probability that Lisa will wear

lenses given that she is going to play hockey. The modus ponens inference is represented

by Bayesian conditionalisation:

if B is a complete (non-probabilistic) description of one’s knowledge, the posterior

probability P1(A) given that B has occurred is equal to the prior conditional probability

P0ðAjBÞ,

2.1.4. Bayesian analysis at the algorithmic level
As a constraint we have again the principle of immediacy. The computation then

unfolds as follows:

1. D [disabling condition], this introduces the conditional probability

Pð�jDÞ ¼: Pð ÞD;
2. The implication “if H then W” is represented by a conditional probability with

respect to the distribution P( )D, as follows:

if H then W , PðH ^WÞD
PðHÞD

¼ PðW jHÞD ¼ PðW jH;DÞ:

Immediacy dictates that P( )D (which gives the posterior conditional probability) is used

instead of P (the prior conditional probability);
3. H;
4. In the last step one conditionalises on H in the expression PðW jHÞD, and one deci-

des on one of the three answers “yes, maybe, no”;

5. The computation for N [neutral condition] is in principle the same, except that one

may assume P = P( )N.

A more refined analysis of the disabling condition would not conditionalise on D, since
this event is only said to be probable; instead, one applies Jeffrey conditionalization to

obtain as posterior conditional probability:

if H then W , PðH ^WÞD
PðHÞD

PðDÞ ¼ PðH ^WÞ:D
PðHÞ:D

Pð:DÞ:

2.1.5. Comparing the logical and the Bayesian analyses
On the logical model, the evaluation of the conclusion is both computationally inten-

sive and the source of competing representations. In the Bayesian analysis, the computa-

tion of the posterior conditional probability in the disabling case requires most resources,
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whereas settling upon an answer from “yes, maybe, no” requires the subject to set a crite-

rion, but no further computation is necessary. This yields the following predictions for

ERPs:

(i) on the Bayesian analysis, one expects an ERP effect in the disabling case as compared

to the neutral case when the conditional premise is processed; as neural learning algo-

rithms, Bayesian models aim at minimizing prediction errors (Friston & Stephan,

2007); violations of default processes may lead to increasing prediction errors reflected

by ERP effects such as a mismatch negativity (Garrido, Kilner, Kiebel, & Friston,

2007; Kiebel, von Kriegstein, Daunizeau, & Friston, 2009) or a P300;

(ii) on the logical model, the ERP effect should occur while the conclusion is processed;

the most likely outcome here is the kind of sustained negativity observed for instances

of defeasible inference and referential ambiguity in discourse processes (Baggio, van

Lambalgen, & Hagoort, 2008; van Berkum, Zwitserlood, Hagoort, & Brown, 2003).

One also expects differences in the behavioural domain. The task is sufficiently analo-

gous to the original suppression task to expect a decrease in MP endorsements of about

40%, perhaps a bit more because the disabling condition is introduced categorically, not

hypothetically. It is not so clear what to expect on the Bayesian model, but the following

line of reasoning seems plausible: Since the categorical disabling condition is said to be

probable, the posterior conditional probability of “if H then W” must be low, hence there

should be a high percentage of “maybe” answers.

Pijnacker et al. (2011) designed an ERP study to establish the time-course of brain

processes subserving defeasible reasoning. Signals were recorded while participants read

a set of four sentences (of type MP-Dis or MP-Neu), and pressed keys corresponding to

“yes,” “no” or “maybe” after reading the conclusion sentence.

ERP averages were computed over all sets of type MP-Dis, and likewise over all sets

of type MP-Neu. The average MP-Neu was then compared to the average MP-Dis at dif-

ferent positions (see below) within the discourse. The results were as follows:

1. no significant difference between average MP-Neu and average MP-Dis for the first

sentence (neutral or disabling condition);

2. no significant difference between average MP-Neu and average MP-Dis for the

conditional premise;

3. no significant difference between average MP-Neu and average MP-Dis for the cat-

egorical premise;

4. a significant long-lasting negative ERP shift of average MP-Dis compared to aver-

age MP-Neu for the conclusion, starting 250 ms after the onset of the final word of

the conclusion.

These results show that, until the onset of the final word of the conclusion, the

computational load does not differ between neutral and disabling cases. From that

point onward, processing costs for the disabling case are higher than for the neutral

case. These results conflict with the probabilistic model outlined above. The Bayesian

model predicts a heavy processing load after the second premise, and no processing
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load in the final step, which is just Bayesian conditionalisation. The logical model

looks a bit better, and it may even provide a reason why a sustained anterior negativ-

ity is observed. We noted that the appearance of the conclusion triggers competition

between representations, and it seems of some interest to observe that the sustained

negativity reported by Pijnacker et al. (2011) is similar to the one observed with

ambiguous referents, as in “David had told the two girls to clean up their room before

lunchtime. But one of girls had stayed in bed all morning, and the other had been on

the phone all the time. David told the girl that. . .” (van Berkum et al., 2003)—here

the italicized NP is referentially ambiguous, leading to competition between the repre-

sentations of each referent.

2.2. Processing temporal connectives: A logical model

We have just seen how experimental data can be used to select between alternative

accounts (Bayesian probability or defeasible logic) of conditional reasoning. We will now

show that computational level analyses inspired by logic can provide alternative explana-

tions of existing data, identify potential confounds, and guide predictions for follow-up

experiments. An example of this is a study by M€unte, Schiltz, and Kutas (1998) in which

ERPs were recorded while subjects silently read sentences that differed only in the tem-

poral connective, for example:

(A) After the scientist submitted the paper, the journal changed its policy.

(B) Before the scientist submitted the paper, the journal changed its policy.

“Before” sentences elicited a larger sustained negativity. The amplitude was largest

over left anterior electrodes, where neural responses to “before” and “after” diverged at

300 ms from word onset. The negative shift was largest during the second clause.

According to M€unte et al., the observed ERP patterns can be accounted for as follows.

When in sentence-initial position, “after” signals that events are presented in chronologi-

cal order, whereas “before” indicates that event order is reversed. It is suggested that

“before” sentences require additional computations as a consequence of presenting the

events in reverse order. However, a computational level theory of temporal connectives

must also consider the asymmetry between the entailment properties of “before” and

“after.” Whereas (B) can be taken to mean that the scientist was not able to submit her

paper because of the journal’s policy change, this meaning is not available with “after.”

This flexibility is referred to as the “non-veridicality” of “before” and is a potential con-

found in this study (Baggio, 2004).

2.2.1. Computational level
We treat the asymmetry of “after” and “before” as involving the anchoring of events

on a timeline. The main event is always bound to a time interval. “After” demands that

the subordinate clause event is also bound to the timeline, whereas “before” allows for

this event to be left unanchored or “floating”: no commitment is made as to whether, and

when, that event happens. This informal definition can now be applied to M€unte et al.’s
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stimulus sentences. In (A), the scientist submitted the paper at time t, and the journal

changed its policy at t0 later than t. In (B), in contrast, the journal’s policy change at time

t may prevent the scientist from submitting her paper at any later t0, for example, if the

article is judged to be unsuitable given the journal’s new policy (i.e., a disabling condi-

tion). What is required by the semantics of “before” is that the submission event does not

happen at any time t0 < t. Therefore, t0 is left floating on the timeline. This analysis can

be fully expounded in the logical calculus of events by van Lambalgen and Hamm

(2005). Here we provide a somewhat less formal description of the interpretation of these

sentences at the algorithmic level.

2.2.2. Algorithmic level
Let e be the event “the scientist’s submission of a paper,” and e0 the event “the jour-

nal’s change of policy.” The interpretation of “Before e, e0” is given by the following

algorithm:

1. put the event e in a temporary store;

2. update discourse model with e0 situated in the past, and mesh with already present

events;

3. compute states consequent upon e0;
4. check whether any of these consequent states conflicts with preconditions for e;
5. if so, empty the store, but do not update discourse model with e;
6. if not, empty the store, update discourse model with e, situated between e0 and

“now.”

By contrast, the meaning for “After X, Y” is always veridical, and therefore the events

e, e0 (corresponding to the clauses X and Y) can be immediately integrated in the

discourse model:

1. update the discourse model with event e and time t in the past and mesh e with

already present events;

2. update the resulting discourse model with event e0 and time s later than t (how

much later depends on the particular events).

In “Before e, e0” constructions only, to update the current model based on informa-

tion provided by the subordinate clause event e, the system has to hold on for the main

clause event e0 to be interpreted, regardless of whether, while processing the “before”

clause, it entertains tentative interpretations or not. If the execution of these updates is

indeed delayed, the event e has to be held in working memory until relatively late

(partly depending on the position of the main clause verb) before it can be evaluated.

This might explain the ERP effects reported by M€unte et al. (1998): Could it be that

the interpretation of “before” clauses, rather than event order, is what increases process-

ing load? Logic can inspire alternative computational level theories which may carry

along alternative explanations of processing data, as well as ideas for removing the con-

founds thus identified.
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3. The predictive power of logic in neuroscience

3.1. The progressive: Processing predictions from a logical model

So far we have considered two cases in which computational level theories come on

the scene after the data have been collected, and thus have no influence on shaping pre-

dictions and experimental designs—as though logic played the role of Minerva’s owl in

cognitive neuroscience. In what follows, we show that computational level theories based

on logic can guide experimentation by providing explicit processing predictions. Consider

the sentence

(N) The girl was writing a letter when her friend spilled coffee on the tablecloth.

From (N) the reader would conclude that, barring unforeseen obstacles, the girl will

attain the desired goal (a complete letter) and would assent to the statement “The girl has

written a letter” (Baggio & van Lambalgen, 2007). This inference is based on knowledge

that spilling coffee on the tablecloth is not a typical (disabling) event that leads to the ter-

mination of the writing process. In fact, the closed world assumption allows one to con-

clude there are no disabling events in the scenario, as none follows from the discourse.

Finally, a principle of inertia ensures that the writing activity will reach its natural end-

point in finite time.

The inference to the goal state is non-monotonic—it can be suppressed if discourse

introduces an event which does terminate the relevant activity:

(D) The girl was writing a letter when her friend spilled coffee on the paper.

Assuming that writing was intended to occur on the same paper sheets on which coffee

was spilled, the accident is a disabling condition to obtaining a complete letter. Accord-

ingly, upon reading (D) the reader would assent to “The girl has written no letter.” As

we found in two subsequent behavioral studies (Baggio & van Lambalgen, 2007; Baggio

et al., 2008), endorsement rates of goal state conclusions (“The girl has written a letter”)

were higher in the neutral condition (N) (74.925% and 76.05% in the 2007 and 2008

studies, respectively) compared to the disabling condition (D) (37.15% and 54.68%). This

entailment pattern resembles the “suppression effect” in reasoning with conditionals dis-

cussed above, and indeed the underlying (non-monotonic) computational level logic is the

same.

At the algorithmic level, the semantics of “x was writing a letter, when φ” is given by

the following series of instructions:

1. update the discourse model with a temporal interval I corresponding to the

extended activity “writing,” where I contains a past reference time R established by

the given discourse model;

2. update the discourse model with a letter L and a time t > R at which L is expected

to be finished (L,t);
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3. update the discourse model with the event e corresponding to the subordinate

clause φ (we may assume e occurs at R);
4. compute states consequent upon e which bear upon the existence of L;
5. if one of these states conflicts with the existence of L at t, remove L,t and recom-

pute the discourse model.

This set of instructions can be formalized in constraint logic programming in ways

analogous to the treatment of conditional reasoning sketched above.

Condition (D) satisfies (5) and so is expected to elicit a recomputation of the discourse

model when reading the disabling clause. Baggio et al. (2008) conducted an ERP study

in which it was found that the sentence-final word in (D) indeed produced a larger sus-

tained anterior negativity relative to the sentence-final word in (N). The amplitude of this

ERP effect was inversely correlated with the rate of goal state conclusions (“The girl

wrote a letter”) as assessed by button-press responses after each trial.

This result suggests that computational level theories grounded in logic can provide

processing predictions that can be tested with psycholinguistic methods such as ERPs.

We emphasize that what can be asked to a cognitive theory is to generate definite pro-

cessing predictions (theory-to-data route), whereas ruling out alternative explanations is

the concern of experimental research through control and follow-up studies (data-to-the-

ory route). It is, however, sometimes possible to examine alternative explanations of a

given processing phenomenon by means of theoretical considerations at the level at which

the explanation is said to hold. For example, in Baggio et al. (2008) it is argued that an

“alternative” monotonic account of the progressive based on possible worlds semantics is

in fact indistinguishable from the present analysis vis-�a-vis ERP data, as it too predicts a

recomputation of the initial (lower) probability states, associated with the possible worlds

in which the goal state is not attained, when the disabling clause is read. It therefore falls

to both theory and experimentation to jointly develop “crucial experiments” in which

alternative theories can effectively be disentangled, besides single studies designed to test

the predictions of a single theory.

3.2. Logic and executive (dys)function in autism

The fourth case study is concerned with the use of logic as a computational level model

of executive dysfunction in cognitive disorders. Executive function comprises planning, ini-

tiation, inhibition, coordination, and control of action sequences leading to a goal retained

in working memory. Here we abstract from the control and co-ordination components, and

focus on goal maintenance, planning and (contextually determined) inhibition. By defini-

tion, planning consists of the construction of a sequence of actions which will achieve a

given goal, taking into account properties of the world and the agent, and also events that

might occur in the world. A major problem with planning is that it is in general impossible

to take into account all eventualities whose occurrence might be relevant to the success or

failure of the plan. Hence, it is crucial to be able to plan flexibly so that the execution of a

sequence of actions can be inhibited if changed circumstances demand this.
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In the logical model of executive function proposed here, inhibition is represented

through the special logical form of the conditional we saw in section 2.1, where the link

from condition (C) to action (A) is mediated by a slot labeled ¬ab:

C ^ :ab ! A

This is read as “if C and nothing abnormal is the case, then A.” The expression “noth-
ing abnormal is the case” is governed by closed world reasoning, and the abnormality

acts as an inhibitor: If ab holds, the connection between C and A is interrupted.

Russell’s (1997) executive disorder theory takes as basic the observation that autistic

people often exhibit perseveration, that is, they go on carrying out a routine when that rou-

tine is no longer appropriate, and they show great difficulties in switching tasks when the

context calls for this, that is, when switching is not governed by some explicit rule. Russell

drew attention to the similarity between flexible planning and defeasible reasoning:

[T]aking what one might call a “defeasibility stance” towards rules is an innate human

endowment—and thus one that might be innately lacking . . . [H]umans appear to pos-

sess a capacity—whatever that is—for abandoning one relatively entrenched rule for

some novel ad hoc procedure. The claim can be made, therefore, that this capacity is

lacking in autism, and it is this that gives rise to failures on “frontal” tasks—not to

mention the behavioral rigidity that individuals with the disorder show outside the lab-

oratory. (Russell, 2002, p. 318)

This suggested to us that one might test people with autism on a defeasible reasoning

task such as the one discussed in section 2.1. Our prediction here was that there should

be a difference between people with autism and controls in the condition MP-Dis, in that

the former group should be far less inclined to suppress the modus ponens inference. This
was indeed observed. In both groups the baseline MP-Neu scored around 90%, but MP-

Dis in controls scored 51%, whereas in the autism group 71% (p = 0.025).2 Here, a logi-

cal theory of executive function at the computational level, together with data on execu-

tive dysfunction in autism, led to a novel prediction on reasoning with exceptions in

people with autism. This was possible because the logic underlying the computational

level theory for reasoning with exceptions is very similar to that of the computational

level theory for flexible planning.

4. Conclusion

Marr (1982, p. 25) defined the computational level as providing answers to questions

such as:
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What is the goal of the computation, why is it appropriate, and what is the logic of the

strategy by which it can be carried out?

Computational theories include a description of the “why” of cognition (“the goal of

the computation”) (Willems, 2011), as well as a specification language for the algorithms
(“the logic of the strategy by which it can be carried out”), and that is what formal logic

can contribute to the cognitive neuroscience of language and reasoning. In these domains,

compared to other formalisms such as Bayesian probability, logical theories exhibit suffi-

cient explanatory and predictive power to adequately model aspects of behavioral and

neural data. It is beyond the scope of this paper to argue for the supremacy of logic as a

computational level theory in cognitive domains other than discourse processing and rea-

soning—but see beim Graben and Potthast (2009) for a broader stance than ours. It seems

reasonable to predict that cognitive tasks involving inference will afford some logical

analysis which may potentially be supported by data. Candidate areas include language

production and language acquisition in so far as they require representations of events

and other complex semantic objects. Conversely, there are phenomena that may not prove

fertile ground for logics, or for computational level analyses tout-court but may be

entirely explained by models at the level of physical implementation—for example, free

conceptual associations (Russo, Namboodiri, Treves, & Kropff, 2008) and automatic

semantic priming (Lerner, Bentin, & Shriki, 2012). Ultimately, however, it is the task of

experimental research to trace the boundaries of the information processing tasks for

which computational level analyses can be carried out, and within those boundaries, what

the province of logical analyses may be.

Notes

1. For a detailed discussion of the hypotheses that can be used to justify this assertion,

see Paris (1994).

2. For details concerning the experiment, we refer to Pijnacker (2009).
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