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A coset model based on the hyperbolic Kac-Moody algebra E10 has been conjectured to underlie 11-
dimensional supergravity and M theory. In this note we study the canonical structure of the bosonic model
for finite- and infinite-dimensional groups. In the case of finite-dimensional groups likeGLðnÞwe exhibit a
convenient set of variables with Borel-type canonical brackets. The generalization to the Kac-Moody case
requires a proper treatment of the imaginary roots that remains elusive. As a second result, we show that the
supersymmetry constraint of D ¼ 11 supergravity can be rewritten in a suggestive way using E10 algebra
data. Combined with the canonical structure, this rewriting explains the previously observed association of
the canonical constraints with null roots of E10. We also exhibit a basic incompatibility between local
supersymmetry and the KðE10Þ “R symmetry” that can be traced back to the presence of imaginary roots
and to the unfaithfulness of the spinor representations occurring in the present formulation of the E10

worldline model, and that may require a novel type of bosonization/fermionization for its resolution. This
appears to be a key challenge for future progress with E10.
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I. INTRODUCTION

The conjectured E10 symmetry of the M theory com-
pletion of D ¼ 11 supergravity [1] applies to both the
bosonic and the fermionic sectors. The one-dimensional
spinning E10 model constructed and analyzed in [2–5] has
manifest symmetry under the hyperbolic Kac-Moody
group E10, and its dynamics have been shown to match
exactly the D ¼ 11 dynamics at the nonlinear level, when
both are suitably truncated. However, it has so far proved
impossible to remove the truncation of this correspon-
dence, one central obstacle being a dichotomy between the
bosonic and fermionic variables on the E10 side. Whereas
the bosonic variables are described in terms of infinitely
many coordinates of the infinite-dimensional coset space
E10=KðE10Þ, the fermionic variables are described by finitely
many components of a finite-dimensional (unfaithful) spinor
representation of KðE10Þ [2]. This dichotomy is also
reflected in the fact that the one-dimensional E10 model
cannot be fully supersymmetric on its worldline, since in its
presently known form it pairs an infinite number of bosonic
with a finite number of fermionic degrees of freedom.
In view of the fact that a detailed understanding of

supersymmetry has often been central in advances regarding
the structure of hidden symmetries, we initiate in this note a
more detailed study of the worldline supersymmetry in the
E10 context. Though we will not be able to present a new
supersymmetric E10 model, our results bring the obstacles in
the current formulation to the front, and we hope they can
serve as a first step to resolving the issues both in the physics
and the mathematics associated with constructing a model

that fully accommodates both supersymmetry and KðE10Þ
symmetry. In fact, progress toward solving the outstanding
problemsmaywell require some novel kind of bosonization/
fermionization, and thus also involve quantization in a
crucial way. This is not only because the distinction between
bosons and fermions becomes fluid in low dimensions and
thus also in the (one-dimensional) worldline model, but also
because the very meaning of what is a space-time boson and
what is a space-time fermion, and hence also the ultimate
relevance of space-time supersymmetry (as opposed to
worldline supersymmetry), must be questioned in the
context of emergent space-time scenarios. The present
results can be viewed as a first step in this direction; in
particular we identify the proper canonical variables on the
bosonic side that couple naturally to the fermions, and hence
will be an essential ingredient in approaching quantization
of the worldline model. We note that in the context of string
theory the emergence of space-time fermions from bosonic
fields was already suggested long ago in [6], and the relation
of this construction to Kac-Moody algebras was discussed
more recently in [7]. In the context of maximal supergravity
in two dimensions [where KðE10Þ is replaced by KðE9Þ], it
was already pointed out in [8] that the associated linear
system effectively constitutes a bosonization of the super-
gravity fermions, especially in view of previous work
in [9,10].
Our main tool is the detailed analysis of the canonical

structure of one-dimensional coset models, starting with
purely bosonic systems based on a coset G=K. We will
exhibit explicitly a set of variables that makes the algebraic
structure completely manifest, and we propose that these
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variables are therefore also an appropriate starting point for
quantum considerations extending the reduced quantum
cosmological billiards of [11] that should eventually lead
to an implementation of theWheeler-DeWitt equation for the
full theory. For the case E10=KðE10Þ our arguments remain
somewhat formal since an explicit parametrization of the
group E10 similar to the one used in the proof for finite-
dimensional G is not available. Denoting the velocity type
variables as Pr

α, where α > 0 is a positive root of the E10

Borel algebra and r labels an orthonormal basis of elements
in the root space associated with the root α (this extra label is
only required for imaginary roots), we will in particular
argue, and prove for finite-dimensionalG, that the canonical
commutation relations of the Pr

α are exactly those of the E10

algebra itself.
The bosonic expressions have to be completed by

fermionic ones, and in Sec. III we then look at D ¼ 11
supergravity [12]. A rewriting of the supersymmetry
constraint, inspired by recent studies in quantum super-
symmetric cosmology in relation to Kac-Moody sym-
metries [13,14], suggests a very simple underlying
algebraic formulation. We will here restrict attention to
terms linear in the fermions, as the consideration of higher
order fermionic terms does not affect our main conclu-
sions.1 With every root α of E10 one can associate an
element ~ΓðαÞ of the SOð10Þ Clifford algebra and a
polarization of the fermionic field ϕðαÞ. In [3] the super-
symmetry constraint was analyzed to linear order in
fermions and shown to take the schematic form

S ¼ P⊙Ψ; ð1:1Þ

where P stands for the infinite component coset velocity of
the E10 coset space model, and Ψ for the finite-dimensional
unfaithful spinor representation. The symbol ⊙ is short-
hand for the particular combination of the fermions and the
bosonic coset velocities identified from the canonical
supersymmetry constraint in [3]. In this paper, we will
show how the above expression can (again schematically)
be transformed into a sum

S ¼ � � � þ
X
α

Pα
~ΓðαÞϕðαÞ þ � � � : ð1:2Þ

One main goal of this paper will be to explore the validity,
and more specifically the limit of validity, of this expres-
sion, and thereby attach a more concrete representation
theoretic meaning to the symbol ⊙. Indeed, already from
the form of (1.2) one may anticipate problems when trying
to combine supersymmetry with the “R symmetry”KðE10Þ:

supersymmetry requires an equal number of bosons and
fermions, whereas in (1.2) an infinite number of bosonic
degrees of freedom is to be paired with a finite number of
fermionic degrees of freedom. To be sure, in the actual
expression obtained from supergravity the above sum
contains only finitely many bosonic contributions, as a
result of “cutting off” the sum over roots α at level l ¼ 3.
Therefore the supersymmetry constraint S cannot, in its
presently known form, be assigned to any known repre-
sentation of KðE10Þ, even though separately, both P and ϕ
do transform properly [although it is not known whether P
transforms in an irreducible representation of KðE10Þ]. The
novel techniques introduced in this paper will allow us to
analyze in considerable detail the terms by which the
supersymmetry constraint fails to transform properly, and
to highlight the differences between the finite-dimensional
and infinite-dimensional cases. Our analysis thus identifies
the terms that have to be dealt with differently in the
construction of a supersymmetric E10 model, and we offer
more comments in the concluding section. There we also
explain that the failure to transform covariantly under
KðE10Þ cannot be cured by higher order fermionic terms.
While the exact D ¼ 11 supersymmetry constraint can

be transformed into a truncated expression of the type
above, we thus encounter obstacles when trying to remove
the truncation and to explore what the dots in the above
formula could stand for. The expression above does provide
a sensible object for GLðn;RÞ and other finite-dimensional
groups in the sense that it transforms covariantly as spinor
as the supersymmetry should, but a similar result is no
longer true for E10. From a more physical perspective, the
mismatch between bosons and fermions in the latter case is
also reflected in the fact that no fermionic analog of the
gradient representations has been found so far, thus (so far,
at least) precluding an expansion for the fermions à la
Belinski-Khalatnikov-Lifshitz (BKL).

II. CANONICAL STRUCTURE OF BOSONIC
WORLDLINE COSET MODELS

In this section, we study the canonical structure of a coset
model describing the motion of a point particle on a
symmetric space G=K, with G a split real simple Lie
group and K ≡ KðGÞ its maximal compact subgroup. To
set the basic notations and conventions, we first discuss the
case of finite-dimensional G where everything is well
defined, and subsequently write down the corresponding
expressions for Kac-Moody algebras and groups. In the
latter case, of course, many expressions will remain formal.
For previous work on the canonical structure of nonlinear σ
models, see for example [15].

A. Setup in the finite-dimensional case

To begin with, we restrict attention to finite-dimensional
and simply laced Lie group G. Then the Lie algebra

1By contrast, the supersymmetric Bianchi-type model recently
(and impressively) analyzed in [13,14] does retain all higher order
fermionic terms and is thus fully supersymmetric also at the
quantum level, but with only partial manifestations of KðAE3Þ
symmetry.
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g ¼ LieðGÞ is finite dimensional and has a system of roots
α ∈ Δ ¼ Δ−∪Δþ. The positive roots will also be written as
α > 0, and we designate the Cartan subalgebra by h. We
assume a Cartan-Weyl basis with basis vectors Ha and Eα,
where a ¼ 1;…; dim h. The commutation relations are [16]

½Eα; Eβ� ¼
8<
:

cα;βEαþβ if αþ β ∈ Δ;
αaHa if α ¼ −β;
0 otherwise;

ð2:1aÞ

½Ha; Eα� ¼ αaEα; ð2:1bÞ

with cα;β ¼ �1 or ¼ 0 for simply laced finite-dimensional
Lie algebras. There is a nondegenerate invariant bilinear
form on g that satisfies2

hEαjEβi ¼
�
1 if α ¼ −β;
0 otherwise;

ð2:2aÞ

hHajHbi ¼ Gab ð2:2bÞ

the metric Gab is positive definite for any simple finite-
dimensional Lie algebra g but need not be positive definite
for nonsimple g. The inverse Gab of Gab has been used to
raise the index in (2.1a) according to αa ¼ Gabαb and
αa ¼ αðHaÞ. The compact subalgebra KðgÞ≡ k ⊂ g is
generated by kα ≡ Eα − E−α with α > 0 and will be
discussed in more detail in Sec. III B. The structure
constants cα;β are antisymmetric and satisfy standard
identities [16], in particular

cα;β ¼ −cβ;α ¼ −c−α;−β; cαþβ;−β ¼ cα;β: ð2:3Þ

The coset G=KðGÞ≡ G=K can be parametrized in a
Borel gauge fixed form according to the Iwasawa decom-
position G ¼ KAN. For finite-dimensional G any element
of the coset G=K can thus be written in the form3

Vðqa; AαÞ ¼ exp ðqaHaÞ exp
�X

α>0

AαEα

�
: ð2:4Þ

The worldline model describing the motion of a point
particle on the coset manifold G=K is then parametrized by
a map V∶R → G=K, where t ∈ R is the time coordinate.
The Cartan derivative is (with ∂ ≡ d=dt)

∂VV−1 ¼ PþQ ¼ ∂qaHa þ
X
α>0

eq
aαaDAαEα; ð2:5Þ

where Q ∈ k; P ∈ k⊥, and, schematically and due to
∂eXe−X ¼ ∂X þ 1

2
½X; ∂X� þ � � � ,

DAα ¼ ∂Aα þ
1

2

X
β>0

α−β>0

cα−β;βAα−β∂Aβ þ � � � : ð2:6Þ

Importantly, the Borel gauge implies a triangular expansion
of DAα where the factors contributing to the terms
quadratic in Aγ on the right-hand side (r.h.s.) are of lower
height, whence the sum on the r.h.s. of (2.6) has only
finitely many terms even for infinite-dimensional Kac-
Moody algebras (a crucial fact for the calculability of the
model). The invariant Lagrangian is given by

L ¼ 1

2
hPjPi ¼ 1

2
∂qaGab∂qb þ

X
α>0

PαPα; ð2:7Þ

where we have defined

P ¼ ∂qaHa þ
X
α

PαðEα þ E−αÞ; Pα ¼
1

2
eq

aαaDAα:

ð2:8Þ

The compact part is then given by

Q ¼
X
α>0

QαðEα − E−αÞ ¼
X
α>0

PαðEα − E−αÞ; ð2:9Þ

where the equality Qα ¼ Pα is a consequence of the
triangular gauge choice.
The model has global G symmetry and local K

symmetry that we use to fix the triangular gauge (2.4)
everywhere. The symmetries act by

VðtÞ → kðtÞVðtÞg−1 ⇒ P → kPk−1;

Q → kQk−1 þ ∂kk−1: ð2:10Þ

When the triangular gauge (2.4) is fixed, a local compen-
sating K transformation is required to restore the gauge for
every G transformation that throws V out of the triangu-
lar gauge.
The equations of motion of the coset model are

DP≡ ∂P − ½Q;P� ¼ 0: ð2:11Þ

(We note that this of course implies that the equations of the
original coordinates qa and Aα are second order differential
equations.) For a given root component Pα this means

2For finite-dimensional simple g this is just the appropriately
normalized matrix trace.

3Here, we deviate from the standard notation in the cosmo-
logical billiards literature (see e.g. [17]) where the diagonal
degrees of freedom are denoted by −βa ≡þqa. This is done in
order to avoid confusion with the labeling of the components of
the root β below.
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∂Pα ¼ −∂qaαaPα þ 2
X
β>0

cαþβ;−βPβPαþβ

≡ −∂qaαaPα þ 2
X
β>0

cα;βPβPαþβ: ð2:12Þ

Note that [in contrast to (2.6)] the sum on the r.h.s. contains
terms of ascending height.

B. Changes in the Kac-Moody case

When the Lie algebra g is an infinite-dimensional Kac-
Moody algebra [18], the definition of the corresponding
groupG requires more care; see for example [19,20]. Again
we restrict to simply laced algebras, and more specifically
to symmetric generalized Cartan matrices with at most
one line linking any two nodes. Of course, our primary
interest here will be with E10 and its maximal compact
subgroup KðE10Þ.
There are now two types of roots of the algebra, called

real and imaginary, and they are distinguished by their
Cartan-Killing norm: Real roots α satisfy α2 ¼ 2 and
imaginary roots α2 ≤ 0. The generators corresponding to
real roots are unique up to normalization and can be
denoted by Eα as above, but the generators corresponding
to imaginary roots can have nontrivial multiplicities and
are more appropriately denoted by Er

α, where r ¼
1;…;multðαÞ labels an orthonormal basis (with respect
to the Cartan-Killing metric) in the root space. We will
write all generators in this way, keeping in mind that for
real roots r can take only one value. The commutation
relations in the Cartan-Weyl basis [cf. (2.1)] then have to
account also for the multiplicities and become

½Er
α; Es

β� ¼

8>><
>>:

PmultðαþβÞ
t¼1 crstα;βE

t
αþβ if αþ β ∈ Δ;

δrsαaHa if α ¼ −β;
0 otherwise;

ð2:13aÞ

½Ha; Er
α� ¼ αaEr

α: ð2:13bÞ

We note that we still have cα;β ¼ �1 if α; β and αþ β are
all real, but this need no longer be true when any of these
roots is imaginary. The bilinear form (2.2) generalizes to

hEr
αjEs

βi ¼
�
δrs if α ¼ −β;
0 otherwise;

ð2:14aÞ

hHajHbi ¼ Gab; ð2:14bÞ

where the metric Gab is now indefinite (and Lorentzian for
hyperbolic Kac-Moody algebras).
The other important modification concerns the para-

metrization of the elements of the formal coset space G=K
that, using the Iwasawa decomposition, could be given in
the finite-dimensional case as in (2.4). Even at a purely

formal level, and even if the sum in the exponent is
truncated to a finite number of terms, it is not directly
meaningful to parametrize a given element of the Kac-
Moody group in the form

Vðqa; Ar
αÞ “ ¼ ” expðqaHaÞ exp

�X
α>0

XmultðαÞ

r¼1

Ar
αEr

α

�
;

ð2:15Þ
where fqa; Ar

αg are local coordinates on the (infinite-
dimensional) coset manifold, one coordinate for each Lie
algebra element Er

α. The reason is that the step operators Er
α

associated with imaginary roots are not (locally) nilpotent
in any standard representation, and therefore the exponen-
tial is a priori ill defined.4 For this reason, standard
approaches to Kac-Moody groups involve writing down
only exponentials of real root generators (that are nilpotent)
and then defining the Kac-Moody group as the group
generated by the products of these real root exponentials
[19]. Although such a treatment is mathematically well
defined, it does not solve by any means the problem of
finding a manageable realization of the Kac-Moody group,
because different orderings of exponentials of a given set
of real root generators will yield new group elements.
Organizing these differently ordered exponentials is thus
directly associated with the (unsolved) problem of classi-
fying the independent elements of the associated root space
(where the problem is to count and classify the inequivalent
ways in which a given set of Chevalley generators can be
“distributed” over a multicommutator). In particular, a
parametrization in terms of fields associated only with real
roots of E10, besides being incomplete, would also obscure
the relation to the fields fAr

αg, and therefore does not
appear to lead to a convenient parametrization of the
coordinates on the coset space G=K.5 (Let us emphasize
that the Iwasawa decomposition G ¼ KAN is nevertheless
still applicable [21].)
Irrespective of an explicit description of the coordinates

on G=K we can still generalize the worldline σ model to
infinite-dimensional cosets and consider the Cartan form

4The notion of local nilpotency is defined as follows: an
operator Er

α is locally nilpotent in a representation V of g if for all
x ∈ V there exists an n0 ¼ n0ðxÞ such that

ðEr
αÞnðxÞ ¼ 0 for all n > n0.

(In the adjoint representation, the action is simply by commu-
tators: Er

αðxÞ ¼ adEr
αðxÞ≡ ½Er

α; x�.) Clearly this holds for any
real root α in the adjoint or any standard representation, but is no
longer true for imaginary roots. The intuitive picture for this
statement in the adjoint representation is that all roots lie in a solid
hyperboloid fα2 ≤ 2g in a Lorentzian space. Imaginary roots
point into the light-cone where infinitely many roots of g lie
whereas real roots point outside the light-cone and eventually will
leave the solid hyperboloid.

5But let us note that the highest weights associated with the
gradient representations of [1] are, in fact, real roots.
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∂VV−1 ¼ PþQ ¼ ∂qaHa þ
X
α>0

XmultðαÞ

r¼1

Pr
αEr

α ð2:16Þ

without spelling out the explicit parametrization of V and
Pr
α in terms of coordinates and their time derivatives. The

triangular structure on N implies, however, that the Pr
α are

all finite combinations of coordinates and their derivatives,
as we explained after (2.6).
The coset equations (2.11) take the same form if the

Lagrangian is the formal extension of (2.7) to the infinite-
dimensional Kac-Moody algebra, using the invariant bilin-
ear form (2.14) on the Kac-Moody algebra. Therefore
(2.12) becomes

∂Pt
α ¼ −∂qaαaPt

α þ 2
X
β>0

X
r;s

crstαþβ;−βP
r
βP

s
αþβ: ð2:17Þ

As we noted after (2.12) the r.h.s. is a sum over terms of
ascending height, and hence an infinite sum for infinite-
dimensional g. This sum can be rendered finite and
calculable only by consistently truncating the Pr

α to vanish
beyond a given height, as is necessary for the comparison
between supergravity and the E10 σ model. More con-
cretely, this can be done for example by choosing a grading
on the root lattice and cutting off Pr

α after a certain
degree [22].

C. Canonical treatment

We now analyze the canonical structure, by again
considering the finite-dimensional coset model (2.7) first.
The canonical momenta from (2.7) are

πa ¼
∂L
∂∂qa ¼ Gab∂qb;

Πα ¼
∂L
∂∂Aα

¼ 1

2

�
e2q

aαaDAα þ
1

2

X
β>0

cβ;αe2q
aðαþβÞaAβDAαþβ þ � � �

�
;

ð2:18Þ

displaying again a triangular structure. This can be inverted
to write the Pα in triangular form in terms of canonical
coordinates and momenta,

Pα ¼ e−q
aαa

�
Πα −

1

2

X
β>0

cβ;αAβΠαþβ þ � � �
�
: ð2:19Þ

From this and the standard relations

fqa; πbg ¼ δab; fAα;Πβg ¼ δα;β; ð2:20Þ

one can derive the canonical brackets among the πa and Pα,

fπa; πbg ¼ 0; ð2:21aÞ

fπa; Pαg ¼ αaPα; ð2:21bÞ

fPα; Pβg ¼ cα;βPαþβ: ð2:21cÞ

Only the first two of these relations are evident, while the
third one is not and will be proven below. Of course, to
the order given one can check the last relation easily from
the expressions above, but the important point is that all the
higher nonlinear terms combine in the right way to produce
such a simple result. Our main point here is that the
“composite” variables Pα are “good” canonical variables
because the canonical brackets between them assume a
very simple form, and furthermore display a graded
structure which is nothing but the Borel subalgebra.
Equally important, the Pα, being objects associated with
the maximal compact subgroup K, couple naturally to the
fermions. Let us note the relations

fπa; Vg ¼ −HaV; fPα; Vg ¼ −EαV;

fPα; qag ¼ 0; fV;Vg ¼ 0: ð2:22Þ

For any coset space σ model the canonical conserved
Noether current (or more properly, conserved charge) is
given by general formula

J ¼ V−1PV ≡ JaHa þ
X
α>0

ðJ−αEα þ JαE−αÞ ð2:23Þ

such that ∂J ¼ 0 by the equations of motion (2.12).
Although the canonical commutation relations for this
current reproduce the GLðnÞ algebra (see below), we will
see that the structure of its components is considerably
more complicated, not least because J has both upper
and lower triangular pieces. For finite-dimensional g the
lower triangular half of the matrix J takes a relatively
simple form when one expresses the associated conserved
components in terms of the momenta Πα. By contrast the
components of the upper triangular half involve all
canonical variables and become increasingly more com-
plicated with growing n; see also [17]. We will illustrate
this explicitly with the example of the GLð3Þ=SOð3Þ
model in Appendix B.
The conserved current J of (2.23) generates the global G

transformations in (2.10) and, since we are working in fixed
triangular gauge, the “lower triangular” G transformations
induce a compensating K transformation. That is, we
expect the infinitesimal transformation of V to be

fJ; Vg ¼ δV ¼ −Vδgþ δkV; ð2:24Þ

where δg and δk are the infinitesimal versions of the
group transformations in (2.10) and δk is determined by
δg and V such that the resulting δV is in triangular gauge.
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This can be worked out in terms of the basis components
in (2.23) and the canonical brackets (2.21), with the
result (for α > 0)

fJα; Vg ¼ −VEα; ð2:25aÞ

fJa; Vg ¼ −VHa; ð2:25bÞ

fJ−α; Vg ¼ −VE−α −
X
β>0

hVE−αV−1jEβiðEβ − E−βÞV;

ð2:25cÞ

where the extra term on the r.h.s. in the last line
corresponds to the compensating transformation in
KðGÞ required to bring V back into triangular gauge,
so that

hV−1fJ−α; VgjEβi ¼ 0 ð2:26Þ

and the explicit compensating element in k is

δkα ¼ −
X
β>0

hVE−αV−1jEβiðEβ − E−βÞ: ð2:27Þ

In deriving the above brackets we made repeated use of
the invariance of the invariant bilinear form (trace) and
the orthonormality relations (2.2).6 Relation (2.10) then
implies directly the transformation of the velocity com-
ponents P under J. For α > 0 and β > 0 one has

fJa; Pβg ¼ 0; ð2:28aÞ

fJα; Pβg ¼ 0; ð2:28bÞ

fJ−α; Pβg ¼ πaβ
ahVE−αV−1jEβi

−
X
γ>0

cβ−γ;γPγhVE−αV−1jEβ−γi

−
X
γ>0

cβþγ;−γPγhVE−αV−1jEβþγi: ð2:28cÞ

Because (2.25) equivalently expresses the standard non-
linear realization of global symmetries in nonlinear σ
models we can immediately infer the closure relations

fJα; Jβg ¼
8<
:

cα;βJαþβ if αþ β ∈ Δ;
αaJa if α ¼ −β;
0 otherwise;

ð2:29aÞ

fJa; Jαg ¼ αaJα; ð2:29bÞ

in the nonlinear realization of the G symmetry acting on
V. An explicit verification of the above relations for the
GLð3Þ=SOð3Þ model can be found in Appendix B.
An important aspect of the variables Pα concerns

quantization. When quantizing a nonlinear model there
is always the question for which canonical variables one
should perform the replacement of Poisson or Dirac
brackets by quantum commutators (which in quantum field
theory may yield inequivalent quantizations). Obviously,
the variables Pα are ideally suited for this purpose; in
particular, such a quantisation prescription eliminates all
operator ordering ambiguities. Furthermore, we emphasise
once again that the Pα are the natural variables coupling to
fermions, as will be seen in more detail below.

D. Canonical structure for GLðn;RÞ=SOðnÞ
We now prove (2.21) and in particular the crucial third

relation, for G ¼ GLðn;RÞ. This is a slight generalization
of the setup of the preceding sections since GLðn;RÞ is not
simple, but it is the case of direct interest for cosmological
billiards [17].
Let us fix some notation. We denote the generators of

GLðn;RÞ by Ka
b with a; b ¼ 1;…; n and commutation

relations

½Ka
b; Kc

d� ¼ δcbK
a
d − δadK

c
b: ð2:30Þ

The symmetric and antisymmetric combinations are
defined as Sab ¼ Ka

b þ Kb
a and Jab ¼ Ka

b − Kb
a. The

positive roots of GLðn;RÞ are denoted by αab with a < b
and will be written as tuples αab ¼ ð0 � � � 010 � � � 0 −
10 � � �Þ with ðþ1Þ in the ath and ð−1Þ in the bth place.
The generator corresponding to such a positive αab is then
Eαab ¼ Ka

b and the above commutation relations translate
into (recall that a < b and c < d)

½Eαab ; Eαcd � ¼ cαab;αcdEαabþαcd ¼

8>><
>>:

Eαad if b ¼ c

−Eαcb if a ¼ d;

0 otherwise.

ð2:31Þ

So we read off the general formula cαab;αcd ¼ δbc − δad.
We write the coset element of GLðn;RÞ=SOðnÞ in Borel

gauge by an upper triangular ðn × nÞmatrix through (as for
notation; cf. footnote 1)

V ¼ AN with A ¼ diagðeq1 ;…; eq
nÞ; N ¼ Na

i:

ð2:32Þ

Here, a is the local (row) index, and i a global (column)
index. The matrix Na

i is equal to 1 on the diagonal and has

6The invariance relation hV−1AVjBi ¼ hAjVBV−1i for A; B ∈
g and V ∈ G are also valid for infinite-dimensional g. In the
finite-dimensional case, the relation can be viewed as the standard
cyclic property of the matrix trace.
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vanishing entries for a > i. The inverse matrix N−1 is also
upper triangular and has components Ni

a which vanish for
i > a. The Borel gauge implies that some of the summa-
tions below are restricted in the way indicated. For the coset
velocities one finds

ð∂VV−1Þab ¼ ∂qaδab þ
X
i

eq
a−qb∂Na

iNi
b: ð2:33Þ

For a positive root αab, i.e. a < b, we define the quantity

Pαab ¼
1

2
eq

a−qb
X
a<i≤b

∂Na
iNi

b: ð2:34Þ

This is just the variable Pα introduced in the previous
section, except that we are now labeling the roots by indices
a; b. In a convenient normalization the Lagrangian can be
written as

L ¼ 1

2
TrðP2Þ − 1

2
ðTrPÞ2

¼ 1

2
∂qa∂qbGab þ

X
a<b

PαabPαab ; ð2:35Þ

where Gab is the DeWitt metric

X
a;b

∂qa∂qbGab ¼
X
a

ð∂qaÞ2 −
�X

a
∂qa

�
2

: ð2:36Þ

The canonical momenta conjugate to Na
i are

Πi
a ¼

∂L
∂∂Na

i
¼

X
b

eq
a−qbPαabN

i
b ð2:37Þ

and vanish for a ≥ i. In other words, for a < b,

Pαab ¼
X
i

eq
b−qaNa

iΠi
b: ð2:38Þ

The advantage of using the variables Pα is that they obey
very simple commutation relations, to wit,

fPαab ; Pαcdg ¼ cαab;αcdPαabþαcd ð2:39Þ

whenever αab þ αcd is a root, and we recall
cαab;αcd ¼ δbc − δad. This can be verified by straightfor-
ward computation using fNa

i;Πj
bg ¼ δabδ

j
i . It is equally

easy to see that if αab þ αcd is not a root, the canonical
bracket vanishes, as does the structure constant. We thus
have demonstrated the relation (2.21c) for GLðn;RÞ. The
other relations (2.21a) and (2.21b) are also evident for
GLðn;RÞ, given the explicit form of the Lagrangian (2.35)
and (2.38).
The proof of (2.21c) can be extended to all other

simple finite-dimensional Lie algebras, either by direct

computation, or more simply by looking at differently
embedded GLðnÞ subalgebras, and by observing that these
commutation relations must be compatible with the action
of the Weyl group, because all roots can be reached by
Weyl transformations from the simple roots.
As a simple example we discuss the case of

GLð3Þ=SOð3Þ in Appendix B.
The extension of the above results to infinite-dimensional

Kac-Moody algebras, and more specifically to the E10

algebra, is more subtle, and here we do not have a complete
picture. In particular, we do not have a proof that (2.21b) and
(2.21c) remainvalid for all roots. For instance, in thepresence
of imaginary roots (2.21c) would have to generalize to

fPr
α; Ps

βg ¼
XmultðαÞ

t¼1

crstα;βP
t
αþβ; ð2:40Þ

where α and β are any roots, and where the sum on t ranges
over themultiplicity of the root ðαþ βÞ if this is an imaginary
root.While a general derivation by the abovemethods seems
beyond reach, we can extend the argument at least to those
roots α and β for which αþ β is also a real root, because the
above commutation relation should respect the Weyl group,
and because all real roots can be reached by E10 Weyl
transformations. Hence at least for this special case, the
above relation should also hold for E10.

E. Hamiltonian analysis

The canonical Hamiltonian is

H ¼ πa∂qa þ
X
α>0

Πα∂Aα − L

¼ 1

2
πaGabπb þ

X
α>0

e−2q
aαaΠ2

α þ � � � ; ð2:41Þ

where the dots denote important nonlinear terms. In terms of
the coset velocities they can be summarized as (see also [15]
for a derivation in the finite-dimensional case)

H ¼ 1

2
πaGabπb þ

X
α>0

P2
α: ð2:42Þ

Again, it is important that the nonlinear terms combine in
the right way to yield such a simple expression. We note that
(2.23) implies that we can rewrite the Hamiltonian alter-
natively as

H ¼ 1

2
hJjJi; ð2:43Þ

which we recognize as the standard bilinear form on the
corresponding Lie algebra.
Let us verify the consistency expression (2.42) with the

coset equations of motion
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∂Pα ¼ fPα; Hg ¼ −αaGabπbPα þ 2
X
β>0

cα;βPβPαþβ:

ð2:44Þ

Comparing the above relation with the general result (2.12)
shows agreement. This shows that the Borel structure is
correct, at least for all finite-dimensional algebras: any
other algebra would not correctly reproduce the equations
of motion.
Staying at the formal level, an analogous argument also

works for the infinite-dimensional case. Namely, we can
similarly deduce a statement of the canonical brackets of
the Pr

α in the Kac-Moody case. Starting from the same
Lagrangian

L ¼ 1

2
hPjPi ð2:45Þ

as in the finite-dimensional case, but where h·j·i is now the
standard invariant bilinear form on the Kac-Moody algebra,
the Hamiltonian is given by the straightforward formal
extension of (2.42), using the arguments of [15],

H ¼ 1

2
πaGabπb þ

X
α>0

X
r

Pr
αPr

α: ð2:46Þ

Because, formally, the conserved Noether current is still
given by

J ¼ V−1PV ≡ JaHa þ
X
α>0

XmultðαÞ

r¼1

ðJr−αEr
α þ JrαEr

−αÞ;

ð2:47Þ

the Hamiltonian can again be cast into the form (2.43) with
the bilinear form on the Kac-Moody algebra. When
considered as a function of the phase space variables
fJa; Jr�αg this is just the (unique) E10 invariant bilinear
form. Let us mention, however, that in contrast to the finite-
dimensional case a simple form of the lower triangular half
can only be achieved by truncating the current components
to Jr−α ¼ 0 for α’s exceeding a given height. A related
discussion can be found in [17].
Compatibility of the canonical structure with the equa-

tions of motion (2.17) is then ensured by the canonical
brackets

fPr
α; Ps

βg ¼
X
t

crstα;βP
t
αþβ: ð2:48Þ

We thus see that if the Hamiltonian is given by the
restriction of the E10 Casimir operator to the coset
E10=KðE10Þ, the compatibility of the canonical structure
with the equations of motion implies the extension of the
Borel-like structure found in (2.21) to the full Borel
subalgebra of E10. However, it is known that beyond level
l ¼ 3 the canonical supergravity Hamiltonian starts to

deviate from the Casimir operator, and therefore we will
also have to eventually allow for modifications in the
canonical algebra (2.48).

III. FERMIONS AND SUPERSYMMETRY

The extension of the E10 coset model to include fermions
was discussed in [2–4]. We briefly review the salient
features of the resulting model and its relation to maximal
D ¼ 11 supergravity in order to provide a self-contained
presentation.

A. E10, its level decomposition and the bosonic sector

The description of E10 that is most commonly used in
connection with D ¼ 11 supergravity is that where the Lie
algebra is presented in GLð10Þ level decomposition [1]. In
this presentation, the infinitely many generators of E10 are
organized into glð10;RÞ tensor representations and graded
by a level l such that each level only contains finitely many
glð10;RÞ representations. The Lie bracket is compatible
with the level. At low non-negative levels one finds the
following glð10;RÞ representations corresponding to the
(spatial) components of the D ¼ 11 fields and their
magnetic duals:

Level l Generator
Representation
of glð10;RÞ

0 Ka
b 100 (adjoint; graviton)

1 Eabc ¼ E½abc� 120 (three form)
2 Ea1���a6 ¼ E½a1���a6� 210 (six form)
3 Ea0ja1���a8 ¼ Ea0j½a1���a8�

with E½a0ja1���a8� ¼ 0
440 [(8,1) hook;
dual graviton]

The “coset velocity” P of (2.5) can be similarly decom-
posed by level

P ¼
X
α>0

XmultðαÞ

r¼1

Pr
αðEr

α þ Er
−αÞ≡

X
l≥0

PðlÞ � EðlÞ

≡ 1

2
Pð0Þ
ab S

ab þ 1

3!
Pð1Þ
abcS

abc þ 1

6!
Pð2Þ
abcdefS

abcdef

þ 1

9!
Pð3Þ
a0ja1���a8S

a0ja1���a8 þ � � � : ð3:1Þ

Here, the PðlÞ transform in the representation from the table
branched to SOð10Þ level [since P transforms covariantly
under the “compact” subgroup KðE10Þ]. The generators are
defined by

Sab ¼ Ka
b þ Kb

a;

Sabc ¼ Eabc þ Fabc;

Sa1���a6 ¼ Ea1���a6 þ Fa1���a6 ;

Sa0ja1���a8 ¼ Ea0ja1���a8 þ Fa0ja1���a8 ; ð3:2Þ
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where Fabc, etc., are the Chevalley transposed generators on the negative levels and correspond to theEr
−α part in the general

expression.
As was shown in [1,2], the bosonic coset model with Lagrangian L ¼ 1

2
hPjPi, when restricted to levels l ≤ 3, is

equivalent to D ¼ 11 supergravity expanded about a fixed spatial point, x0 with the bosonic dictionary7

Pð0Þ
ab ðtÞ ¼ −Nωab0ðt;x0Þ; Pð1Þ

abcðtÞ ¼ NF0abcðt;x0Þ; ð3:3Þ

Pð2Þ
a1���a6ðtÞ ¼

1

4!
Nϵa1���a6b1���b4F

b1���b4ðt;x0Þ; Pð3Þ
a0ja1���a8ðtÞ ¼

1

2
Nϵa1���a8b1b2ωb1b2a0ðt;x0Þ; ð3:4Þ

when all higher order spatial gradients are neglected and the
SOð10Þ connection is traceless ωbba ¼ 0 (corresponding to
the irreducibility condition of the l ¼ 3 generator in the
table) and t is the coordinate along the worldline that is
identified with the physical time coordinate. The index 0 is
a flat index in the time direction and N is the lapse function
in the Arnowitt-Deser-Misner (ADM) gauge with zero
shift. With the said truncations it can then be shown that
the bosonic equations of motion of D ¼ 11 supergravity
coincide with those of the worldline E10 sigma model.
In order to reexpress these SOð10Þ objects in terms of

E10 root data and Pr
α we need to explain how the roots at the

various levels are related to the components. As in Sec. II,
we work in the so-called “wall basis” [13,23]. This means
that we write a root α as α ¼ P

aαae
a where ea are the basis

of the h� dual to the Cartan generators Ha such that
eaðHbÞ ¼ δab and hence αðHaÞ ¼ αa. In the wall basis,
the inner product is given by

heajebi ¼ Gab ¼ δab −
1

9
ð3:5Þ

and agrees with the (inverse) DeWitt metric for diagonal
metrics. In order to avoid confusion with the labeling of the
simple roots it will sometimes be convenient to also use the
notation pa ≡ αa interchangeably for the component of α in
the wall basis and to also write α ¼ ðp1;…; p10Þ as a row
vector. The ten simple roots of E10 are explicitly given by

α1 ¼ ð1;−1; 0; 0;…; 0Þ;
α2 ¼ ð0; 1;−1; 0;…; 0Þ;

..

.

α9 ¼ ð0;…; 0; 0; 1;−1Þ;
α10 ¼ ð0; 0;…; 0; 1; 1; 1Þ: ð3:6Þ

The glð10Þ level of an arbitrary root α expanded on the
simple roots as α ¼ P

10
j¼1m

jαj is l≡ lðαÞ ¼ m10.

Roots on level l ¼ 0 are roots of glð10Þ and can be
written as αab as above in Sec. II D. The components Pα for

these roots are identified with Pð0Þ
ab , and we let a < b for

positive roots as before. The components of the Cartan

subalgebra are identified via πa ¼ Pð0Þ
aa (no sum). Roots on

level l ¼ 1 have three entries 1 in the wall basis and the
other entries pa are zero, as for example in α10 above.
Calling the three nonvanishing components a, b, and cwith

a < b < c, we identify Pα with P
ð1Þ
abc. Roots αa1���a6 on level

l ¼ 2 have six entries pa ¼ 1 and four vanishing entries.
We assume a1 < � � � < a6 and then identify Pαa1 ���a6

with the

corresponding level l ¼ 2 coset velocity. Roots on level
l ¼ 3 come in two varieties: They either have one entry
pa ¼ 2, seven entries pa ¼ 1, and two pa ¼ 0 or they have
nine pa ¼ 1 and one pa ¼ 0. In the first case, we let a0 be
the component with entry pa0 ¼ 0 and assume again that
the pa ¼ 1 components are ordered as a1 < � � � a7. Then
we identify Pα with Pð3Þ

a0ja0a1���a7 . The second case corre-
sponds to null roots (of multiplicity 8), and schematically
we distribute the ordered nine pa ¼ 1 components as
Pa0ja1���a8 . The multiplicity requires extra care and will be
discussed in detail in Sec. III D.
In summary, we find that we can associate

Pαab ¼ Pð0Þ
ab ; Pαabc ¼ Pð1Þ

abc; Pαa1 ���a6
¼ Pð2Þ

a1���a6 ;

Pαa0 ja1 ���a8
¼ Pð3Þ

a0ja1���a8 : ð3:7Þ
with root labels on the left-hand side (l.h.s.), and with the
associated SOð10Þ tensors on the r.h.s. Up to l ≤ 3, this
correspondence rule allows us to rewrite any expression
involving PðlÞ in terms of Pα.

B. Unfaithful spinor representations of KðE10Þ
Fermions are associated with the compact subalgebra

KðE10Þ of E10. This algebra is generated by the compact
combinations (α > 0)

krα ¼ Er
α − Er

−α: ð3:8Þ
We have chosen the letter krα for the KðE10Þ generators,
rather than using JðαÞr as in [24] in order to avoid
confusion with the components of the conserved current
J in (2.23). From (2.13) the KðE10Þ elements satisfy

7We have here adjusted some normalizations relative to [2] in
order to make subsequent expressions more uniform. The
changes concern the dual fields on levels l ¼ 2 and l ¼ 3:
The sign on level two here is opposite to that of [2], and
Pð3Þ
here ¼ 1

3
Pð3Þ
DKN. The reason for the rescaling is that we here are

normalizing the real root generators identically on all levels in
conformity with (2.14).

CANONICAL STRUCTURE OF THE E10 MODEL AND … PHYSICAL REVIEW D 91, 085039 (2015)

085039-9



½krα;ksβ�¼
XmultðαþβÞ

t¼1

crstα;βk
t
αþβ−

Xmultðα−βÞ

t¼1

crstα;−βk
t
α−β: ð3:9Þ

In order to make sense of the above relation in general, and
because α − β can be < 0 for α; β > 0, one also requires a
definition of krα for α < 0; from (3.8) we directly get

krα ≔ −kr−α for α < 0; ð3:10Þ

which is also consistent with (2.3).
KðE10Þ admits unfaithful finite-dimensional spinor

representations [2–5,25], but unfortunately no faithful
spinor representations are known up to now. The unfaithful
representations relevant to supergravity involve the
vector-spinor (gravitino) and Dirac-spinor (supersymmetry
parameter). The representations can be represented con-
veniently using the wall basis [13,23], and we use the same
formalism as in [24]. For the Dirac representation it is
enough to restrict attention to real roots α; β;…, and we
will thus drop the multiplicity labels in the remainder of this
section. Then with every element v of the E10 root lattice
v ¼ P

njαj ≡P
avae

a (which need not be a root for
arbitrary nj ∈ Z) we associate an element of the SOð10Þ
Clifford algebra through

ΓðvÞ ¼ ðΓ1Þv1 � � � ðΓ10Þv10 ; ð3:11Þ

where, of course, fΓa;Γbg ¼ 2δab are the usual SOð10Þ Γ
matrices. The product of two such matrices is given by

ΓðuÞΓðvÞ ¼ εu;vΓðu� vÞ; ð3:12Þ

where we have defined the cocycle

εu;v ¼ ð−1Þ
P

a<b
vaub ; ð3:13Þ

which obeys

εu;vεv;u ¼ ð−1Þu·v; εu;vεuþv;w ¼ εu;vþwεv;w; ð3:14Þ

where v · w≡Gabvawb. The cocycle εu;v is defined only up
to a coboundary; that is, we can modify the above definition
(3.11) by

ΓðvÞ → ~ΓðvÞ ¼ σvΓðvÞ ð3:15Þ

with σv ¼ �1 an (in principle) arbitrary sign factor; then

~εu;v ¼ σuσvσuþvεu;v ð3:16Þ

also obeys the cocycle relations (3.14). Next we specialize
to elements v ¼ α; β ∈ Δ which are roots and choose the
coboundary such that

~ΓðαÞ ≔ σαΓðαÞ ≔
�ΓðαÞ if α > 0;

−ΓðαÞ≡ −Γð−αÞ if α < 0;
ð3:17Þ

that is, σα ¼ �1 according to whether α is positive or
negative, whence σασ−α ¼ −1. The sign switch between
positive and negative roots in (3.17) is necessary to remain
consistent with (3.10). This definition can be extended to
the whole root lattice by choosing σv ¼ �1 arbitrarily for
nonroots v, but subject to the condition σvσ−v ¼ −1 (for
v ≠ 0). Indeed, in the relevant expressions in the super-
symmetry constraint the matrix ~ΓðαÞ always comes with a
factor Pr

α which vanishes when α is not a root. The extra
sign in (3.17) leads to an important modification in the
multiplication rule (3.12), viz.

~ΓðαÞ ~ΓðβÞ ¼ ~εα;β ~Γðαþ βÞ ¼ −~εα;−β ~Γðα − βÞ: ð3:18Þ

With these definitions one can check that the map

kα ↦
1

2
~ΓðαÞ ð3:19Þ

for all real α provides a representation of KðE10Þ, when
extended consistently by commutators. For consistency of
this representation with (3.10) the sign in (3.17) is crucial.
This representation has a large kernel; for instance, for null
roots δ one has krδ ↦ 0, and for timelike imaginary roots all
elements of the corresponding root space either vanish or
are represented by the same element of the Clifford algebra.
The quotient algebra of KðE10Þ by the kernel is isomorphic
to soð32Þ [2]. We will refer to this representation of KðE10Þ
as the Dirac-spinor representation, or just “Dirac represen-
tation.” (This type of representation can be straightfor-
wardly generalized to other simply laced Kac-Moody
algebras and also to arbitrary Kac-Moody algebras [25].)
Because (3.19) works for all real roots, the comparison

of (3.9) with (3.18) shows that, for real roots α and β,

cα;β ¼ −~εα;β ð3:20Þ

whenever αþ β or α − β is also a real root. This is
furthermore consistent with the fact that for real α and β
only one of the terms on the r.h.s. of (3.9) can be nonzero.
The minus sign in the above relation arises because below
we will act on the components of the spinor rather than on
the basis vectors.
While the Dirac representation corresponds to the super-

symmetry transformation parameter, the vector spinor rep-
resentation derives from the D ¼ 11 gravitino and is “less
unfaithful” than theDirac representation. Itwas first obtained
in [2] in terms of an SOð10Þ covariant vector spinorΨa

A with
an SOð10Þ vector index a ¼ 1;…; 10 and spinor indices
A;B;… ¼ 1;…; 32. This vector spinor is directly related via
a fermionic dictionary to the spatial components of the
D ¼ 11 gravitino ψa through [[2] Eq. (5.1)],
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ΨaðtÞ ¼ g1=4ψaðt;x0Þ; ð3:21Þ

where g ¼ detðgmnÞ is the determinant of the spatial part of
the metric. For the time component of the gravitino (the
Lagrange multiplier for the supersymmetry constraint), we
adopt the gauge ψ0 ¼ Γ0Γaψa, as in [2].
For the present purposes it is, however, advantageous to

switch to a different description of the vector spinor in
terms of fermions ϕa which are related to the SOð10Þ
covariant vector spinor Ψa of [2] above by the following
crucial redefinition [23]:

ϕa ¼ ΓaΨa ðno sum on aÞ: ð3:22Þ
This relation clearly breaks SOð10Þ covariance, but has an
important advantage: in this way the Lorentz group SOð10Þ
gets replaced by the SOð1; 9Þ symmetry acting on the space
of diagonal scale factors fqag, which is also the invariance
group of the DeWitt metric Gab. It is for this reason that we
adopt a different font (a; b;…), as we already did in [24];
the latter indices are then covariant under the (Lorentzian)
invariance group of the DeWitt metricGab. We will also use
the notation

ϕðαÞ≡ αaϕ
a: ð3:23Þ

Like the Dirac representation the vector-spinor representa-
tion, now modeled by spinors ϕa

A, is obviously finite
dimensional (we will often suppress explicitly writing
out the spinor indices). The vector spinor ϕa

A satisfies
the canonical (Dirac) brackets [2,23],

fΨa
A;Ψ

b
Bg ¼ δabδAB −

1

9
ðΓaΓbÞAB ⇒ fϕa

A;ϕ
b
Bg ¼ GabδAB

ð3:24Þ

[recall the definition of Gab in (3.5)]. A canonical repre-
sentation ofKðE10Þ is then obtained by defining for any real
root α

kα ¼ XabðαÞϕa ~ΓðαÞϕb;

Xab ≡ XabðαÞ ¼ −
1

2
αaαb þ

1

4
Gab; ð3:25Þ

and this construction yields an unfaithful representation of
KðE10Þ [24]. Note that we again have to employ the ~Γ
matrices from (3.17) in order to extend this definition to
both positive and negative real roots. We also note that the
unfaithful spinor representation can be used to deduce
partial information about the unknown structure constants
of KðE10Þ, and thus E10.
With the bosonic dictionary (3.3) and the fermionic

dictionary (3.21) one can now convert any supergravity
expression into the E10 variables PðlÞ and Ψa. With the
relations (3.7) and (3.22) we can then rewrite in the next
step everything into Pα and ϕa variables. This is the

procedure we now apply to the supersymmetry constraint
of D ¼ 11 supergravity.

C. Supersymmetry constraint

In terms of the original canonical variables of D ¼ 11
supergravity [12], the canonical supersymmetry constraint
is given by [[2] Eq. (3.12)]

~S ¼ Γab

�
∂aψb þ

1

4
ωacdΓcdψb þ ωabcψc þ

1

2
ωac0ΓcΓ0ψb

�

þ 1

4
F0abcΓ0Γabψc þ 1

48
FabcdΓabcdeψe; ð3:26Þ

where ωABC are the components of the D ¼ 11 spin
connection and FABCD the components of the four form
(with flat indices A;B;… ¼ 0; 1;…; 10). Using the dic-
tionaries (3.3) and (3.21) one can rewrite this expression in
terms of E10 coset variables. The translation between the
coset model andD ¼ 11 supergravity furthermore involves
neglecting spatial gradients ∂aψb on the fermions, terms of
the form ∂ag ∝ ωbba, and all spatial gradients of second or
higher order on the bosonic fields. It was then shown in [[2]
Eq. (5.14)] that the supersymmetry constraint can be
reexpressed in terms of the coset quantities PðlÞ and in
an SOð10Þ covariant manner as

S ¼ ðPð0Þ
ab Γa − Pð0Þ

cc ΓbÞΨb þ 1

2
Pð1Þ
abcΓabΨc

þ 1

5!
Pð2Þ
abcdefΓabcdeΨf

þ 1

6!

�
Pð3Þ
ajac1���c7Γ

c1���c6Ψc7 −
1

28
Pð3Þ
ajc1���c8Γ

c1���c8Ψa

�
:

ð3:27Þ

Compared to [2], we have rescaled the supersymmetry
constraint by an overall factor of 2, and we also recall the
normalization changes that we explained in footnote 7.
The notation S in place of ~S of (3.26) indicates that we

have rescaled ~S and multiplied it by Γ0. In this SOð10Þ
covariant form, repeated indices are summed over and
indices are raised and lowered with the Euclidean metric
δab. Wewill now rewrite this expression once more, in order
to bring it into a form that conforms more closely with the
newvariables introduced in the foregoing section. A key fact
here is that by so doing we will give up manifest spatial
Lorentz covariance and trade it for the Lorentzian SOð1; 9Þ
symmetry on the space of scale factors exhibited above. In
otherwords, the simplest formof the constraint is attained by
trading a space-time symmetry for a symmetry in (a
truncated version of) DeWitt superspace.
To convert the expression (3.27) to the E10 covariant

notation above, we change fermionic variables according to
(3.22) and analyze the various terms. For the contributions
from l ¼ 0; 1; 2, and now writing out the sums, we find
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X
a

Pð0Þ
aa ΓaΨa −

X
c

Pð0Þ
cc

X
a

ΓaΨa ¼ Gabπ
aϕb;

X
a<b

Pð0Þ
ab ΓaΨb þ

X
a>b

Pð0Þ
ab ΓaΨb ¼

X
a<b

Pð0Þ
ab Γabðϕb − ϕaÞ;

X
a;b;c

Pð1Þ
abcΓabΨc ¼ 2

X
a<b<c

Pð1Þ
abcΓabcðϕa þ ϕb þ ϕcÞ;

X
a;b;c;d;e;f

Pð2Þ
abcdefΓabcdeΨf ¼ 5!

X
a<b<c<d<e<f

Pð2Þ
abcdefΓabcdefðϕa þ � � � þ ϕfÞ; ð3:28Þ

where we identified πa ¼ Pð0Þ
aa . We now see that the expressions on the r.h.s. are already in the desired form; for instance,

X
a<b<c

Pð1Þ
abcΓabcðϕa þ ϕb þ ϕcÞ≡X

αabc

PαabcΓðαabcÞϕðαabcÞ

¼ 1

2

X
lðαÞ¼�1

Pα
~ΓðαÞϕðαÞ; ð3:29Þ

where the middle sum on the r.h.s. runs over all level l ¼ 1 roots αabc (which are positive), while the last sum includes
positive and negative roots. The level l ¼ 0; 2 contributions work in an analogous manner.
At level l ¼ 3 we encounter not only real roots, but for the first time also null roots. To see this distinction one has to

separately analyze those terms in Pð3Þ
ajc1���c8 for which the index a coincides with one of the ci (yielding real roots), and those

terms for which all indices are different, i.e. a∉fc1;…; c8g (yielding null roots). In order to analyze these terms we thus
have to split up the various sums. We start with

X
a;c1;…;c7

Pð3Þ
ajac1���c7Γ

c1���c6Ψc7 ≡ X
c1;…;c7

X
a≠ci

Pð3Þ
ajac1���c7Γ

½c1���c6Ψc7�

¼ 6!
X

c1<���<c7

X
a≠ci

Pð3Þ
ajac1���c7Γ

c1���c7ðϕc1 þ � � � þ ϕc7Þ; ð3:30Þ

where the ci have been ordered in the second expression. The other contribution to the supersymmetry constraint (3.27)
becomes

−
1

28

X
a

X
c1;…;c8

Pð3Þ
ajc1���c8Γ

c1���c8Ψa ¼ −2 × 6!
X
a

X
c1<���<c8

Pð3Þ
ajc1���c8Γ

c1���c8Ψa

¼ 2 × 6!
X

c1<���<c7

X
a≠ci

Pð3Þ
ajac1���c7Γ

c1���c7ϕa − 2 × 6!
X

c1<���<c8

X
a≠ci

Pð3Þ
ajc1���c8Γ

ac1���c8ϕa: ð3:31Þ

Combining the two parts one finds

1

6!

�
Pð3Þ
ajac1���c7Γ

c1���c6Ψc7 −
1

28
Pð3Þ
ajc1���c8Γ

c1���c8Ψa

�

¼
X

c1<���<c7

X
a≠ci

Pð3Þ
ajac1���c7Γ

c1���c7ð2ϕa þ ϕc1 þ � � � þ ϕc7Þ − 2
X

c1<���<c8

X
a≠ci

Pð3Þ
ajc1���c8Γ

ac1���c8ϕa: ð3:32Þ

The first term is exactly the contribution from the 360 (gravitational) real roots on level l ¼ 3, viz.

α ¼ ð2111111100Þ and permutations; ð3:33Þ

where the root shown is associated with the component Pð3Þ
1j12345678. The normalization is different from the one used

previously since the level l ¼ 3 generators were normalized to 9 rather than 1 in [2]; cf. also footnote 7. The second term is
a sum over the (gravitational) null roots
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δ ¼ ð1111111110Þ and permutations; ð3:34Þ

where the first root is now associated with the component

Pð3Þ
1j23456789. Note that the constraint as written above is

overcounting them since there are
�
10

8

�
× 2 ¼ 90 instead

of the required 80. The reason is a new type of gauge
invariance related to the irreducibility of the l ¼ 3 repre-
sentation and that will be discussed in more detail in
Sec. III D.
Let us summarize: altogether, the rewriting of the

supersymmetry constraint (3.27) so far has led to the
following expression up to and including all roots of l ≤ 3:

S ¼ π · ϕþ
X
α2¼2

l¼0;α>0

Pα
~ΓðαÞϕðαÞ þ

X
α2¼2
l¼1

Pα
~ΓðαÞϕðαÞ

þ
X
α2¼2
l¼2

Pα
~ΓðαÞϕðαÞ þ

X
α2¼2
l¼3

Pα
~ΓðαÞϕðαÞ

þ
X
δ2¼0
l¼3

X8
r¼1

Pr
δ
~ΓðδÞϕðϵrÞ; ð3:35Þ

where we have replaced Γ by ~Γ to underline that the sum
can also be extended to run over negative roots as in (3.29).
The “polarization vectors” ϵr appearing for the null roots
will be discussed in detail in the next section.

D. Null roots and gauge equivalences

We now return to the counting issue mentioned after
(3.34). The association of a particular index set
ða1c1 � � � c8Þ with all indices different with a null root
component Pð3Þ

a1jc1���c8 is subject to the irreducibility
constraint (Young symmetry)

Pð3Þ
½a1jc1���c8� ¼ 0: ð3:36Þ

This provides one linear relation between a priori nine
different ways of distributing the nine indices on the hook
tableau, bringing down the number of independent com-
ponents to eight, in agreement with the multiplicity of null
roots in E10. Let us discuss in more detail how this is
implemented in the supersymmetry constraint.
Gauge fixed form: To see this in more detail let us pick

the particular null root corresponding to the indices
fa; c1;…; c8g ¼ f1;…; 9g. This root has contributions
proportional to ΓðδÞ through (reordering some of the
indices)

−2ðP1j2���9ϕ1 þ P2j3���91ϕ2 þ � � � þ P9j1���8ϕ9Þ: ð3:37Þ

Here, one could now trade the first term for a combination
of the other terms by virtue of (3.36). This leads to

−2ðP2j3���91ðϕ2 − ϕ1Þ þ � � � þ P9j1���8ðϕ9 − ϕ1ÞÞ; ð3:38Þ

that is, it can be written in the form

X8
r¼1

Pr
δΓðδÞϕðϵrÞ ð3:39Þ

with

P1
δ ¼ P2j3…91;…; P8

δ ¼ P9j1���8 ð3:40Þ

and polarization vectors

ϵ1 ¼ ð2 − 200000000Þ;…; ϵ8 ¼ ð20000000 − 20Þ:
ð3:41Þ

These polarization vectors are orthogonal to δ (as required)
and correspond to positive l ¼ 0 roots associated with
generators K1

rþ1 (or their negatives).
Gauge unfixed form: We can avoid choosing a particular

set of polarization vectors by instead letting the “multi-
plicity sum” run over an enlarged set

X9
r¼1

Pr
δΓðδÞϕðϵrÞ: ð3:42Þ

Here, Pr
δ denote the nine index arrangements and ϵr are

nine independent polarization vectors that are orthogonal to
δ. Shifting ϵr → ϵr þ δ leads to

X9
r¼1

Pr
δΓðδÞϕðϵr þ δÞ ¼

X9
r¼1

Pr
δΓðδÞϕðϵrÞ þ

X9
r¼1

Pr
δΓðδÞϕðδÞ

¼
X9
r¼1

Pr
δΓðδÞϕðϵrÞ; ð3:43Þ

since
P

9
r¼1 P

r
δ ¼ 0 by virtue of (3.36). Therefore, we have

a gauge invariance in the expression that we could use to fix
the gauge in the way we have done above. This gauge
invariance no longer “lives” in ordinary space time, but
rather in the DeWitt superspace of (diagonal) metrics.

IV. PROPERTIES OF SUPERSYMMETRY
CONSTRAINT

Having rewritten the supersymmetry constraint in terms
of KðE10Þ variables we will now reinvestigate the canonical
algebra of supersymmetry constraints and its KðE10Þ
covariance. As for the algebra we will recover the pre-
viously derived results according to which the canonical
constraints of D ¼ 11 supergravity in the appropriate
truncation are all associated with null roots of E10. As
for the transformation properties of the superconstraint, we
will exhibit its noncovariance under the full KðE10Þ—a
clear indication that the present construction is incomplete.
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A. Supersymmetry constraint algebra

The above calculations led to the following expression
for the supersymmetry constraint:

SA ¼ πaϕ
a
A þ

X
α2¼2

l≤3;α>0

PαðΓðαÞϕðαÞÞA þ
X
δ2¼0
l¼3

Pr
δðΓðδÞϕðϵrÞÞA

ð4:1Þ
[recall that ϕðαÞA ≡ αaϕ

a
A]. As shown above, the terms

written out in the above formula agree precisely with the
supersymmetry constraint derived from supergravity by
dropping terms containing spatial gradients as well as cubic
terms in the fermions. In other words, apart from these
omitted contributions, the full content of the supersym-
metry constraint is captured by the l ≤ 3 sector of the E10

model with fermions. However, from this restriction it is
already clear that this expression cannot be the whole story,
and we will make this point more explicit in the following
section by showing that, contrary to first expectations, S
does not transform in the Dirac representation, nor in any
other known representation of KðE10Þ.
Nevertheless, under the canonical brackets, the super-

symmetry constraint in the above form should yield the
Hamiltonian and all other supergravity constraints in the
gradient truncation (and ignoring higher order fermionic
terms). Schematically, we see that

fSA;SBg ¼ 2HδAB þ
X
δ2¼0

CðδÞΓABðδÞ þ � � � : ð4:2Þ

Here, we have introduced the calligraphic letter H for the
“Hamiltonian” arising from the commutator of two super-
symmetry constraints, to distinguish it notationally from
the coset HamiltonianH discussed in the previous sections,
since it is not clear a priori whether the two agree. Indeed,
we will explain below that they do differ.
The anticommutator (4.2) contains many terms, but let us

first concentrate on the ones containing no fermions (the
ones bilinear in the fermions would also receive contribu-
tions from cubic fermionic terms, which are not included in
the above formula for S). Here we use [for roots α and β
that are real and hence have antisymmetric ΓðαÞ and ΓðβÞ]

fπ · ϕA; π · ϕBg ¼ Gabπ
aπbδAB; ð4:3aÞ

fπ · ϕA; PαðΓðαÞϕðαÞÞBg ¼ ðα · πÞPαΓðαÞBA þ � � � ;
ð4:3bÞ

fπ · ϕA; Pr
δðΓðδÞϕðεrÞÞBg ¼ ðεr · πÞPr

δΓðδÞBA þ � � � ;
ð4:3cÞ

fPαðΓðαÞϕðαÞÞA; PβðΓðβÞϕðβÞÞBg
¼ −ðα · βÞεα;βPαPβΓðαþ βÞAB þ � � � ; ð4:3dÞ

where dots stand for terms quadratic in the fermions. Now
the anticommutator (4.2) is symmetric in A;B; hence the
terms in the second line do not contribute because ΓðαÞ is
antisymmetric for real roots α.8 Consequently, the result
will then contain only terms proportional to δAB (the
Hamiltonian), and terms where αþ β is lightlike (the
constraints), and more generally, for which ðαþ βÞ2 is a
multiple of four. This is indeed the structure displayed
in (4.2).
Let us first look at the Hamiltonian. The first kind of

contribution will come from those terms with β ¼ α; in this
case we use εα;α ¼ −1 to get

−ðα · αÞεα;αPαPαΓð2αÞAB ¼ þ2PαPαδAB; ð4:4Þ

which is positive, and agrees with what we get from the
E10 Casimir (see below). For the second kind we have
α ≠ β, but such that ðαþ βÞ has only even components,
such that again Γðαþ βÞ ¼ 1; for example αþ β ¼ 2δ ¼
ð22222 22220Þ with

α ¼ ð21111 11100Þ and β ¼ ð01111 11120Þ:

In this case we still have εα;β ¼ −1 but α · β ¼ −2; hence

−ðα · βÞεα;βPαPβΓðαþ βÞAB ¼ −2PαPβδAB: ð4:5Þ

As one can easily check these are indeed associated with
the negative definite terms in the bosonic part of
the supergravity Hamiltonian. To see this more explicitly,
we recall from [[2] Eq. (6.6)] the SOð10Þ covariant
expressions for H arising from the supersymmetry com-
mutator,

H ¼ 1

2
Pð0Þ
ab P

ð0Þ
ab −

1

2
Pð0Þ
aa P

ð0Þ
bb þ 1

3!
Pð1Þ
abcP

ð1Þ
abc

þ 1

6!
Pð2Þ
a1���a6P

ð2Þ
a1���a6

þ 2

8!
ðPð3Þ

a0ja1���a8P
ð3Þ
a0ja1���a8 − 4Pð3Þ

bjba1���a7P
ð3Þ
cjca1���a7Þ

¼ 1

2
πaGabπb þ

X
α>0

α2¼2;l≤3

PαPα −
X

α;β>0;αþβ¼2δ
α2¼β2¼2;l¼3

PαPβ ð4:6Þ

(see footnote 7 for the normalizations of the level-2 and
level-3 terms). Writing out the sums in the last two terms
we get exactly the two contributions (4.4) and (4.5) (plus
the contribution from the null root). This result is to be
contrasted with the coset Hamiltonian H

8This is in agreement with the structure of the diagonal
components πa ¼ Pð0Þ

aa from the constraint Cð3Þ
½a1���a9� ¼

Pð0Þ
ca1P

ð3Þ
cja2���a9 þ � � � discussed in [26,27] that only couple to the

null root components Pr
δ as determined by (4.3c).
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H ¼ 1

2
hPjPi ¼ 1

2
Pð0Þ
ab P

ð0Þ
ab −

1

2
Pð0Þ
aa P

ð0Þ
bb þ 1

3!
Pð1Þ
abcP

ð1Þ
abc

þ 1

6!
Pð2Þ
a1���a6P

ð2Þ
a1���a6

þ 1

8!
Pð3Þ
a0ja1���a8P

ð3Þ
a0ja1���a8 þ � � �

¼ 1

2
πaGabπb þ

X
α>0

α2¼2;l≤3

PαPα þ � � � ; ð4:7Þ

where the dots stand for higher level real roots, as well as
imaginary roots. In SOð10Þ form, this latter expression
differs from the previous one not only by the appearance of
the negative l ¼ 3 term in (4.6) but also by the factor in
front of the l ¼ 3 term with the correct sign. However,
when writing out the Hamiltonian (4.6) in terms of the
KðE10Þ variables in a manner completely analogous to the
derivation in the foregoing section, we see that the terms at
level l ¼ 3 are in one-to-one correspondence with the two
types of terms exhibited in (4.4) and (4.5).9 We have thus
isolated the source of the disagreement between the
canonical Hamiltonian and the E10 Casimir that appears
from level l ¼ 3 onwards, in terms of the KðE10Þ covariant
looking supersymmetry constraint (4.1). This disagreement
is seen not only in the negativity, but also in the fact that the
E10 Casimir does not pair Pα with Pβ for β ≠ �α. Clearly
the source of the trouble resides in the unfaithfulness of the
KðE10Þ representation in terms of the ΓðαÞmatrices that we
are dealing with here, and seems to require a generalization
of the usual Clifford algebra. We also see that these troubles
multiply when we extend the sum from roots with l ≤ 3 to
all real roots, as we will then have many more contributions
proportional to δAB, which would ruin the agreement with
the supergravity Hamiltonian found above.
The bosonic constraints identified in [2] and associated

there with lightlike roots are also recovered from those
combinations where αþ β is a null root; as both α and β
can go up to level l ¼ 3, the resulting null roots go up to
level l ¼ 6, in agreement with [2]. So the constraints are
generically of the form

CðδÞ ¼
X
r

εr · Pr
δ þ

X
αþβ¼δ

PαPβ þ � � � ; ð4:8Þ

which agrees exactly with what was found before in [2].
Note, however, that starting from the supersymmetry
constraint (4.1), the first term on the r.h.s. only appears
for the null root at level l ¼ 3, whereas this term is missing
for the higher level null roots, because the supersymmetry
constraint only goes up to l ¼ 3. By contrast, the null roots
appearing in the combinations αþ β can go up to l ¼ 6.
This is a clear signal of the incompleteness of the
supersymmetry constraint (4.1) as derived from super-
gravity. We note also that there is only one constraint
per null root δ, whereas there are eight root generators Er

δ.
We note that the fermion ϕa appears as a matter fermion

in the one-dimensional model even though it transforms in
a vector-spinor representation and descends from the D ¼
11 gravitino. This can for instance be seen by considering
the transformation of ϕa under S of (3.35) which does not
contain any derivatives of the transformation parameter
(these would come from Daϕ

a terms that were truncated
away in the derivation from supergravity). The one-
dimensional gravitino that is the supersymmetry partner
of the one-dimensional lapse function was set to zero.

B. (In)compatibility of supersymmetry and KðE10Þ
We can now also investigate the transformation properties

of the constraint S under KðE10Þ. Because S is “built” out of
objects that do transform properly under KðE10Þ, namely the
coset quantities Pα on the one hand, and the unfaithful vector
spinor representation ϕa on the other, one would naively
expect this constraint to transform in the Dirac representa-
tion, that is, δαS ¼ 1

2
ΓðαÞS. However, there appears a basic

clash: as we will now show very explicitly, S fails to
transform properly under KðE10Þ. There are two reasons for
this, namely first the presence of imaginary roots in E10 and
KðE10Þ (and thus the fact that both algebras are infinite
dimensional), and second the unfaithfulness of the vector-
spinor representation. For the variation of S under a KðE10Þ
transformation generated by kα we use the formulas

δαπ
a ¼ −2αaPα;

δαPβ ¼ δα;βαaπ
a þ cβ−α;αPβ−α − cαþβ;−αPαþβ;

δαϕ
a ¼ 1

2
~ΓðαÞϕa − αa ~ΓðαÞϕðαÞ; ð4:9Þ

restricting to positive real α; β for simplicity. For the first two
lines we have evaluated ½P; kα� and projected onto the Ha
and Eβ þ E−β components.10 We emphasize that it is not

9We stress that the coefficients of the PαPα terms for real roots
do agree in the two expressions. For l ¼ 3, this might seem
surprising in view of the different coefficients in the SOð10Þ
covariant expressions. A simple way of seeing that they agree
after the rewriting in KðE10Þ variables is to look at a fixed
particular real root, say Pα1j12345678 ≡ Pð3Þ

1j12345678. In (4.6) this term
has contributions from both expressions via 2

8!
ð8! − 4 × 7!Þ ¼ 1,

and in (4.7) one similarly has 1
8!
× 8! ¼ 1. This example illustrates

well how the KðE10Þ properties can be obscured by insisting on
SOð10Þ invariant expressions.

10For other roots the first two lines would generalize to

δrαπ
a ¼ −2αaPr

α;

δrαPs
β ¼ δrsδα;βαaπ

a þ
X
t

crstβ−α;αP
t
β−α −

X
t

crstαþβ;−αP
t
αþβ;

but no general formula is available for δrαϕ
a. A conjectural

formula is given in Appendix A.
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known whether the Pα, when supplemented by the higher
root partners Pr

α, transform in an irreducible representation
of KðE10Þ, or whether this representation is reducible under
KðE10Þ. Substituting these formulas into the variation of S
some further calculation leads to

δαS ¼ 1

2
~ΓðαÞS þ 1

2

X
β>0

Pβ½ ~ΓðβÞ; ~ΓðαÞ�ϕðβÞ

þ
X

β>0;β≠α
½−ðα · βÞPβ

~ΓðβÞ ~ΓðαÞϕðαÞ

þ cβ−α;αPβ−α ~ΓðβÞϕðβÞ − cαþβ;−αPαþβ
~ΓðβÞϕðβÞ�:

ð4:10Þ
The result would thus have the desired structure if we could
show that all terms on the r.h.s. cancel except for the first.
However, as we will now demonstrate by explicit compu-
tation this is the case only for finite dimensional K, but no
longer for KðE10Þ. To do so we first rewrite the last term in
brackets as

−
X
β>α

cβ;−αPβ
~Γðβ − αÞϕðβ − αÞ ð4:11Þ

and shift the sums in the second term such a way that onlyPβ

with β > 0 appear. So in the second term in brackets above
we consider the partial sum11

X
0<β<α

cβ−α;αPβ−α ~ΓðβÞϕðβÞ

¼
X

0<β<α

c−β;αP−β ~Γð−β þ αÞϕð−β þ αÞ: ð4:12Þ

Next, using P−β ¼ Pβ and ϕð−β þ αÞ ¼ −ϕðβ − αÞ as well
as (2.3) and not forgetting the extra minus sign from the
definition of ~Γ in (3.17) for negative roots this term becomes
equal to

−
X

0<β<α

cβ;−α ~Γðβ − αÞϕðβ − αÞ ð4:13Þ

and therefore combines with the above term to give a full
sum over β > 0 [because ϕð0Þ ¼ 0, there is no contribution
for β ¼ α]. Finally we obtain

δαS ¼ 1

2
~ΓðαÞS þ 1

2

X
β>0

Pβ½ ~ΓðβÞ; ~ΓðαÞ�ϕðβÞ

þ
X

β>0;β≠α
½−ðα · βÞPβ

~ΓðβÞ ~ΓðαÞϕðαÞ

þ cβ;αPβ
~Γðαþ βÞϕðαþ βÞ

− cβ;−αPβ
~Γðβ − αÞϕðβ − αÞ�; ð4:14Þ

where the sign in (3.17) is again essential. Let us now inspect
the different terms here: using ϕðαþ βÞ ¼ ϕðαÞ þ ϕðβÞ the
terms containing ϕðαÞ become

−
X

β>0;β≠α
Pβfðα · βÞ ~ΓðβÞ ~ΓðαÞ − cβ;α ~Γðαþ βÞ

− cβ;−α ~Γðβ − αÞgϕðαÞ: ð4:15Þ

The expression inside brackets does indeed cancel if α and β
are real roots such that ðα� βÞ are also real roots (in which
case α · β ¼ ∓1); for α · β ¼ 0 all terms vanish. This covers
all possible cases for GLðnÞ, but for indefinite G there are
infinitely many more possibilities because α · β can assume
any value, and then the extra terms no longer obviously
cancel. We note that there is some room for modifications of
the argument coming from the values of cα;β when αþ β is
imaginary and also from terms associated with imaginary
roots in the ansatz (4.2). The calculation in [2] shows that the
(truncated) expression (3.35), involving some terms from
null roots, does not transform covariantly.
For the terms containing ϕðβÞ the argument is similar; in

this case we end up with

1

2

X
β>0;β≠α

Pβf½ ~ΓðβÞ; ~ΓðαÞ� þ 2cβ;α ~Γðαþ βÞ

− 2cβ;−α ~Γðβ − αÞgϕðβÞ ð4:16Þ

and a case by case analysis analogous to the one above
shows again that these terms cancel under the same
conditions as before. To sum up, the extra terms do cancel
for finite-dimensional G, when we need only consider the
cases α · β ¼ �1 or ¼ 0; in this case the supersymmetry
constraint indeed transforms properly under K. This need
no longer be true for infinite-dimensionalG, where we have
only insufficient knowledge of the structure constants cα;β.
Let us also emphasize that this problem arises already at
linear order in the fermions, so the addition of cubic or even
higher order fermion terms cannot remedy this problem.

V. OUTLOOK

In this section, we discuss various possible extensions of
our results. One pressing challenge is the correct treatment
of the full E10 algebra beyond level l ¼ 3 when trying to
construct a KðE10Þ covariant supersymmetry constraint.
This will be discussed in Sec. VA. Irrespective of the
construction of a supersymmetric model one can consider
the spinning particle of [2] and how the fermionic degrees
of freedom influence the canonical structures discussed in
Sec. II. We offer some comments on this in Sec. V B below.

A. Tentative generalization beyond l ¼ 3

The expression (4.1) is very suggestive of a generaliza-
tion beyond level l ¼ 3, so we are tempted to propose

11The inequalities in the sums are taken to imply that the
corresponding elements are roots of the algebra (as an ordering
cannot be generally defined for arbitrary pairs of roots α and β).

KLEINSCHMIDT, NICOLAI, AND CHIDAMBARAM PHYSICAL REVIEW D 91, 085039 (2015)

085039-16



SA ¼ πaϕ
a
A þ

X
α2¼2
l≤3

PαðΓðαÞϕðαÞÞA

þ
X
δ2¼0
l¼3

Pr
δðΓðδÞϕðϵrÞÞA þ � � � ; ð5:1Þ

where the dots could stand for (at least) three kinds of
additional terms, namely
(1) additional terms linear in fermions associated with

higher (l > 3) level roots, coming either from real or
imaginary roots;

(2) additional terms cubic in fermions;
(3) terms involving new “higher spin” or other unfaith-

ful realizations of KðE10Þ.
In the following, we will concentrate only on the first
extension. This already represents an extension beyond the
truncated supergravity constraints. We note that the argu-
ments of Sec. IV B show that such a generalization will not
be KðE10Þ covariant. Nevertheless we can find some
constraints on the possible form by demanding at least
Weyl invariance of the known terms.
Since the Weyl groupWðE10Þ of E10 can be embedded in

KðE10Þ it would seem like a minimal requirement to extend
the expression (4.1) by complete Weyl orbits of roots. As
the real roots of E10 form a single Weyl orbit (E10 is simply
laced), this would lead to the following expression for SA:

SA ¼ π · ϕA þ 1

2

X
α2¼2

Pαð ~ΓðαÞϕðαÞÞA þ � � � ;

≡ π · ϕA þ 1

2

X
w∈WðE10Þ

Pwðα0Þð ~Γðwðα0ÞÞϕðwðα0ÞÞÞA

þ � � � ; ð5:2Þ

where the dots now indicate terms associated with imagi-
nary roots. In the second line α0 represents an arbitrary real
root. We see again that the minus sign in (3.15) is essential;
otherwise the contributions from positive and negative
roots would cancel in the sum. As we showed in
Sec. IV B, this expression containing only the real roots
is incompatible with KðE10Þ. The expression is, however,
compatible with the E10 Weyl group. But the anticommu-
tator would now give rise to an infinity of new terms that do
not seem to make sense.
We know from supergravity that we require also con-

tributions from null imaginary roots (α2 ¼ 0), and these
would need to be covariantized under the Weyl group as
well. We will not investigate the effect of this covarianti-
zation here since already the real roots are problematic. A
uniform treatment of all E10 roots requires also the
inclusion of timelike imaginary roots (α2 < 0). These come
with higher multiplicity, and their addition to SA might
necessitate higher spin realizations of the type constructed
in [24], so as to be able to contract the relevant polarization
tensors with the fermions.

B. Adding fermions

We now consider some aspects of the inclusion of
fermionic degrees of freedom (at lowest order). Let Ψ be
a spinorial representation Ψ of the compact subgroup and
consider the Lagrangian

L ¼ LB þ LF ¼ 1

2
hPjPi − i

2
hΨjDΨi; ð5:3Þ

where DΨ is the K-covariant derivative with the composite
connection Q constructed out of V. In triangular gauge one
has Qα ¼ Pα for all positive root components.
We can write out the covariant derivative in the vector-

spinor representation for α > 0 (real or imaginary) as
follows:

LF ¼ −
i
2
hΨjDΨi ¼ −

i
2
Gabϕ

a∂ϕb þ i
2

X
α>0

XmultðαÞ

r¼1

Pr
αjrα;

ð5:4Þ

where jrα denotes the fermion bilinear constructed out of
the action of the krα in the vector-spinor representation
and then contracted in the invariant bilinear form:
jrα ¼ Gabϕ

aδrαϕ
b ¼ Gabϕ

aðkrα · ϕbÞ ¼ −2Jrα. We will sup-
press the multiplicity index r in our schematic discussion
below in order to avoid cluttering the expressions.
The canonical fermionic momentum from (5.3) is

ϖa ¼
∂LL
∂∂ϕa ¼

i
2
Gabϕ

b; ð5:5Þ

where we are using left Grassmann derivatives. The
momentum satisfies the Poisson bracket

fϕa;ϖbg ¼ −1: ð5:6Þ

The corresponding (classical) Dirac bracket is therefore

fϕa;ϕbg ¼ iGab: ð5:7Þ

Above we were using this bracket without the factor of i by
thinking of the ϕa as quantum operators. The additional i
here implies that at the classical level

fjα; jβg ¼ 2iðcα;βjαþβ − cα;−βjα−βÞ: ð5:8Þ

Let us denote the bosonic conjugate momenta in the
theory with fermions by Π̂. Then we get

π̂a ¼
∂L
∂∂qa ¼ Gab∂qb ¼ πa; ð5:9Þ

Π̂α ¼
∂L
∂∂Aα

¼
X
β>0

�
2Pβ þ

i
2
jβ

� ∂Pβ

∂∂Aα
: ð5:10Þ
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We note that the momenta conjugate to the Cartan sub-
algebra variables qa do not change (since these do not
couple to the fermions) and that the matrix ∂Pβ

∂∂Aα
relating the

conjugate momenta to the Pβ is identical to the purely
bosonic theory. This means that the inversion proceeds in
exactly the same way as in (2.19), leading to

Pα þ
i
4
jα ¼ e−q

aαa

�
Π̂α −

1

2

X
β

cβ;αAβΠ̂αþβ þ � � �
�
: ð5:11Þ

We now introduce the notation

P̂α ≡ Pα þ
i
4
jα: ð5:12Þ

Since Π̂α and Aα are conjugate variables as before, we
deduce that we have the following canonical commutation
relations:

fP̂α; P̂βg ¼ cα;βP̂αþβ;

fπ̂a; P̂αg ¼ αaP̂α: ð5:13Þ
The new “supercovariant” velocity components P̂α there-
fore satisfy the same Borel algebra as the Pα in the purely
bosonic theory.12 In terms of the original velocities, and in
view of (5.8), one therefore has

fPα; Pβg ¼ cα;βP̂αþβ −
i
8
cα;βjαþβ þ

i
8
cα;−βjα−β;

fπa; Pαg ¼ αaP̂α: ð5:14Þ
The appearance of P̂α on the r.h.s. in these equations is
important. For deriving this, we used that P̂α and jα
commute whence Pα and jα satisfy

fPα; jβg ¼
�
−
i
4
jα; jβ

	
¼ 1

2
cα;βjαþβ −

1

2
cα;−βjα−β: ð5:15Þ

Let us verify the consistency of the relation (5.13) and
(5.15) in the equations of motion. In the model (5.3) one
has, on the one hand, the Euler–Lagrange equations

∂Pα ¼ −πaαaPα þ 2
X
β>0

cα;βPβPαþβ −
i
4
ðα · πÞjα

þ i
4

X
β>0

Pβðcα;βjαþβ þ cα;−βjα−βÞ

¼ −ðα · πÞP̂α þ 2
X
β>0

cα;βPβP̂αþβ

−
i
4

X
β>0

Pβðcα;βjαþβ − cα;−βjα−βÞ ð5:16Þ

The Hamiltonian, on the other hand, is (as before)

H ¼ 1

2
hPjPi ¼ 1

2
π̂aGabπ̂b þ

X
α>0

PαPα; ð5:17Þ

in terms of the “old” purely bosonic P.13 The Hamiltonian
equations of motion for Pα are then

∂Pα ¼ fPα; Hg ¼ −πafπa; Pαg þ 2
X
β>0

PβfPα; Pβg

¼ −ðα · πÞP̂α þ 2
X
β>0

cα;βPβP̂αþβ

−
i
4

X
β>0

Pβðcα;βjαþβ − cα;−βjα−βÞ ð5:18Þ

in complete agreement with the Lagrangian equations.

C. Final comments

The underlying problem of the non-KðE10Þ covariance of
the supersymmetry constraint S appears to be the unfaith-
fulness of the spinor representation that was used to
construct S. A full understanding of this issue requires a
more detailed understanding of the representation theory of
KðE10Þ. This involves not only the construction of faithful
fermionic representations but also a study of the properties
of the “coset representation” P and the decomposition of its
tensor products with fermionic representations.
Finding a supersymmetric E10 model might exhibit a

feature similar to one of the hallmarks of superstring theory.
In superstring theory, supersymmetry is implemented only
on the two-dimensional world sheet but the consistency
conditions of the theory imply that there is also supersym-
metry in the target space-time, leading to supergravity at
low energies. It is not inconceivable that a supersymmetric
E10 model on a worldline would similarly induce super-
symmetry in the algebraically generated space-time. The
close connection between the fermionic E10 model on the
worldline and the space-time supergravity equations found
in [2–4] could be viewed as evidence for this idea.
The problem of finding a KðE10Þ covariant supersym-

metry constraint (1.1) can be phrased representation theo-
retically as follows. Both the coset velocity P and the vector
spinor Ψ are honest KðE10Þ representations. Their tensor
product P ⊗ Ψ is also a KðE10Þ representation, and the
question is what the invariant subspaces of this tensor
product are, in particular, if there is a Dirac-spinor
representation S contained in it. To the best of our
knowledge very little is known about these kinds of
questions since KðE10Þ is not a Kac-Moody algebra.

12The terminology “supercovariant” is not fully adequate here
since the fermionic fields ϕa are more properly thought of as
matter fermions rather than gravitino fields. Nevertheless, we will
use the term for brevity.

13That this is true can be seen in the following simple example
involving a derivative coupling. Let L ¼ 1

2
_q2 þ _qj. The con-

jugate momentum is p̂ ¼ _qþ j≡ pþ j, and the Hamiltonian is
H ¼ p̂ _q−L ¼ 1

2
_q2 ¼ 1

2
p2.
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Already the decomposability (or not) of the coset velocity
P itself is an open question. If P was decomposable, this
could have important consequences for the construction of
invariant Lagrangians.
Finally, we note that similar issues already arise for

the affine case [28,29], where KðE10Þ is replaced by the
simpler (but still infinite-dimensional) involutory subgroup
KðE9Þ ⊂ E9. In that case one is dealing with a field theory
in two dimensions, rather than a worldline model, and the
faithfulness of theKðE9Þ representations is ensured on shell
by the additional dependence on the space coordinate and
the differential relations obeyed by the transformation
coefficients. For the off shell theory, however, the existence
and construction of faithful representations remains an
open problem there as well.
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APPENDIX A: THE SECOND QUANTIZED
VECTOR SPINOR FOR IMAGINARY ROOTS

The Dirac-spinor representation is insensitive to the
polarization (i.e., multiplicity) of the imaginary roots but
the more faithful vector-spinor representation can be used
to derive partial information on the structure constants
of KðE10Þ. The more faithful higher-spin realizations of
[24] in principle capture even more information on the
imaginary roots.
In this appendix,we study inmore detail the representation

of the vector spinor that was completely determined by its
values on the real roots by (3.25). For any real root α of E10

we recall that the canonical KðE10Þ generators are given by

kα ¼ XabðαÞϕa ~ΓðαÞϕb; with XabðαÞ ¼ −1

2
αaαb þ

1

4
Gab:

ðA1Þ

We seek to obtain similar general expression for null roots δ,
satisfying δ2 ¼ 0 and timelike root Λ with Λ2 ¼ −2.

1. Null roots δ

All null roots δ of E10 have multiplicity multðδÞ ¼ 8, and
we therefore require the representation of eight generators
krα. To arrive at the expression, we decompose δ ¼ αþ
ðδ − αÞ for a real root α. Then ðδ − αÞ is also real and
δ · α ¼ 0. Employing then the commutator

½kα; kδ−α� ¼ ~εα;δ−αk
ðαÞ
δ ; ðA2Þ

where we have indicated that there are different possibilities
for kðαÞδ . One knows a priori that there are at most eight
independent generators.
Substituting in the explicit expression for the real root

generators (A1) one finds that in the (second quantized)
vector-spinor representation

kðαÞδ ¼ −2α½aδb�ϕa ~ΓðδÞϕb; ðA3Þ

where α · δ ¼ 0. To bring this into a form that brings out the
multiplicity multðδÞ ¼ 8, we note that shifting α → αþ δ
does not change the expression, so that we can also
summarize it by

krδ ¼ ϵr½aδb�ϕ
aΓðδÞϕb; ðA4Þ

where the “polarization vector” ϵr is orthogonal (trans-
verse) to δ in the DeWitt metric and there is also a gauge
invariance ϵr → ϵr þ δ. This leaves eight independent
choices which agrees with the multiplicity of the null
root of E10. Note that the transversality of the polarization
vector is notmanifest in (A4); it is rather a consequence of
the way the generator is constructed from commutators of
real roots.

2. Imaginary roots Λ2 ¼ −2
It is also possible to derive the general form of the Λ2 ¼

−2 generators from commuting two real root generators in
a way similar to above. Let Λ ¼ αþ ðΛ − αÞ with
α2 ¼ ðΛ − αÞ2 ¼ 2, and then α · Λ ¼ −1. We know that

½kα; kβ� ¼ ~εα;βk
ðαÞ
Λ : ðA5Þ

By substituting in the explicit form for the real root
generators one finds

kðαÞΛ ¼ 2YabðαÞϕaΓðΛÞϕb ðA6Þ

with

YabðαÞ ¼ YbaðαÞ ¼ −αðaΛbÞ þ αaαb −
1

4
ΛaΛb þ

1

8
Gab

¼ vðaΛbÞ þ aab ðA7Þ

for

va ¼ −αa −
5

8
Λa; ðA8Þ

aab ¼ αaαb þ
3

8
ΛaΛb þ

1

8
Gab: ðA9Þ

The separation of the ΛðaΛbÞ here was chosen in such a way
that

Λbaba ¼ va ðA10Þ
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and is motivated by vertex operator algebra (VOA) con-
structions. The gauge symmetries of the parametrization
(A7) are

aab → aab þ 2ϵðaΛbÞ; ðA11Þ
va → va − 2ϵa; ðA12Þ

and also leave the above condition Λbaba ¼ va invariant.
The parameter ϵ here is chosen orthogonal to Λ. We also
note that ΛaΛbYab ¼ 19=4 and GabYab ¼ −9=4 are gauge
invariant and constrain the tensor Yab. The count is

55 Components of aab
−9 Components of ϵ such that ϵ · Λ ¼ 0
−2 Norm conditions on Yab
44 Multiplicity of root space

This count does not completely parallel the VOA
construction, and it would be desirable to have an inter-
pretation in terms of Young symmetries similar to the null
case above.

3. Conjectural form for any generator

Similar to the formula for roots satisfying Λ2 ¼ −2 as
above, we can give a tentative form of the action of any
generator krΛ on the vector spinor ϕa for an arbitrary
imaginary root Λ. This form rests on the assumption that
any generator in the root space of Λ can be written as the
commutator of two real root generators, that is,

cα;βk
ðαÞ
Λ ¼ ½kα; kβ� ðA13Þ

for α; β > 0 and real with αþ β ¼ Λ. [We note that there
the second term in the commutation relation (3.9) vanishes
automatically for the configuration chosen here since α − β
is not a root.] The conjecture is that as α and β traverse all
possible decompositions of Λ, their commutators contain a
basis of the root space of Λ. The number of decompositions
of Λ is larger than multðΛÞ, and many of the commutators
will be linearly dependent. What we require is that the
space generated by all possible commutators is equal to the
full root space of Λ:

hkðαÞΛ jα > 0; α2 ¼ 2; ðΛ − αÞ2 ¼ 2i
¼ hkrΛjr ¼ 1;…;multðΛÞi: ðA14Þ

This is a stronger version of a conjecture already contained
[30] which only addressed the decomposition of the
imaginary root vector Λ ¼ αþ β into two real roots. In
all cases that we checked the assumption we are making is
true but we are not aware of a general proof.
Under this assumption, we can find the following formula

for kðαÞΛ in the vector-spinor representation. We have to
distinguish the cases Λ2 ¼ −4k andΛ2 ¼ 2 − 4k for integer
k ≥ 0 because of the (anti-)symmetry of ~ΓðΛÞ. The condition
that α and Λ − α be real implies that α⋅ðΛ − αÞ ¼
1
2
ðΛ2 − 4Þ. Then the calculations are completely analogous

to the two cases described above, leading to

Λ2 ¼ −4k ∶ kðαÞΛ ¼ 2ðk − 1Þα½aΛb�ϕa ~ΓðΛÞϕb; ðA15aÞ

Λ2 ¼ 2 − 4k ∶

kðαÞΛ ¼
�
−2kαðaΛbÞ þ 2kαaαb −

1

2
ΛaΛb þ

1

4
Gab

�
ϕa ~ΓðΛÞϕb:

ðA15bÞ

These expressions were derived under the assumption
that cα;Λ−α ¼ −~εα;Λ−α.

APPENDIX B: SOME MORE EXPLICIT RESULTS
FOR GLð3;RÞ=SOð3Þ

For GLð3;RÞ the coset element is

V ¼ AN ¼

0
B@

eq
1

eq
2

eq
3

1
CA
0
B@

1 N1
~2 N1

~3

1 N2
~3

1

1
CA: ðB1Þ

The notation here is such that an index value with a tilde
refers to a curved (world) index and an index value without
a tilde to a flat (tangent space) direction. The inverse of N is
given by

N−1¼

0
B@
1 N ~1

2 N ~1
3

1 N ~2
3

1

1
CA¼

0
B@
1 −N1

~2 −N1
~3þN1

~2N
2
~3

1 −N2
~3

1

1
CA:

ðB2Þ

With this parametrization it is straightforward to compute
the coset velocity from ∂VV−1,

P ¼

0
B@

P11 P12 P13

P21 P22 P23

P31 P32 P33

1
CA ¼

0
BB@

∂q1 1
2
eq

1−q2∂N1
~2

1
2
eq

1−q3ð∂N1
~3 þ ∂N1

~2N
~2
3Þ

1
2
eq

1−q2∂N1
~2 ∂q2 1

2
eq

2−q3∂N2
~3

1
2
eq

1−q3ð∂N1
~3 þ ∂N1

~2N
~2
3Þ 1

2
eq

2−q3∂N2
~3 ∂q3

1
CCA; ðB3Þ

where, of course, Pab ¼ Pba.
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The bosonic Lagrangian is

L ¼ 1

2
½TrðP2Þ − ðTrPÞ2�

¼ 1

2
Gab∂qa∂qb þ P2

12 þ P2
13 þ P2

23

¼ 1

2
Gab∂qa∂qb þ 1

4
e2q

1−2q2ð∂N1
~2Þ2 þ

1

4
e2q

2−2q3ð∂N2
~3Þ2 þ

1

4
e2q

1−2q3ð∂N1
~3 þ ∂N1

~2N
~2
3Þ2; ðB4Þ

where 1
2
Gab∂qa∂qb ¼ −∂q1∂q2 − ∂q1∂q3 − ∂q2∂q3. The conjugate momenta are

πa ¼ Gab∂qb;
Π~2

1 ¼
∂L

∂∂N1
~2

¼ 1

2
e2q

1−2q2∂N1
~2 −

1

2
e2q

1−2q3N2
~3ð∂N1

~3 þ ∂N1
~2N

~2
3Þ

¼ eq
1−q2P21 þ eq

1−q3N ~2
3P31; ðB5Þ

Π~3
1 ¼

∂L
∂∂N1

~3

¼ 1

2
e2q

1−2q3ð∂N1
~3 þ ∂N1

~2N
~2
3Þ ¼ eq

1−q3P31 ðB6Þ

Π~3
2 ¼

∂L
∂∂N2

~3

¼ 1

2
e2q

2−2q3∂N2
~3 ¼ eq

2−q3P32: ðB7Þ

These relations can be inverted to give ∂qa ¼ Gabπb and

∂N1
~2 ¼ 2e−2q

1þ2q2ðΠ~2
1 þ N2

~3Π
~3
1Þ;

∂N1
~3 ¼ 2e−2q

1þ2q3Π~3
1 þ 2e−2q

1þ2q2N2
~3ðΠ~2

1 þ N2
~3Π

~3
1Þ;

∂N2
~3 ¼ 2e−2q

2þ2q3Π~3
2: ðB8Þ

Equivalently,

P12 ¼ e−q
1þq2ðΠ~2

1 þ N2
~3Π

~3
1Þ;

P23 ¼ e−q
2þq3Π~3

2;

P13 ¼ e−q
1þq3Π~3

1; ðB9Þ

in agreement with the general formula (2.38), up to an overall factor. Let us denote

Pðα12Þ≡ P12; Pðα23Þ≡ P23; Pðα13Þ≡ P13; ðB10Þ

and

α12 ¼ ð1;−1; 0Þ; α13 ¼ ð1; 0;−1Þ; α23 ¼ ð0; 1;−1Þ: ðB11Þ

Then the Hamiltonian is

H ¼ 1

2
πaGabπb þ e−2q

1þ2q2ðΠ~2
1 þ N2

~3Π
~3
1Þ2 þ e−2q

1þ2q3ðΠ~3
1Þ2 þ e−2q

2þ2q3ðΠ~3
2Þ2

¼ 1

2
πaGabπb þ

X
a<b

PðαabÞ2: ðB12Þ

Using the canonical brackets fq; pg ¼ 1 between the conjugate variables we recover the relations already previously
derived (for a < b and any α > 0)
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fπa; πbg ¼ 0;

fπa; PðαÞg ¼ αaPðαÞ;

fPðαabÞ; PðαcdÞg ¼
�
ϵαab;αcdPðαab þ αcdÞ if αab þ αcd is a root;

0 otherwise.
ðB13Þ

The conserved current is

J ¼ V−1PV ¼

0
B@

J ~1
~1 J ~1

~2 J ~1
~3

J ~2
~1 J ~2

~2 J ~2
~3

J ~3
~1 J ~3

~2 J ~3
~3

1
CA ðB14Þ

with

J ~2
~1 ¼ Π~2

1;

J ~3
~1 ¼ Π~3

1;

J ~3
~2 ¼ Π~3

2 þ N1
~2Π

~3
1; ðB15Þ

below the diagonal and the following diagonal and upper triangular components

J ~1
~1 ¼ G1aπa − N1

~2Π
~2
1 − N1

~3Π
~3
1;

J ~2
~2 ¼ G2aπa þ N1

~2Π
~2
1 − N2

~3Π
~3
2;

J ~3
~3 ¼ G3aπa þ N1

~3Π
~3
1 þ N2

~3Π
~3
2;

J ~1
~2 ¼ e−2q

1þ2q2ðΠ~2
1 þ N2

~3Π
~3
1Þ þ N1

~2ðπ ~1 − π ~2 − N1
~3Π

~3
1 þ N2

~3Π
~3
2Þ − N1

~3Π
~3
2 − N1

~2N
1
~2Π

~2
1;

J ~1
~3 ¼ e−2q

1þ2q3Π~3
1 þ e−2q

1þ2q2N2
~3ðΠ~2

1 þ N2
~3Π

~3
1Þ − e−2q

2þ2q3N1
~2Π

~3
2

þ N1
~3ðπ ~1 − π ~3 − N1

~2Π
~2
2 − N2

~3Π
~3
2Þ − N1

~2N
2
~3ðπ ~2 − π ~3 − N2

~3Π
~3
2Þ − N1

~3N
1
~3Π

~3
1;

J ~2
~3 ¼ e−2q

2þ2q3Π~3
2 þ N2

~3ðπ ~2 − π ~3Þ þ N1
~3Π

~2
1 − N2

~3N
2
~3Π

~3
2: ðB16Þ

The relation of the components of the conserved charge to the canonical momenta was already discussed in [17]. The
“lowest” components of J are just identical to the canonical momenta, and the structure gets increasingly complicated for
higher and higher components. For infinite-dimensional algebras (without a lowest component) this description breaks
down without a suitable truncation.
One can now check that

H ¼ 1

2
½TrðJ2Þ − ðTrJÞ2� ðB17Þ

and that the components of the current satisfy the GLð3Þ algebra,

fJij; Jklg ¼ δkjJ
i
l − δilJ

k
j: ðB18Þ
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