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Figure 8. The protein–protein interface between Rsa1p317−352 and Hit1p70−164 is maintained by hydrophobic and polar contacts involving con-
served residues. (A) Multiple amino acid sequence alignments of proteins Rsa1/NUFIP1 and Hit1/ZNHIT3 present in Saccharomyces cerevisiae (sc ),
Kluyveromyces lactis (kl ), Lachancea thermotolerans (lt ), Candida glabrata (cg ), Saccharomyces (Lachancea) kluyveri (sk ), Zygosaccharomyces rouxii
(zr ), Homo sapiens (hs ), Mus musculus (mm ), Bos taurus (bt ) and Macaca mulatta (ma ), and constructed using CLUSTALW. Strictly matching residues
in yeast or in mammals are highlighted using gray squares. Strictly conserved inter-species positions are underlined and highlighted in bold. Inter-species
residues with groups of strongly similar properties are indicated in bold. Secondary structures extracted from the Rsa1p317−352−Hit1p70−164 3D structure
are represented above the protein sequences, using cylinders for �-helices and lines for loops. Residues located at the interface between the two proteins
(according to an intermolecular distance cut-off of 3.5 Å) are highlighted using circles, stars and carets for charged, mainly hydrophobic and neutral to
polar amino acids respectively. (B) and (C) Representation of some hydrophobic (B) and polar (C) contacts located at the protein–protein interface of the
Rsa1p317−352−Hit1p70−164 complex. Non-polar hydrogens are not represented.

and accordingly, we found that Rsa1p is required to tether
Pih1p−Tah1p to a [C/D RNA−Snu13p] complex (29).
Nop58p was initially shown to interact with Pih1p (31), and
previous Y2H assays (21) and the present in vitro binding
assays (Figure 1H) have revealed that Nop58p also asso-
ciates with the purified Rsa1p230−375–Hit1p and Snu13p–
Rsa1p230−375–Hit1p complexes. Thus, at some point during
C/D snoRNP biogenesis, Nop58p could associate with or
be exchanged between Pih1p and the Snu13p–Rsa1p–Hit1p

complex (Figure 9, Step 2). The intricate network of inter-
actions between the [RNA−Snu13p−Rsa1p−Hit1p] com-
plex (pre-snoRNP 1 in Figure 9), R2TP components and
Nop58p can explain the fact that we detected the associa-
tion of pre-U3 snoRNA with proteins of these complexes
using the sensitive RT-PCR approach, and interestingly,
that Rsa1p and Hit1p influence U3 3′-terminal maturation.
However, with the exception of Rsa1p−Hit1p, such a com-
plete protein complex was not detected by proteomic anal-
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Figure 9. Model for the box C/D snoRNP assembly pathway. The particles [RNA−Snu13p−Nop58p−Nop1p] and [RNA−Snu13p−Nop56p−Nop1p],
respectively nucleated on the C/D and C′/D′ motifs, are linked by a coiled-coil dimer in the mature snoRNP (59). Two alternative assembly pathways are
proposed: the primary targeting of the snoRNA by the complex Snu13p−Rsa1p−Hit1p (Pathway A) or the initial formation of a large transient RNA-free
complex (Pathway B). The existence of the pre-snoRNP 2, common to the two scenarios, is based on the detection of the various assembly factors on
the same U3 snoRNA precursors (Figure 4). The Snu13p-binding site (PEP), the Hit1p-binding site (HBS) and the nuclear localization signal (NLS) are
displayed on the functional C-terminal part of Rsa1p. Bcd1p specifically controls stability of the C/D snoRNAs and is essential for cell viability. It was
not identified in our proteomic analysis but should play an important role in C/D snoRNP biogenesis.

ysis of yeast cellular extracts. This suggests that (i) in cel-
lulo interactions may be transient and rapidly disrupted by
ATPase activity, so that free Rsa1p−Hit1p and free R2TP
are predominant in the extract; (ii) the TAP sequence may
decrease complex stability; (iii) accessibility of the TAP se-
quence may be low within large complexes and/or (iv) com-
plexes might be tightly associated with chromatin or com-
ponents of nucleolar bodies.

If a transient cooperation between the two sub-complexes
exists, Rsa1p could facilitate the recruitment of the Nop
proteins to the [RNA–Snu13p] pre-RNP (21,22,28), while
R2TP could participate in a conformational remodeling re-
quired for the progression of the RNP assembly by the heli-
case activity of the Rvb1p–Rvb2p proteins (21,28,58) (Fig-
ure 9, Step 3).

Finally, many lines of evidence suggest that the assembly
of Nop56p on the box C′/D′ couple is a secondary event.
Indeed, the C′/D′ motif is a sub-optimal K-turn, exhibit-
ing a lower affinity for Snu13p, and the nucleation of a par-
ticle [C′/D′ motif-Snu13p−Nop56p−Nop1p] seems highly
dependent on the establishment of a coiled-coil dimer be-
tween Nop56p and Nop58 pre-positioned on the box C/D
particle (59,60). In contrast to Nop58p which is mainly as-
sociated with the R2TP complex components, we found
Nop56p associated with Rsa1p in our TAP-tag assay (Table
1). This observation raises the question of the role played by
Rsa1p−Hit1p in the assembly of the C′/D′ particle (Figure
9, Step 3). A future issue to address will be to determine
the stoichiometry of the assembly process and if a second
Snu13p−Rsa1p−Hit1p module is involved in this final as-
sembly step.
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Possible additional functions of the Rsa1p−Hit1p complex

ZNHIT3 and Hit1p both carry a Zn finger domain. How-
ever, this domain might have another functional role, as the
Hit1p Zn finger domain is not required to maintain cellular
concentrations of Rsa1p. In this context, it is worth not-
ing that Rsa1p was originally identified as being required
for production of ribosomal 60S subunit (52). Interestingly,
deletion of RSA1, HIT1 or PIH1 induces marked defects in
the pre-rRNA maturation steps occurring after cleavages at
sites A1 and A2 (Figure 3). Indeed, the released 20S and 27S
intermediates accumulate (Figure 3). One attractive pos-
sibility is that some 2′-O modifications catalyzed by C/D
RNPs increase the efficiency of 20S maturation into 18S and
processing of 27S into 5.8S and 25S precursors, which may
contribute to the effect of RSA1 deletion on 60S produc-
tion (52). A direct role for Rsa1p−Hit1p in these steps is
also possible.

ZNHIT3, also known as TRIP3 (Thyroid Hormone Re-
ceptor Interacting protein 3), is a co-activator of several
transcription factors (thyroid hormone receptor RXR (61),
nuclear hepatocyte factor 4� (62), peroxisome proliferator
activated receptor � (63)). Furthermore, the cellular level
of ZNHIT3 influences proliferation of cancer cells (64). It
remains to be defined whether this property relies on its
capacity to control cell growth through its involvement in
nuclear-receptor dependant transcription, or by promoting
C/D snoRNP biogenesis and ribosome synthesis.
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