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Abstract

Natural hybridization plays a key role in the process of speciation. However,

anthropogenic (human induced) hybridization of historically isolated taxa raises

conservation issues. Due to weak barriers to gene flow and the presence of endan-

gered taxa, the whitefish species complex is an excellent study system to investi-

gate the consequences of hybridization in conservation. We focused on three

naturally reproductively isolated whitefish taxa in Germany: the endangered,

anadromous North Sea houting (NSH) and Baltic houting (BH), which were

reintroduced after local extinction, and the commercially stocked European

whitefish (EW). To evaluate the genetic integrity of each taxon, source and rein-

troduced populations of NSH and BH, and EW populations were characterized

based on two mitochondrial and 17 microsatellite loci. Additionally, we investi-

gated gill raker counts as an adaptive phenotypic trait. Even though clear genetic

and phenotypic differentiation confirmed the houtings as separate evolutionarily

significant units, admixture analyses revealed an extensive hybrid zone. Hybrid-

izations were introgressive, positively correlated with genetic diversity, and were

reflected in the gill raker counts. The BH distribution range showed higher heter-

ogeneity and stronger admixture than the NSH range. Erroneous stocking with

non-native genotypes best explained these patterns, which pose challenges for the

conservation of the endangered NSH and BH.

Introduction

The present age has been coined ‘the sixth extinction’ (Lea-

key and Lewin 1996), as current extinction rates driven by

anthropogenic impacts rival those of the five previous mass

extinction events on earth. The conservation status of diad-

romous fishes in Europe is a dramatic example, where one-

third are classified as endangered (Kottelat and Freyhof

2007). Cryptic drivers contributing to biodiversity loss are

introgressive hybridization and reverse speciation (Seehau-

sen 2006) associated with habitat modifications and species

translocations by humans (Allendorf et al. 2001). Particu-

larly, translocation by stocking (i.e., the release of fry reared

in hatcheries) can serve to reintroduce endangered species

or to increase their population sizes. On the other hand, it

can also introduce non-native species or strains that subse-

quently can hybridize with native taxa and may affect the

fitness of wild populations (Consuegra and Garcia de Lean-

iz 2008; Araki et al. 2009; Hansen et al. 2009).

The role of hybridization in conservation is a dilemma:

Whereas natural hybridization plays an important evolu-

tionary role in the process of speciation and the
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maintenance of biodiversity (Dowling and Secor 1997; Nol-

te and Tautz 2009), hybridization induced by human activ-

ities can be considered as harmful as it threatens the

integrity of ancestral species and has contributed directly or

indirectly to species extinctions (Rhymer and Simberloff

1996). Allendorf et al. (2001) framed the potential out-

comes of such anthropogenic hybridizations into three

clearly determined categories: (i) hybridization without

introgression (sterile F1s only), (ii) widespread introgres-

sion, and (iii) complete admixture, which can result in

reverse speciation (Seehausen 2006). Each case poses differ-

ent conservation challenges, ranging from wasted repro-

ductive effort due to sterile F1s under (i) to the loss of

parental lines under (iii) (Allendorf et al. 2001).

The recent postglacial origin of the whitefish species

complex (Coregonidae) has resulted in porous barriers to

gene flow (Østbye et al. 2005; Præbel et al. 2013a), and

natural (Schluter 1996) and anthropogenic hybridizations

(Winkler et al. 2011; Bhat et al. 2014) are frequently

observed. In Northern Germany, two endangered native

anadromous whitefish taxa of considerable conservation

interest exist (IUCN 2013): the North Sea houting (NSH)

(Coregonus oxyrinchus or Coregonus maraena, depending

on the author) and the Baltic houting (BH) (Coregonus lav-

aretus or C. maraena; Freyhof and Sch€oter 2005; Borcherd-

ing et al. 2010). Both taxa are evolutionarily young lineages

as they diverged only after the last glaciations, and their

species and taxonomic designation is still under debate

(Jacobsen et al. 2012). However, Hansen et al. (2008) pro-

vided evidence that NSH and BH represent separate evolu-

tionarily significant units (ESUs), that is, groups of

organisms to be considered distinct for conservation pur-

poses. Throughout this manuscript, we therefore simply

refer to ‘taxa’ and additionally use the term ‘ESU’ in a con-

servation context. The respective natural ranges of the NSH

and BH were the North Sea and Baltic Sea and, during the

reproductive period, the rivers in the hydrographically iso-

lated drainage basins of these two seas (Jacobsen et al.

2012). Historically, the houtings sustained fisheries in the

Netherlands, Germany, and Denmark (Thienemann 1922;

Jennerich and Schulz 2011), but faced extinction by the

1970s due to habitat loss, construction of migration barri-

ers, pollution, and overfishing (Hansen et al. 1999). Since

then, conservation programs based on reintroduction by

stocking from remnant indigenous source populations have

led to the return of the NSH (J€ager 1999; Jepsen et al.

2012) and BH (Jennerich and Schulz 2011) to their historic

ranges of distribution. In addition, the Northern German

system also includes European whitefish (C. lavaretus)

(EW), which is commercially stocked in lakes across the

same geographic ranges.

The system created by stocking over the past 25 years

offers the potential for contemporary secondary contact of

three historically geographically isolated whitefish taxa via

two possible mechanisms: (i) Anthropogenic translocations

outside the historic ranges by erroneous stocking, which

could then be followed by diffusion from short-range

migrations, termed ‘stepping stone and diffusion’ (Gozlan

et al. 2010) and (ii) migrations via the man-made invasion

corridor created by the Kiel Canal connecting the North

Sea and the Baltic Sea (Gollasch and Rosenthal 2006). The

houtings have received recent scientific attention, including

studies on evolutionary history (Østbye et al. 2005; Jacob-

sen et al. 2012), taxonomy (Freyhof and Sch€oter 2005),

conservation genetics in Danish locations (Hansen et al.

2006, 2008), and ecology (Borcherding et al. 2006, 2008,

2014; Jepsen et al. 2012). Yet, the presence of hybridiza-

tions between these taxa, and the maintenance of genetic

integrity in this system, remains to be investigated. This is

surprising considering the porous reproductive barriers

within the whitefish species complex. It is also remarkable

when considering ongoing large-scale conservation efforts

that would benefit from this information, including a €14

million EU LIFE project focused on the NSH in Denmark

(Hansen 2006), and large investments in the continuous

stocking of German locations.

Here, we assessed the contemporary history of the two

endangered houting taxa and the fishery important EW

across the German range, based on two mitochondrial

(mtDNA) and 17 microsatellite loci. We also assessed gill

raker counts (GRCs), which represent a meristic trait

related to feeding ecology (Amundsen et al. 2004; Kahilai-

nen and Østbye 2006) that is influenced by diversifying

selection (Præbel et al. 2013a) and commonly used in

whitefish taxonomy. In light of the controversy regarding

the taxonomic and ESU status of houtings, our objectives

were to (i) investigate the genotypic and phenotypic integ-

rity of NSH, BH, and EW, (ii) characterize the population

genetic structure of this young system, (iii) where present,

assess the geographic patterns of hybridizations and their

potential underlying anthropogenic drivers (e.g., stocking

or the opening of Kiel Canal), and (iv) assess the evolution-

ary and conservation implications of these findings and

provide recommendations for science-based conservation

of the endangered NSH and BH in Germany.

Material and methods

History of the houting reintroduction

The translocation and stocking history as well as the puta-

tive sources of fry were obtained for each German NSH

and BH population from published (Borcherding et al.

2010) and gray literature (J€ager 1999; Jennerich and Schulz

2011) as well as interviews with hatchery and resource

managers. In brief, the NSH was first reintroduced to its

historic German distribution range via stocking of fry origi-
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nating from the indigenous source population in the Dan-

ish river Vid�a (abbreviated population name including a

priori taxon affiliation: NSH_VID) to the River Treene

(NSH_TRE) in 1987 (Fig. 1). Since 1989, adults returning

to the Treene River on their spawning migration were used

to produce fry to stock the Treene but also the Elbe

(NSH_ELB) and Rhine (NSH_RHI) rivers. The BH, on the

other hand, was reintroduced by releasing fry originating

from the indigenous source population in the River Peene

(BH_PEE) in the 1990s to the Schlei (BH_SCH), Trave

River (BH_TRA), Kiel Canal (BH_NOK), and Lachsbach

(BH_LAC) (Fig. 1). Today, the populations BH_PEE,

BH_TRA, and BH_NOK are officially stocked with fry

from locally caught spawners, whereas BH_LAC and

BH_SCH spawners are pooled and resulting fry is released

in both rivers. Finally, EW have been stocked in lakes in

Northern Germany for commercial fisheries since the 19th

century (Thienemann 1922). Supplementary stocking con-

tinues in all locations except in the Vid�a and the Rhine riv-

ers, where natural reproduction dominates since at least

2005 (Borcherding et al. 2010). The abbreviated population

names are summarized in Table 1 and will be used

throughout this manuscript.

Sampling and DNA extraction

We obtained NSH and BH samples from both source pop-

ulations and all seven reintroduced populations during the

winter spawning aggregations in the rivers, and EW sam-

ples from three lakes (Table 1). Sampling consisted of non-

lethal electrofishing and sampling of individuals caught for

ongoing stocking programs. For temporal comparisons,

NSH_TRE samples from five time points from 2004 to

2012 were collected. Also, to test for substructure in the

extensive NSH_RHI system, three small-scale areas were

sampled. Vendace (Coregonus albula) completed the data-

set, as it is the most genetically distinct whitefish taxon in

Germany but can occasionally hybridize with EW (Kahilai-

nen et al. 2011). However, after initial tests ruled out

hybridization with vendace in our system (Fig. S1), it was

excluded from further analyses. Fin clips of all individuals

were stored in ethanol, and DNA was extracted using the

Qiagen DNeasy kit (Qiagen, Hilden, Germany). A subset of

240 individuals was sacrificed with an overdose of MS-222

to sample gill rakers (Table 1). All work was covered by the

appropriate permits (fishing: LLUR 31/7174.13.1; sam-

pling: MLUR V 312-7224.121-19).

Phenotypic analysis

For the distinction and characterization of taxa, GRCs of

the first right branchial gill arch were obtained following

Kahilainen and Østbye (2006). If this arch was broken, the

first left branchial arch was used. Note that left and right

GRCs were strongly correlated (Pearson’s correlation,

n = 31, r2 = 0.97, P < 0.001). Due to their high protection

status, no NSH_VID samples for GRCs were available, and

literature GRCs for indigenous NSH from Sch€oter (2002)

were used instead. After verification of normal distribution,

differences in GRC between indigenous populations of

NSH, BH, and EW were assessed with t-tests, and among

all populations with an ANCOVA including total length and

sex as covariates. Tukey’s post hoc comparisons were per-

formed. Here and throughout this paper, the false discov-

ery rate was used to correct for multiple tests (Narum

2006) and statistics were conducted using Minitab v.14

(Minitab Inc., Pennsylvania, PA, USA) unless noted other-

wise.

mtDNA analyses

Two mtDNA loci with different mutation rates were used:

the NADH dehydrogenase, subunit 3 (ND3, 246 bp)

region, and the cytochrome oxidase b (cyt b, 282 bp).

Primers were obtained from Østbye et al. (2005). PCR was

performed in 10 lL reactions with 1 lL of template DNA

[~30 ng], 0.5 lL dNTPs (10 mM), 1 lL of each primer

(5 mM), 0.1 lL DreamTAQ taq polymerase (Thermo

Fischer Scientific Inc., Waltham, MA, USA), 1 lL 10 9

buffer, and 5.4 lL HPLC water. The PCR cycles started

with an initial denaturing phase of 3 min at 95°C, followed
by 32 cycles (1 min at 95°C, 45 s at 60°C, 1 min at 72°C),
and ended with 10 min at 72°C final extension. PCR

Figure 1 Map of the study area and information on the history of

North Sea houting (NSH) and Baltic houting (BH) reintroductions to their

former German ranges. Source populations are marked by colored

ovals. Arrows depict the official sources and destinations of fry, with

the year of the onset and end of stocking. The dotted line represents

the watershed separating the historically isolated houting ranges. The

pie charts depict the mtDNA haplotype frequencies in each population.

Detailed population information is given in Table 1. Basemap copyright

2013 Esrl DeLome, NAVTEQ.

1070 © 2014 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 7 (2014) 1068–1083

Hybridization in endangered whitefish Dierking et al.



T
a
b
le

1
.
Sa

m
p
le
d
p
o
p
u
la
ti
o
n
s,
sa
m
p
le
si
ze
s
fo
r
d
if
fe
re
n
t
an

al
ys
es
,
an

d
b
as
ic
g
en

et
ic
in
fo
rm

at
io
n
fr
o
m

m
ic
ro
sa
te
lli
te

an
al
ys
is
.

A
p
ri
o
ri
ta
xo
n
,
lif
e
h
is
to
ry

Po
p
u
la
ti
o
n

A
b
b
re
vi
at
io
n

Sa
m
p
lin
g

ye
ar
s

St
at
u
s

St
ill

st
o
ck
ed

?

n m
-s
at

n m
tD
N
A

n g
ill
ra
ke

rs
A
R

H
O

H
E

n H
W
D

n LD

N
o
rt
h
Se

a
h
o
u
ti
n
g
,

A
n
ad

ro
m
o
u
s-
M
ar
in
e

V
id
� a

N
SH

_V
ID

2
0
0
9

So
u
rc
e

N
o

3
0

3
0

–*
5
.3
9

0
.6
2

0
.6
6

2
2

Tr
ee

n
e

N
SH

_T
R
E
†

2
0
0
4
–2

0
1
2

R
ei
n
tr
o
d
u
ce
d

Y
es

1
3
9

2
7
0

8
6

5
.8
2

0
.6
3

0
.6
7

1
3

R
h
in
e‡

N
SH

_R
H
I

2
0
0
8

R
ei
n
tr
o
d
u
ce
d

N
o

8
9

7
2

–
6
.5
8

0
.6
9

0
.7
2

1
2

El
b
e

N
SH

_E
LB

2
0
1
0

R
ei
n
tr
o
d
u
ce
d

Y
es

1
6

1
8

1
9

7
.0
5

0
.6
3

0
.7
6

5
2
0

B
al
ti
c
h
o
u
ti
n
g
,

A
n
ad

ro
m
o
u
s-
B
ra
ck
is
h

Pe
en

e
B
H
_P

EE
2
0
0
9
–2

0
1
0

So
u
rc
e

Y
es

3
0

9
7

2
4

5
.7
4

0
.6
7

0
.6
6

2
1

Tr
av
e

B
H
_T

R
A

2
0
0
9
–2

0
1
1

R
ei
n
tr
o
d
u
ce
d

Y
es

7
1

6
2

3
9

6
.6
1

0
.6
7

0
.7
2

1
3

Sc
h
le
i

B
H
_S

C
H

2
0
0
9
–2

0
1
0

R
ei
n
tr
o
d
u
ce
d

Y
es

4
5

4
4

1
9

6
.9
3

0
.7
0

0
.7
4

1
1

La
ch
sb
ac
h

B
H
_L
A
C

2
0
1
0
–2

0
1
1

R
ei
n
tr
o
d
u
ce
d

Y
es

4
0

3
9

5
7
.7
1

0
.6
5

0
.7
4

2
5

K
ie
lC

an
al

B
H
_N

O
K

2
0
1
0
–2

0
1
1

R
ei
n
tr
o
d
u
ce
d

Y
es

1
0

1
4

4
–§

0
.6
8

0
.6
7

2
9

Eu
ro
p
ea

n
w
h
it
efi

sh
,

St
at
io
n
ar
y
La
ke

La
ke

B
o
rd
es
h
o
lm

EW
_B

O
R

2
0
1
1

So
u
rc
e?

Y
es

3
0

2
9

5
6
.6
9

0
.6
8

0
.7
2

0
3

La
ke

Pi
n
n
o
w

EW
_P

IN
2
0
1
1

So
u
rc
e?

Y
es

1
6

1
6

–
5
.6
3

0
.6
6

0
.7
0

0
2

La
ke

Po
en

it
z

EW
_P

O
E

2
0
1
1

So
u
rc
e?

Y
es

2
6

2
7

1
3

6
.5
0

0
.7
5

0
.7
4

2
1
1

V
en

d
ac
e,

St
at
io
n
ar
y
La
ke

La
ke

Se
le
n
t

ve
n
d
ac
e

2
0
1
1

N
o
so
u
rc
e
–

Y
es

1
9

–
–

n
,
sa
m
p
le

si
ze
s;
A
R
,
m
ea

n
al
le
lic

ri
ch
n
es
s,
ra
re
fi
ed

to
2
8
al
le
le
s;
H
O
an

d
H
E
,
m
ea

n
o
b
se
rv
ed

an
d
ex
p
ec
te
d
h
et
er
o
zy
g
o
si
ty
;
n
H
W
D
,
n
u
m
b
er

o
f
lo
ci
si
g
n
ifi
ca
n
tl
y
d
ev
ia
ti
n
g
fr
o
m

H
ar
d
y–
W
ei
n
b
er
g
ex
p
ec
ta
-

ti
o
n
s
af
te
r
fa
ls
e
d
is
co
ve
ry

ra
te

co
rr
ec
ti
o
n
;
n
LD

,
n
u
m
b
er

o
f
lo
ci
p
ai
rs
w
it
h
si
g
n
ifi
ca
n
t
lin
ka

g
e
d
is
eq

u
ili
b
ri
u
m

af
te
r
fa
ls
e
d
is
co
ve
ry

ra
te

co
rr
ec
ti
o
n
.

*
N
o
g
ill
ra
ke

r
co
u
n
ts
av
ai
la
b
le
;
p
u
b
lis
h
ed

co
u
n
ts
u
se
d
fo
r
co
m
p
ar
is
o
n
s.

†F
iv
e
ti
m
e
p
o
in
ts
u
se
d
fo
r
m
ic
ro
sa
te
lli
te

an
al
ys
is
,
2
0
0
4
(n

=
1
9
),
2
0
0
9
(n

=
3
0
),
2
0
1
0
(n

=
3
0
),
2
0
1
1
(n

=
3
0
),
2
0
1
2
(n

=
3
0
).

‡T
h
re
e
d
if
fe
re
n
t
lo
ca
ti
o
n
s
sa
m
p
le
d
,
R
iv
er

Le
k
(n

=
3
0
),
R
iv
er

Ijs
se
l(
n
=
3
0
),
La
ke

Ijs
se
l(
n
=
2
9
).

§E
xc
lu
d
ed

fr
o
m

th
is
an

al
ys
is
d
u
e
to

lo
w

sa
m
p
le
n
u
m
b
er
.

¶V
en

d
ac
e
w
as

n
o
t
in
cl
u
d
ed

in
fu
rt
h
er

an
al
ys
es

af
te
r
in
it
ia
lt
es
ts
sh
o
w
ed

co
m
p
le
te

la
ck

o
f
g
en

et
ic
co
n
tr
ib
u
ti
o
n
to

th
e
h
o
u
ti
n
g
–
EW

sy
st
em

.

© 2014 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 7 (2014) 1068–1083 1071

Dierking et al. Hybridization in endangered whitefish



products were cleaned with ExoSAP-IT� (Thermo Fischer

Scientific Inc.) followed by cycle sequencing using the Big

Dye� Terminator v.3.1 kit (Applied Biosystems�, Darms-

tadt, Germany), and a final purification using the Big Dye�

XTerminatorTM kit (Applied Biosystems�). Products were

sequenced on an ABI 3130 XL Automated Genetic Analyzer

(Applied Biosystems�).

Sequences were cleaned and aligned, and both markers

were then concatenated into one sequence of 433 bp using

CodonCode Aligner v.3.7.1 (CodonCode Corporation,

Centerville, MA, USA). DnaSP v.5.10.01 (Librado and

Rozas 2009) was used to generate a haplotype data file and

to calculate haplotype and nucleotide diversity for each

population (Nei 1987). The NETWORK software v.4.6.1.1

(Bandelt et al. 1999) served to create a haplotype network.

Population comparisons using Wright’s fixation index (Fst)

(Wright 1943) based on 1000 permutations were obtained

from Arlequin v.3.5.1.2 (Excoffier et al. 2005).

As demographic events can blur evolutionary patterns

(Harpending et al. 1998), we tested for recent bottlenecks

and population expansions. First, two estimators of neu-

trality were computed with 1000 coalescent simulations,

Tajima’s D (Tajima 1989) and Fu’s Fs (Fu 1997). Then a

sum of squared deviations model of the mismatch distribu-

tion was implemented with 100 replicates in a parametric

bootstrap approach (Schneider and Excoffier 1999).

Finally, the raggedness index r (Harpending 1994) of the

observed mismatch distribution was estimated.

Microsatellite analyses

Genotyping and diversity assessment

Samples were genotyped at 17 variable microsatellite loci as

detailed in Table S1, which were amplified in three 2.5 lL
multiplex PCRs following Præbel et al. (2013b). PCR prod-

ucts were then separated on an ABI 3130 XL Automated

Genetic Analyzer. For 120 of 561 samples, the analysis was

performed under the same amplification conditions but

using 5 lL reaction volumes, and on another sequencer,

after running 64 samples on both sequencers for calibration

purposes. All alleles were scored by automatic binning in

predefined allelic bins followed by visual inspection using

GeneMapper v.3.7 (Applied Biosystems). Presence of null

alleles and large allele dropout was assessed with Micro-

checker v.2.2.3 (van Oosterhout et al. 2004).

Deviations from Hardy–Weinberg equilibrium (HWE)

and test for linkage disequilibrium were assessed using Ar-

lequin v.3.5.1.2. Finally, the mean allelic richness AR (i.e.,

mean number of alleles per locus) was calculated as mea-

sure of genetic diversity harbored by populations using

HP-RARE v.1.0 (Kalinowski 2005), and differences in AR

between source and reintroduced populations were com-

pared with a two-sample t-test.

Population differentiation

To evaluate the relationship between all NSH, BH, and EW

populations, an unrooted neighbor-joining tree using Cav-

alli-Sforza distances, which are well suited to reveal topolo-

gies based on microsatellite frequency data (Takezaki and

Nei 1996), was calculated using PHYLIP v.3.69 using 1000

bootstrap replicates (Felsenstein 1989). Then, we evaluated

the population structure and pairwise genetic distances

among all populations using Wright’s Fst calculated in Ar-

lequin v.3.5.1.2, using 10 000 permutations. Last, an analy-

sis of molecular variance (AMOVA) was run with 1000

permutations to estimate the distribution of genetic vari-

ability among a priori taxa and populations.

Isolation by distance

Under the ‘stepping stone and diffusion’ model of invasion

(Gozlan et al. 2010), isolation by distance (IBD) among the

reintroduced populations in this study is expected if sec-

ondary contact with non-native genotypes is mainly related

to migrations. In contrast, contact by stocking alone should

not result in IBD (Meraner et al. 2013). We therefore tested

for IBD within the historic ranges, using Mantel tests

(Mantel 1967) in IBDWS v.3.23 with 1000 randomizations

(Jensen et al. 2005). Distance matrices were based on Slat-

kin’s (1995) linearized Fst [Fst/(1–Fst)] from microsatellite

data and log-transformed geographic distances between

river mouths measured in Google Earth v.7.1.1.1888.

Transformations followed considerations in Rousset (1997)

on IBD in two-dimensional habitats. We assumed exclu-

sively coastal migrations as proposed by Jepsen et al.

(2012).

Bayesian population structure

To overcome the possible bias of a priori grouping of indi-

viduals into taxa or differentiated populations, we used the

Bayesian approach implemented in STRUCTURE v.2.3.4

(Pritchard et al. 2000), using an admixture model assum-

ing correlated allele frequencies. We varied the number of

possible clusters K represented by the sampled individuals

from 1 to 6 and ran five independent MCMC simulations

to ensure the consistency of results, with a burn-in of

50 000 followed by 100 000 iterations for each K. All runs

were consistent, and run lengths were sufficient for conver-

gence in all cases, as indicated by STRUCTURE summary

statistics (data not shown). The most likely K was deter-

mined based on DK (Evanno et al. 2005) and the estimated

probability of the data P(D) (Falush et al. 2003), retrieved

from STRUCTURE Harvester v.0.6.93 (Earl and vonHoldt

2012). Initial tests including vendace used a subset of 13

microsatellite loci, due to limited cross-amplification of

loci among these taxa (Præbel et al. 2013b). As vendace

clearly clustered separately from the NSH, BH, and EW

(Fig. S1), the subsequent analyses omitted this taxon.
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Detection and characterization of hybridizations

Hybridizations among the three different taxa in this study

(NSH, BH, and EW) were assessed following Latch et al.

(2011) with modifications to reflect the presence of three

sources. Specifically, five replicate STRUCTURE runs for

the most likely number of clusters were used to calculate

the mean contributions of NSH (q), BH (r), and EW (s)

and their 90% credible intervals (CIs) to each individual’s

genotype. Two methods were then used to assign individu-

als as pure or hybrids. First, under ‘STRUCTURE relaxed’,

based on a hybrid threshold of 0.10, individuals were

assigned as pure NSH, BH, or EW if either q, r, or s ≥ 0.90,

and as hybrids showing genotypic contributions of two dif-

ferent taxa if q, r, and s < 0.90 and either q and r, q and s,

or r and q > 0.10. In addition, individuals showing geno-

typic contributions of all three taxa in this study (i.e.,

0.10 < q, r, s < 0.90) were defined as compound hybrids.

With the number of microsatellite loci and the observed

Fsts in our study, the applied thresholds should allow for

efficient hybrid identification according to V€ah€a and

Primmer (2006). Second, ‘STRUCTURE conservative’ was

calculated as highly conservative method likely to underes-

timate hybrid proportions but avoiding misclassifications

as hybrids (Latch et al. 2011). Here, individuals were desig-

nated as pure if one of the CIs around q, r and s- included

1, and all others as hybrids comprising genotypic contribu-

tions of at least two taxa. Linkage disequilibrium, which is

expected if hybrids are mainly F1s and if hybridization is

not introgressive (Latch et al. 2011), was used to confirm

introgression.

The extent of admixture was compared between the

NSH and BH distribution ranges based on (i) the propor-

tions of pure native, pure non-native and hybrid individu-

als using a chi-square test, (ii) the mean contribution of

the native genotype (NSH range: q; BH range: r), and

(iii) the mean admixture proportion (1 – the proportion of

the dominant genotype q, r, or s) in each of the two ranges

with two-sample t-tests. The latter two parameters were

then also compared among reintroduced populations

within the distribution ranges, among the years 2004–2012
for the NSH_TRE, and among the three NSH_RHI sites

with ANOVAs and Tukey’s post hoc tests.

Underlying mechanisms of geographic patterns in admixture

The two alternative explanations for secondary contact in

the study system were migrations via Kiel Canal and trans-

locations by erroneous stocking. To distinguish between

them, we assessed the genotypes present in the canal popu-

lation BH_NOK, with the expectation of a mixture of NSH

and BH genotypes if the canal serves as migration corridor.

We also analyzed the correlation of the mean proportion of

non-native genotype (NSH range: r + s; BH range: q + s)

and of non-native houting genotype (NSH range: 1 – r; BH

range: 1 – q) within populations with distance from the

canal, with the expectation of negative correlations if the

canal serves as corridor.

Hybridization, genetic diversity, and GRCs

To determine whether and how admixture affects genetic

diversity, we ran a linear regression analysis between the

mean allelic richness AR and the mean admixture propor-

tion of populations. Finally, to assess whether hybridiza-

tions were reflected in phenotypic traits, we analyzed the

correlation of the mean EW genotype proportion with the

mean GRC of populations. Initially, all five BH and the two

EW populations for which GRC were available were

included in the analysis, whereas two available NSH popu-

lations were excluded to avoid a confounding influence of

differences in GRC between NSH and BH. To test the

robustness of results, we then successively excluded EW

populations and the strongly admixed BH_NOK popula-

tion from the analysis. Higher GRCs are expected in

hybrids with EW contribution due to the elevated GRCs of

pure EW.

Results

Phenotypic differentiation based on GRC

When comparing the source populations, the indigenous

BH population BH_PEE was characterized by slightly but

significantly lower GRC than indigenous NSH populations

(Table S2; T46 = 2.16, P = 0.036). Secondly, GRC of indig-

enous BH and NSH populations were both significantly

lower than EW GRC (BH: Table 2; NSH versus EW_BOR:

T4 = �3.05, P = 0.038; NSH versus EW_POE: T22 =
�14.95, P < 0.001). The situation among reintroduced

populations differed between the distribution ranges

(Fig. 2). For NSH, the GRCs in the NSH_TRE and

NSH_ELB were comparable with literature values for indig-

enous NSH, albeit with wider trait variation (Table 2 and

S2). In contrast, strong interpopulation differences charac-

terized the BH distribution range. While GRCs in the

BH_TRA were comparable with those in its putative

BH_PEE source (Tukey’s post hoc test; t = 0.56, P = 0.99),

the BH_SCH was comparable with the NSH populations

NSH_TRE (t = �1.07, P = 0.99) and NSH_ELB

(t = �0.81, P = 0.99), and the BH_NOK as well as

BH_LAC with the EW population EW_BOR (all pairwise

comparisons summarized in Table 2). Fish size (ANCOVA,

F1,243 = 1.63, P = 0.204) and sex (F2, 243 = 1.41,

P = 0.220) were not associated with GRC.

Differentiation and demographic events based on mtDNA

The 723 samples grouped into 21 haplotypes, 10 of which

were singletons (six in EW, two in NSH and BH). The
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remaining 11 haplotypes were dominated by two haplo-

types differentiated by seven-point mutations with a com-

bined coverage of 78.4% (Hap 1 – 36.18% and Hap 2 –
42.23%) over the dataset (Fig. S2). On average, Hap 1 was

more common in a priori BH (55.3%) than NSH (22.1%)

and EW (43.9%), and Hap 2 more dominant in a priori

NSH (63.6%) than BH (18.5%) and EW (14.0%). Mapping

haplotypes revealed a gradient across the reintroduced pop-

ulations (Fig. 1).

Fst values proved to be high and significant between the

sources NSH_VID and BH_PEE (Fst = 0.72, P < 0.001)

and between both of these sources and EW (NSH_VID and

EW_BOR, Fst = 0.45, P < 0.001; BH_PEE and EW,

Fst = 0.145, P < 0.001). Except between the NSH_RHI and

NSH ELB (Fst = 0.146, P < 0.001), within the NSH distri-

bution, no significant differentiation among reintroduced

populations could be observed. This was not the case

within the BH range where the BH_TRA was the only rein-

troduced population not significantly differentiated from

the putative source population BH_PEE (Fst = 0.03,

P = 0.036, versus Fst > 0.327, P < 0.001 for all other BH

populations). We also found that BH_SCH, BH_LAC, and

BH_NOK were strongly differentiated from their putative

source BH_PEE, but not from NSH or EW populations,

respectively (all pairwise comparisons summarized in Table

S3). Investigating possible demographic events failed to

detect any consistent sign of recent bottlenecks or expan-

sions in any of the populations (Table S4).

Differentiation and population structure based on

microsatellites

While some loci showed deviations from HWE for individ-

ual populations, no general patterns were present and all

loci were included in the analyses. The genetic integrity of

the indigenous source populations detected with mtDNA

also held true when investigating nuclear loci (Table 3).

Specifically, the sources of NSH and BH and EW popula-

tions were strongly and significantly differentiated from

each other (NSH_VID versus BH PEE, Fst = 0.15,

P < 0.001; Fsts > 0.10 and P < 0.001 for all pairwise com-

parisons of NSH_VID and BH_PEE versus EW popula-

tions) (Table 3). Contemporary gene flow among

populations within distribution ranges proved to be very

low with all pairwise population tests being significant

except NSH_ELB versus NSH_RHI (Fst = 0.01, P = 0.30),

BH_SCH versus BH_LAC (Fst = 0.01, P = 0.06) and

BH_TRA versus BH_PEE (Fst = 0.01, P = 0.054). Interest-

ingly, the latter comparison is the only one showing no sig-

nificant differentiation from the source population within

a given distribution range, and all reintroduced popula-

Table 2. Pairwise differences between source and reintroduced populations of North Sea houting (NSH), Baltic houting (BH), and European whitefish

(EW) based on gill raker counts (GRC)†.

N.S., not significant.

Colored areas mark comparisons within a priori taxon.

*P < 0.05, **P < 0.01, ***P < 0.001.

†Mean GRC of the population noted on column header subtracted from the mean GRC of the population noted on the row header below the diago-

nal and statistical significance level after correction for multiple tests above the diagonal.
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tions showed intermediate differentiation between the

putative source and other source populations (Fig. 3). The

differences between the historic distribution ranges and

among populations within ranges both explained signifi-

cant and approximately equal proportions of molecular

variance (AMOVA, Table S5). The general pattern of popula-

tion clustering within the distribution ranges of NSH and

BH was confirmed by the neighbor-joining tree (Fig. 4).

Interestingly, both Fst values and the neighbor-joining tree

showed that the population from the Kiel Canal, contrary

to expectation, clearly clustered with EW and not within

the BH range.

Overall, the STRUCTURE analysis revealed K = 3 as

most likely number of clusters represented by the sampled

individuals after the exclusion of vendace (Fig. S3). The

analysis confirmed the dominance of native NSH genotypes

across the historic NSH range, but also revealed the addi-

tional influence of both EW and BH genotypes in reintro-

duced populations (Fig. 5). No temporal differences in the

contribution of NSH genotype in the NSH_TRE were

apparent over the period 2004–2012 (ANOVA; F4,138 = 0.78,

Table 3. Estimates of pairwise genetic differentiation (Fst) between source and reintroduced populations of North Sea houting (NSH), Baltic houting

(BH), and European whitefish (EW) based on microsatellites†.

N.S., not significant.

Colored areas mark comparisons within a priori taxon.

*P < 0.05, **P < 0.01, ***P < 0.001

†Fst values shown below the diagonal and their significance levels above the diagonal.
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P = 0.538), suggesting that admixture occurred before

2004 or elsewhere than in the Treene River. Within the

NSH_RHI system, no spatial structuring was detected

(F2,88 = 0.34, P = 0.711).

STRUCTURE unravelled a more complex and heteroge-

neous situation across the historic BH range of distribution

(Fig. 5): While the BH_TRA reflected its putative BH_PEE

source, the BH_SCH and BH_LAC showed a strong NSH

genetic contribution and the BH_NOK a strong EW

genetic contribution. Taken all together, results call for in-

depth analyses of sources and causes of admixture.

Presence and characterization of hybridizations

Individual admixture analysis in STRUCTURE (Fig. 6)

revealed a previously unrecognized hybrid zone involving

all three taxa NSH, BH, and EW (Fig. 7). The source popu-

lations NSH_VID and BH_ PEE, and with some exceptions

EW, consisted of pure individuals of the a priori expected

genotype (100%, 93–100%, and 80–93%, respectively)

(Fig. 7, Table 4). In contrast, all reintroduced populations

were admixed and harbored compound hybrids (Fig. 7,

Table 4), but with a significantly lower proportion of

admixture (t-test; t222 = �13.15, P < 0.001) and of pure

non-native individuals (chi-square test; v21 = 73.56,

P < 0.001) and hybrids (v21 = 32.26, P < 0.001) in the

NSH distribution range compared with the BH range.

Within the distribution ranges, for NSH, admixture pro-

portions differed significantly and ranged from 11% in the

NSH_TRE to 36% in the NSH_ELB (ANOVA; F2,243 = 18.14,

P < 0.001). For the BH, the admixture proportion was

27% in the BH_TRA, but significantly higher (85% and

84%, respectively) in the BH_LAC and BH_SCH (ANOVA;

F2,165 = 62.85, P < 0.001). In addition, hybrids and non-

native genotypes dominated in the BH_LAC and BH_SCH,

and non-native EW genotype in the BH_NOK population

(Figs 6 and 7).

The number of alleles in linkage disequilibrium in the

reintroduced populations of both NSH and BH was com-

parable with that in the pure source populations, with the

exception of elevated numbers in the NSH_ELB, BH_LAC,

and BH_NOK (Table 1).

Underlying mechanisms of geographic patterns in

admixture

The proportions of non-native genotype (Pearson’s

r = �0.28, P = 0.585) and non-native houting genotype

(Pearson’s r = �0.19, P = 0.71) in reintroduced popula-

tions across the NSH and BH distribution ranges were not

correlated with geographic distance from the canal. Fur-

thermore, the most predominant genotype in the Kiel

Canal, contrary to expectation, was the EW genotype and
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not a mix of NSH and BH (Fig. 7). Within both the NSH

(Mantel test; Z = 0.09, r = �0.99, P = 1.00) and BH

(Z = 0.50, r = �0.09, P = 0.622) distribution ranges, IBD

between reintroduced populations could not explain the

observed genetic structuring.

Hybridization, genetic diversity, and GRCs

The mean allelic richness AR in reintroduced populations

clearly surpassed the sources NSH_VID and BH_PEE

(mean of 6.69 vs 5.57; t3 = �4.25, P < 0.024) (Table 1).

The pattern was largely driven by differences in admixture

proportion (Fig. 8A; regression analysis, F1,11 = 22.64,

P < 0.001, r2 = 0.69).

Furthermore, the mean GRC and the mean proportion

of EW genotype in a population were strongly correlated

independent of whether all BH and EW populations

(Pearson’s r = 0.947, df = 6, P = 0.001), only the BH

populations (r = 0.911, df = 4, P = 0.031), or only BH

without the highly admixed BH_NOK population

(r = 0.916, df = 3, P = 0.084) were included in the analy-

sis (Fig. 8B).
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Discussion

Differentiation of North Sea houting, Baltic houting, and

European whitefish

Debate regarding the species and evolutionary significant

unit status has surrounded the houtings (Freyhof and

Sch€oter 2005; Jepsen et al. 2012). Here, the distinctness of

the three sources NSH_VID, BH_ PEE, and EW was

sustained by multiple lines of evidence: (i) phenotypic dif-

ferences in GRC, which is often used as a taxonomic trait,

(ii) strong and significant genetic differentiation between

the indigenous source populations based on both mtDNA

and microsatellites, (iii) identification of K = 3 clusters

with no a priori assumption on the population of origin,

and (iv) the homogenous structure of the source popula-

tions (with some exceptions for EW) revealed by STRUC-

TURE. Our results thus clearly support that for the

ancestral/source populations of NSH and BH, the conser-

vation classification as separate ESUs (Hansen et al. 2008)

holds independently of the actual species status.

Presence and characterization of hybridizations

Even though the genetic integrity of the source populations

of NSH, BH, and EW was maintained, our study docu-

mented the widespread presence of three-way hybridiza-

tions. Hybridization was shown by the intermediate genetic

differentiation of admixed populations from the sources

and the increased genetic diversity in identified admixed

populations. This discovery was surprising, considering the

natural geographic isolation of these taxa (Jacobsen et al.

2012), their homing behavior, and the generally well-
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Figure 7 Genetic composition of source populations (left block) and

reintroduced North Sea houting (center) and Baltic houting (BH) popula-

tions based on analysis in STRUCTURE 2.3, assuming K = 3 clusters. (A)

Proportion of pure and hybrid individuals in each population identified

based on STRUCTURE-relaxed thresholds. ‘Compound hybrids’ denote

individuals with genetic contributions of all three sources. (B) Mean con-

tribution of NSH, BH, and EW genotype to each population.

Table 4. Pure and hybrid individuals in source and reintroduced popu-

lations identified with STRUCTURE 2.3, based on STRUCTURE-relaxed

(R) and STRUCTURE-conservative (C) thresholds*.

pure NSH pure BH

pure

EW Hybrid
Total

R C R C R C R C R, C

Sources

NSH_VID 30 30 0 0 0 0 0/0 0 30

BH_PEE 0 0 28 30 0 0 2/0 0 30

EW_All 0 0 1 1 58 67 13/2 4 72

NSH reintroduced

NSH_TRE 102 116 0 0 0 1 37/6 22 139

NSH_RHI 38 61 0 0 0 3 51/6 25 89

NSH_ELB 4 8 0 0 2 2 10/2 6 16

NSH_all 144 185 0 0 2 6 98/14 53 244

BH reintroduced

BH_TRA 2 2 37 48 4 7 28/6 14 71

BH_LAC 6 10 0 0 2 7 32/8 23 40

BH_SCH 12 23 1 3 0 4 32/5 15 45

BH_NOK 0 0 0 0 8 8 2/1 2 10

BH_all 20 35 38 51 14 26 94/20 54 166

Total 194 250 67 82 74 99 207/36 111 542

*Thresholds under both approaches are described in detail in the Mate-

rials and Methods section. Generally, based on genetic differentiation

and number of markers in this study, STRUCTURE relaxed is expected to

offer good accuracy and high efficiency of hybrid identification,

whereas STRUCTURE conservative offers very good accuracy but low

efficiency (i.e., it will not classify individuals falsely as hybrids but under-

estimates the number of hybrids). For R, the hybrid category includes

the total number of identified hybrids (left) and the number of hybrids

representing compound hybrids with genetic contributions of all three

sources (right). The latter was not determined in C.
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described hybrid zones in the whitefish complex (Bernat-

chez and Dodson 1994; Rogers et al. 2007; Kahilainen et al.

2011; Vonlanthen et al. 2012). Individual admixture analy-

sis showed that all reintroduced German populations of

NSH and BH carry some level of admixture, even when

applying conservative thresholds. Genetic drift is an unli-

kely alternative explanation, as it should result in decreased

genetic diversity in reintroduced populations and in

increased divergence from the putative source, not neces-

sarily in the direction of alternative sources.

Hybrids were viable and hybridizations thus introgres-

sive following Allendorf et al. (2001). This was demon-

strated by (i) the frequent occurrence of compound

hybrids comprising genotypic contributions of three differ-

ent taxa, that is, a signature that requires at least two gener-

ations of hybridization, and (ii) the presence of pure NSH

and hybrids but lack of pure BH or EW, for example, in the

NSH_RHI and NSH_TRE, which pointed to past introgres-

sion as both parental lines would have to be present if

hybridization is ongoing. Further confirmation came from

the similar number of linkage and Hardy–Weinberg dis-

equilibria in most reintroduced populations compared

with sources, inconsistent with the presence of mainly F1

hybrids or very recent admixture (Barton and Hewitt

1985). Hybridization of NSH with EW was previously

shown to the F1 stage (Hansen et al. 2008). Here, we

extended those findings by showing the introgressive nat-

ure and hybridizations between all three taxa across the

complete German distribution area.

Underlying causes of geographic patterns in admixture

Considering their historic geographic isolation (Jacobsen

et al. 2012), what brings NSH, BH, and EW into secondary

contact? The system here was broadly characterized by (i)

the lack of admixture in the NSH and BH source popula-

tions and – with few exceptions – in the EW populations,

but the presence of admixture in all reintroduced popula-

tions; (ii) the significant differences between reintroduced

NSH and BH populations, with the dominance of the a pri-

ori native genotype and relatively homogenous patterns

across the NSH range, and the contrasting heterogeneous

situation and ‘out-of-place’ populations across the BH

range.

Pattern (i) confirmed that hybridizations were not due

to historic admixture in the source populations, but must

have occurred after the onset of reintroductions to Ger-

many ~20–25 years ago. The two possible explanations

were anthropogenic translocations via erroneous stocking,

or migrations via the potential invasion corridor Kiel Canal

(Gollasch and Rosenthal 2006). However, the observed

geographic patterns and spatial analyses (patterns i and ii)

clearly implicated stocking as key mechanism. Indeed, if

the Kiel Canal had created any link for migrations of hou-

tings between the North Sea and the Baltic Sea basins, the

local population would not be dominated by the EW geno-

types, and non-native genotypes would have been more

prevalent in populations near the canal. Moreover, the lack

of IBD and of a ‘stepping stone and diffusion’ pattern

(Gozlan et al. 2010) within the distribution ranges indi-

cated very limited migrations even between neighboring

populations. This was in line with an extensive Danish

NSH tagging program reporting few recaptures outside the

native river (Jepsen et al. 2012). These findings underscore

the idea that the homing behavior of the houtings is strong.

Interviews with resource managers revealed that adults,

fertilized eggs, and fry of NSH, BH, and EW have been peri-

odically kept in the same facilities. Although official records

did not indicate stocking of the historic houting ranges

with non-native ESUs, stocking errors therefore appear

possible. The clear range-specific differences observed here

may relate to the fact that the same person has been respon-

sible for NSH reintroductions from the onset (J€ager 1999),

whereas several hatcheries have been responsible for stock-

ing of the BH range. The potential consequences of too
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many hatcheries involved are illustrated by the weak differ-

entiation of the BH_LAC from the distant BH_SCH popu-

lation, both of which are stocked by the same hatchery, but

stronger differentiation from the nearby BH_TRA popula-

tion stocked by a different hatchery.

The intensity of stocking with non-native genotypes

strongly influences the outcome of hybridizations (Salmi-

nen et al. 2012), but pre- or postzygotic isolating mecha-

nisms also commonly play a role (Hansen et al. 2009;

Winkler et al. 2011). The rapid spread of extensive intro-

gressive hybridization within <25 years – that is, few gener-

ations considering the maximum age for NSH of 12 years

and first reproduction at 2–4 years (Jepsen et al. 2012) –
was inconsistent with the presence of strong hybrid incom-

patibilities sensu Orr (1995). Yet, the persistence and some-

times dominance of pure native genotypes and the rarity of

hybrid swarms may point to mechanisms opposing intro-

gression. A combination of stocking program and river sys-

tem characteristics may thus ultimately determine the

outcome of hybridizations; however, deeper ecological

characterization is needed to assess the respective contribu-

tions conclusively.

Evolutionary and conservation implications

From the evolutionary perspective, following Hewitt

(1988), the newly described NSH–BH–EW hybrid zone

represents in essence a large natural experiment. The

potential fitness implications of hybridizations were dem-

onstrated by the strong correlation of GRC with admixture

proportions, as GRCs directly relate to feeding ecology in

whitefish (Amundsen et al. 2004; Kahilainen and Østbye

2006) and are therefore under selection (Præbel et al.

2013a). Hybrids may then perform differently and could

even potentially exploit different niches, compared with

pure individuals in the same system. Moreover, this system

is special compared with many other hybrid zones includ-

ing those involving whitefishes (Winkler et al. 2011; Mera-

ner et al. 2013), because the three genetically and

phenotypically different taxa and their hybrids now occur

sympatrically in three very different environments: the fully

marine North Sea, the brackish Baltic Sea, and freshwater

rivers. Each environment will exert divergent selection

pressures notably on immune systems (Eizaguirre et al.

2009) and osmoregulation (Ban et al. 2007; Papakostas

et al. 2012). This setup appears ideal to investigate ques-

tions regarding the role of environment-dependent selec-

tion against or for hybrids and disruption of local

adaptations in shaping hybrid zones (Hendry et al. 2000;

Nolte et al. 2006).

In contrast to declines in genetic diversity frequently

associated with stocking due to bottlenecks (Pister 2001),

diversity actually increased in stocked compared with

indigenous populations due to admixture, similar to the

situation in managed honeybees (Harpur et al. 2012). Even

though anthropogenic hybridizations are in most cases det-

rimental, this raises the question whether admixed popula-

tions may possess an enhanced evolutionary potential

(Mallet 2007). Whether the fate of NSH and BH system will

be persistence of locally adapted ESUs, homogenous hybrid

swarms, or divergence into new niches is a key question

(Nolte and Tautz 2009). The answer will at least partly

depend on the course of future conservation measures,

which should particularly consider the gene flow imposed

on local populations by introducing novel genetic material

by stocking for instance (Aitken and Whitlock 2013).

The confirmation of the previous classification of NSH

and BH as separate ESUs (Hansen et al. 2008) underscores

that separate management of the two groups should be

maintained. This conclusion stands independently of the

low reproductive isolation between NSH, BH, and EW,

which is in accordance with the generally weak barriers to

gene flow among whitefishes (Vonlanthen et al. 2012). The

newly described hybrid zone will complicate this task and

presents a significant conservation challenge. Based on our

findings, we provide several concrete resource management

recommendations to assist the future conservation of the

houtings: (i) Hybridizations in the endangered houtings

likely stemmed from erroneous stocking, which demon-

strates the need for a stronger conservation genetic moni-

toring of stocking programs and hatcheries; (ii) the overall

continued genetic integrity of the NSH and BH source

populations should be a goal to maintain ESUs, which is a

conservation priority in hybrid zones (Allendorf et al.

2001). Any stocking of source locations with fry from rein-

troduced populations thus needs to be prevented to protect

these pure native populations; (iii) pure genotypes may

also persist in the reintroduced populations, as evidenced

by the continued dominance of native genotype in all NSH

populations and the BH_TRA, and the temporally stable

situation in the NSH_TRE. Although reverting admixed

populations to exclusively pure genotypes may not be feasi-

ble, using spawners with pure native genotypes for stocking

programs could further decrease admixture proportions

(Hansen et al. 2009). In the long term, shifting conserva-

tion priorities to habitat restoration may contribute to this

end, as it could strengthen the role of natural selection for

locally adapted ESUs. Finally, the continued temporal

genetic monitoring of this system in the future will be

imperative to assess the success of houting conservation

programs.
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microsatellite dataset based on five replicate runs in STRUCTURE 2.3, as

indicated by the ad hoc statistic DK (gray datapoints) and Ln P(D)

(mean � 1 SD, black datapoints), extracted with STRUCTURE Harvest-

er.

Table S1. Details of the 17 microsatellite loci included in this study.

Table S2. Gill raker counts (GRC) for indigenous and reintroduced

North Sea houting (NSH), Baltic houting (BH) and European whitefish

(EW) populations across the study area, with supplementary literature

values for indigenous NSH populations for which no GRC could be

obtained in this study.

Table S3. Estimates of pairwise genetic differentiation (Fst) between

source and reintroduced populations of North Sea houting (NSH), Bal-

tic houting (BH) and European whitefish (EW) based on mtDNA data.

Table S4. Tests values for recent demographic expansion or bottle-

necks based on mtDNA. Tajima’s D, Fu’s F, SSD and the raggedness

index r with their corresponding P-values.

Table S5. AMOVA results based on the microsatellite dataset, with a pri-

ori taxon affiliation (North Sea houting, Baltic houting, European white-

fish) and populations as grouping levels.
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