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Abstract

A number of issues in heterotic double field theory are studied. This includes
the analysis of the T-dual configurations of a flat constant gauge flux background,
which turn out to be non-geometric. Performing a field redefinition to a non-
geometric frame, these T-duals take a very simple form reminiscent of the con-
stant Q- and R-flux backgrounds. In addition, it is shown how the analysis of
arXiv:1304.2784 generalizes to heterotic generalized geometry. For every field re-
definition specified by an O(D,D+n) transformation, the structure of the resulting
supergravity action is governed by the differential geometry of a corresponding Lie
algebroid.
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1 Introduction

The description and understanding of non-geometric string backgrounds have been
under investigation during the last years. As with many other developments in string
theory, the exploration of the consequences of T-duality has been a good guide in this
respect [1, 2, 3, 4]. The classic example is to perform successive T-dualities via the
Buscher rules [5, 6] applied to a flat closed string background with constant H-flux [3].
This led to the chain of flux backgrounds with fluxes Habc → F abc → Qc

ab → Rabc

where it was shown that the Q-flux background is non-geometric globally and the
R-flux background even locally. It was shown that these non-geometric backgrounds
take a very simple form, when expressed not in the geometric frame (gij , Bij) but in
a so-called non-geometric frame (g̃ij , β

ij), where the new metric and the bi-vector are
related to the geometric frame via a field redefinition.

In order to properly describe such backgrounds, one needs to go beyond the usual
effective supergravity description of string theory. In this respect, two approaches were
followed. The first one is generalized geometry [7, 8, 9, 10], where one extends the
tangent bundle of a manifold such that diffeomorphisms and B-field gauge transfor-
mations can be described in a single geometric framework. Concretely, the metric and
the Kalb-Ramond field are unified in a generalized metric on the bundle T ⊕ T ∗. A
more ambitious approach is to develop a theory which is manifestly invariant under
T-duality. This led to double field theory (DFT), where not only the bundle but also
the coordinates themselves are extended to a doubled space by introducing winding
coordinates. A first approach followed a frame-like formulation [11, 12] which was fur-
ther worked out in [13, 14]. Later, using string field theory, an equivalent generalized
metric formulation was found [15, 16, 17]. However, DFT not only features a global
O(D,D) symmetry but also the local symmetries, due to the winding dependence, are
enhanced. For recent reviews of DFT see [18, 19, 20].

Whether generalized geometry allows for a description of non-geometric backgrounds
has been investigated in a series of papers. In particular, in [21, 22, 23] the question has
been asked what form the usual supergravity action takes in the non-geometric frame
variables and whether this action might already be sufficient for the global description
of non-geometric backgrounds. This led to the definition of so-called β-supergravity. In
[24, 25] the general structure of such O(D,D) induced field redefinitions was clarified in
the framework of generalized geometry. The two main results were that for every such
field redefinition, one can associate a corresponding Lie algebroid so that the redefined
supergravity action is governed by the differential geometry of that Lie algebroid. It
turned out that in each patch this provides are good description of the background,
but that the transition functions needed for the global description in general are not
part of the local symmetries of generalized geometry1.

On the contrary, due to the existence of extra local symmetries in DFT, i.e. the
generalized diffeomorphisms, the latter admits a global description of the Q and R-flux
backgrounds. The non-geometry shows up for the Q-flux background in a winding
dependence of the transition function between two patches and for the R-flux in an
explicit winding dependence of the background field itself.

1For possible exceptions see [26].
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A natural generalization of bosonic DFT is heterotic DFT [11, 12, 27, 28], where
the latter also includes the gauge fields present in the heterotic string. In generalized
geometry the heterotic string was also discussed in [29, 30, 31](see also [32, 33]). For
abelian gauge fields this generalization is formally straightforward extending the global
symmetry group from O(D,D) to O(D,D+n). For every gauge field Aα a new coordi-
nate yα is introduced, thus extending also the generalized metric so that it includes the
gauge fields. The main relations of DFT remain unchanged so that the action still has
the same form as for bosonic DFT, but just for the extended generalized metric. This
abelian heterotic DFT can be gauged which also allows the description of non-abelian
gauge groups [28, 34]. However, in this process the part of the global symmetry group
is broken to O(D,D).

It was observed in [35] that, in contrast to bosonic DFT, the action of T-duality
gives the Buscher rules including α′ corrections. In the same work, a suggestion has
been made how heterotic DFT can be further generalized to also accommodate the
leading order gravitational α′ corrections, including e.g. the well known Chern-Simons
terms involving the spin-connection. There has been quite some interest recently on
how to incorporate such α′ corrections in the framework of generalized geometry [36, 37]
and DFT [35, 38, 39, 40].

In this paper, in some sense, we take a step back from these more formal devel-
opments and investigate some comparably simple questions which, as we think, are
nevertheless important to clarify. For instance, to our knowledge, it is not clear what
the heterotic T-dual of a constant gauge flux background is. The same question for the
S-dual background of a type I string led to the discovery of D-branes and O-planes.
Indeed the T-dual of a D9-brane carrying a constant gauge flux in type I is the type
I’ string with a D8 brane intersecting the O8-plane at an angles. In the heterotic case
there are no 8-branes so what is the T-dual? Not unrelated, one can ask whether for
heterotic DFT, there exist an analogous chain of T-dual fluxes as for bosonic DFT. Of
course, the Hijk → Fij

k → Qi
jk → Rijk chain will still exist, but what about a similar

chain starting with an abelian constant gauge flux Gij → . . .? Does it also give rise to
new types of non-geometric fluxes? Clearly, these are questions one can now approach
in the framework of heterotic DFT.

We will find that indeed after one T-duality, one gets a non-geometric gauge flux
background that is in many ways analogous to the Q-flux background. It is locally still
geometric and the non-geometry appears in the transition functions in the sense that
there appears a dependence on a winding coordinate. Moreover, also for heterotic DFT
one can perform a field redefinition to a non-geometric frame in which the fundamental
fields are a dual metric g̃ij , a bi-vector βij and a gauge one-vector Ãi. We will see
that one indeed gets a chain of fluxes Gij → J ij → G̃ij , where the latter two are
non-geometric. One can trace back that, in this case, the non-geometry arises due to
the α′ corrections to the T-duality rules [41, 42].

Having realized that a field redefinition can be important for the description of non-
geometric backgrounds, we can ask how the analysis of [25] generalizes to the heterotic
case. Can the effect of an O(D,D+n) induced field redefinition still be described by the
differential geometry of a corresponding Lie algebroid? We will see that this is indeed
possible and explicitly present the corrections due to the existence of the gauge field.
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As for the original version, the local symmetries of the redefined action are only the
redefined versions of diffeomorphisms, B-field and A-field gauge transformation. This
implies that a single such action cannot globally describe non-geometric backgrounds,
which need winding coordinates to appear either in the transition functions (Q-flux)
or in the background itself (R-flux).

This paper is organized as follows: In section 2 we briefly introduce the setup for
heterotic DFT and the basics we need for our discussion. In section 3 we will perform
in detail successive T-dualities on a toroidal constant gauge flux background and show
how a field redefinition to a non-geometric frame simplifies the description of the T-
dual backgrounds. We derive explicitly the form of the relevant heterotic fluxes and
comment on the consequences for a potential non-associativity and for S-duality to
the type I string. In section 4 we discuss the O(D,D + n) induced field redefinitions
and identify the corresponding Lie algebroid. In particular, we present the form of the
action in the previously introduced non-geometric frame.

2 Review of heterotic DFT

In this section we briefly review the bosonic sector of heterotic DFT, where we focus on
those features which are important in the remainder of this note. The bosonic sector of
heterotic DFT with abelian gauge fields is a straightforward generalization of bosonic
DFT [28]. This is expected, as abelian gauge fields appear by dimensional reduction of
gravity theories.

The low-energy effective action of the massless bosonic sector for the heterotic string
is described by the action

S =

∫
dx
√
g e−2φ

(
R+ 4(∂φ)2 − 1

12
H ijkHijk −

1

4
GijαGij

α
)
, (2.1)

in which the field strength of the non-abelian gauge fields is defined as

Gij
α = ∂iAj

α − ∂jAiα + g0 [Ai, Aj ]
α (2.2)

and the strength of the Kalb-Ramond field is modified by the Chern-Simons three-form,

Hijk = 3
(
∂[iBjk] − καβA[i

α∂jAk]
β − 1

3
g0 καβ A[i

α[Aj , Ak]]
β
)
. (2.3)

Here καβ denotes the Cartan-Killing metric of the gauge group. In the abelian case,
this is simply the unit matrix, καβ = δαβ. Note that the order in α′ can be made visible
by scaling Ai

α →
√
α′Ai

α. From now on we consider abelian gauge fields. Moreover,
the higher derivative correction of H due to the gravitational Chern-Simons form will
be not considered throughout this paper.

2.1 The generalized metric

In the DFT formulation of the abelian heterotic sting [28], for each gauge field Aα one
introduces a new coordinate yα so that the entire DFT lives on a 2D + n dimensional
space with coordinates

XM = (x̃i, x
i, yα) . (2.4)
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The global symmetry group is enhanced from O(D,D) to O(D,D + n), the T-duality
group of the heterotic string. The doubled coordinates XM transform as an O(D,D+n)
vector

X
′M = hMN X

N , h ∈ O(D,D + n) . (2.5)

As in bosonic DFT, one introduces an O(D,D + n) invariant metric

ηMN =

 0 δij 0
δi
j 0 0

0 0 δαβ

 (2.6)

satisfying

ηMN = hMP h
N
Q η

PQ . (2.7)

This O(D,D+n) metric is used to pull up and down capital indices likeM . Accordingly,
the generalized derivatives and gauge parameters are given as

∂M = (∂̃i, ∂i, ∂α), ξM = (ξ̃i, ξ
i,Λα) . (2.8)

As shown in [28], one can proceed along the lines of bosonic DFT and introduce a
generalized Lie derivative and a C-bracket. Then, closure of the algebra is guaranteed,
if one introduces the heterotic strong constraint

∂Mf ∂
Mg = ∂̃if ∂ig + ∂if ∂̃

ig + ∂αf ∂
αg = 0 (2.9)

where f and g are arbitrary fields and gauge parameters. This means that the heterotic
level-matching condition

∂M∂
Mf = 2∂̃i∂if + ∂α∂

αf = 0 (2.10)

also has to hold for products of fields and implies that locally there exist an O(D,D+n)
transformation rotating the coordinates into a frame in which the fields only depend
on the normal coordinates xi.

The heterotic DFT action can be expressed in terms of a generalized metric and
an O(D,D + n) invariant dilaton d defined by e−2d =

√
ge−2φ. The metric HMN

transforms covariantly under O(D,D + n)

H′MN (X
′
) = hMP h

N
QHPQ(X) (2.11)

and is parameterized in terms of the metric gij , the Kalb-Ramond field Bij and the
gauge fields Ai

α as

HMN =

 gij −gikCkj −gikAkβ
−gjkCki gij + Ckig

klClj +Ai
γAjγ Ckig

klAlβ +Aiβ

−gjkAkα Ckjg
klAlα +Ajα δαβ +Akαg

klAlβ

 (2.12)
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where only the combination

Cij = Bij +
1

2
Ai

αAjα (2.13)

appears. Note that Cij splits into a symmetric and an antisymmetric part as

C(ij) =
1

2
Ai

αAjα , C[ij] = Bij . (2.14)

Written in terms of the generalized metric (2.12), the form of the heterotic DFT action
is identical to the action of bosonic DFT.

2.2 Generalized vielbeins in heterotic DFT

In analogy to bosonic DFT, one can also introduce a generalized vielbein EAM so that

HMN = EAM SAB E
B
N (2.15)

with the constant generalized metric

SAB =

sab 0 0
0 sab 0
0 0 sαβ

 (2.16)

and sab = diag(−,+, . . . ,+), sαβ = diag(+, . . . ,+). One finds2

EAM =

ea
i −eakCki −eakAkβ

0 eai 0

0 Ai
α δαβ

 , EA
M =

 eai 0 0

−eakCki ea
i −eakAkβ

Ai α 0 δα
β

 (2.17)

which also satisfies

ηMN = EAM EAN . (2.18)

Now one defines the generalized derivative as

DA = EA
MDM = (D̃a, Da, Dα) (2.19)

leading in components to

D̃a = ∂̃a

Da = ∂a −Bai ∂̃i −
1

2
Aa

αAiα ∂̃
i −Aaγ ∂γ

Dα = ∂α +Aiα ∂̃
i .

(2.20)

Introducing the generalized Weitzenböck connection as

ΩABC = DAEB
NECN (2.21)

2Note that compared to [14], we have two different signs in the definition of the vielbein. This is
because we want to be consistent with the generalized metric as defined in [28].
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the generalized fluxes of heterotic DFT are defined as

FABC =ECMLEAEB
M = ΩABC + ΩCAB − ΩBAC . (2.22)

In a holonomic basis one finds e.g. the three-form flux

Hijk = −3
(
∂[iBjk] − δαβA[i

α∂jAk]
β
)

(2.23)

which is precisely the field strength of the Kalb-Ramond field modified by the Chern-
Simons three-form (2.3). In section 3.2, all these generalized fluxes will be evaluated
more explicitly.

3 Non-geometric backgrounds of heterotic DFT

In this section we will use the formalism of heterotic DFT to determine the T-dual of a
heterotic string compactified on a two-torus T 2 with a constant gauge flux turned on.
This is analogous to the configuration of T 3 with constant H flux for bosonic string
theory [3, 43]. In the latter case, this was the prototype example to detect after two
T-dualities the possibility of a non-geometric Q-flux background. Applying a third T-
duality led to the conjecture for the existence of an R-flux background. Applying these
T-dualities in the framework of DFT, the non-geometry shows up in the appearance of
winding coordinates in the transitions functions for the Q-flux and in the background
itself for the R-flux. Thus, in this sense a Q-flux background is locally geometric but
not globally, whereas an R-flux background is non-geometric even locally.

3.1 T-duality of a constant gauge flux background

Recall that under a global h ∈ O(D,D + n) transformation the coordinates and the
generalized metric behave as

H
′

= htH h , X
′

= hX , ∂
′

= (ht)−1 ∂ . (3.1)

Now, we consider a torus T 2 with a flat metric gij = δij , vanishing Kalb-Ramond field
B and a constant abelian gauge flux Gij . For the corresponding single gauge potential
A(1) = A we choose

A1 = f y , A2 = 0 . (3.2)

This gives the field strength

G12 = −(∂1A2 − ∂2A1) = f . (3.3)

On the 2-torus the coordinates are periodically identified by (x, y) ∼ (x+2π, y) ∼ (x, y+
2π). For the gauge field to be well defined globally, one needs a non-trivial transition
function between the two patches P = [0, 2π) and Q = (0, 2π]. In the patch P we have
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A
(P )
1 = f y while in the patch Q the gauge field is A

(Q)
1 = f(y−2π). These two patches

can be glued smoothly together by a gauge transformation A
(Q)
1 = A

(P )
1 +∂1λ

(PQ) with

λ(PQ) = −2πfx . (3.4)

The generalized metric for this background in patch P takes the form

H(P )
MN =



1 0 − (fy)2

2 0 −(fy)

0 1 0 0 0

− (fy)2

2 0 1 + (fy)2 + (fy)4

4 0 (fy) + (fy)3

2

0 0 0 1 0

−(fy) 0 (fy) + (fy)3

2 0 1 + (fy)2


. (3.5)

The transition to patch Q is given by conjugation with an appropriate O(D,D + n)
matrix T(PQ), i.e.

H(Q) = T T(PQ) H
(P ) T(PQ) (3.6)

which in our case takes the form

T(PQ) =


1 0 − (2πf)2

2 0 2πf
0 1 0 0 0

0 0 1 0 0
0 0 0 1 0

0 0 −2πf 0 1

 . (3.7)

In analogy to generalized geometry such a matrix might be called an “A-transform”.
Note that this is consistent with the discussion in [23], where the transition matrix was
calculated via the vielbeins in the two patches as T(PQ) = E−1(P )E(Q).

Now, we apply a T-duality in the x-direction, which in heterotic DFT can be
implement by conjugation H′ = T T1 HT1 with the special O(2, 3) transformation

T1 =


0 0 1 0 0
0 1 0 0 0

1 0 0 0 0
0 0 0 1 0

0 0 0 0 1

 . (3.8)

The upper 4× 4 dimensional part of the metric is the same as the T-duality transfor-
mation for bosonic DFT. Thus, we obtain in patch P

H′(P )
=



1 + (fy)2 + (fy)4

4 0 − (fy)2

2 0 (fy) + (fy)3

2

0 1 0 0 0

− (fy)2

2 0 1 0 −(fy)

0 0 0 1 0

(fy) + (fy)3

2 0 −(fy) 0 1 + (fy)2


(3.9)
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from which one can directly read off the new metric, Kalb-Ramond field and the gauge
field as

g′
(P )

=

( 1

1+(fy)2+
(fy)4

4

0

0 1

)
, B′

(P )
= 0 , A′

(P )
=

− (fy)

1+
(fy)2

2

0

 . (3.10)

Note that after one T-duality one still gets a metric and a gauge field, where, as
in the Q-flux background, there appears a non-trivial functional dependence in the
denominators. Moreover, these results are consistent with the α′ corrected Buscher
rules for a T-duality along a single direction for the heterotic string given in [42]. In
fact, as shown in appendix A these are precisely the T-duality rules following from the
heterotic DFT construction.

The new transition matrix to patch Q is given by

T ′(PQ) = T T1 T(PQ)T1 =


1 0 0 0 0
0 1 0 0 0

− (2πf)2

2 0 1 0 2πf
0 0 0 1 0

−2πf 0 0 0 1

 (3.11)

which is not any longer a usual A-transform, i.e. a gauge transformation. This observa-
tion and the appearance of strange denominators already indicates that we are dealing
here rather with a non-geometric background (like the Q-flux for bosonic DFT).

In analogy to bosonic DFT, one can introduce a field redefinition so that the gener-
alized metric is parameterized by a new metric g̃ij , a bi-vector C̃ij and a (one-)vector
Ãi as

HMN =

g̃
ij + C̃ki g̃kl C̃

lj + Ãiγ Ã
jγ −g̃jk C̃ki C̃ki g̃kl Ã

l
β + Ãiβ

−g̃ik C̃kj g̃ij −g̃ik Ãkβ
C̃kj g̃kl Ã

l
α + Ãjα −g̃jk Ãkα δαβ + Ãkα g̃kl Ã

l
β

 . (3.12)

Here C̃ij = βij + 1
2Ã

i
α Ã

jα, where βij is the antisymmetric bi-vector appearing also in
bosonic DFT. The generalized vielbein reads in this case

EAM =

 ẽa
i 0 0

−ẽakC̃ki ẽai −ẽakÃkβ
Ãiα 0 δαβ

 . (3.13)

Comparing (3.9) with the form of the generalized metric in the so-called non-geometric
frame (3.12), one can read off

g̃′(P ) =

(
1 0
0 1

)
, Ã′(P ) =

(
fy
0

)
, (3.14)

with βij = 0. This shows that in this frame the T-dual configuration takes a very
simple form. Moreover, using (3.11) one can also find the metric and the one-vector in
patch Q

g̃′(Q) =

(
1 0
0 1

)
, Ã′(Q) =

(
f(y − 2π)

0

)
, (3.15)
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Since the T-duality also changes x→ x̃ in the gauge transformation (3.4), the “gauge”
transformation connecting the one-vectors in patch P and Q becomes

Ã′1(Q) = Ã′1(P ) + ∂̃1λ̃(PQ) with λ̃(PQ) = −2πfx̃ . (3.16)

Note, that the transition function in this non-geometric frame contains a winding coor-
dinate so that indeed this T-dual background is globally non-geometric, very similar to
the Q-flux background for bosonic DFT. The only difference is that the latter requires a
T-duality in two-directions in order to generate it from a constant H-flux background.
Finally, the new flux in this T-dual background should be

J1
2 = −∂2Ã1 = −f . (3.17)

Applying to this configuration another T-duality in the y direction only changes
y → ỹ in the generalized metric (3.9), so that in the non-geometric frame one obtains

g̃′′(P ) =

(
1 0
0 1

)
, Ã′′(P ) =

(
fỹ
0

)
, (3.18)

and similarly in patch Q. Therefore, like the R-flux background, this configuration is
already locally non-geometric, characterized by a non-geometric flux

G̃12 = −(∂̃1Ã2 − ∂̃2Ã1) = f . (3.19)

Of course, at this stage the form of the new non-geometric fluxes J ij and G̃ij is just
a guess. In the following subsection, we derive the complete form of this new kind of
fluxes from the vielbein (3.13).

3.2 The fluxes of heterotic DFT

In this section we derive the general form of the components of the heterotic fluxes

FABC =ECMLEAEB
M = ΩABC + ΩCAB − ΩBAC . (3.20)

In order to treat geometric and non-geometric components at the same time, as in [14],
we use the general extended form of the generalized vielbein

EAM =

 ea
i −eakCki −eakAkβ

−eakC̃ki eai + eakC̃
kjCji −eakÃkβ

Ãiα Ai
α δαβ

 (3.21)

which combines (2.17) and (3.13) into one object. Recall that ηAB = EA
MEMB implies

that the Weitzenböck connection satisfies ΩABC = −ΩACB. However, one can show
that this relation ceases to be satisfied with the full vielbein (3.21). Therefore, in the
following we present the geometric fluxes for the physically relevant case of Ãiα = 0
and the non-geometric fluxes for Ai

α = 0. In addition, for simplicity here we will work
in a holonomic basis, the rather lengthy generalizations to a non-holonomic basis can
be found in appendix B.
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The components of the derivatives DA = EA
MDM become

D̃i =∂̃i + C̃imCmn∂̃
n − C̃im∂m − Ãiγ∂γ

Di =∂i − Cim∂̃m −Aiγ∂γ
Dα =∂α +Amα∂̃

m + Ãmα∂m .

(3.22)

For all three indices being of normal or winding type we get the fluxes H,F,Q and R
including corrections depending on the gauge fields A and Ã. In terms of the derivatives
(3.22), for Ãiα = 0 the geometric fluxes can be expressed as

Hijk =− 3D[iBjk] + 3D[iAjγAk]
γ

F kij =− D̃kBij + D̃kA[iγAj]
γ − 2D[iβ

kmAj]γAm
γ − 2βkmD[iCmj] .

(3.23)

With Ai
α = 0 the non-geometric fluxes take the form

Qk
ij =−Dkβ

ij +DkÃ
[iγÃj]γ − C̃ [imC̃j]nDkBmn − 2D[iBkmC̃

j]m

Rijk =− 3D̃[iβjk] + 3D̃[iÃjγÃk]γ + 3C̃ [imD̃jBmnC̃
k]n

(3.24)

For Ai
α = Ãiα = 0, these expressions are consistent with the ones derived in [44, 14, 45].

Due to the extra gauge coordinates yα in heterotic DFT, there exist new types of
fluxes. Choosing at least one index of FABC to be a gauge index, the antisymmetry
ΩABC = −ΩACB in all indices forces us to set either βij = Ãiα = 0 or Bij = Ai

α = 0.
Of course, one can choose these constraints independently for each direction (ij) or
(i), respectively. In the following, we present the result for choosing the same set of
conditions for all directions.

Thus, in the geometric frame βij = Ãiα = 0, we get the following three types of
non-vanishing gauge fluxes

Gαij = −2D[iAj]α −DαBij +DαA[i
γAj]γ

J jαi = ∂̃jAiα

Kαβi = 2D[αAiβ] .

(3.25)

Solving the strong constraint via ∂̃i = ∂α = 0, the first flux reduces to the familiar
form of the field strength (2.2) for an abelian field. In the non-geometric frame Bij =
Ai

α = 0, the non-vanishing fluxes are

J jαi = −∂iÃjα
G̃α

ij = −2D̃[iÃj]α −Dαβ
ij +DαÃ

[iγÃj]γ

K̃αβi = 2D[αÃiβ] .

(3.26)

Hence, the flux J jαi in the non-geometric frame is indeed the flux we encountered in the
previous section after applying one T-duality. Similarly, reducing G̃α

ij for ∂i = ∂α = 0,
one obtains

G̃α
ij = −2∂̃[iÃj]α , (3.27)
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the gauge flux of Ã found in the background after applying two T-dualities.
For a non-holonomic basis, one finds the commutators

[∂a, ∂b] = f cab ∂c , with f cab := ei
c(∂aeb

i − ∂beai).
[∂̃a, ∂̃b] = f̃c

ab ∂̃c , with f̃c
ab := ec

i(∂̃aei
b − ∂̃beia)

(3.28)

providing correction terms to the fluxes shown above. The resulting rather lengthy
expressions for these fluxes can be found in appendix B.

The upshot of the explicit analysis of this section is that, for the heterotic string, the
T-dual of the constant gauge flux background on a flat geometry is a non-geometric
background. Therefore, the concept of non-geometry does not only apply to closed
string three-form backgrounds but also to gauge flux backgrounds. Moreover, we have
seen that for the description of these T-dual backgrounds, it is appropriate to change
to a non-geometric frame, where in particular the gauge 1-form A = Ai dx

i is replaced
by a gauge 1-vector Ã = Ãi ∂i.

3.3 Comment on R-flux and non-associativity

It has been suggested that the non-geometric R-flux background gives rise to some
non-associativity of the usual coordinates [46, 47, 48, 49, 50]. In the context of DFT
this was analyzed in [51], where it was studied how DFT behaves if one defines a new
tri-product given in terms of the three-index flux as

f 4 g4h = f g h + FABC DAf DBg DCh+ . . . . (3.29)

For objects satisfying the strong constraint, the correction identically vanishes so that,
in particular, for the action such a deformation has no effect (see [51] for more details).

Since the coordinates themselves are not conformal fields, one does not necessarily
expect them to satisfy the level-matching constraint and consequently not the strong
constraint. The implied tri-bracket [xi, xj , xk] for the coordinates is governed by the
non-geometric flux coupled to just ordinary derivatives. Thus, we are focusing on the
term

FABC DAf DBg DCh = ρijk ∂if ∂jg ∂kh+ . . . (3.30)

which for usual DFT was just ρijkbos = 3∂̃[iβjk]. The natural expectation is that, in the
heterotic case, this gets generalized to the gauge invariant combination3

ρijkH = 3
(
∂̃[iβjk] − ∂̃[iÃjγÃk]γ

)
. (3.31)

However, evaluating (3.30) for a holonomic non-geometric frame, one finds

ρijk = 3
(
∂̃[iEA

j
)
EAk] = −3

(
∂̃[iβjk] + ∂̃[iÃjγÃk]γ

)
, (3.32)

3We confirmed this behavior by performing a conformal field theory analysis along the lines of [49].
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showing that the relative sign between the two terms on the right hand side of (3.32) is
different. As a consequence, this object ρijk is not invariant under Ã gauge transforma-
tions Ãiα = Ãiα + ∂̃iλα, unless the non-geometric gauge flux G̃α

ij = ∂̃[iÃj]α vanishes.
We observe that this sign flip can be reconciled with heterotic DFT by defining instead

f 4 g4h = f g h + FHABC DAf DBg DCh+ . . . (3.33)

with

FHABC(β, Ã) = FABC(β, Ã)− 2FABC(β, Ã = 0) . (3.34)

3.4 Comment on S-duality

Let us now consider the SO(32) heterotic string compactified on a two-torus with
constant abelian gauge flux F = F12. This configuration is known to be S-dual to the
Type I string [52] compactified on a two-torus where the D9-brane carries the same
gauge flux F . Applying a T-duality in the y-direction to this latter configuration yields
the Type I’ string with aD8-brane at an angle with respect to theO8-planes. One might
ask whether there exist an S-dual to this configuration. The answer to this question is
not obvious, as in the heterotic string there are no 8-branes. However, recall that we
have just seen that the T-dual to the SO(32) heterotic string with gauge flux is a non-
geometric background of the E8×E8 heterotic string carrying flux J = J1

2. Therefore,
by completing the diagram as shown in figure 1 we are led to the conjecture that the
S-dual of the D8-brane at angle in Type I’ is a non-geometric J-flux background of the
heterotic string.
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Figure 1: S- and T -duality between Type I and heterotic string.
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4 A Lie algebroid for heterotic field redefinitions

In the previous section we have seen that a field redefinition can help in simplifying
the description of non-geometric backgrounds. As we discussed in the introduction,
this fact is familiar from O(D,D) generalized geometry and DFT, respectively. Recall
that in [25] the general structure of O(D,D) induced field definitions was clarified in
the framework of generalized geometry. The two main results were that for every such
field redefinition, one can associate a corresponding Lie algebroid so that the redefined
supergravity action is governed by the differential geometry of that Lie algebroid.

In this section, we show that this picture also holds for the heterotic case, i.e. to
every O(D,D + n) induced field redefinition one can associate a corresponding Lie
algebroid so that in the new field variables the heterotic action is governed by the
differential geometry of that Lie algebroid. For the definition of a Lie algebroid, please
consult appendix C. We will also show that the non-geometric frame (3.12) does also fit
into this scheme. Since the story is very similar, we will be rather brief here and refer
the reader to [25] for more information on Lie algebroids and its differential geometry.

4.1 O(D,D + n)-induced field redefinition

In abelian heterotic generalized geometry, one considers a D-dimensional manifold M
with usual coordinates xi, equipped with a generalized bundle E = TM ⊕ T ∗M ⊕ V ,
whose sections are formal sums ξ+ξ̃+λ of vectors, ξ = ξi(x) ∂i, one-forms, ξ̃ = ξ̃i(x) dxi

and gauge transformations, λ = (λ1(x), . . . λn(x)), of U(1)n. On this bundle one defines
a generalized HMN metric taking the familiar form (2.12) in terms of the fundamental
fields gij , Bij and Ai

α. An O(D,D + n) transformation M acts on the generalized
metric via conjugation, i.e.

Ĥ(ĝ, B̂, Â) =MtH(g,B,A)M (4.1)

and therefore defines a field redefinition

(g,B,A) −→ (ĝ, B̂, Â) . (4.2)

The heterotic action in terms of the fields (g,B,A) is the heterotic supergravity action
(2.1). The question is how the action in the new field variables (ĝ, B̂, Â) looks. Just
inserting the field redefinition gives a plethora of terms so that an organizing principle
is needed.

To proceed, we write a general O(D,D + n) matrix M as

M =

a b m
c d n
p q z

 . (4.3)

This transformation has to leave the η metric (2.6) invariant, i.e.

Mt ηM = η , (4.4)
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leading to six independent constraints on the submatrices

cta+ atc+ ptp =0

ctb+ atd+ ptq =1

ctm+ atn+ ptz =0

dtb+ btd+ qtq =0

dtm+ btn+ qtz =0

ntm+mtn+ ztz =1 .

(4.5)

Now applying (4.1) we can read off the induced field redefinition. For the upper-left
component of Ĥ(ĝ, B̂, Â) one obtains

Ĥ(ĝ, B̂, Â)ul =
[
a−Ap−

(
g +B + 1

2A
2
)
c
]t
g−1

[
a−Ap−

(
g +B + 1

2A
2
)
c
]

(4.6)

which, comparing with general form of the generalized metric, gives ĝ−1. Thus, we get

ĝ = (γ−1) g (γ−1)t (4.7)

where the matrix γ is given as

γ = a−Ap−
(
g +B + 1

2A
2
)
c . (4.8)

In order to consider the redefined Kalb-Ramond field B̂ which is contained in Ĉ, we
consider the upper-middle component of the redefined generalized metric

Ĥ(ĝ, B̂, Â)um = 1 +
[
a−Ap−

(
g +B + 1

2A
2
)
c
]t
g−1

[
b−Aq −

(
g +B + 1

2A
2
)
d
]

(4.9)

and compare it with Ĥum = −ĝ−1Ĉ. Thus, we find

Ĉ = (γ−1)C (γ−1)t with C = δ γt − g (4.10)

with the matrix δ defined as

δ = −b+Aq +
(
g +B + 1

2A
2
)
d . (4.11)

It remains to determine the O(D,D + n) induced field redefinition for the gauge field
A. For that purpose, we look into the upper-right element of the generalized metric

Ĥ(ĝ, B̂, Â)ur =
[
a−Ap−

(
g +B + 1

2A
2
)
c
]t
g−1

[
m−Az −

(
g +B + 1

2A
2
)
n
]

(4.12)

and identify it with −ĝ−1Â. Thus, we obtain

Â = (γ−1)A (4.13)
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with

A = −m+Az +
(
g +B + 1

2 A
)
n . (4.14)

From C and A one can define also a new B-field B via

B̂ = (γ−1)B (γ−1)t with B = C− 1

2
A⊗ A . (4.15)

Thus the field redefinition is of a very peculiar form, where the matrix γ plays a
prominent role. In fact, the structure of the field redefinition of g and B is completely
analogous to [25], only containing some new gauge field dependent corrections in γ and
δ. Thus it is straightforward to proceed as in [25] and to identify

ρ = (γ−1)t (4.16)

as the anchor map of a Lie algebroid (see appendix C).
This Lie algebroid lives on the tangent bundle itself, i.e. E = TM and the anchor

map ρ : E → TM acts on a vector field X = Xi∂i ∈ E as4

ρ(X) = (ρij X
j) ∂i = Xi(ρt)i

j ∂j = XiDi , (4.17)

where we defined the partial derivative for the Lie algebroid as

Di = (ρt)i
j ∂j . (4.18)

The bracket J·, ·K on E = TM is defined as

JX,Y K =
(
XjDjY

k − Y jDjX
k +Xi Y j Fij

k
)
∂k . (4.19)

with the structure constants

Fij
k = (ρ−1)km

(
Di(ρ

t)j
m −Dj(ρ

t)i
m
)
. (4.20)

Indeed, this bracket satisfies the homomorphism property

ρ
(
JX,Y K

)
= [ρ(X), ρ(Y )] . (4.21)

Furthermore, by construction the new bracket J·, ·K satisfies the Jacobi identity (C.2) as
well as the Leibniz rule (C.1). Thus, for every O(D,D+n) induced field redefinition we
have associated a corresponding Lie algebroid. The true power of this formal approach
will become clear in the next section.

4Here we present the relations in a holonomic basis. For the non-holonomic case, we refer to [25].
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4.2 The redefined heterotic action

Recall that the NS-sector of the heterotic DFT action is

S =

∫
dx
√
ge−2φ

(
R+ 4(∂φ)2 − 1

12
H ijkHijk −

1

4
GijαGijα

)
(4.22)

with the three-form H = dB − 1
2δαβA

α ∧ dAβ and the abelian two-form field strength
Gα = dAα. As derived in detail in [25], the field redefinition is completely given by
pulling indices up and down by the action of the anchor (here ρt = γ−1). For the metric
we found (4.7), which implies that the quantities in the gravitational sector transform
as

R̂qmnp = (ρ−1)ql ρ
i
m ρ

j
n ρ

k
pR

l
ijk , R̂mn = ρim ρ

j
nRij ,

R̂ = R ,
√
|ĝ| =

√
|g||ρt| , φ̂ = φ

(4.23)

where the derivative for the transformed theory is (4.18).
For the flux sector, so far we know the transformation behavior of gauge potentials

B and A. Therefore, one still needs to find the proper definition of the new field
strengths so that they also transform properly, i.e. just by pulling up and down indices
with the anchor. For that purpose one needs to invoke the Lie algebroid differential dE
defined in appendix C. For the gauge field strength G = dA, using the relation (C.4)
one can show

(Λ2ρ∗)dEÂ = d(ρ∗Â) = dA (4.24)

with ρ∗ = (ρt)−1 = γ, so that

Ĝ := dEÂ = (Λ2ρt)G (4.25)

is the correct definition of the transformed field strength that transforms properly.
Analogously, one can show

dEB̂ = (Λ3ρt) dB (4.26)

so that the proper three-form flux is given by

Ĥ := dEB̂−
1

2
Â ∧ dEÂ = (Λ3ρt)H . (4.27)

Its Bianchi identity reads

dEĤ = −1

2
Ĝ ∧ Ĝ . (4.28)

Thus, each quantity appearing in the heterotic action (4.22) now transforms properly
so that the action in the redefined fields can be expressed as

S =

∫
dx
√
ĝ |ρ∗| e−2φ

(
R̂+ 4(Dφ)2 − 1

12
ĤijkĤijk −

1

4
ĜijαĜijα

)
. (4.29)
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This has the analogous form as the original action, but with the new fields defined in
the framework of the differential geometry of the Lie algebroid. Therefore, the latter
provides the organizing principle for expressing the action in O(D,D + n) induced
redefined field variables.

Note that the symmetries of this action are just the transformed diffeomorphisms
and B- and A-field gauge transformations of the original action. Clearly, just by a
field redefinition, one does not gain new symmetries. Therefore, the Ã field gauge
transformation (3.16), needed for the transition function of the T-dual non-geometric
J-flux background is not a symmetry of (4.29). Thus, as in generalized geometry [25],
a field redefinition helps to bring in each patch a non-geometric background in a simple
form, but in general it does not provide a global description of the background.

4.3 The non-geometric frame

In this section we show that the field redefinition between the geometric and the non-
geometric frame from section 3.1 can also be described in this framework. For that
purpose, first recall the form of the generalized metric in these two frames. In the
geometric one, we have

HMN =

 gij −gikCkj −gikAkβ
−gjkCki gij + Ckig

klClj +Ai
γAjγ Ckig

klAlβ +Aiβ

−gjkAkα Ckjg
klAlα +Ajα δαβ +Akαg

klAlβ

 (4.30)

and in the non-geometric one

HMN =

g̃
ij + C̃ki g̃kl C̃

lj + Ãiγ Ã
jγ −g̃jk C̃ki C̃ki g̃kl Ã

l
β + Ãiβ

−g̃ik C̃kj g̃ij −g̃ik Ãkβ
C̃kj g̃kl Ã

l
α + Ãjα −g̃jk Ãkα δαβ + Ãkα g̃kl Ã

l
β

 . (4.31)

By comparison of the components, the corresponding field redefinition takes the form

g̃ = g + Ct g−1C +A2

C̃ = g̃−1Ct g−1

Ã = −(g̃−1 + C̃)A .

(4.32)

Analogous to [25], we propose that this transformation is implemented by choosing

M =

 0 g̃ 0
g̃−1 0 0
0 0 1

 (4.33)

with g̃ = g + Ct g−1C + A2. Evaluating the expressions (4.8),(4.10),(4.11), (4.14) we
obtain as intermediate results

γ = −(g + C) g̃−1 so that γ−1 = −(g + Ct)g−1 ,

δ = −g̃ so that C = Ct ,

A = A .

(4.34)
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Using these relations further in (4.7), (4.10) and (4.13) we finally get

ĝ = (γ−1) g (γ−1)t = g̃

Ĉ = (γ−1)C (γ−1)t = Ct g−1 g̃

Â = (γ−1)A = −(1 + Ct g−1)A .

(4.35)

Here Ĉ and Â are still forms. For transforming them into a bi-vector and a vector, one
pulls up the indices with g̃−1 so that

C̃ = g̃−1 Ĉ g̃−1 = g̃−1Ct g−1

Ã = g̃−1 Â = −(g̃−1 + C̃)A ,
(4.36)

which precisely agrees with the field redefinition of the non-geometric frame (4.32).

5 Conclusion

In this paper we studied a couple of aspects of heterotic DFT in more detail. We
think that, while the general formalism of heterotic DFT was developed before and is
a straightforward generalization of bosonic DFT, the concrete evaluation of its conse-
quences, in particular for issues related to the gauge field, deserved a further study.

Indeed, by applying the T-duality rules (α′ corrected heterotic Buscher rules) to
a flat background with a constant gauge field, we found non-geometric backgrounds,
which were very similar to the Q- and R-flux backgrounds in bosonic DFT. Namely,
after one T-duality we already obtained a background which was best described by
changing to a non-geometric frame, where the gauge one-form has turned into a gauge
one-vector. The required transition function between two patches was given by a new
symmetry, namely a one-vector gauge transformation involving a winding dependence.
Thus, this background is globally non-geometric, an effect introduced by the α′ cor-
rected Buscher rules. Applying a further T-duality, the arising background was even
locally non-geometric.

Even though, we were only considering abelian gauge fields, we expect this picture
to generalize also to non-abelian gauge fields. The latter are introduced via a gauging
procedure that generically breaks the O(D,D + n) symmetry to O(D,D). However,
T-duality is a special element of O(D,D) so that it can still be treated analogously to
the abelian case.

Moreover, we clarified which type of fluxes are turned on in these backgrounds
and how they are microscopically described in terms of the fundamental fields in the
theory. We argued that the constant non-geometric J-flux background of the E8 ×E8

heterotic string can be considered the S-dual of a Type I’ background with a D8-brane
intersecting the O8-plane at an angle.

Led by the apparent necessity of field redefinitions, we considered the general ques-
tion what effect an O(D,D + n) induced field redefinition has on the heterotic super-
gravity action. Generalizing [25], we investigated this question in the framework of
generalized geometry and found very similar results, though now including various cor-
rections due to the present one-form gauge field. In particular, the organizing principle
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for the terms in the redefined action was given by the differential geometry of a Lie alge-
broid, whose anchor was related to the O(D,D+n) transformation. The non-geometric
frame was identified with just a specific O(D,D + n) induced field redefinition.

Even though, here we were only considering the NS part of the heterotic action,
we expect that the whole action including the fermionic terms are governed by the
objects in the differential geometry of the Lie algebroid. This includes e.g. the kinetic
terms for the gravitinos and gluinos, that involve a spin-connection. Moreover, here we
were neglecting the gravitational Chern-Simons term (see [35] for a recent treatment
in DFT). Introducing non-abelian gauge fields via gauging, breaks the O(D,D + n)
symmetry so that in this case only the remaining symmetry should be used for a field
redefinition.
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A The Buscher rules derived from heterotic DFT

Using the implementation of T-duality in heterotic DFT, one can now quite generally
(re-)derive the Buscher from the conjugation of the generalized metric with the cor-
responding T-duality matrix. Carrying out this procedure for a T-duality in the xθ
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direction, we get precisely the α′ corrected Buscher rules presented in [42]

G′θθ =
Gθθ(

Gθθ + α′

2 A
2
θ

)2
G′θi = −

GθθBθi + α′

2 GθiA
2
θ −

α′

2 Gθθ AθAi(
Gθθ + α′

2 A
2
θ

)2
G′ij = Gij −

GθiGθj −BθiBθj(
Gθθ + α′

2 A
2
θ

)
− 1(

Gθθ + α′

2 A
2
θ

)2(Gθθ[α′

2 BθjAθAi + α′

2 BθiAθAj −
α′2

4 AθAi AθAj

]
+ α′

2 A
2
θ

[
(Gθi −Bθi)(Gθj −Bθj) + α′

2 (GθiAθAj +GθjAθAi)
])

B′θi = −
Gθi + α′

2 AθAi(
Gθθ + α′

2 A
2
θ

)
B′ij = Bij −

(Gθi + α′

2 AθAi)Bθj − (Gθj + α′

2 AθAj)Bθi(
Gθθ + α′

2 A
2
θ

)
A′θ

α = − Aθ
α(

Gθθ + α′

2 A
2
θ

)
A′i

α = Ai
α −Aθα

Gθi −Bθi + α′

2 AθAi(
Gθθ + α′

2 A
2
θ

)

(A.1)

where e.g. AθAi = AαθAiα. Here the metric and the Kalb-Ramond field have dimension
[l]0 and the gauge field [l]−1.

B Non-holonomic fluxes for heterotic DFT

In this appendix we present the explicit expressions of the fluxes in a a non-holonomic
basis. From the generalized vielbein EA

M and the dilation d one can build the gener-
alized fluxes

FABC = ECMLEAEB
M = ΩABC + ΩCAB − ΩBAC

FA = −e2dLEAe
−2d = −∂MEAM + 2DAd .

(B.1)

The generalized derivative DA = EA
MDM takes the form

D̃a = ∂̃a + C̃amCmn∂̃
n − C̃am∂m − Ãaγ∂γ

Da = ∂a − Cam∂̃m −Aaγ∂γ
Dα = ∂α +Amα∂̃

m + Ãmα∂m .

(B.2)
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As in section 3, we present the geometric fluxes for the physically relevant case of
Ãaα = 0 and the non-geometric fluxes for Aa

α = 0. From the flux definition (B.1) we
obtain the geometric fluxes 5

Habc = −3
(
D[aBbc] −D[aAbγAc]

γ + fm[abCc]m − C[amCbnf̃c]
mn −A[a

β∂βeb
iCc]i

)
F cab = f cab − D̃cBab + D̃cA[aγAb]

γ + 2C[amf̃b]
mc − 2D[aβ

cmAb]γAm
γ − 2βcmD[aCmb]

+ 3βcm
(
fn[maCb]n − C[mnCapf̃b]

np
)
− 2βcm

(
CmiA[a

β∂βeb]
i + C[aiAb]

β ∂βem
i
)

− 2A[a
β ∂βeb]

ieci
(B.3)

and for Aa
α = 0 the non-geometric fluxes read

Qc
ab = −Dcβ

ab +DcÃ
[aγÃb]γ − 2D̃[aBcnC̃

b]n − C̃ [amC̃b]nDcBmn + f̃c
ab + 2C̃ [amf b]mc

+ 2BcmC̃
[anf̃n

b]m + 2C̃ [amBmnf̃c
nb] − 3C̃amC̃bn

(
B[mpf

p
nc] −B[mpCnqf̃c]

pq
)

+ 2
(
BcmC̃

[anÃb]γ∂γen
iemi + Ã[aγ∂γec

i eb]i − C̃ [amBmiÃ
b]γ∂γec

i
)

Rabc = −3D̃[aβbc] + 3D̃[aÃbγÃc]γ + 3C̃ [amD̃bBmnC̃
c]n + 6C̃ [amC̃bnB[mpf̃n]

pc]

+ 3C̃amC̃bnC̃cp
(
B[mqf

q
np] −B[mqBnlf̃p]

ql
)

+ 3
(
C̃ [amC̃bnf c]mn − C̃ [amfm

bc]
)

+ 3
(
C̃ [amC̃bnBniÃ

c]γ∂γem
i − 2C̃ [amÃbγ∂γem

iec]i
)
.

(B.4)

For Ai
α = Ãiα = 0, these expressions coincide with the ones derived in [14] and [45].

Similarly, the fluxes FA can be expanded as

Fa = −∂meam + ∂̃mCam + ∂αAa
α + 2Dad

F a = ∂mC̃
am − ∂̃meam − ∂̃m(C̃anCnm) + ∂αÃ

aα + 2D̃ad .
(B.5)

Due to the extra gauge coordinates in heterotic DFT, we also have the gauge fluxes
Gαab, J

c
αb and G̃α

ab. For Ãaα = β = 0 they become

Gαab =−DαBab +DαA[a
γAb]γ − 2D[aAb]α +Aαmf

m
ab + 2C[amAnαf̃b]

mn

+ 2
(
C[ai∂αeb]

i −AαiA[a
γ∂γeb]

i
)

Jcαb =∂̃cAbα +Amαf̃b
cm + ∂αeb

ieci

Kαβa =2D[αAaβ] +AmαAnβ f̃a
mn + 2Ai[α∂β]ea

i ,

(B.6)

while for Aa
α = B = 0 they can be expanded as

Jcαb =− ∂bÃcα + Ãmαf
c
mb + ∂αeb

ieci

G̃α
ab =−Dαβ

ab +DαÃ
[aγÃb]γ − 2D̃[aÃα

b] + Ãmαf̃m
ab + 2C̃ [amÃnαf

b]
mn

+ 2
(
C̃ [ai∂αe

b]
i − ÃiαÃ[aγ∂γe

b]
i

)
K̃αβa =2D[αÃaβ] + ÃmαÃnβfamn + 2Ãi[α∂β]eai .

(B.7)

In addition, there exists the flux

Fα = −∂mÃmα − ∂̃mAmα + 2Dαd . (B.8)

5Note that the derivative Di, Di and Dα will also be simplified.
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C Lie algebroids

A Lie algebroid is specified by three pieces of information:

• a vector bundle E over a manifold M ,

• a bracket [·, ·]E : E × E → E, and

• a homomorphism ρ : E → TM called the anchor.

Similar to the usual Lie bracket, one requires the bracket [·, ·]E to satisfy a Leibniz rule.
Denoting functions by f ∈ C∞(M) and sections of E by si, this reads

[s1, fs2]E = f [s1, s2]E + ρ(s1)(f)s2 , (C.1)

where ρ(s1) is a vector field which acts on f as a derivation. If in addition the bracket
[·, ·]E satisfies a Jacobi identity[

s1, [s2, s3]E
]
E

=
[
[s1, s2]E , s3

]
E

+
[
s2, [s1, s3]E

]
E
, (C.2)

then (E, [·, ·]E , ρ) is called a Lie algebroid.

Moreover, any Lie algebroid can be equipped with a nilpotent exterior derivative
as follows

dE θ
∗(s0, . . . , sn) =

n∑
i=0

(−1)i ρ(si) θ
∗(s0, . . . , ŝi, . . . , sn)

+
∑
i<j

(−1)i+j θ∗([si, sj ]E , s0, . . . , ŝi, . . . , ŝj , . . . , sn) ,
(C.3)

where θ∗ ∈ Γ(ΛnE∗) is the analog of an n-form on the Lie algebroid and ŝi denotes the
omission of that entry. The Jacobi identity of the bracket [·, ·]E implies that (C.3) sat-
isfies (dE)2 = 0. The anchor property and the corresponding formula for the de Rahm
differential allow to compute((

Λn+1ρ∗
)
(dE θ

∗)
)

(X0, . . . , Xn) =
(
dE θ

∗)(ρ−1(X0), . . . , ρ
−1(Xn)

)
= d
(
(Λnρ∗)(θ∗)

)
(X0, . . . , Xn)

(C.4)

with the dual anchor ρ∗ = (ρt)−1 and for sections Xi ∈ Γ(TM). The relation (C.4)
describes how exact terms translate in general.
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Fluxes in Supergravity and Double Field Theory,” Fortsch.Phys. 60 (2012)
1150–1186, arXiv:1204.1979 [hep-th].

[23] D. Andriot and A. Betz, “β-supergravity: a ten-dimensional theory with
non-geometric fluxes, and its geometric framework,” JHEP 1312 (2013) 083,
arXiv:1306.4381 [hep-th].

[24] R. Blumenhagen, A. Deser, E. Plauschinn, and F. Rennecke, “Non-geometric
strings, symplectic gravity and differential geometry of Lie algebroids,” JHEP
1302 (2013) 122, arXiv:1211.0030 [hep-th].

[25] R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke, and C. Schmid, “The
Intriguing Structure of Non-geometric Frames in String Theory,” Fortsch.Phys.
61 (2013) 893–925, arXiv:1304.2784 [hep-th].

[26] D. Andriot and A. Betz, “NS-branes, source corrected Bianchi identities, and
more on backgrounds with non-geometric fluxes,” JHEP 1407 (2014) 059,
arXiv:1402.5972 [hep-th].

[27] R. Reid-Edwards and B. Spanjaard, “N=4 Gauged Supergravity from
Duality-Twist Compactifications of String Theory,” JHEP 0812 (2008) 052,
arXiv:0810.4699 [hep-th].

[28] O. Hohm and S. K. Kwak, “Double Field Theory Formulation of Heterotic
Strings,” JHEP 1106 (2011) 096, arXiv:1103.2136 [hep-th].

[29] D. Andriot, “Heterotic string from a higher dimensional perspective,” Nucl.Phys.
B855 (2012) 222–267, arXiv:1102.1434 [hep-th].

[30] M. Garcia-Fernandez, “Torsion-free generalized connections and Heterotic
Supergravity,” Commun.Math.Phys. 332 no. 1, (2014) 89–115, arXiv:1304.4294
[math.DG].

25

http://dx.doi.org/10.1007/JHEP08(2010)008
http://arxiv.org/abs/1006.4823
http://dx.doi.org/10.1088/0264-9381/30/16/163001
http://arxiv.org/abs/1305.1907
http://arxiv.org/abs/1306.2643
http://dx.doi.org/10.1002/prop.201300024
http://arxiv.org/abs/1309.2977
http://dx.doi.org/10.1007/JHEP09(2011)134
http://arxiv.org/abs/1106.4015
http://dx.doi.org/10.1002/prop.201200085
http://dx.doi.org/10.1002/prop.201200085
http://arxiv.org/abs/1204.1979
http://dx.doi.org/10.1007/JHEP12(2013)083
http://arxiv.org/abs/1306.4381
http://dx.doi.org/10.1007/JHEP02(2013)122
http://dx.doi.org/10.1007/JHEP02(2013)122
http://arxiv.org/abs/1211.0030
http://dx.doi.org/10.1002/prop.201300013
http://dx.doi.org/10.1002/prop.201300013
http://arxiv.org/abs/1304.2784
http://dx.doi.org/10.1007/JHEP07(2014)059
http://arxiv.org/abs/1402.5972
http://dx.doi.org/10.1088/1126-6708/2008/12/052
http://arxiv.org/abs/0810.4699
http://dx.doi.org/10.1007/JHEP06(2011)096
http://arxiv.org/abs/1103.2136
http://dx.doi.org/10.1016/j.nuclphysb.2011.10.007
http://dx.doi.org/10.1016/j.nuclphysb.2011.10.007
http://arxiv.org/abs/1102.1434
http://dx.doi.org/10.1007/s00220-014-2143-5
http://arxiv.org/abs/1304.4294
http://arxiv.org/abs/1304.4294


[31] D. Baraglia and P. Hekmati, “Transitive Courant Algebroids, String Structures
and T-duality,” arXiv:1308.5159 [math.DG].

[32] L. B. Anderson, J. Gray, and E. Sharpe, “Algebroids, Heterotic Moduli Spaces
and the Strominger System,” JHEP 1407 (2014) 037, arXiv:1402.1532
[hep-th].

[33] X. de la Ossa and E. E. Svanes, “Holomorphic Bundles and the Moduli Space of
N=1 Supersymmetric Heterotic Compactifications,” JHEP 1410 (2014) 123,
arXiv:1402.1725 [hep-th].

[34] M. Graña and D. Marqués, “Gauged Double Field Theory,” JHEP 1204 (2012)
020, arXiv:1201.2924 [hep-th].

[35] O. A. Bedoya, D. Marqués, and C. Núñez, “Heterotic α’-corrections in Double
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