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1. Introduction and Conclusions

String theory, just like standard relativistic quantum field theories, has very few model independent

consequences at low energies. In quantum field theory we can name the existence of anti-particles,

the CPT theorem, the running of couplings in terms of the renormalisation group and the identity

of all particles of the same type. String theory, for vacua with non-compact dimensions, ‘predicts’

gravity and at least one neutral scalar, the dilaton, antisymmetric tensors of different ranks and

usually also charged matter, and supersymmetry (see for instance [1]).

By the same nature of a theory (string theory or otherwise) with a naturally large energy scale

to address the issue of quantum gravity, it is very difficult to identify model independent low-

energy implications subject to experimental verification which can put to test the theory and not

just particular models or scenarios.

The purpose of this note is to make a simple but general remark. We point out a low-energy

consequence of all string constructions, that is the absence of massless continuous spin representa-

tions (CSR) of the Poincaré group [2]. This fact has no straightforward explanation within standard

particle physics field theoretical analysis and is consistent with all experiments so far since parti-

cles fitting into those representations have not been found in nature; see however [3] or a recent

discussion of their phenomenology.

One of the most elegant theoretical developments in particle physics, pioneered by Wigner, is

the description of one-particle states in terms of unitary representations of the four- dimensional

Poincaré group [2] (see also [4]).

One-particle states are classified according to the quantum numbers of the invariant Casimir

operators C1 = PµPµ and C2 = WµWµ with Pµ and Wµ = ǫµνρσPνMρσ the momentum and Pauli-

Ljubansky vectors respectively and Mρσ the Lorentz generators. C1 and C2 label the representation

in terms of their eigenvalues that essentially correspond to mass m and spin J in a representation

with fixed momentum pµ.

The representations differ according to whether C1 is positive, zero or negative. For massive

particles (C1 > 0) the remaining space-time quantum numbers come from the fact that the sta-

bilising or Little Group in four-dimensions is SO(3), the subgroup of the Poincaré group leaving

invariant a state in its rest mass frame described by a four-momentum p = (m, 0, 0, 0). The cor-

responding states are the different spin states of the multiplet. This defines a particle in terms of

quantum numbers |m,J ; pµ, s〉 with s = −J,−J + 1, · · · , J and p2 = m2.
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For massless particles (C1 = 0) 1 the momentum can be written p = (E, 0, 0, E) and the

corresponding Little Group is not only the naively guessed SO(2) but actually the whole Euclidean

group in two dimensions E2 or ISO(2). This complicates matters since this group has infinite

dimensional unitary representations, known as continuous spin representations (CSR), that would

correspond to a continuous spin-like label on the elementary particles, something that has not been

observed in nature.

A standard way to proceed is to simply restrict to the finite dimensional representations that

correspond to those of SO(2). This defines helicity λ, as the good quantum number which is

quantised in half integers. Since the two Casimirs vanish in the reference frame defined by p =

(E, 0, 0, E) all observed massless particles 2 are then labelled only by pµ and λ: |pµ, λ〉 with λ =

0,±1/2,±1, · · · . But there is no satisfactory explanation why to restrict only to representations of

SO(2) instead of the full E2. Contrary to the massive case for which matter fields fit into generic

representations of SO(3), there are massless representations (infinite dimensional) that are allowed

by the basic principles of special relativity and quantum mechanics but do not seem to be realised

in nature. A theoretical understanding of this fact is needed.

Over the years the continuous spin representations have been discussed in several different

contexts (see for instance [6] and references therein) and attempts have been made to describe

them in terms of quantum field theoretical interactions, but without much success. The question of

their relevance becomes even stronger in the description of higher dimensional theories, such as ten

and eleven dimensional supergravities, for which the argument that they have not been observed in

nature does not directly apply. Therefore we may wonder if either these representations exist and

may have an important role to play in a fundamental theory or if the structure of the fundamental

theory may provide a first-principles explanation of why these particles are not observed in nature.

In this note we would like to address the relevance of string theory for the existence or not

of continuous spin representations. One may ask if these states could be present in string theory.

In perturbative string theory we can observe an obstruction since in the standard quantisation,

particles of different masses and spin are in the same multiplet in the sense that upon application of

the creation and annihilation operators one relates particles of different masses. It is then clear that

if the massive representations do not carry a continuous label the massless states should not carry

it either. Then the continuous spin representations are not present in perturbative string construc-

tions. This argument can be turned into a model-independent prediction of string constructions

at the same level as the other two general ‘predictions’ of the theory, the presence of gravity and

supersymmetry. It can be said that if these states are detected experimentally, all string theory

constructions known so far would be ruled out. From the perspective of the CSR’s string theory

provides a straightforward explanation of why the relevant part of the Little group for massless

states is O(D − 2) for a D dimensional theory instead of the full ISO(D − 2).

The fact that these representations are not realised in perturbative string theory does not pre-

1The case C1 < 0 corresponds to tachyonic states that are usually a signature of instability. In supersymmetric

string theories this particle is projected out of the spectrum, although being the ground state of the quantisation it

has played important roles in the understanding of branes and with potential cosmological implications [5].
2Recall that in the standard model all known particles, except the Higgs particle itself, are described by massless

states and the massive ones acquire their mass via the Higgs effect.
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clude a potential explanation in terms of field theory itself (see for instance [7]). In principle it may

be the that interacting field theories for these states may prove inconsistent 3. But in perturbative

string theory the statement is much cleaner since these representations simply do not appear in

the standard way of quantising the theory. It may also be argued that in terms of the standard

gravity/gauge theory correspondence, if these states are not present on the gravity side they should

not be present in any field theory with a string dual. Furthermore if there exist interacting field

theories for these states, they should belong to the swampland of the string landscape [8].

Finally it has been suggested that CSR’s could be realised in the zero tension limit of string

theory in which the infinite tower of massive states collapses to zero mass (see for instance [9]). This

could be very interesting, but even if true it does not correspond to the standard string constructions

that upon compactifications lead to realistic low energy effective field theories. In the remainder

of this note we will make the argument for the absence of CSR explicit by actually computing the

action of the extra generators on the string states and show that they vanish.

2. Review of CSRs in d dimensions

The generators of the Poincaré group satisfy the well known algebra

[

Mµν ,Mαβ
]

= i
(

ηµαMνβ − ηναMµβ + ηνβMµα − ηµβMνα
)

(2.1)

[Mµν , Pα] = i (ηµαP ν − ηναPµ) ;
[

Pα, P β
]

= 0 (2.2)

where the Greek indices run from 0 to d− 1. In light cone frame the momenta are the P i together

with

P± =
1√
2

(

P 0 ± P d−1
)

(2.3)

while the Lorentz generators split into the M ij and

M+− = Md−1 0 ; M±i =
1√
2

(

M0i ±Md−1 i
)

(2.4)

where i = 1, · · · , d− 1.

For massless particles the representative momentum is pµ = (E, 0, · · · , E), so that p+ =
√
2E

while p− = 0 and pi = 0. Therefore, the generators of the little group are M ij and Πi ≡ M−i which

leave the representative momentum invariant [10]. These generators satisfy the ISO(d− 2) algebra

[

M ij ,Mkl
]

= i
(

δikM jl − δjkM il + δjlM ik − δilM jk
)

(2.5)
[

M ij ,Πk
]

= i
(

δikΠj − δjkΠi
)

;
[

Πi,Πj
]

= 0 (2.6)

The helicity representation is obtained when Πi ≡ 0 on the states and the algebra reduces to that

of SO(d− 2). The CSR representations are obtained for
∑

i(Π
i)2 6= 0.

To see what this condition implies, consider for simplicity d = 4, i.e. i = 1, 2. With the

defintions M12 = J3 and Π± = Π1 ± iΠ2, the algebra (2.6) becomes [Π+,Π−] = 0 and [J3,Π
±] =

±Π±. Given an eigenstate of J3 with integer or half-integer eigenvalue σ, i.e. J3|σ〉 = σ|σ〉, we
3However a series of recent articles indicate the opposite, making these states much more interesting and physical

than usually appreciated [3].
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can create states |σ ± n〉 = (Π±)n|σ〉 with eigenvalues (σ ± n) for any positive integer n. Going

to Fourier space we can construct states |θ〉 = ∑σ e
−iσθ |σ〉 which simultaneously diagonalize Π±,

i.e. Π±|θ〉 = e±iθ|θ〉, whereas a rotation acts as e−iαJ3 |θ〉 = |θ + α〉. It is this continuous label

θ ∈ [0, 2π) which gives rise to the name ‘continuous spin representation’.

To prepare for the discussion of the string spectrum, we first review the point particle, mainly

following ref. [6, 11] which are, in parts, based on [12].

In systems with reparametrization invariance, such as the point particle, it is often convenient

to work in the light-cone gauge in which x+ is fixed. In this case p− is no longer a conjugate

momentum. Instead p− is determined to be

p− =
pipi +m2

2p+
(2.7)

which follows from the on-shell constraint for a particle of mass m. The conjugate pairs satisfy

[xi, pj] = iδij , and [x−, p+] = −i. The translation operators are P+ = p+ and P i = pi, while

P− = p− is the light-cone Hamiltonian.

The Lorentz generators can be decomposed into orbital and spin parts. Concretely,

M ij = xipj − xjpi + Sij (2.8)

where the Sij are SO(d− 2) generators. Moreover,

M+i = −xip+ ; M+− = −1

2

{

x−, p+
}

(2.9)

In d = 4 it can be shown explicitly that S+i = 0 and S+− = 0 [11]. In general one can show that

the above M+− and M+j , together with

M−i = x−pi − 1

2

{

xi, p−
}

+
1

p+
(

T i − pjSij
)

(2.10)

satisfy the Lorentz algebra. The T i are SO(d − 2) vectors, i.e.
[

Sij , T k
]

= i
(

δikT j − δjkT i
)

, and

further satisfy
[

T i, T j
]

= im2Sij (2.11)

In d = 4 the T i are constructed explicitly and shown to verify these properties [11]. In general they

follow imposing that the M−i in (2.10) fulfill the Lorentz algebra. In particular, (2.11) guarantees

that
[

M−i,M−j
]

= 0.

When m = 0 the T i commute among themselves and become the translation operators of

ISO(d − 2). Thus, in the helicity representation T i = 0 whereas in the CSR T i 6= 0.

In [6] the authors generalize the above discussion to continuous spin representations of the super-

symmetry algebra. The question whether these CSRs can be incorporated into an 11-dimensional

supergravity theory is possibly of interest in relation to M-theory and the continuous excitation

spectrum of the membrane [13].4

4We thank M. Green for mentioning this possibility.
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3. CSRs in String Theory

In the (open) bosonic string, in the critical dimension d = 26, the translation operators Πi ≡ M−i

in the light cone gauge are given by [14, 15] 5

Πi = x−
0 p

i − 1

2

{

xi
0, p

−
}

− i

∞
∑

n=1

1

n

(

α−
−nα

i
n − αi

−nα
−
n

)

(3.1)

where [xi
0, p

j ] = iδij , [x−
0 , p

+] = −i, [αi
m, αj

−n] = mδijδm,n, and

p− =
1

2α′p+

(

α′pipi +
∞
∑

n=1

nαi
−nα

i
n − 1

)

(3.2)

α−
n =

1√
2α′p+

∞
∑

p=−∞

αi
n−pα

i
p ; α−

−n =
(

α−
n

)†
(3.3)

Normal ordering is understood. Notice that [xi
0, p

−] = ipi/p+.

The αi
n, n ≥ 1, annihilate the vacuum |p+, ~p 〉. The massless states are (~p = {pi})

|j〉 ≡ αj
−1|p+, ~p 〉 (3.4)

which transform as a vector of SO(d − 2). This indicates that the little group is SO(d − 2). By

consistency we then expect the Πi to be zero acting on these states. Using αi
0 =

√
2α′pi we find

p−|j〉 = ~p2

2p+
|j〉 ; αi

−1α
−
1 |j〉 =

pj

p+
|i〉 ; α−

−1α
i
1|j〉 = δij

pk

p+
|k〉 (3.5)

Thus, it follows that Πi|j〉 = 0 when the transverse momentum of the massless states verifies pi = 0.

In light-cone gauge it is actually more convenient to employ the decomposition of the Lorentz

generators into orbital and spin parts. In the bosonic string the M ij are in fact written as in (2.8)

with the spin piece given by

Sij = −i

∞
∑

n=1

1

n

(

αi
−nα

j
n − αj

−nα
i
n

)

(3.6)

Furthermore, comparing (2.10) and (3.1), and using the above expression for Sij , we obtain

T i = i

∞
∑

n=1

1

n

[

αi
−n

(

p+α−
n − pjαj

n

)

−
(

p+α−
−n − αj

−n

)

αi
n

]

(3.7)

It can be shown that these T i’s satisfy (2.11) with m2 replaced by the mass operator of the open

bosonic string .

Since the massless states |j〉 belong in the helicity representation we again expect that the T i

are zero acting on these states. Indeed, using the last two results in (3.5), we find T i|j〉 = 0 and

this holds for all pi. This is a consistency check that the CSRs do not appear in the perturbative

string spectrum.

Here we have only considered the contribution to the Lorentz generators from the oscillators

which arise in the quantization of the non-compact space-time dimensions. In the critical dimension

5We mostly use the notation of [16].
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this is all there is. In the compactified theory there are also contributions from the internal CFT but

they will not change the argument and result. The same is true for the extension to the fermionic

string.

We have observed that using the standard rules for the spectrum of perturbative string models,

continuous spin representations do not appear. It would be interesting to study if these represen-

tations could be present in the full-fledged string theory.
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