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Figure 6. Section for fl = 0.04 and n = 3. The largest fragment is coloured
in dark grey. In this calculation, 60 × 60 × 60 grid cells are used. Note the
decomposition in grid cells and the Voronoy polyhedra which form the
fragments.

is defined as the ratio of the energy per volume SG that is necessary
to disperse the fragments to the impact strength S0:

SG = 2π
4 − 2 3

√
2

5fKE
GR2ρ2

γ := SG/S. (98)

The first step towards the prediction of a collisional outcome is to
relate the impact energy and the impact strength to ascertain the size
of the largest fragment fl. Laboratory experiments and simulations
indicate the functional form

ε(fl) =
{

2(1 − fl) for fl > 1
2

(2fl)−
1
K otherwise

.

ε = Ekinρ

2SM
, (99)

which is both valid in the fragmentation regime and the crater-
ing limit. The size of the largest fragment is used to derive the
full size distribution. To accomplish the decomposition ‘seed frag-
ments’ are distributed inside the target according to the largest de-
sired fragment. The full set of fragment is derived from a Voronoy
tessellation8 using these seed points. Fig. 6 depicts the result of such
a decomposition. The fragment velocities are calculated from the
total kinetic energy after the collision to initiate a post-collisional
N-body calculation to treat reaccumulation.

We conducted a large set of such calculations to cover a suffi-
cient range in f i

l (i.e. impact energy) and γ (i.e. body size). Table 7
summarizes the derived values of the largest and second largest frag-
ment including reaccumulation. For the strength of planetesimals
and large objects, see Leinhardt & Stewart (2012).

8 The Voronoy tessellation assigns every volume element to the closest seed
point. First applications date back to the 17th century, but the Russian
mathematician of Ukrainian origin Georgy Feodosevich Voronoy put it on
a general base in 1908.

Figure 7. Impact strength according to equations (92) and (94). The right
axis gives the corresponding impact velocity according to S = 1/2ρv2 with
ρ = 2.7 g cm−3.

We note that the connection to the collision energy needed to
fragment an object and eject half of the mass of the combined pair
to infinity, usually referred to as Q, is that this quantity is the total
energy, and S the energy per volume.

5 C O L L I S I O NA L C A S C A D E S

Although the formation of planets requires a net growth due to
collisions, this destructive process plays a role in the formation of
larger bodies as the overall size distribution controls the accretion
rate of the protoplanets. While this has been addressed in detail by
Kobayashi et al. (2010) and Belyaev & Rafikov (2011), we deem
it worth to have a closer look into this mechanism now within our
approach.

5.1 Self-similar collisions

The first step is to decompose an inhomogeneous system into
smaller subvolumes which are locally homogenous. Furthermore,
it is assumed that these subvolumes hardly interact with each
other. Hence, it is possible to apply the particle-in-a-box-method
(Safronov 1972) to analyse collisions within the small subvolumes.

The distribution function is evolved by the coagulation equation.
We modified the equation given by Tanaka, Inaba & Nakazawa
(1996) by introducing a new function Mred to arrive at a more
concise expression:

0 = ∂

∂t
mn(t, m) + ∂

∂m
Fm(t, m), (100)

where n(m) is the distribution function. The mass flux Fm is given
by

Fm = −
∫ ∫

n(t, m1)n(t, m2)ξdm1dm2

ξ ≡ σ (m1, m2)vrelMred(m,m1, m2) (101)

Mtot =
∫

n(t, m)mdm (102)

∂

∂t
Mtot = Fm(mmin), (103)

where ξ is the coagulation kernel, n is the already introduced size
distribution,vrel is the mean relative velocity, σ is the cross-section
for colliding bodies (m1, m2) and Mred is the newly introduced
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Table 7. Data compilation of the fragmentation calculations.

γ f i
l 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Largest fragment

0.025 52 0.100 00 0.200 00 0.300 00 0.400 00 0.500 00 0.600 00 0.700 00 0.800 00
0.198 97 0.100 00 0.200 00 0.300 00 0.400 00 0.500 00 0.600 00 0.700 00 0.800 00
0.679 85 0.100 00 0.200 00 0.300 00 0.400 00 0.576 12 0.673 15 0.820 06 0.960 73
1.140 50 0.100 00 0.315 26 0.357 08 0.613 62 0.835 11 0.928 32 0.943 80 0.975 72
1.770 57 0.108 84 0.588 83 0.759 74 0.879 22 0.927 55 0.936 62 0.971 07 0.979 24
2.260 21 0.158 95 0.688 91 0.872 17 0.895 92 0.929 65 0.960 89 0.967 01 0.987 27
3.116 26 0.309 54 0.837 74 0.902 72 0.926 82 0.959 43 0.955 65 0.976 77 0.987 91

Second largest fragment

0.025 52 0.081 71 0.107 70 0.064 71 0.081 07 0.049 76 0.039 82 0.031 71 0.021 55
0.198 97 0.091 74 0.095 33 0.084 10 0.069 67 0.049 30 0.048 25 0.035 10 0.020 77
0.679 85 0.077 13 0.083 65 0.077 91 0.083 87 0.070 26 0.061 47 0.060 82 0.008 47
1.140 50 0.086 21 0.072 56 0.103 31 0.096 40 0.024 67 0.006 75 0.007 83 0.002 65
1.770 57 0.079 09 0.055 49 0.069 61 0.020 35 0.003 29 0.007 19 0.002 73 0.001 61
2.260 21 0.066 93 0.022 88 0.005 28 0.008 82 0.005 84 0.002 68 0.006 64 0.001 26
3.116 26 0.069 40 0.008 84 0.003 84 0.004 88 0.000 64 0.010 07 0.002 25 0.001 62

fragment redistribution function. Mred contains all information on
the fragments arising from the breakup of body m1 due to the im-
pact of body m2. Its definition avoids double counting of collisions
in the above integral. The redistribution function is related to the
differential number distribution function ncoll(m1, m2, m), i.e. the
number of fragments produced by a collision per mass interval.
Since the target m1 formally disappears, it is included as a negative
contribution:

Mred(m, m1, m2) :=∫ m

0

(
ncoll(m1,m2, m̃) − δ(m̃ − m1)

)
m̃ dm̃. (104)

Mass conservation in each collision is reflected by Mred(0, m1,
m2) = Mred(∞, m1, m2) = 0. The cross-section σ depends on the
velocities and radii Ri of the particles. A simple approach is the
geometric cross-section:

σ (m1,m2) = π (R1 + R2)2. (105)

If gravity plays an important role during encounters, we have to
take into account gravitational focusing:

σ (m1,m2) = π (R1 + R2)2

[
1 + 2G(m1 + m2)

v2
rel(R1 + R2)

]
. (106)

A special class of collisional models are self-similar collisions. Self-
similarity implies an invariance of the collisional outcome with
respect to the scale of the colliding bodies. If the target mass as
well as the projectile mass are enlarged by a factor of 2, then only
the masses of all fragments doubles without further changes in
the collisional outcome. They allow us to introduce the convenient
dimensionless fragment redistribution function fm:

Mred(m, m1, m2) = mfm(m1/m, m2/m). (107)

We follow Tanaka et al. (1996) and employ the substitution9

m1 = mx1, m2 = mx2 to simplify equation (101):

Fm = −
∫ ∫

n(t, mx1)n(t, mx2)m11/3

×σ (x1, x2)vrelfm(x1, x2) dx1 dx2. (108)

9 A similar approach to the solution of the coagulation equation is the
Zakharov transformation, see Connaughton, Rajesh & Zaboronski (2004).

A simple solution is a steady-state cascade with Fm = const.
The loss of bodies of a given size is balanced by the fragment
supply from larger bodies, hence the system maintains a steady
state ∂

∂t
n(t, m) = 0. Equation (108) inspires the ansatz n(m) ∝

m−k, which yields k = 11/6. This is the well-known equilibrium
slope in self-similar collisional cascades, which was already found
by Dohnanyi (1969). Strong gravitational focusing changes the
exponent10 to k = 13/6. Both steady-state solutions seem to be
rather artificial, as they contain an infinite amount of mass and re-
quire a steady mass influx from infinity. However, they provide an
appropriate description for the relaxed fragment tail of a size distri-
bution, as long as the largest bodies provide a sufficient flux of new
fragments. Once the largest bodies start to decay, the finite amount
of mass in the system leads to an overall decay of the collisional
cascade. Thus, we seek for a more general solution to equation (100)
using the ansatz n(t, m) = a(t)n0(m):

∂

∂t
a(t) = −Ca(t)2 (109)

mn0(m) = 1

C

∂

∂m
Fm, (110)

where C is determined by fixing n0 at an arbitrary value m∗. a(t) is
independent of the collision model:

a(t) = 1

1 + Ct
(111)

C ∝ n(m∗). (112)

A power-law solution is n0(m) ∝ − Cm−k+1 which is only valid for
C < 0 (agglomeration dominates). To examine C > 0, we perturb
the already known equilibrium solution:

n0(m) = N0 m−k − CN1 m−2k+2 + O(C2) (113)

1

N1
= (2 − k)

∫ ∫
x−k

1 x−2k+2
2 σ (x1, x2)

×vrel (fm(x1, x2) + fm(x2, x1)) dx1dx2, (114)

10 Tanaka et al. (1996) state that k < 2 is a necessary condition for a finite
mass flux. However, their analysis is not valid for all possible collisional
models.
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where N1 is small if the integral on the right-hand side is large. This
is the case for a sufficiently large impact strength. Equation (113)
has the interesting property that n(m′) = 0 for some mass m′, given
that k < 2. This mass m′ represents the largest body in the system,
e. g. the largest asteroid in a fictitious asteroid belt.

6 SIZE-DEPENDENT STRENGTH

We model the size-dependent strength S with a power law to exam-
ine the influence on the equilibrium solution. The velocity disper-
sion v and the collisional cross-section σ are also modelled with
power laws to account for relaxation processes:

v = v0

(
m

m0

)w

(115)

σ = σ0

(
m

m0

)s

(116)

S = S0

(
m

m0

)α

. (117)

The subscript ‘0’ denotes values for an arbitrarily chosen scaling
mass. Since smaller bodies are more abundant than larger ones, we
safely assume that most collisions involve a large mass ratio. In
addition, we assume w < 0, since we expect energy equipartition to
some degree in most cases. These restrictions lead to the following
simplifications (m1 > m2):

σ (m1,m2) ≈ σ (m1) (118)

vrel ≈ v(m2) (119)

ε ≈ 1

2

m2ρv2
rel

m1S1
. (120)

Therefore, the smaller body m2 enters only through the specific
energy ε:

Fm ≈ −
∫ ∫

n(t, m1)n(t, m2)σ (m1)vrel(m2)m1

×fm(m1/m, ε)dm1dm2. (121)

We introduce new dimensionless quantities with the help of equa-
tions (118)–(120) to simplify the integral:

m1 = mx1

m2 = m0

(
m1

m0

) 1+α
1+2w

(
2S0

ρv2
0

) 1
1+2w

ε
1

1+2w . (122)

Again, we assume a power law for the density n ∝ m−k and change
the integration parameters to (x1, ε). Applying the constant-flux
condition yields the equilibrium exponent

k ≈ s + 3 + α + w(2s + α + 5)

2 + α + 2w
(123)

and the scaling exponent k′ of the total mass-loss

k′ ≈ s − w + 1

2 + α + 2w

∂

∂t
Mtot ∝ −S̃−k′

S̃ = 2S0

ρv2
0

. (124)

The exponent k′ in equation (124) is close to unity for realistic values
of the free parameters. Thus, the mass-loss is roughly inversely
proportional to the strength of the bodies. The general formula

equation (123) contains the special solution of O’Brien (2003),
who concentrated on the parameters s = 2/3, w = 0 and a special
collisional model. In fact, the derivation applies to a much wider
class of collisional models that we denote as scalable collisional
models. Scalable indicates that the model is self-similar except a
scaling of the impactor mass.

7 PE RT U R BAT I O N O F E QU I L I B R I U M

The derived scaling relations provide insight into the overall prop-
erties of a collisional cascade, which is in (or close to) equilibrium.
However, they do not provide information on how the equilibrium
is attained or how the system responds to various external pertur-
bations. A rigorous approach would be the approximate solution of
the coagulation equation11, which is by no means simple since it
requires a careful analysis of the collision model.

Hence, we turn to perturbations of the equilibrium size distribu-
tion, as it is easier to assess the quality of the derived expression for
a variety of collision models. In addition, all equations are linear in
the perturbation, allowing the detailed analysis of the solution.

If the equilibrium solution n(m) = n0(m/m0)−k is perturbed with
a small deviation �n(m), we get to first order:

0 = ∂

∂t
m�n(m) + ∂

∂m
F p(t, m)

F p = −
∫ ∫

�n(m1)n(t, m2)σ (m1, m2)vrel

× (Mred(m,m1, m2) + Mred(m,m2, m1)) dm1dm2. (125)

Despite of the expansion in �n, equation (125) is still a compli-
cated integro-differential equation. Thus, it is not possible to obtain
a solution without further information about the problem. While
there is no general solution, we restrict our attention to self-similar
collisional processes. In virtue of this assumption, it is possible to
simplify equation (125), as we can see in equations (126) and (126).
In those expressions

0 = ∂

∂t
m�n(m) − n0m

3
0σ0v0

∂

∂m

×
∫

�n(t, mx1)F (x1)(mx1/m0)kdx1 (126)

F (x1) =
∫

m2k−3
0 x−k

1 x−k
2

σ (x1, x2)

σ0

vrel

v0

×(fm(x1, x2) + fm(x2, x1)) dx2, (127)

where σ 0 and v0 are velocity and cross-section of an arbitrarily
chosen scaling mass m0. F(x1) contains all information about the
collisional process. If collisions do not result in extreme outcomes,
like cratering or a complete destruction of the target, most of the
fragment mass is contained in bodies with similar size as the parent
body. Hence, we expect that F(x1) peaks around x1 ≈ 1 and drops to
zero as x1 gets larger (or smaller). We introduce the dimensionless
relative perturbation g(m):

g(m) = �n(m)

n(m)
= �n(m)mk

n0m
k
0

. (128)

11 Appendix C highlights a possible approach.
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Figure 8. Scaled fragmentation kernel G(u) for a simple fragmentation
model (see equation 160) and different scaled impact strength S̃.

Thus, the new differential equation reads:

0 = ∂

∂t
(m/m0)1−k�g(m)

− n0m
2
0σ0v0

∂

∂m

∫
�g(t, mx1)F (x1) dx1. (129)

We change to logarithmic coordinates to arrive at a convolution
integral:

u = ln(m/m0) u1 = ln(x1). (130)

Furthermore, we define a collisional time-scale τ 0

τ0 = (n0m0σ0v0)−1 (131)

to obtain a more concise expression. The transformed equation is

0 = ∂

∂t
g(t, u)eu(2−k) − 1

τ0

∂

∂u

∫
g(t, u + u1)G(u1)du1 (132)

G(u) = F (eu)eu. (133)

If g(u) is varying on a scale larger than the width of the kernel G(u)
(compare Fig. 8), it is justified to expand g(u) under the integral.
We retain the first two moments of G(u):

0 = ∂

∂t
g(t, u)eu(2−k) − G0

τ0

∂

∂u
g(t, u) − G1

τ0

∂2

∂u2
g(t, u) (134)

Gk = ∫
ukG(u) du. (135)

The first-order moment G1, which introduces a diffusive term, is
omitted in the following for clarity12. We introduce a fragmentation
time τ frag(u) and transform equation (134) back to m:

0 = ∂

∂t
g(t, m) − m

τfrag(m)

∂

∂m
g(t, m) (136)

τfrag = τ0

G0
eu(2−k)

= τ0

G0
(m/m0)2−k. (137)

12 The study of wave-like structures in the size distribution (see e.g. Bagatin
et al. 1994) requires even the second-order moment G2.

Equation (136) is a modified advection equation, which conserves
the total mass. It is possible to derive equations similar to equation
(136) for any collisional model. However, the general approach
is less fruitful, as it lacks a robust frame of a known equilibrium
solution and reliable scaling relations. Therefore, we provide only
the extension to scalable collisional models in Appendix B. We
readily obtain the general solution

g(t, m) = f

(
t + τ0

(m/m0)(2−k)

G0(2 − k)

)

�n(t, m) = n(m)f

(
t + τ0

(m/m0)(2−k)

G0(2 − k)

)
. (138)

The function f is determined by the initial value g(0, m) of the per-
turbation. As the collisional cascade evolves, the initial perturbation
function is shifted as a whole to smaller masses. This evolution be-
comes clearer if we attach labels M(0) to the initial perturbation
function and follow the time evolution of these tags. The functions
M(t) are the characteristics13 of the differential equation (136):

M(t) = m0

[
(M(0)/m0)(2−k) − t/τ0G0(2 − k)

]1/(2−k)
. (139)

The meaning of the fragmentation time τ frag becomes clear by the
relation

M

Ṁ
= −τfrag (140)

which is the time until a body has lost a significant fraction of its
mass due to destructive collisions. A comparison of the perturbation
equation (136) with the scaling relations from the previous section
gives the scaling of the zeroth-order moment G0 with respect to the
impact strength:

G0 = G′
0S̃

−k′
. (141)

G′
0 should only depend on the fragmentation model (i.e. fragment

size distribution as a function of the largest fragment fl) within the
limits of this approximation. Fig. 8 shows that the scaling with the
impact strength works quite well, except slight variations which are
small compared to the covered range of impact strengths. Likewise,
it is possible to restate the total equilibrium flux Feq in terms of G′

0:

Feq(m) ≈ −G′
0

2
n(m)2σ (m)m3vrelS̃

−k′
. (142)

The fragmentation time-scale τ frag(m) allows a more intuitive ex-
pression:

Feq(m) ≈ −1

2

n(m)m2

τfrag(m)
. (143)

Our simple collisional model (see Fig. 8 and equation 160) refers
to

Feq(m) = −(1 . . . 30) × n(m)2σ (m)m3vrelS̃
−k′

. (144)

8 M I G R AT I O N A N D C O L L I S I O N S

The local perturbation analysis is only applicable to a planetesimal
disc if the migration velocity of the planetesimals is negligibly small.
This assures that collisional cascades at different radial distances
do not couple to each other, so that the whole disc is composed of
many local cascades. While this assumption is justified for larger

13 In general, characteristics of a partial differential equation are paths along
which the solution is constant.
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bodies, migration strongly influences bodies below 1 km in size.
Hence, we must extend our analysis to examine the influence of
migration on the (no longer) local collisional processes.

We assume that the collisional evolution of the system leads to
an equilibrium planetesimal distribution everywhere in the disc:

�0(r,m) = �r,0(r)C0(m), (145)

where �r(r) is the total surface density at a given distance r, while
C0(m) is the universal equilibrium distribution. Though the plan-
etesimal distribution at larger sizes is likely different at different lo-
cations in the disc, we only demand a universal function at smaller
sizes, where migration is important. The power-law exponent k
depends on the details of the invoked physics, but numerical simu-
lations show that k ≈ 2 is a fiducial value. Equation (145) does not
yet include migration effects. If we include migration, the surface
density is modified to

�(r,m) = g(r,m)�0(r,m), (146)

where the dimensionless function g contains the changes due to
migration. The collisional evolution is governed by the continuity
equation with an additional collisional term

∂�(r,m)

∂t
− 1

r

∂

∂r
(v(r,m)r�(r,m)) = �̇coll, (147)

where v(r, m) is the migration velocity (see equation 41), defined
such that positive v imply an inward migration. We express the
collisional term with the help of equation (136) and seek for a
steady-state solution �̇ = 0:

1

τfrag(m, r)

∂g

∂m
m�r,0(r) + 1

r

∂

∂r

(
gvr�r,0(r)

) = 0, (148)

where τ frag(m, r) is the fragmentation time-scale of a mass m at a
distance r. Since the surface density � and the various contributions
to the drag force are well described by a power law (with respect to
radius), equation (148) further simplifies to

1

τfrag(m, r)

∂g

∂m
m + ∂g

∂r
v − b

r
gv = 0, (149)

where b is a combination of the various invoked power-law ex-
ponents. As the surface density � and the gas density drop with
increasing radius in any realistic disc model, it is safe to assume
b > 0. We choose a self-similar ansatz for g:

g(r,m) = g(ζ ) , ζ = mgm(r). (150)

The new differential equation is

1

τfrag(m, r)

dg

dζ
mgm(r) + m

dg

dζ

dgm

dr
v − b

r
gv = 0 (151)

which is equivalent to the more concise expression:

d ln(g)

d ln(ζ )

(
r

vτfrag
+ d ln(gm)

d ln(r)

)
= b. (152)

We assume a power-law dependence for the time-scale ratio
τmig/τ frag:

r

vτfrag
= τmig

τfrag
= (m/m0)km (r/r0)kr . (153)

The cut-off mass m0 at a distance r0 has a time-scale ratio
τmig/τ frag = 1, which defines a proper lower cut-off within this
context. Hence, the solution is

b = d ln(g)

d ln(ζ )

(
ζ km + kr

km

)
(154)

gm(r) = (r/r0)kr /km

m0
(155)

g(ζ ) =
(

1 + kr

kmζ km

)−b/kr

. (156)

Though the analytical solution equation (156) provides a complete
description of the lower cut-off of the size distribution, it is more
appropriate within the frame of this discussion to translate the equi-
librium solution to an equilibrium mass-loss due to migration:

�̇mig(r,m) = −bv

r
� + bv

r
�

kr/km

ζ km + kr/km

= − b�

τmig + kr/kmτfrag
. (157)

An inspection of the time-scale ratio shows that the mass exponent
km should be positive, whereas simple estimations of kr on the basis
of the minimum-mass solar nebula are somewhat inconclusive. The
value of kr is so close to zero that any change in the assumed
equilibrium slope or the impact strength scaling gives easily both
positive and negative values. Moreover, equation (157) requires
a globally relaxed planetesimal disc, but the huge spread in the
various involved time-scales at different radii inhibits any significant
relaxation in the early stages.

However, it is possible to gain valuable information from the
two limiting cases kr > 0 and kr < 0. Both values of kr give the
proper limit g → 1 at large masses, where the migration time-scale
is much larger than the fragmentation time-scale and we recover the
steady-state collisional cascade.

A positive exponent kr reduces the effective mass-loss due to
migration, as fragments from the outer part of the disc replenish
the local mass-loss. Hence, the fragmentation time-scale controls
the net loss of smaller planetesimals. In contrast, a negative expo-
nent kr leads to a pronounced cut-off in the size distribution, since
only larger planetesimals are replenished through inward migration.
Though the mass-loss rate is singular at some mass m′, this sharp
cut-off is an artefact due to the perturbation approximation.

Our analysis is subjected to several restrictions. We applied the
perturbation equation to values of g that exceed the limit for a safe
application (i.e. g �≈ 1) of the perturbation expansion. Furthermore,
the steady-state solution requires a global relaxation of the col-
lisional processes, which is practically never obtained during the
disc evolution. Despite of these restrictions, we gained insight on a
more qualitative level. Numerical calculations indicate that the per-
turbation approximation is inappropriate close to the lower cut-off
of the size distribution. However, a comparison of different expo-
nents kr (see Fig. 9) attributes only a minor role to the replenishment
of fragments due to inward migration. Only unrealistic small slopes
b of the migrational mass influx would strengthen the importance
of this process. Though temporally non-equilibrium phenomena are
not ruled out by the previous derivation, their study would require
the global simulation of the system.

9 C H O I C E F O R TH E C O L L I S I O NA L M O D E L

Any detailed study of a collisional system requires the specifica-
tion of a realistic collisional model. We first subtract the well-
known perfect accretion model. While it is an oversimplification
for collisions among kilometre-sized planetesimals, its simplicity
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Figure 9. Cut-off function g according to equation (156). The mass expo-
nent is km = 1/3, while the mass influx exponent is b = 1.75 according to
the minimum solar nebula.

allows a reliable code testing and eases the comparison with other
works:

Mred(m, m1, m2) = −m1�(m − m1) − m2�(m − m2)

+ (m1 + m2)�(m − m1 − m2). (158)

Although our fragmentation model (see Section 4) provides a
very detailed description of the outcome of a collision, we abandon
most of the details for the following reasons. The computational
effort of the numerical solution of the coagulation equation scales
with the third power of the number of mass bins. Hence, we choose
a mass grid whose resolution is by far smaller than the information
provided by the detailed collisional model. As a mismatch of the
mass resolution could produce undesired artefacts, a lower resolu-
tion of the collisional model is needed for consistence. Thus, only
the largest fragment fl(f i

l , γ ) and the second fragment f
(2)
l (f i

l , γ )
(which contains information on reaccumulation) enter the fragment
size distribution:

Mred(xM)

M
=

⎧⎪⎪⎨
⎪⎪⎩

1 if x ≥ fl

1 − fl if fl > x ≥ f
(2)
l

(1 − fl − f
(2)
l )(x/f

(2)
l )fl otherwise

.

(159)

Both values fl and f
(2)
l are interpolated from Table 7, where the

initial fragment size f i
l is calculated from the dimensionless impact

energy ε. We used a reduced fragmentation model for test purposes:

Mred(xM)/M =
{

1 if x ≥ fl

(1 − fl)(x/fl)fl otherwise
. (160)

Table 8 summarizes the most important model parameters.

Table 8. Main parameters of
the collisional model.

ρ 2700 kg m−3

k 1/6
Model Gaussian scatter
fKE 0.1
K 1.24

We note that Mred is defined in such a way that the equations
conserve the mass (see equation 100). Also, by using fl and f

(2)
l ,

we avoid the problem that is inherent to using only fl: namely that
the exponent of the distribution of fragmentation is 1 − fl, which
goes to 0 in the cratering limit.

10 STATISTICAL MODEL

We work out a scheme to integrate the evolution of particle number
and velocities in our coagulation code. Our implementation follows
the standard procedure of former works, such as Hornung, Pellat
& Barge (1985). The direct approach to the integration of an N-
body system is, in principle, possible for any particle number. This
procedure becomes computationally too expensive for very large
particle numbers. In the following of this section, we employ the
usual notation as followed by e.g. Binney & Tremaine (2008), in
their description of the Fokker–Planck equation, and will avoid
usual equations that can be found in that one or any other text book.

Instead of tracking all particle orbits, we can define a distribution
function f (a phase-space density), which gives the probability to
find a particle at a position x with a velocity v, i.e. the state of
the system. As long as only dynamical interactions are taken into
account, the number of all particles (e. g. stars, planetesimals) is
conserved. f is a function of six variables, so an exact solution is
usually very complicated or even impossible. However, it is possible
to gain valuable insight into the problem by taking the moments of
the distribution function (see Schneider, Amaro-Seoane & Spurzem
2011):

〈xn
i vm

j 〉 =
∫

f (x, v)xn
i vm

j d3xd3v n, m > 0. (161)

The first-order moment with respect to velocity gives the time evo-
lution of the mean velocity v̄ :

ν
∂v̄j

∂t
+ νv̄i

∂v̄j

∂xi

= −ν
∂

∂xj

− ∂(νσ 2
ij )

∂xi

+ ν

(
∂v̄j

∂t

)
coll

(162)

v̄i = 1

ν

∫
f (x, v)vid

3v

σ 2
ij = vivj − v̄i v̄j , (163)

where σ ij is the anisotropic velocity dispersion and the continuity
equation was used to arrive at a more concise formulation. While the
structure of the moment equations is already familiar from hydro-
dynamics, they do not provide a closed set of differential equations,
since each differential equation of a given moment is related to (yet
unknown) higher order moments. Hence, any finite set of momenta
needs a closure relation – additional constraints that relate the high-
est order moments to known quantities. The choice of this relation
is a key element in the validity of the equations, but it is not unique
and depends well on the problem at hand (compare e.g. Larson
1970).

10.1 Distribution function

Any statistical description of a planetesimal disc requires the knowl-
edge of the distribution function. Since the full problem including
collisions, encounters and gas drag has no analytic solution, a col-
lisionless planetesimal disc (i.e. no perturbations) is a natural basis
for further investigations. The distribution function that describes
such a simplified system is a solution of the Boltzmann equation.
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A special solution to the Boltzmann equation is a thin homogenous
planetesimal disc

f (z, v) = ��

2π2TrTzm
exp

(
−v2

r + 4v2
φ

2Tr
− v2

z + �2z2

2Tz

)
(164)

provided that the radial velocity dispersion Tr and the vertical dis-
persion Tz are small compared the mean orbital velocity vK. The
azimuthal velocity dispersion Tφ is locked to Tr by the local epicyclic
frequency κ in a central potential, where the ratio 1 : 4 is a special
solution of (see e.g Binney & Tremaine 2008) κ2Tr = 4�2Tφ . All
velocities vr, vφ and vz refer to the local Keplerian velocity. The
normalization is the same as in Stewart & Ida (2000). A planetesi-
mal disc is a slowly evolving system compared to the orbital time,
hence it is reasonable to use equation (164) as a general solution
of the perturbed problem. �, Tz and Tr are now functions of time
and of the radial distance to the star. All information on the system
is contained in these three momenta of the distribution function,
where higher order moments can be deduced from equation (164).
Thus, the functional form of the distribution function represents an
implicit closure relation.

The validity of this approximation can be further assessed by
a closer examination of the Boltzmann equation. We summarize
all perturbations in an evolution time-scale Tevol and reduce the
radial structure to some typical length-scale �r to estimate the
deviation from the functional form equation (164). A comparison
with the Boltzmann equation shows that the difference is small
if the migration time-scale and the evolution time-scale are large
compared to the orbital time T0, T0 � �r/〈vr〉 and T0 � Tevol. An
order-of-magnitude estimate of the evolution time supports these
requirements. Furthermore, numerical calculations confirm that the
velocity distribution stays triaxial Gaussian (see Ida 1992).

The distribution function is equivalent to an isothermal vertical
density structure with scaleheight h:

h =
√

Tz

�2
(165)

ρ(z) = ρ0 exp

(
− z2

2h2

)
. (166)

Thus, the central density ρ0 and the mean density 〈ρ〉 are related to
the surface density in a simple way:

ρ0 = �√
2πh

〈ρ〉 = ρ0√
2
. (167)

The triaxial Gaussian velocity distribution is equivalent to a
Rayleigh distribution of the orbital elements e and i14:

dn(e2, i2) = 1

〈e2〉〈i2〉 exp

(
− e2

〈e2〉 − i2

〈i2〉
)

de2di2

〈e2〉 = 2Tr

(�r0)2
〈i2〉 = 2Tz

(�r0)2
. (168)

Planetesimal encounters couple the time evolution of eccentricity
and inclination, so that the ratio i2/e2 tends to an equilibrium value
after a few relaxation times. It is close to 1/4 in a Keplerian potential,
but the precise value also depends on the potential itself (Ida et al.
1993).

14 Equations (3)–(5) provide the coordinate transformation.

10.2 Dynamical friction

The Coulomb logarithm in the standard formulation of
Chandrasekhar (1942), �, arises from an integration over all impact
parameters smaller than an upper limit lmax , given by

� ≈ σ 2
v lmax

G(m + M)
. (169)

Although encounters in the gravitational field of the sun deviate
from pure two-body scatterings, it is safe to neglect the presence
of the sun if the encounter velocity is large compared to the Hill
velocity15 �RHill. Thus, the classical dynamical friction formula
is also applicable to planetesimal encounters in the high-velocity
regime, though a generalization to triaxial velocity distributions σ i

is necessary (see e.g. Binney 1977). An additional complication is
the choice of lmax (i.e. the choice of the Coulomb logarithm). There
are several scalelengths, which could determine the largest impact
parameter lmax: the scaleheight of the planetesimal disc, the radial
excursion due to the eccentric motion of the planetesimals and the
Hill radius of the planetesimals. As it is not possible to derive a
unique expression for lmax from first principles, a proper formula
is often fitted to N-body calculations (compare equation 173). The
velocity dispersion of a planetesimal disc is triaxial with Tφ/Tr =
1/4 and Tz/Tr ≈ 1/4. We take these values and expand the set of
equations of Binney (1977) for small velocities vM:

dvM,r

dt
≈ −1.389 vM,r

√
2πG2 ln(�)(M + m)n0 m

T
3/2

r

dvM,φ

dt
≈ −3.306 vM,φ

√
2πG2 ln(�)(M + m)n0 m

T
3/2

r

dvM,z

dt
≈ −3.306 vM,z

√
2πG2 ln(�)(M + m)n0 m

T
3/2

r

. (170)

The derived expressions provide a compact tool to analyse dynam-
ical friction in disc systems. However, the involved approximations
are too severe compared to the needs of an accurate description.
While these concise expressions are valuable for basic estimations,
the following sections derive viscous stirring and dynamical friction
formulae for a planetesimal system in a rigorous way.

10.3 High-speed encounters

We return to the Boltzmann equation as a starting point for the
derivation of the scattering coefficients. Again, we omit the basic
formulae that can be found in any textbook and employ the usual
notation and terminology. In virtue of the ansatz for the distribu-
tion function (see equation 164), it is sufficient to derive the time
derivative of the second-order velocity moments Tr and Tz. Since
the distribution function is time independent in the absence of en-
counters, only the collisional term contributes to the time derivative
of the velocity dispersions Tk (k ∈ (r, z, φ) in the following:

dρTk

dt
=
∫

d3vmv2
k

(
∂f

∂t

)
coll

. (171)

The collisional term invokes the averaging over many different
scattering trajectories and is, given that the underlying encounter
model is analytically solvable, still too complex to derive an ex-
act expression. If most of the encounters are weak – a realistic

15 Whenever relative velocities are classified as ‘high’ or ‘low’ in the fol-
lowing sections, a comparison with the Hill velocity is implied.
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assumption in a planetesimal disc – it is possible to expand the col-
lisional contribution in terms of the velocity change �vi. This is the
usual Fokker–Planck approximation (see e.g. Binney & Tremaine
2008). The diffusion coefficients D contain all information on the
underlying scattering process. The usual next step is to consider
two interacting planetesimal populations m, m∗ with distribution
functions

f = ��

2π2TrTzm
exp

(
−v2

r + 4v2
φ

2Tr
− v2

z + �2z2

2Tz

)

f ∗ = ��∗

2π2T ∗
r T ∗

z m∗ exp

(
−v2

r + 4v2
φ

2T ∗
r

− v2
z + �2z2

2T ∗
z

)
(172)

to be able to evaluate the terms in the Fokker–Planck approximation.
In this regard, we follow in our approach the scheme of Stewart &
Ida (2000) except some minor changes in the notation, and refer the
reader to their work for more details.

The determination of a proper Coulomb logarithm � leaves room
for further optimization. A careful comparison with N-body models
gives rise to the empirical choice (Ohtsuki, Stewart & Ida 2002):

� = 1

12
(〈ẽ2〉 + 〈ĩ2〉)〈ĩ2〉1/2

(173)

ẽ =
√

2Tr

�RHill
ĩ =

√
2Tz

�RHill
. (174)

Ohtsuki et al. (2002) also report a further improvement by setting
B ≡ A.

10.4 Low-speed encounters

Encounters in the low-velocity regime exhibit a wealth of different
orbits, as the solar gravity field perturbs the two-body scattering.
Only a small subset of the trajectories represents simple, regular
orbits like Tadpole or Horseshoe orbits16. Hence, an examination
of this velocity regime is best done by integrating the equations of
motions numerically.

Ohtsuki et al. (2002) integrated a large set of planetesimal en-
counters and extracted fitting formulae that cover the low-velocity
regime. Their expressions for viscous stirring are given in their
work. The stirring rate of the radial velocity dispersion approaches
a finite value for very low velocity dispersions, while the stirring rate
for the vertical velocity dispersion drops to zero as the velocity dis-
persion decreases. This different behaviour of the two limits is due
to the encounter geometry: if two planetesimals have zero inclina-
tion, they may still excite higher eccentricities during an encounter,
but they remain confined to the initial orbital plane preventing any
excitation of inclinations.

As the stirring rates are only valid in the low-velocity regime,
Ohtsuki et al. (2002) introduced special interpolation coefficients Ci.
These coefficients tend to unity for very small velocity dispersions,
and drop to zero in the high-velocity regime. Thus, the interpolation
formulae are properly ‘switched off’ in the high-velocity regime,
so they do not interfere with the known high-velocity stirring rates.

10.5 Distant encounters

All formulae include only the stirring rates due to close encoun-
ters, but non-crossing orbits also contribute to the overall change of

16 The most famous example of such a regular orbit are the two Saturnian
moons Janus and Epimetheus which share nearly the same orbit.

the velocity distribution. As these distant encounters lead to small
changes of the orbital elements, the problem is accessible to per-
turbation theory; see Hasegawa (1990) for a detailed treatment.
Stewart & Ida (2000) integrated the perturbation solution over all
impact parameters to derive the collective effect of all distant en-
counters:

d〈e2〉
dt

= �m∗�∗r2
0

(m + m∗)2
〈PVS,dist〉

〈PVS,dist〉 = 7.6
α(m + m∗)2

M2
c

×
EXINT

(
α h2

(〈e2〉+〈e∗2〉)

)
− EXINT

(
α h2

(〈i2〉+〈i∗2〉)

)
〈e2〉 + 〈e∗2〉 − 〈i2〉 − 〈i∗2〉

EXINT(x) := exp(x)�(0, x) h = 3

√
m + m∗

3Mc

α ≈ 1, (175)

where α accounts for the uncertainty in the smallest impact param-
eter that is regarded as a distant encounter. While distant encounters
are already included in the interpolation formula of the low-velocity
regime, we use the modified expression:(

dTr

dt

)
dist

= 1

2
(�r0)2

(
d〈e2〉

dt

)
dist

(1 − C1)

= GMcr0�m∗�∗

2(m + m∗)2
〈PVS,dist〉(1 − C1). (176)

Stewart & Ida (2000) omitted the change in the inclination, as it is
small due to the encounter geometry. We derive here the integrated
stirring rate for completeness, in the lengthy equation (177).

d〈i2〉
dt

= �m∗�∗r2
0

(m + m∗)2
〈QVS,dist〉〈QVS,dist〉 = 0.4

α2(m + m∗)2

M2
c

× 1

〈e2〉 + 〈e∗2〉 − 〈i2〉 − 〈i∗2〉

×
⎡
⎣1 − αh2

〈i2〉 + 〈i∗2〉EXINT

(
α

h2

(〈i2〉 + 〈i∗2〉)
)

− (〈i2〉+〈i∗2〉)
EXINT

(
α h2

(〈e2〉+〈e∗2〉)

)
− EXINT

(
α h2

(〈i2〉+〈i∗2〉)

)
〈e2〉 + 〈e∗2〉 − 〈i2〉 − 〈i∗2〉

⎤
⎦.

(177)

A close inspection of the integrated perturbation shows that the
above formula is roughly a factor 〈i2〉+ 〈i∗2〉 smaller than the cor-
responding changes in the eccentricity.

10.6 Gas damping

The presence of a gaseous disc damps the velocity dispersion of
the planetesimals and introduces a slow inward migration. Adachi
et al. (1976) used the drag law equation (39) to approximate17 the

17 A formal expansion at e = 0, i = 0, ηg = 0 is not possible, since the
drag law involves the modulus of the relative velocity. Kary, Lissauer &
Greenzweig (1993) corrected a missing factor 3/2 in equation (178).
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average change of the orbital elements:

τ0 = 2m

πCDρgR2vK
ηg = |vK − vg|

vK

d

dt
e2 ≈ −2e2

τ0

(
0.77 e + 0.64 i + 3

2
ηg

)
(178)

d

dt
i2 ≈ −2i2

τ0

(
0.39 e + 0.43 i + 1

2
ηg

)
d

dt
a ≈ −2a

τ0
ηg

(
0.97 e + 0.64 i + ηg

)
(179)

ηg is the dimensionless velocity lag of the sub-Keplerian rotating
gaseous disc.

10.7 Unified expressions

All expressions for the different velocity regimes are constructed
such that a smooth transition between the different regimes is as-
sured. Thus, a simple addition of all contributions yields already
the unified expressions

dTr

dt
=
(

dTr

dt

)
high

+
(

dTr

dt

)
low

+
(

dTr

dt

)
gas

+
(

dTr

dt

)
dist

(180)

dTz

dt
=
(

dTz

dt

)
high

+
(

dTz

dt

)
low

+
(

dTz

dt

)
gas

+
(

dTz

dt

)
dist

(181)

which cover the full range of relative velocities. Although only two
populations m and m� were assumed, equations (180) and (181) are
readily generalized to a multimass system by adding a summation
over all masses.

10.8 Inhomogeneous disc

The preceding derivations assumed a homogeneous disc, which
simplified the calculation, since the integration over all impact pa-
rameters needed no special precaution. A more sophisticated con-
sequence is that the spatial density and the density in semimajor
axis space are equal:

�(r) = �(a) = �0. (182)

Density inhomogeneities break this simple relation, as particles
at the same radial distance could have different semimajor axes,
and particles with the same semimajor axis are located at different
positions at a given time. While both representations are equivalent
(i.e. describe the same system in different ways), we choose the
density in semimajor axis space as the primary density18. The spatial
density is derived as

�(r) =
∫

1√
2πa2〈e2(a)〉 exp

(
− (a − r)2

2a2〈e2(a)〉
)

�(a) da. (183)

Likewise, Tr and Tz are also functions of the semimajor axis.
Furthermore, an inhomogeneous surface density invalidates the

averaging over all impact parameters. Planetesimal encounter are
most efficient for impact parameters smaller than a few Hill radii, so
the derivation is still valid if the surface density is roughly constant

18 We denote �(a) also as ‘surface density’ and refer to a as a radial coor-
dinate. However, all formulae are precise in discriminating both representa-
tions in r and a.

on that length-scale. However, a planetesimal that is large enough
will ‘feel’ the spatial inhomogeneities or even generate density
fluctuations. Hence, it is essential to extend the validity of the aver-
aged expressions to inhomogeneous systems. We use the averaged
expressions〈

dTr,z

dt

〉
= �(a)

∫ ∞

−∞

dT̃r,z(b)

dt
db (184)

as a starting point (dT̃r,z/dt excludes the surface density, as opposed
to the averaged expressions). The (yet unknown) scattering contri-
bution dT̃r,z/dt as a function of the impact parameter b is our starting
point for a general expression for a varying surface density:

dT (a0)r,z

dt
=
∫ ∞

−∞
�(a0 + b)

dT̃r,z(b)

dt
db. (185)

We restate equation (185) in terms of a weight function w(b):

dT (a0)r,z

dt
=
〈

dTr,z

dt

〉
1

�(a0)

∫ ∞

−∞
�(a0 + b)w(b) db (186)

w(b) = �(a0)
dT̃r,z(b)

dt

〈
dTr,z

dt

〉−1

. (187)

The numerical solution of the Hill problem gives some insight
into how the weight function w(b) changes with the impact parame-
ter. We follow a similar approach as in Petit (1986) for the evolution
of particle densities in the Hill problem.

10.9 Diffusion coefficient

We concentrated on the evolution of the velocity dispersion so far,
but scatterings among planetesimals also change the semimajor axis
of the disc particles, inducing a diffusive evolution of the surface
density:

∂�

∂t
= �a(D�). (188)

The diffusion coefficient D is related to the typical change in semi-
major axis �a and the time-scale T2Body on which planetesimal
encounters operate:

D ≈ (�a)2

T2Body
. (189)

If we neglect the radial displacement during an encounter, the
change in semimajor axis is solely due to the change of the
velocity:

− GM

2a
= −GM

r
+ 1

2
v2

�a ≈ 2a2

GM
v · �v. (190)

An average over all orientations of the velocity v and the velocity
change �v yields the mean square change in semimajor axis:

〈(�a)2〉 ≈ 4a3

3GM
〈(�v)2〉

= 4

3�2
(�Tr + �Tφ + �Tz). (191)

This yields the mean diffusion coefficient

D ≈ 4

3�2

(
5

4

d

dt
Tr + d

dt
Tz

)
, (192)
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where the time derivatives of the velocity dispersions Tr and Tz are
taken with respect to encounters. We note that this approach does not
replace large angle scattering by close approaches of planetesimals
to large planets. However, Ṫr and Ṫz do contain large angle scatter-
ing. We note that it is important to maintain an integral number of
particles as they migrate radially inward.

10.10 Coagulation equation

We treat collisions with the particle in a box method, where the
collision rate is a number density times a cross-section times a
relative velocity. In our scheme, we use numerical calculations from
Greenberg (1991) and Greenzweig (1992)19 as a basis for a unified
fitting formula

σ̃ = σ × 0.572 (1 + 3.67vHill/vrel)

(
1 + 1.0

σ�2

Tz

)−1/2

(193)

σ = σgeom

(
1 + v2

∞
v2

rel + 1.8v2
Hill

)
(194)

v2
rel = 1

2
(Tr + Tφ + Tz) vHill = �rHill (195)

which gives an effective cross-section σ̃ for planetesimal–
planetesimal encounters. Equation (193) reduces to the well-known
gravitational focusing formula in the limit of high velocities:

σ̃ ∝ σgeom

(
1 + v2

∞
v2

rel

)
(196)

v2
∞ = 2G(m1 + m2)

R1 + R2
. (197)

If the vertical velocity dispersion is small, the disc becomes two-
dimensional and the cross-section is proportional to R. The main
differences to the two-body cross-section in equation (196) is a finite
gravitational focusing factor, since the Keplerian shear inhibits a
zero relative velocity, and a finite collisional probability for very
small velocities, again due to the shear which provides a finite
influx of particles. At the low-velocity limit, our results compare
with those of Goldreich, Lithwick & Sari (2004), which have been
explored by N-body simulations.

The precise calculation of the coagulation kernel should include
an integration over all semimajor axes with a proper weighting
kernel. As collisions among particles in the statistical model play
only a major role when the system is still homogenous, we omit-
ted this contribution. In addition, this helps saving computational
time, since the solution of the coagulation equation is very costly.
However, interactions between N-body particles and the statistical
model include spatial inhomogeneities properly (see Section 11).

10.11 Discretization

All involved quantities are only functions of a and m. Therefore,
we introduce a two-dimensional grid, where �, Tr and Tz are cell-
centred quantities. Fig. 10 summarizes the definition of the two-
dimensional grid. Since the full planetesimal size range covers
several orders of magnitude in mass, we chose a logarithmically
equidistant discretization in mass to cover the necessary mass range
in a reliable way. The radial spacing of the grid cells is equidistant.

19 Their work includes an averaging over the Rayleigh distributed inclina-
tions and eccentricities of the colliding planetesimals.

Figure 10. Numerical grid. The arrows indicate transport of kinetic en-
ergy (red), spatial transport of mass(green) and accretion (black). Non-
neighbouring cells are coupled by the coagulation kernel and the radial
interpolation kernel.

Thus, the grid setup for the mass discretization reads (N grid cells
from mmin . . . mmax ):

mi = mminδ
−i(1/2 + δ/2) i = 1, . . . , N

�mi = mminδ
−i(1 − δ)

�i = d�

dm
�mi

δ =
(

mmin

mmax

)1/N

. (198)

The grid spacing δ controls the number of cells which are necessary
to cover a specified mass range. As the evaluation of the coagulation
equation scales with the third power of the number of grid cells, δ

should be as large as possible. If the flux integral is approximated
in a standard way

Fi = −
N∑

j=1

N∑
k=1

F
(jk)
i

F
(jk)
i = 1√

2π(h2
j + h2

k)

�j

mj

�k

mk

× σ (mj, mk)

× vrelMred(mi − �mi/2, mj , mk), (199)

a spacing δ much smaller than 2 is required to guarantee a sufficient
accuracy20. However, it is possible to use a spacing of 2 if special
precaution is taken. Spaute et al. (1991) approximated the surface
density with a power law, thus taking the gradient with respect to
mass into account. While they reached only a sufficient accuracy
with further special adaptations, we use a more rigorous approach.
A large spacing δ reduces the accuracy, since the partial flux (equa-
tion 199) is strongly varying even inside one grid cell. Thus, we

20 Ohtsuki, Nakagawa & Nakazawa (1990) give a thorough analysis of the
importance of the resolution.
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rearrange this expression to identify the most important terms, as
we can see in equation (200):

F
(jk)
i = vrel√

2π(h2
j + h2

k)

�k

mk

�j

mj

× σ (mj ,mk)mj︸ ︷︷ ︸
FV (mj )

1

mj

Mred

× (mi − �mi/2, mj , mk)

j ≥ k. (200)

The strongest varying contribution FV is now approximated by a
power law with respect to mj:

FV (m) ≈ FV (mj )

(
m

mj

)q

. (201)

Thus, equation (201) is used to provide improved partial fluxes F
(jk)
i

and thus we come to equation (202).

F
(jk)
i = vrel√

2π(h2
j + h2

k)

�k

mk

×
∫ mj +�mj /2

mj −�mj /2

FV (m)

m�mj

Mred(mi − �mi/2, m, mk) dm

j ≥ k. (202)

Since the fragment redistribution function is a piecewise power law,
an analytical solution of the integral is possible. Equation (202)
gives reliable results even with a spacing δ = 2. The time derivative
of the surface density reads

�̇i
m = −Fi+1 + Fi (203)

which should assure the conservation of mass within numerical
accuracy.

We note that for calculations with a fixed mass grid (where the
average mass of a bin is constant in time), δ < 2; otherwise, spu-
rious solutions result (Ohtsuki et al. 1990). Other schemes use the
approach of Wetherill (1989), the mass ‘batches’, where the aver-
age mass of a bin varies with time. In this case, δ can be any value.
However, the latency between the actual time a particle reaches a
specific size and the calculated time grows with δ. It has been noted
that lags of a few per cent require δ ≤ 1.25 (Kenyon & Luu 1998).
Nevertheless, a δ ∼ 2 yields lags of about 10 per cent, acceptable
in view of the uncertainties in the whole approach.

10.12 Integrator

All contributions to the evolution of the surface density � and the
velocity dispersions Tr and Tz are summarized by the following set
of differential equations:

D = 4

3�2

(
5

4
Ṫr,enc + Ṫz,enc

)
d�

dt
= �a(D�) + �̇coll

d�Tr

dt
= �a(D�Tr) + �Ṫr + d

dt
(�Tr)coll

d�Tz

dt
= �a(D�Tz) + �Ṫz + d

dt
(�Tz)coll. (204)

The Laplace operator is approximated in accordance with the
equidistant radial grid:

�af = 1

a

∂

∂a

(
a

∂

∂a
f

)

�af ≈ fi+1(1 + �a/(2ai)) − 2fi + (1 − �a/(2ai))fi−1

(�a)2
. (205)

We chose the Heun method 21 as the basic integrator for the statistical
model. It is a second-order accurate predictor–corrector scheme
(X is a vector containing all the above quantities):

dX

dt
= f (X)

Xp = Xn + �tf (Xn)

Xn+1 = Xp + 1

2
�t(f (Xp) − f (Xn)) + O(�t3). (206)

The Heun method is readily extended to an iterate scheme, which
is equivalent to the implicit expression:

Xn+1 = Xn + 1

2
�t(f (Xn+1) + f (Xn)). (207)

This adds stability to the method and allows the secure integration
of stiff configurations that may appear during the runaway accretion
phase. In practice, three iterations are sufficient to guarantee a stable
integration. As the diffusive part is discretized with a first-order
accurate formula (see equation 205), the whole iterated scheme is
equivalent to the Crank–Nicolsen method. We choose a global time
step for the statistical model according to the expression

�t = min

(
ηDisc

X

Ẋ
, X ∈ {�, Tr, Tz}

)
, (208)

where the hybrid code (see next section) applies an additional dis-
cretization in powers of two to achieve a better synchronization with
the N-body code component.

Since we use the continuous form of the coagulation equation
(see Sections 5 and 5.1), we also have ‘half bodies’. In the mass
regime of relevance, these are so copious that non-integer collision
rates do not need to be treated with a random number generator. This
is where the direct-summation N-body integrator of the scheme is
relevant.

1 1 B R I N G I N G T H E T WO S C H E M E S
TO G E T H E R : TH E H Y B R I D C O D E

We introduced two different methods to solve the planetesimal
growth problem. On the one hand, we modified NBODY6++, which
has been used so far mainly for the simulation of stellar clusters,
to adapt it to the special requirements of a long-term integration
of planetesimal orbits. On the other hand, we developed a new sta-
tistical code with a consistent evolution of the velocity dispersion,
the capability to treat spatial inhomogeneities and a thoroughly
constructed collision treatment. Neither of the two approaches is
powerful enough to provide a complete and accurate description
of the planetesimal problem, since each method is confined to a
certain range of the particle number. However, these restrictions
are complementary in the sense that each method covers a regime

21 The name of this method is not unique. Some texts denote it as the
modified Euler method. The Heun method is a special case of the Runge–
Kutta methods.
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Figure 11. Interplay between the N-body component and the statistical
component of the hybrid code. Black arrows indicate mass transfer, red
arrows exchange of kinetic energy and green arrows indicate spatial struc-
turing, respectively.

where the other method fails. This intriguing relation stimulated the
construction of a hybrid code which combines the benefits of both
methods.

The basic idea is to introduce a transition mass mtrans, which
separates the two mass regimes. Particles with a lower mass are
treated by the statistical model, whereas larger particles belong to
the N-body model. Though both parts are clearly divided in different
mass ranges, they are connected by various interdependences.

(i) Direct collisions between particles lead to a mass exchange.
One process is the accretion of small particles by N-body particles,
but agglomeration within the statistical model can also produce par-
ticles larger than the transition mass. This requires the generation of
new N-body particles. Energetic impacts may erode larger particles,
so a corresponding particle removal is also required for consistency.

(ii) Mutual scatterings among N-body particles and smaller plan-
etesimals transfer kinetic energy. While energy equipartition leads
to a systematic heating of the smaller field planetesimals, a consis-
tent treatment has to include both transfer directions.

(iii) Accretion and scattering by the N-body particles induce spa-
tial inhomogeneities or even gaps in the planetesimal component, if
the particles have grown massive enough. Likewise, the small par-
ticles could induce some structure in the distribution of the N-body
particles. Since the spatial structure is dominated by the stirring
from few protoplanets, we neglect the latter process.

Fig. 11 summarizes this brief overview of the interactions between
the two code components in a schematic diagram. The following
sections explain the implementation of each interaction term in
more detail.

11.1 Mass transfer

An N-body particle accretes smaller particles in its vicinity. We
already derived expressions which describe agglomeration within
the statistical model, so it is manifest to apply these formulae to
derive the accretion rate of an N-body particle.

Most of the material is accreted within the cross-sectional area
σ (see equation 194), but the finite eccentricity of an orbit extends

the accessible radial feeding zone. Thus, we assign the following
surface density to each particle

�(a) = M

2πa
√

2πl
exp

(
− (a − a0)2

2l2

)
(209)

l2 = σ/π + 1

2
a2e2 + Tr/�2 (210)

by smearing it out over its feeding zone. Tr is the radial velocity
dispersion of particles in the statistical model with semimajor axis
a. This density distribution is projected on to the radial grid to
calculate the accretion rate. As the time step of the statistical model
is much larger than the regular step of an N-body particle, the
particle mass update is synchronized with the statistical integration.
The projection technique allows the calculation of the accretion
rates in a simple way, which gives the right size of the feeding zone
and the proper total accretion rate.

Particle generation is included in the following way: a ‘virtual’
mass bin is introduced as the boundary between the statistical grid
(denoted by the dashed area in Fig. 11) and the N-body component.
Its sole task is to store mass and kinetic energy that drives the
statistical model towards higher masses. If the mass content exceeds
one mtrans, a new particle is created with inclination and eccentricity
according to the stored velocity dispersions.

The masses of the N-body particles are regularly checked to de-
tect any particle which dropped below the transition mass. While
this procedure would remove the particle and transfer the associ-
ated quantities back to the grid, we never observed such a particle
erosion.

11.2 Disc excitation

The projection of an N-body particle on to the grid with the help
of a proper weight function is also useful for the calculation of the
disc excitation due to stirring by the larger particles. Since the Hill
radius sets the proper length-scale for planetesimal encounters, the
weight function is modified to

�(a) = M

2πa
√

2πl
exp

(
− (a − a0)2

2l2

)

l2 = R2
Hill + 1

2
a2e2 + Tr/�2, (211)

where Tr is the radial velocity dispersion of the heated planetesimal
component. The velocity dispersion of the stirring N-body particle
is [in accordance with equations (4) and (5)]:

Tr,0 = 1

2
(�a0)2e2Tz,0 = 1

2
(�a0)2i2. (212)

We employ the orbital elements as mediators between the fast vary-
ing instantaneous position and velocity of a particle and the slow
evolution of the statistical model, which operates on a longer relax-
ation time-scale. In virtue of the projection of the particle, we readily
apply the standard interaction terms (see Section 10) to evaluate the
additional heating due to the presence of N-body particles.

11.3 Pseudo-force

While an N-body particle is moving through the disc, it also inter-
acts gravitationally with the particles in the statistical model. The
collective effect of all these encounters leads to a change in the or-
bital elements of the N-body particle. Again, we project the N-body
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particle on to the grid and evaluate the stirring rates Ṫr and Ṫz, which
correspond to a change in the orbital elements:

d

dt
e2 = 2Ṫr

(�a0)2

d

dt
i2 = 2Ṫz

(�a0)2
. (213)

These time derivatives of eccentricity and inclination are translated
to a pseudo-force that effects the desired change of the orbital
elements. We chose the ansatz

Fx,y = Cr(vx,y − (vK)x,y)

Fz = Czvz, (214)

where vK is the local Keplerian velocity. In addition, we tried a
simpler expression

Fx,y = 2Crrx,y

r · v

r2

Fz = Czvz (215)

without any significant differences in the accuracy or the simulation
outcome. The proper friction coefficients are

Cr = Ṫr

2Tr

Cz = Ṫz

2Tz

. (216)

Since the relevant quantities are the time derivatives of the orbital
elements, any other pseudo-force is also applicable. Though this
approach yields the right mean change of the orbital elements,
it lacks the statistical fluctuations from the particle disc. Hence,
the distribution of the orbital elements of the N-body particles is
artificially narrowed, which is especially important when the N-
body particles and the statistical particles have a comparable mass.
As the mass contrast between the two code parts is quite significant
in planet formation simulations, it is safe to neglect the fluctuating
part without major restrictions on the realism of the simulations.

The friction coefficients Ci are kept constant between two inte-
gration steps of the statistical model. While a more frequent update
of the coefficients would be easily possible, a regular update on the
basis of the statistical time step is accurate enough. Moreover, each
update poses a considerable computational effort (roughly equiva-
lent to 1000 force evaluations), so our approach also saves valuable
computational time.

11.4 Spatial structure

The first insight into planetesimal formation was obtained by the
particle-in-a-box method, which invokes the underlying assumption
that the planetesimal disc stays homogeneous throughout the pro-
toplanet growth (see e.g. Greenberg et al. 1978). While few large
bodies introduce some coarse-graininess of the surface density, all
smaller bodies are assumed to be evenly spread in the disc. Research
on the interaction of protoplanets showed that this is an oversim-
plification, as bodies that are massive enough could open gaps in
their vicinity (see e.g. Lin & Papaloizou 1979; Rafikov 2001). Gap
formation does not only change the overall surface density, but also
controls the accretion on to the protoplanet through the amount of
planetesimals in the feeding zone. If gap formation is too effective,
the growth of the protoplanet may well stop before the isolation mass

Figure 12. Gap opening in a planetesimal disc. The gap is fully developed
after 2000 yr.

is reached. Hence, any hybrid code should provide a framework that
allows this mechanism to operate. A necessary condition is a radial
density grid with a sufficient resolution to describe possibly emerg-
ing gaps. A too low resolution suppresses local perturbations from
the protoplanets by a simple averaging, thus inhibiting the forma-
tion of any spatial inhomogeneities. A second requirement is that
the interaction terms relating statistical model and N-body model
include the local interaction between particles and the statistical
component in a proper way.

Our hybrid approach includes gap formation implicitly through
the diffusive terms. A protoplanet heats only the planetesimals in its
vicinity (defined by the heating kernel), thus also increasing locally
the diffusion coefficient. Hence, the surface density drops due to
outward diffusion of the planetesimals, given that the protoplanet
is massive enough. The minimum gap opening mass is set by the
condition that the protoplanet controls the random velocities of the
field planetesimals in its heating zone (see equation 12), which
is equivalent to the independently derived gap formation criterion
(compare equation 14).

Although our algorithm invokes a simplified picture of the
protoplanet–planetesimal interaction, it is surprisingly accurate with
respect to the width of the forming gap and the opening criterion.
Fig. 12 shows a simulation which examines the accuracy of our
approach, and see Table 9 for a summary of the initial conditions
for the comparative runs. The overall performance of the statisti-
cal code is quite remarkable, except a significant overestimation of
the surface density at the gap boundary compared to the N-body
model. This deviation is due to the improper treatment of strong
planetesimal–protoplanet encounters, which exceed the diffusive
approximation. Moreover, the higher concentration of planetesi-
mals near the gap boundary leads to an additional overestimation
of the velocity dispersion of the smaller planetesimals in the sta-
tistical calculation (see Fig. 13). While the comparison with the
N-body calculation clearly indicates a necessary improvement of
the treatment of spatial inhomogeneities, our approach catches the
main features of gap formation.

11.5 Transition mass

Since the inventory of the new hybrid code is now completed, we
turn to the specification of the transition mass mtrans. The mass
boundary between statistical and N-body part has a major influence
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Table 9. Parameters of the statistical and the N-body gap simulation. The perturber is placed at the centre of
the ring.

No. � �a N Nrad e2/h2 i2/h2 m Type

G1 1.1251 × 10−6 0.2 1406 – 0.001 35 0.001 35 1 × 10−9 N-body
Perturber – 1 – e = 6.1 × 10−5 i = 3.2 × 10−5 1 × 10−7 –

G2 1.1251 × 10−6 0.2 – 201 0.001 35 0.001 35 1 × 10−9 Statistic
Perturber – 1 – e = 6.1 × 10−5 i = 3.2 × 10−5 1 × 10−7 –

Figure 13. Mean square eccentricity and inclination of the smaller plan-
etesimals in terms of the reduced Hill radius H of the protoplanet according
to simulation G1 (N-body) and G2 (Statistic).

on the realism and the speed of the simulation. On the one hand,
optimization with respect to speed favours a large transition mass,
whereas a reasonable resolution of the transition between the two
components introduces some upper limit.

Hence, we identify first the set of large masses, which controls the
velocity dispersion of the disc, since these objects are also possible
candidates for gap opening. The inspection of all involved stirring
terms gives approximately the inequality:∫ mtrans

0

d�

dm
m dm <

∫ ∞

mtrans

d�

dm
m dm. (217)

While this is a necessary condition to select all potential major
perturbers, criterion (217) does not imply that all particles in the
selected mass range exert indeed a strong influence on the disc. The
number of possible gaps – and therefore the number of perturbers
associated with them – is ultimately limited by the available space.
Thus, we integrate the area of all potential gaps (width ≈f�RHill)
and normalize it to the total disc area:

fC ≈
∫ ∞

mtrans

f�

d�

dm

2πaRHill

m
dm. (218)

If the covered fraction fC is much larger than one, it is possible to
increase the transition mass until the condition

fC � 1 (219)

is fulfilled. Of course, conditions (217) and (219) defined only an
upper limit of the transition mass, so the adaptation of a lower value
is also possible. Though there are two reliable conditions at hand, the
transition mass is still a function of time owing to the time evolution
of the density �(m). Therefore, we chose a priori a fiducial value of
the transition mass, run the simulation and conduct an a posteriori

check, whether the initial choice matches our requirements at any
evolutionary stage of the disc. A reliable value for a Solar system
analogue at 1 au is

mtrans ≈ 3 × 10−11 M� (220)

which restricts the number of N-body particles to a tractable amount.
Later stages would allow an even larger transition mass, but the
current hybrid code does not include any dynamical adjustment of
the transition mass at runtime.

11.6 Boundary conditions

Any numerical simulation is limited to a finite simulation volume
and a finite time interval. Therefore, it is mandatory to introduce
proper boundary conditions which provide a reasonable closure of
the simulation volume.

While boundary conditions with respect to time are the familiar
initial conditions, the choice of the spatial boundary conditions for
the various involved quantities depends on the problem at hand and
the type of the boundary. A simulation boundary can be due to
physical reasons (like walls of a concert hall, surface of a terrestrial
planet) or simply due to a limitation in computational power that
inhibits the complete numerical coverage of the problem.

The current capability of the hybrid code sets limits on the radial
range as well as on the covered mass range, which a simulation can
handle in a reasonable time. Hence, we have to introduce artificial
boundaries in radius, and a lower limit for the mass grid.

Any migration process couples the evolution of a local ring area
in the planetesimal disc to the evolution of the whole disc. Inward
(or outward) migrating material also transports information on the
radial zone where the material originated from. As this information
is not available within the frame of a local simulation, any choice
of the boundary condition alters the evolution to some extent.

However, we focus on a formation stage where migration is not
a dominant process, but provides only removal of the smaller col-
lisional fragments. Thus, we apply closed boundary conditions for
the outer and inner radius of the ring area (i.e. all fluxes vanish
at the boundary), and an open boundary for the lower end of the
mass range. While these conditions exclude the study of migrational
processes, we gain clearer insight into the protoplanet growth.

1 2 D I S C U S S I O N A N D C O N C L U S I O N S

The formation of planetary systems represents a challenge from
a numerical standpoint. The dynamical problem spans over many
orders of magnitudes in length and demands the combination of
different techniques. We have presented a composite algorithm that
brings together the advantages of direct-summation tools and statis-
tics for the description of the planetesimal disc. Direct-summation
N-body techniques have been around for some decades and have
proven their accuracy in a very large number of studies of stellar
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clusters such as galactic nuclei and globular and open clusters. We
deem it to be the numerical tool to integrate the motion of the bod-
ies for the very precise integration of the orbits and treatment of
close encounters. Typically, in a simulation of a stellar system, the
energy is conserved in each time step by E/�E ∼ 10−11 (where E
is the total energy and �E the difference between the former and
current total energy for a specific time), so that even if we integrate
for a long time the cluster, the accumulated energy error is negli-
gible. Nevertheless, porting the numerical tool to the problem of
planetary dynamics is not straightforward and requires important
modifications and additions. In this work, we present them in de-
tail: the neighbour radius selection for the protoplanets, the Hermite
iteration and we introduce for the very first time the new extended
Hermite scheme, since the usual Hermite scheme is not sufficient
to integrate planetesimal orbits accurately enough. Then, we bring
in new forces to the problem, namely the introduction of the central
potential of the star, as well as the drag forces, which depend on the
gas density and size of the planetesimals. Hence, the regularization
scheme, crucial to exactly integrate the close encounters, has to be
accordingly modified. We then introduce the disc geometry and dis-
cuss the required changes to the neighbour scheme and prediction,
as well as the communication algorithm and block size distribution.

For the statistical description of the planetesimal disc, we employ
a Fokker–Planck approach. We include dynamical friction, high-
and low-speed encounters, the role of distant encounters as well
as gas and collisional damping and then generalize the model to
inhomogenous discs. We then describe the combination of the two
techniques to address the whole problem of planetesimal dynamics
in a realistic way via a transition mass to integrate the evolution of
the particles according to their masses.

In particular, we introduce and describe the extended Hermite
scheme, which reduces the energy error by three orders of magni-
tude with the same number of force evaluations, compared to the
standard version of NBODY6++.

While the implementation and some code details are newly intro-
duced to the field of planet formation simulations, the first hybrid
approach was developed in the early 1990’s. Spaute et al. (1991, fur-
ther improved in Weidenschilling et al. 1997) constructed a hybrid
code with a statistical component to treat the smaller particles and a
special treatment for the larger particles. A statistical model covers
the field planetesimals with the help of a distribution function (sim-
ilar to Wetherill 1989), whereas the larger particles are individually
stored and characterized by mass, semimajor axis, eccentricity and
inclination. While the interaction between these single particles and
the statistical component is expressed by standard viscous stirring
and dynamical friction terms, perturbations among the single par-
ticles are equated in a different way. First, the probability of an
encounter of two neighbouring particles is calculated. This prob-
ability is used in a second step to decide whether a (numerically
integrated) two-body encounter of the neighbouring particles is car-
ried out to derive the change in the orbital elements. Though these
two well-defined code components justify to speak about a hybrid
approach, the Monte Carlo like integration of the largest particles
is still closely related to a statistical treatment.

A modified N-body approach is used in the work of Levison &
Morbidelli (2007). Their method covers the largest particles by a
direct N-body code, which includes the smaller particles as ‘tracer’
particles. The term ‘tracer’ indicates that each particle represents a
whole ensemble of planetesimals. In a similar line of approach and
inspired by this idea, Levison, Thommes & Duncan (2010) modi-
fied a symplectic algorithm, SYMBA, to study the formation of giant
planet cores. However, they made some assumptions in order to

calculate the gravitational interaction between the planetesimals. In
particular, they ignored totally close encounters between planetes-
imals (but see Levison, Duncan & Thommes 2012, for an update
built on SYMBA), although they use their code in situations where
interactions between planetesimals are small.

Ormel & Spaans (2008) present in their work a scheme based on
Monte Carlo techniques to cover the vast range of sizes. For this,
they assign more resolution to those particles that are more relevant
to the interactions, typically the largest bodies. Smaller particles are
grouped and treated collectively, which means that they all share
the same mass and structural parameters. This classification is done
in accordance to the ‘zoom factor’, a free parameter. Later, Ormel,
Dullemond & Spaans (2010a) presented an detailed comparison of
their Monte Carlo code with other techniques, in particular with pure
direct-summation N-body results and other statistical studies and
found that system leaves the runaway at a larger radius, in particular
at the outer disc. With their simulations, the authors propose a new
criterion for the runaway growth-oligarchy transition: from several
hundreds of km in the inner disc regions up to a thousand km for
the outer disc (Ormel, Dullemond & Spaans 2010b).

Bromley & Kenyon (2006) published a description of a hybrid
method with a basic approach similar to our work. They employ
two velocity dispersions and the surface density of the planetesi-
mals to describe the planetesimal system. The statistical component
includes migration of the planetesimals and dust particles due to gas
drag and Pointing–Robertson drag. In contrast to our approach, they
did not include mass transport due to the diffusion of the planetes-
imals, which precludes the study of spatial structures induced by
the protoplanets. This issue was addressed later in their later work
of Bromley & Kenyon (2011a,b), in which planets open up gaps in
discs. One must note also that their method uses the standard dis-
cretization of the collisional flux (see equation 199) and thus restrict
the spacing factor to δ � 1.25 (Kenyon & Luu 1998). Bromley &
Kenyon (2006) chose a set of test calculations which focused less on
the technical aspects of their method, but on an overall comparison
with a selected set of standard works on planet formation. Their test
simulations are in good agreement with the references simulations,
thus indicating a comparable quality of the method. Four years later,
the authors presented an updated version of their code for planet
formation. The new characteristics of the code included 1D evolu-
tion of the viscous disc, gas accretion on to massive cores, as well
as accretion of small particles in planetary atmospheres (Bromley
& Kenyon 2011a).

While a variety of hybrid approaches emerged over the past years,
this technique is still far from a routinely application and is still
challenged by many open issues. Hybrid codes bear the potential
to address the dynamical evolution of a whole planetary system,
the later stages of protoplanet formation initiate a strong interaction
with the gaseous disc, which may require more diligence than the
inclusion of a few additional interaction terms. However, the de-
velopment is picking up speed, which places our work in a good
position for further research.

AC K N OW L E D G E M E N T S

PAS thanks the referee, Scott Kenyon, for his patience and time on
a detailed and helpful refereeing of the paper. It is a pleasure to
thank Sverre Aarseth, Cornelis Dullemond and Phil Armitage for
comments on the manuscript. PAS thanks the National Astronomi-
cal Observatories of China, the Chinese Academy of Sciences and
the Kavli Institute for Astronomy and Astrophysics in Beijing, for
an extended visit, as well as the Aspen Center of Physics and the

MNRAS 445, 3620–3649 (2014)

 at M
PI G

ravitational Physics on January 13, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Hybrid methods: a new composite algorithm 3647

organizers of the summer meeting, where this work was finished.
PAS expresses his utmost gratitude to Hong Qi, Wenhua Ju and
Xian Chen for their hospitality during his stay in Beijing and to the
Kavli Institute for Theoretical Physics where one part of this work
has been completed. This research was supported in part by the
National Science Foundation under Grant No. NSF PHY11-25915
and supported by the Transregio 7 ‘Gravitational Wave Astronomy’,
financed by the Deutsche Forschungsgemeinschaft DFG (German
Research Foundation). PG and RS acknowledge support by the
Collaborative Research Group FOR 759 (Project C3) of German
Science Foundation (DFG) ‘The formation of Planets: The Criti-
cal First Growth Phase’. RS acknowledges support by the Chinese
Academy of Sciences Visiting Professorship for Senior Interna-
tional Scientists, Grant Number 2009S1-5 (The Silk Road Project).
The special supercomputer Laohu at the High Performance Com-
puting Center at National Astronomical Observatories, funded by
Ministry of Finance under the grant ZDYZ2008-2, has been used.
Simulations were also performed on the GRACE supercomputer
(grants I/80 041-043 and I/84 678-680 of the Volkswagen Foun-
dation and 823.219-439/30 and /36 of the Ministry of Science,
Research and the Arts of Baden-urttemberg). Computing time on
the IBM Jump Supercomputer at FZ Jülich is acknowledged. PAS
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A P P E N D I X A : C E N T R A L
FORCE-DERIVATIVES

Central force F per mass (i.e. acceleration) and its time derivatives
are

F = − xM

x3

F(1) = −vM

x3
− 3AF

F(2) = − aM

x3
− 6AḞ − 3B F

F(3) = − ȧM

x3
− 9AF(2) − 9B F(1) − 3C F

a = v̇

A = x · v

x2

B = v2

x2
+ x · a

x2
+ A2 = Ȧ + 3A2

C = 3v · a
x2

+ x · ȧ
x2

+ A(3B − 4A2). (A1)

The F(i) denote the central force and its time derivatives, whereas
a and ȧ refer to the total acceleration of the particle. The assumption
that x, v, a and ȧ are independent of each other allows the derivation
of averaged expressions for particle–particle interactions:

〈(F)2〉 = m2 1

x4

〈(F(1))2〉 = m2 2v2

x6

〈(F(2))2〉 = m2

(
12

v4

x8
+ 2

a2

x6

)

〈(F(3))2〉 = m2

(
144

v6

x10
+ 126

a2v2

x8
+ 2

ȧ2

x6

)
. (A2)

We combine these expressions with Aarseth’s time step formula to
derive the regular time step as a function of the neighbour sphere
radius Rs:

�treg ≈ √
ηreg

Rs

v̄

1

1 + √
Rs/R0

R0 = 4
v̄2

a
≈ 4v̄2r̄2

Gm
= 4

r̄2

rclose
, (A3)

where r̄ is the average particle distance and rclose is the impact
parameter for a 90-degree deflection.

A P P E N D I X B : SC A L A B L E C O L L I S I O N S FL U X

The mass flux according to the perturbation equation (125) is

F p = −
∫ ∫

(n(m2)�n(m1) + n(m1)�n(m2))

× σ (m1)v(m2)m1fm(m1/m, ε)dm1dm2

= F (1) + F (2). (B1)

First, we employ the substitution

m1 = mx1

m2 = m0

(
m1

m0

) 1+α
1+2w (

S̃
) 1

1+2w ε
1

1+2w (B2)

to solve for the partial flux F(1):

F (1) = −n2
0m

3
0σ0v0

∫
g(mx1)F1(x1) dx1

F1(x1) = S̃−k′
∫

ε− w+s+3+α
2+α+2w

fm(x1, ε)

x1(1 + 2w)
dε. (B3)

The second contribution F(2) requires a slightly different transfor-
mation:

m1 = mx1ε
−1/(1+α)

m2 = m0

(
mx1

m0

) 1+α
1+2w (

S̃
) 1

1+2w . (B4)

Thus, the partial flux F(2) is

F (2) = −n2
0m

3
0σ0v0

∫
g(m2)F2(x1) dx1

F2(x1) = S̃−k′
∫

ε− w+s+3+α
2+α+2w

fm(x1ε
−1/(1+α), ε)

x1(1 + 2w)
dε. (B5)

We change to a new set of logarithmic coordinates

u = ln(m/m0) u1 = ln(x1) s̃ = ln(S̃)

1 + α
(B6)

which transforms the total flux Fm to a convolution integral:

F p = −n2
0m

3
0σ0v0

∫
[g(u + u1)G1(u1)

+ g (p(u + u1 + s1)) G2(u1)] du1 (B7)

p = 1 + α

1 + 2w
, (B8)

where p = 1 refers to the already derived solution for self-similar
collisions. Hence, we expand equation (B7) at p = 1 and retain only
the zeroth-order moment of the fragmentation kernel:

F p = −n2
0m

3
0σ0v0

[
g(u)G1,0 +

(
g(u) + u(p − 1)

∂g

∂u

)
G2,0

]
.

(B9)

This expression is equivalent to

F p = −n2
0m

3
0σ0v0(g(u)G1,0

+ [g(u) + (p − 1)(g(u) − g(0))]G2,0), (B10)

where higher derivatives of g(u) are neglected. Hence, we recover
the same functional form of the perturbed mass flux Fp as for self-
similar collisions:

F p = −n2
0m

3
0σ0v0 g(u)

(
G1,0 + p G2,0

) + const.

× ∝ S̃−k′
. (B11)
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A P P E N D I X C : C OAG U L AT I O N E QUAT I O N

While the success of a general approximation of the coagulation
equation depends heavily on the used coagulation kernel, we nev-
ertheless provide a more general approach to embed Section 5 in a
broader context. The standard coagulation equation is

0 = ∂

∂t
mn(t, m) + ∂

∂m
Fm(t, m)

Fm = −
∫ ∫

n(t, m1)n(t, m2)σ (m1, m2)

× vrelMred(m,m1, m2) dm1dm2. (C1)

In virtue of our experience drawn from the perturbation expansion,
we transform the coagulation equation to logarithmic coordinates

u = ln(m) (C2)

and employ the size distribution g(u) relative to the steady-state
solution neq(m):

0 = ∂

∂t
g(u, t)neq(u)e2u + ∂

∂u
Fu(t, m)

Fu = −
∫ ∫

g(t, u1)g(t, u2)K(u, u1, u2) du1 du2, (C3)

where K(u, u1, u2) is the properly transformed new coagulation
kernel. g(u) is expanded under the integral to arrive at a moment
expansion of the flux Fu:

Fu = −K00(u)g(u)2 − (K10(u) + K01(u))g(u)
∂g

∂u
+ · · ·

Kij =
∫ ∫

K(u, u1, u2)ui
1u

j
2du1du2. (C4)

Retaining only the leading-order terms, we recover an approximate
coagulation equation which is similar to the inviscid Burgers’ equa-
tion 22:

0 = ∂

∂t
g(u, t)neq(u)e2u − ∂

∂u

(
K00(u)g(u)2

)
. (C5)

22 This notion goes back to Burgers (1948), but the equation was already
introduced by Bateman (1915).
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