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Abstract
Simulations of gyrokinetic energetic ions interacting with the magneto-hydrodynamic (MHD)
Alfen Eigenmodes are presented. The e ect of the nite fast-ion orbit width and the nite fast-ion
gyroradius, the role of the equilibrium radial electric el d, as well as the e ect of anisotropic fast-
particle distribution functions (loss-cone and ICRH-type distributions), are studied in Wendelstein
7-X stellarator geometry using a combination of gyrokinetc particle-in-cell and reduced MHD

eigenvalue codes. A preliminary stability analysis of a HELAS reactor con guration is undertaken.



I. INTRODUCTION

Alfen instabilities caused by energetic ions have been seen in mamsiion experiments,
both in tokamak [1] and stellarator/heliotron [2, 3] devices. The assiated physics has
extensively been studied theoretically in tokamak geometry [4{6]. Isomparison to toka-
maks, there are many similarities in the properties of Alf\enic waveand fast particles in
stellarator geometry. There are, however, also discrepanciedhieh can be caused by the
di erence in the magnetic shear, the lack of axisymmetry, the absee or smallness of a
net toroidal plasma current, more complicated particle orbits in st&rators etc. [7]. The
theoretical study of fast-particle destabilized Alf\enic instabilities in 3D geometry was pi-
oneered by Kolesnichenko from 2001 onwards [8, 9]. At that time, éhphysics related to
the fast-particle transport induced by the Alf\en waves in tokanak plasmas had already
been studied intensively. The interest in fast-ion-driven Alfvenic igtabilities in 3D has in-
creased since the appearance of drift-optimized [10] stellaratosich as the Wendelstein
7-AS (W7-AS) [11], and large heliotrons such as the Large Helical Dex (LHD) [12]. It
has become apparent that Alf\en modes may play an important rolen burning stellarator
plasmas (e. g. in a HELIAS reactor [13, 14]). Recent interest hasdremotivated not only
by projections to stellarator reactor-relevant conditions but als by experimental ndings of
unstable Toroidal Alfven Eigenmodes (TAE) and Global Alf\en Eigenmodes (GAE) in LHD
[2] and in W7-AS [3]. The basic structure of the shear Alfven speatm in 3D and the most
important stellarator-speci ¢ global modes (such as the Mirror Aklen Eigenmodes or Heli-
cal Alien Eigenmodes) were discussed in Ref. [8]. Reference [9kwiedicated to a study
of the relevant wave-particle resonances using a hybrid approachlf\en Eigenmodes were
computed in a uid approximation; for the kinetic fast ions, the powe-transfer integral was
evaluated analytically. The fast ions were treated in the zero-orbividth approximation,
and the e ect of trapped ions was neglected. A similar study has be@ndertaken for LHD
geometry in Ref. [15], and the e ect of localized energetic ions on tiAdf\enic stability in
optimized stellarators has been considered in Ref. [16].

Numerically, a number of tools have been developed to study fasticle instabilities
in stellarators (see a comprehensive review in Ref. [7]). Most of tke®ols use a hybrid
uid-kinetic approach. In this paper, we employ a hybrid version of he EUTERPE code

[17] to study the fast-particle destabilization of Alien Eigenmods in stellarator plasmas.



In this approach [18], the Alfven Eigenmodes are computed using éheigenvalue solver CKA
[18, 19] (employing the ideal-MHD version of Ohm's law). The resultingigenmode struc-
ture and frequency are used when following the particles in the fraawork of the gyrokinetic
particle-in-cell code EUTERPE [17]. The power transfer can be evalted during this pro-
cedure, which is then used to determine the linear growth rate of ¢hmode [18]. Details
and benchmarks of the method will be published elsewhere. In this@pach, we can nat-
urally include all the e ects associated with the nite orbit width and the nite Larmor
radius of the fast ions. All kinds of trapped particles (helically-traped, toroidally-trapped,
transitioning etc.) are consistently included in the description as webs the e ect of the
equilibrium radial electric eld. The real magnetic geometry (computd numerically with
the VMEC code [20]) is accounted for. One can choose arbitrary famrticle background
distribution functions: a conventional Maxwellian, slowing-down, bem-like, loss-cone, or
more complicated (e. g. realistic-NBI) distribution functions. We aidy the aforementioned
e ects in context of Alfen Eigenmode stability for the drift-optim ized quasi-omnigeneous
con guration W7-X [21, 22]. Also, a preliminary analysis of the Alf\enc stability is carried
out for a stellarator reactor (HELIAS [14]) con guration.

The structure of our paper is as follows. In Sec. Il, the basic edu@ns and their numerical
treatment are discussed. The simulations are presented in Sed. 1lOur conclusions are

summarised in Sec. IV.

II.  BASIC EQUATIONS AND NUMERICAL APPROACH

We use the linearised version of the three-dimensiondl PIC-code EUTERPE [17].
The code is electromagnetic and can treat all particle species (ioreectrons, energetic
particles, impurities etc.) kinetically. In the hybrid approach [18], we alve the gyrokinetic
equation for the fast ions employing the,-formulation (see Ref. [23] for details). The fast-
particle distribution function is split into a background part and a smdl time-dependent
perturbation, f = Fg+ f . The background distribution function can be chosen freely. In
the following, we consider a number of background distribution futions, both isotropic
and anisotropic ones (see Sec. Il for details).

If the amplitude of the eld perturbation is assumed to be small f s=Fgs 1), the



rst-order perturbed distribution function is found from the linearized Vlasov equation:

@f Lo @f, 0w@f_ Loy @ @b
a' " ®R Eay @ Yay @)

Here, R(O);\_/,((O)] correspond to the unperturbed gyro-centre position and paltal velocity,
and [R(l);yl((l)] are the perturbations of the particle trajectories proportionato the elec-
tromagnetic eld uctuations [shown in Eqgs. (3){(6) below]. The petturbed part of the

distribution function is discretized with markers:

Rp
f(Rivigit)=  w() (R R)w w)( ) (2)
=1
where N, is the number of markers, R ;v ; ) are the marker phase space coordinates

and w is the weight of a marker. The equations of motion are

RO = wb + —b (rB+q o (3)
qB,
R_(l) = ﬂmk|b + ib rh i Vkrh Aki (4)
m By
vO = % rB+a o b (5)
v = % th i wvrhAd b 6)

with  and Ax being the perturbed electrostatic and magnetic potentials, the magnetic
moment, m the mass of the particleeB, = b r A ,b =r A=B,A =AH+
(mv=0gb the so-called modi ed vector potential, A the magnetic potential corresponding
to the equilibrium magnetic eld B =r A, b = B=B the unit vector in the direction of
the equilibrium magnetic eld, q the charge of the energetic ion, and o the electrostatic
potential corresponding to the background electric eld (which is sually of neoclassical
nature [24]). The gyro-averaged potentials are de ned as usual:
hi=|d—(R+);hAki=|d—Ak(R+); (7)
2 2
where is the gyroradius of the particle and is the gyro-phase. Numerically, the gyro-
averages are computed sampling a su cient number of the gyro-pis on the gyro-ring
around the gyro-centre position of the marker [25, 26].
The perturbed electrostatic and magnetic potentials are found dm the reduced ideal-
MHD equations. The radial structure of the perturbed electrosttic potential and the fre-

guency of the global mode are obtained by numerically solving the empeode problem (the
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Alf\en-wave equation) in 3D stellarator geometry:
!
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Here,v, is the Alfven velocity, ji is the ambient parallel current,p is the background plasma
pressure and = (b r )b is the magnetic eld-line curvature (note that the parallel-current
and the magnetic-curvature corrections are usually small).
After the perturbed electrostatic potential has been obtained, the perturbed parallel
magnetic potential Ay can be solved from the parallel component of Ohm's law:
@A _
@t

Numerically, the electrostatic and magnetic potentials are discreed with the nite-element

0 )

method (Ritz-Galerkin scheme):

X X
(x) = (X)) s A) = i(x) (10)
=1 =1
where |(x) are nite elements (tensor products of B-splines [27, 28]Ns is the total number
of the nite elements, | and a are spline coe cients. Further details on the numerical
approach can be found in Refs. [17{19].
The purpose of the simulations in this paper is to compute the linear gwth rate of the

eigenmode, which is given by the expression (see Ref. [18] for thewva¢ion):

1 deast
= 11
2Weq dt (11)

with the \ eld energy” de ned as follows (neglecting here the small orrections related to

the ambient pressure and the parallel current [18]):

Z
1 5. Ming
Weld = é d°x B2

#
(s ) io(r A (12)

and the \fast-particle power transfer" given by the expression:

z

dWiast - Ghast déz f RO ¢ hi VilhA i + %Mkib rB+ag o (13)

dt

Here, m; is the bulk-ion mass,ng is the bulk-plasma density,(f.s: IS the fast-particle charge,

and f is the fast-particle distribution function. In our scheme W4 is precomputed on the

6



grid when the simulation starts and the phase-space integrald,;=dt must be computed on
each time step using the markers. The electrostatic and magnetiotentials do not evolve
self-consistently. Instead, the expressions of the forfine (x) exp(i! ae t+ t) are used for
the elds with xed uid eigenfunction " (x) and xed uid eigenfrequency ! ae, both

resulting from an MHD calculation.

Since the power transfer Wi,s;=dt is a function of time, we compute the growth rate of the
eigenmode averaging Eq. (11) over a certain time interval. The aege value is computed
after the simulation has evolved for some time. This way we can avoitld issues associated
with the initial noise and transient contributions to the wave-partide power transfer since
the mean value of Eq. (11) converges to the actual growth ratd the eigenmode in the

course of the simulation.

Il.  SIMULATIONS
A. General description

The simulations are performed in realistic stellarator magnetic geoing numerically cal-
culated by the VMEC code [20]. The impact of Finite fast-ion drift-Orlit Width (FOW) ef-
fects and Finite fast-ion Larmor Radius (FLR) e ects [which enter hrough the gyro-average
of the perturbed eld, see Eq. (7)] on the AE stability are considexd as well as the role of
the background (e. g. neoclassical) radial electric eld and the bleground (unperturbed)
fast-particle distribution function (e. g. anisotropy e ects).

We consider a number of distribution functions, both isotropic andrasotropic ones. The
simplest case is a conventional Maxwellian with constant temperateiand a radially varying

density (being the source of the free energy):

ST mvlf# " mv3 ’
Fum = no(s) 2T, exp Z—TO exp 2T§ (24)
Here, s is the normalised toroidal ux. The fast-ion density is as follows:
No(s) = Ngexp . ntanh Sn (15)

n

The shape of the density pro le can be tailored by adjusting the pameters , (the width of

the pro le), s, (position of the maximal density gradient), and |, (inverse density gradient



length). In addition to the spatial gradients, the free energy soue can be associated with
an anisotropy of the velocity distribution function.

More realistic for fusion applications is the slowing-down distributionunction given by

!
= — =5 (v W) V=
4 (v3+ \3) ( o) ¢ Ne  4m;

1=3

Fsd Vihe (16)

Here, S is the fast-particle source (given usually by the rate of the fusioreaction), s(s) is
the slowing-down time,v,(s) is the \critical velocity" [determined by the electron tempera-
ture pro le Te(s)] above which the electron drag dominates over ion drag, and X) is the
Heaviside function with vy, the \birth" velocity.

While the fusion-born alpha particles are well described by the isopa slowing-down
distribution function, the fast ions generated by various heating ethods (NBI or ICRH)
are usually characterised by aranisotropic distribution function. We will consider a few

examples of such distribution functions in Sec. IlIB.

B. TAE mode in W7-X geometry

We now consider W7-X geometry [21, 22]. The main parameters chet@rising the ge-
ometry are the rotational transform (s) shown in Fig. 1 the magnetic eld at the axis
By =2:66 T, the major radiusRy = 5:518 m, the minor radiusr, = 0:496 m and the number
of periodsNyer = 5 (re ecting the discrete symmetry of the stellarator). Both the bulk and
fast ions are taken to be hydrogen. The bulk plasma density,,x = 102° m 2 is assumed to
be at. The bulk plasma temperatureT; = T, = 3 keV is at, too. The bulk-plasma beta cor-
responding to the resulting at bulk-plasma pressure ispux =2 o Npuk (Ti+ Te)=BZ  0:034.
The density pro le of the fast ions (which is the source of the freenergy needed for the
TAE destabilisation) is given by Eq. (15) with the parametersNy = 10" m 3, , =0:2,
sh, = 0:65, and , = 3:0. These parameters correspond (very roughly) to the NBlI W7-X
plasma. The magnetic eld used corresponds to the high-mirror cauration. The re-
sulting shear Alfven continuum is shown in Fig. 2. The Fourier spectrm of the Alf\enic
perturbations is

A= [ i Ae] exp@m +in ) a7

with and poloidal and toroidal angles, anan and n poloidal and toroidal mode numbers,

respectively. Due to the symmetry of the magnetic eld [the discret symmetry with the
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period number Ny, = 5 and the stellarator symmetry (; ) ! ( ; )], this Fourier
spectrum splits into 1+ [Nye=2] = 3 linearly independent mode families [29] (corresponding
in W7-X e. g. to the toroidal mode numbersh = 0;1; 2) where the geometry-related mode
couplings are allowed only within a single mode family (e. g. the mode with= 0 couples
to the modes withn = 5;10:::, but it does not interact linearly with the n = 1 mode). The
shear Alf\en continuum shown in Fig. 2 corresponds tm = 1 mode family. One sees
that a toroidicity-induced gap appears in the spectrum with a globaéigenmode which has
its frequency inside the gap. This is a TAE mode with the toroidal modaumbern = 6
and dominant poloidal mode numbersn = 6 and m = 7. The radial eigenmode structure
is shown in Fig. 3 [the e ect of the ambient parallel current and plasmaressure has been
neglected in this calculation, see Eq. (8)]. One sees that, indeedetimode is global and has
a characteristic TAE structure. The maximum of the mode is locatedas usual in the TAE
context, at the resonant position satisfyingym + kim+1 = 0 (with m = 6 in the case shown
here). Note that there are also other TAE modes in the gap.

The simplest model for the fast-ion distribution function is a Maxwellia. In this case,
the velocity dependence of the distribution function (and the locédn of the wave-particle
resonances) is determined by a single quantity: the fast-ion temjagure T; . The dependence
of the mode growth rate onT; at xed fast-ion density Ng = 10*” m 2 resulting from the
hybrid-gyrokinetic simulations is shown in Fig. 4. First, one observehat the TAE mode
can indeed be destabilised in Wendelstein 7-X geometry. Second, oaa see the stabilising
e ects of nite orbit width (due to both the guiding-centre drifts a nd the gyro-motion of the
fast ions). For this purpose, simulations including the fast-ion FLR geping the gyro-average
in the equations of motion Eqgs. (4) and (6)] are compared in Fig. 4 viantthe simulations
where only the guiding-centre drifts of the fast ions have been incded (no FLR). In both
cases, the growth rate is bounded at high fast-ion temperature3his e ect is due to the
nite width of the guiding-centre orbitsof the ions. In addition, the growth rate in the case
with the FLR e ects included is smaller than in the case without the FLRe ects (provided
the fast-ion temperature is not too small) indicating that the fastion FLR e ects (caused
by their gyro-orbit) are stabilising with respect to the TAE mode, too. Such phenomena
have also been observed in the tokamak context (see e. g. Ref] @t the references cited
therein). In stellarators, the associated physics appears to biendar.

In Fig. 5, the growth rate of the same mode is plotted as the functioof T; at xed



fast-ion beta ¢ (s =0:65) = 0:003 (for the bulk plasma, p,u« 0:034; it is a weak function
of s for the at pro les considered here). Similarly to Fig. 4, the FOW andthe FLR e ects
can be observed in Fig. 5. But, in contrast to Fig. 4, the mode groWwtrate decreases faster
at high fast-ion temperatures (since the FOW/FLR stabilisation e ect is not compensated
by the increase in ot  Trast @S IS the case when the fast-ion density is xed, see Fig. 4).
Thus, the mode here is most destabilised at few hundred keV of thasf-ion temperature.
Velocity-space properties of the ambient fast-ion distribution fuction determine the res-
onance structure and the nite-orbit-width e ects. In Maxwellian case, the fast-ion temper-
ature is the only quantity entering explicitly the velocity part of the distribution function.
However, there are also other means to a ect the location of thesonances. The resonance

condition for the fast-ion interaction with the wave can schematidly be written as [7]:

Here,! is the frequency,m and n are poloidal and toroidal numbers (respectively) of the
wave, and describe the 3D geometry-induced couplind, and!. are the frequencies
of the poloidal and toroidal unperturbed motion of a fast ion. Nowthese frequencies
(especially the poloidal one) can be a ected by the ambient radial elgic eld [see Eq. (3);

here the ambient electric eld enters through its potential o]. Hence, the resonant structure
may be sensitive with respect to the ambient radial electric eld since  E,. Indeed, our

simulations reveal such a dependence. In Fig. 6, the mode grow#te is shown as a function

of the Mach numberMg = ug=G. Here, ug is the ambientE B velocity computed at

s = 0:5 (employing a at pro le of the radial electric eld) and ¢ = ! Te=m; is the sound
speed. One observes a gradual decrease of the mode growth vaten moving from the \ion
root" (negative E,) to the \electron root" (positive E,) regime. Such a dependence may
result from a combined e ect of the phase-space resonance skused byE, and the FOW

e ects which bound the mode growth rate at higher fast-ion energs (temperatures). Note
that the e ect of a Doppler shift caused by the ambiente B rotation should be very small
for the Mach numbers considered. One can estimate it dss! o  Ug=Va MEp_ 1.
The dependence of the TAE growth rate on the ambient electric eldbserved may be of
practical interest since the sign oE, (electron or ion root) depends on neoclassical properties
of the plasma (collisionality etc.) and can be actively manipulated (e. @mploying various

heating scenarios). Also, the relative direction of th& B rotation and the precession
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of trapped fast ions depends on whether the magnetic geometryssch that the parallel
adiabatic invariant J increases or decreases with minor radius [31].

Next, we consider the e ect of anisotropy in the fast-ion backgrumd distribution function.
One example of such an anisotropic distribution function is a combinan of an isotropic
Maxwellian (the same as has been used above) and a beam distributi@® ned by its

amplitude , its direction g, and its width ; all are constants in the real space):
( 5)

Fuo = Fu [+ ofu( )] 5 fol ) =exp b° = VeV (19)

Note that Eq. (19) can give both the \beam-like distributions” when ,> 1 and is nite
and the \loss-cone distributions" when , < 0 and o = 0. In stellarators, the loss cones
can appear due to the radial drift motion of locally-re ected partites (collisionless escape
of energetic ions). An example of a loss-cone distribution function $hown in Fig. 7. This
type of distribution-function anisotropy can be destabilising, as ggarent from Fig. 8. Here,
the growth rate is shown as a function of the fast-ion temperatarcomputed for a varying
loss-cone \width". The destabilisation is caused by the distributiorfunction gradient in the
pitch angle (which leads, e ectively, to a bump-on-tail structure) However, there are also
other factors which a ect the mode stability. For example, the nurber of resonant particles
and the fast-ion beta are modi ed by the loss cone (diminished by thearticle escape). This
leads to stabilisation when the loss cone becomes larger (see Fig. 8).

Finally, consider an anisotropic (two-temperature) Maxwellian distibution function.

My 2 Ni(s) mpv3 MV

I O A C R C I 20

fo(S;Vk; Vo) =

An example of such a distribution function is shown in Fig. 9. In Ref. [32a similar distribu-
tion function has been used to model the ICRH-heated \minority" ias whose perpendicular

temperature was determined by the ICRH power deposition pro le i3 33]:

PRF (S) s ) 3(2 32 (2) mp Te3=2
=P, 32D 0 (21)
3nn(r)Te Z2e*ms “ne In

To(s)= Te(1+3 =2);

with ¢ the slowing-down time andPrr the Radio-Frequency (RF) power deposition pro le
which we choose according to the expression:

(S Sicru)?

Pre(s) = Poexp
ICRH

(22)
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For the parallel temperature, we choose the following de nition:
T(s) = Tet+ 7[T2(s) Te]; 1<1 (23)

Here, 1 is an anisotropy parameter considered to be constant for simplicity

Consider now the TAE mode interaction with such \minority-ion" distribution functions.
The minority-ion density is de ned as in Sec. Il A [see Eqg. 15] with thesame parameters
(Ng = 10¥" m 2 etc). The perpendicular temperature is determined by the RF powele-
position prole Eqg. (22) with the parameters Scry = 0:8, cre = 0:1, and Py chosen
appropriately to obtain the maximum perpendicular temperature rguired (see below). For
the parameters chosen, the TAE mode witm = (6;7) and n = 6 becomes unstable.
This mode is shown in Fig. 10 along with the minority-ion density and the grpendicular
temperature proles. In Fig. 11, the growth rate is plotted as a faction of the maximum
minority-ion perpendicular temperature [with Tax = T- (Sicru ), See Eqgs. (22) and (21)] for
the anisotropy parameter + = 0:2. One sees that the FOW e ects do not have much in u-
ence on the TAE growth rate (but the FLR e ects do). This is cause by a localised fast-ion
temperature pro le chosen for the \minority ions" whose charaaristic width (see Fig. 10)
eventually becomes comparable to the fast-ion drift-orbit width. Nte that a rather strong
RF drive (large perpendicular temperatures) is required for the ni® to become unstable.
This is caused by the anisotropy of the distribution function: most fothe fast-ion energy
is \perpendicular" whereas the resonant mode destabilisation is atmined by the parallel
fast-ion temperature. The mode growth rate decreases with themperature anisotropy as
shown in Fig. 12.Of course, the distribution function Eq. (20) used here represena rather
crude model for the actual ICRH-driven distribution function in sellarator geometry. This
model may still capture certain features of the real distributionudnction (such as the tem-
perature anisotropy) but it misses other important e ects (e ed¢s of nite ion orbit width,
variations of the minority-ion distribution function along the ux surface, etc.). A more
exact and comprehensive modelling is needed for the ICRH-driven marity ions in W7-X
geometry to assess the role of such distribution-function propess on the Alf\enic stability.
This problem is, however, beyond the scope of the present workdashould be addressed in
future. Only then will a quantitative prediction of the ICRH e ect on the Alfvenic stability

become feasible in W7-X.

12



C. Stability of Alfien Eigenmodes in HELIAS geometry

Fast particle con nement issues arising from their interaction with Ahen Eigenmodes will
be of particular importance under anticipated reactor-relevant lasma conditions. Here, we
consider this topic in the case of a HELIAS con guration (the HELIal Advanced Stellarator
concept), which has been proposed as a candidate for the futl&MO reactor [14]. Itis an
extrapolation from W7-X based on present day knowledge. The baparameters of HELIAS
geometry are:Bg =4:81 T, major radius Ry = 20:3 m, and minor radiusr, =1:93 m. The
safety factor pro le and the Fourier spectrum of the ambient magetic eld coincide with
that of W7-X. Hence, the structure of the shear Alfven continwm will be the same as it is
in W7-X, provided the bulk-plasma density pro les coincide.

We start our considerations using the model plasma similar to that dbec. 111 B, only
under reactor-relevant conditions. Specically, we implement at hblk-plasma density
Npuk = 102° m 3, at bulk-plasma temperature T, = T, = 15 keV, Maxwellian distribu-
tion for the fast ions (He'), and at fast-ion temperature. The fast-ion density pro le is
given by Eq. (15) with Ng = 10*® m 3. For such parameters, averagess buk  0:05
(when He' fast ions with 3.5 MeV energy are considered). Note that the avegavalues
(order of magnitude) of the densities and temperatures choseerk are consistent with the
values predicted by the transport modelling (see below) of HELIASIgsmas. However, the
pro les (their shape) are chosen to coincide with the pro les used in the WX-simulations
above (Sec. Il B). For these pro les, the shear Alfven continum (normalised to the Alfven
frequency) coincides with the continuum shown in Fig. 2. We considdre TAE mode with
the toroidal mode numbern = 6 and the dominant poloidal mode numbersn = (6;7)
(the same mode has already been extensively studied in the original/¥X geometry, see
Sec. IlIB). The eigenmode found in HELIAS geometry with the redted-MHD eigenvalue
solver [34, 35] is shown in Fig. 13. The growth rate of the unstable EAmode is plotted
as a function of the fast-ion temperature in Fig. 14.0ne sees that the FLR/FOW e ects
(stabilising under W7-X conditions, cf. Fig. 4) will be weak in the reaar plasma since the
ratio of the fast-ion orbit width to the system size will be much smallein the HELIAS
reactor compared to W7-X.

Finally, let us consider stability of the HELIAS plasma with respect to Ahen Eigenmodes

implementing realistic pro les predicted by the transport modelling (@tails of the transport
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code are described in Refs. [36, 37]). The transport model has ehosen to be mainly
neoclassical in the bulk plasma with large anomalous transport at thezlge. The anomalous
di usivity scales asP%">=n whereP is the total heating power andn is the electron density.
At a developed stage of burn, the resulting energy di usivities at te plasma edge are between
1 5 mé/s, while in the plasma core they are about 1 Ais for electrons and 15 n?/s for
deuterium ions. The particle source, used in the transport modelling, is shown in Fig5(a).
The bulk-plasma densities, temperatures, production rate of fim alphas, corresponding
fast-ion density, the fast-ion and the bulk-plasma betas obtainad the modelling are shown
in Figs. 15(b-e). Note that the projected steady-state fusionnergy gain factorQsieadqy = 1
for the HELIAS reactor which requires higher pressure of the emetic alphas (compared to
burning plasmas with smallerQseaqy). The shear Alfien continuum corresponding to the
predicted bulk-ion density pro le is plotted in Fig. 16. Here, one sedhat the largest gap
in the continuum corresponds to the helical coupling of the Fourierammonics (\helicity-
induced gap”). The Helical Alfven Eigenmode (HAE) with the dominart (m = 14, n = 11)
and (m = 16, n = 16) Fourier harmonics, which is located in this gap, is shown in Fig. 17.
The steady-state distribution function of the energetic alpha paicle is modelled with a
slowing-down distribution function Eq. (16) corresponding to the lasma pro les predicted
by the transport modelling. In the case considered, the HAE mode is unstable. The growth
rate of the HAE, = 1:8 10 rad/s, and the frequency! = 4.1 1 rad/s, have the
ratio =! 4:4%.

The unstable Alfven Eigenmodes may cause fast-ion transport (imonlinear regime).
The nonlinear uctuation channel could couple to the usual collisiongs \3D-geometry"
channel (toroidal magnetic- eld ripple loss). Such a synergy beten di erent types of fast-
ion transport (AE-induced ripple trapping [38]) may become an issue inurning stellarator

plasmas and deserves further consideration.

IV. CONCLUSION

In this paper, we have studied the interplay of energetic ions and Adih eigenmodes in
stellarator plasmas. The Wendelstein 7-X stellarator and its extragation to a reactor-scale
HELIAS con guration have been considered. A hybrid reduced-MB gyrokinetic numerical

framework has been used in order to study AE mode stability in theggasmas. FOW and
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FLR stabilisation e ects have been observed in the W7-X plasma, bwtre much weaker in
the reactor. Furthermore, an e ect of the equilibrium radial eleatic eld (stabilising in the
electron root) has been demonstrated. This e ect may be attritted to the modi cation
of the drift fast-ion orbits in presence of the electric eld. An anistopy in the back-
ground fast-ion distribution function has been considered in the sas of a \loss-cone" and
an anisotropic two-temperature Maxwelliandistribution functions. The two-temperature
Maxwellian anisotropy may inhibit AE mode destabilisation since in this case most tfie
fast-ion energy is concentrated in the perpendicular particle motio In the reactor plasma,
the stability properties have been considered under conditions plieted by the transport
modelling. An unstable HAE mode has been found with=! 4%.

Of course, it must be borne in mind that we have only calculated the the and damp-
ing directly related to the fast ions. All the damping mechanisms assiated with the bulk
plasma (collisional, continuum and radiative damping) have been ignate Nevertheless,
the calculation shows that AEs could be driven unstable by alpha pades in a stellarator
reactor. A careful evaluation of the damping is thus called forln this respect, a stepwise
approach is envisioned. As a rst step, a uid-electron gyrokinetidton model will be em-
ployed to the cases already considered with the perturbative hyidrapproach presented in
this paper. This model, still reduced, can however describe at a saient level of accuracy
interaction of AEs with shear Alf\en continuum in a non-perturbative fashion. Such an
interaction is considered to be responsible for the continuum anddiative damping mech-
anisms (see e. g. Refs. [39{41]). The uid-electron gyrokinetic-iomodel is already under
development and will be described in a separate publication. More cprehensive but also
rather expensive (computationally) full-gyrokinetic simulations will e undertaken after the
uid-electron results become feasible. Similar simulations have alreatheen carried out in
tokamak geometry [30, 42, 43]Furthermore, realistic simulations of NBI- and ICRH-heated
W7-X plasmas using real (predicted) anisotropic background disbution functions as well
as predicted plasma pro les should be undertaken using thgerturbative hybrid-gyrokinetic
approach. Such simulations would be of interest as a preparatiorr fexperimental work on
W7-X. Finally, a perturbative modelling, being technically very robust, hashie drawback of
working with preselected eigenmodes which, however, do not needoe dominant in the ac-
tual stability. Thus, a comprehensive assessment of Alf\ven mosden stellarators will require

a non-perturbative framework (such as the aforementioned uiglectron gyrokinetic-ion

15



model or full-gyrokinetic approach). The work on the non-perturative schemes is ongoing

and will be reported elsewhere.
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FIG. 1: (Colour online) Rotational transform in W7-X (high- mirror con guration).
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FIG. 2: (Colour online) Shear Alf\en wave continuum in the W 7-X con guration ( n = 1 mode
family) corresponding to at bulk plasma density npyx =2 107 m 3. One can see the toroidicity-
induced gap in the spectrum. The TAE eigenmode frequency (hle straight line) corresponding to
the toroidal mode numbern = 6 and the coupled poloidal mode numbersn = 6 (green curve)

and m = 7 (brown curve) is shown inside the gap. Here, the Alf\en frequency! o =7:4 10 rad/s.
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FIG. 3: (Colour online) The eigenfunction corresponding tothe global (even) TAE mode (see the
eigenfrequency in Fig. 2). One sees tha = 6 and m = 7 poloidal harmonics are coupled (and
dominant), in accordance with the shear Alf\en spectrum shown in Fig. 2. The maximum of the

mode is located nears = 0:65 (at the position of the TAE accumulation point).
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FIG. 4: (Colour online) Growth rate of the TAE mode (W7-X geom etry) as a function of the fast-
particle temperature at xed fast-ion density No = 101’ m 3 (Maxwellian fast-particle distribution

has been used). The growth rates without FLR e ects (drift-ki netic fast ions) and with FLR e ects
(gyrokinetic fast ions) have been considered. The frequelyaf the TAE mode ! 1ag = 238766 rad/s.
The fast-ion beta range (measured at the position of maximalast-ion density gradient s = 0:65)

is 0:0006 ¢ 0:012. For the bulk plasma, puk(s=0:65)=0:034.
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FIG. 5: (Colour online) Growth rate of the TAE mode (W7-X geom etry) as a function of the
fast-particle temperature at xed fast-ion beta (s = 0:65) 0:003. Here, bulk-plasma beta

bulk (8 = 0:65) = 0:034 and other parameters are the same as in Fig. 4.
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FIG. 6: (Colour online) Growth rate as a function of the ambient radial electric eld (FLR e ects

neglected). Here, the fast-particle temperatureT; = 1 MeV.
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FIG. 7: (Colour online) Loss-cone distribution function with parameters ¢ =0, = 0:5, and

b= 0:9 projected onto the (vi; V- )-plane (here v, corresponds to the horizontal axis andv,

to the vertical axis).
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FIG. 8: (Colour online) Growth rate of the TAE mode (W7-X geom etry) as a function of the
fast-particle temperature in presence of a loss cone in theistribution function. The growth rates
are plotted at di erent \widths of the loss cone". One sees tha the dependence of the TAE-
mode growth rate on the loss-cone width is non-monotonic: thre is a competition between the
anisotropy drive (which wins at smaller \loss cones") and sabilisation caused by decreasing fast-
particle pressure (caused by the \prompt losses" and winniig when yincreases). Here, p= 0.9

[see Eq. (19)].
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FIG. 9: (Colour online) ICRH-type distribution function fg(vi;Vv,) shown as a function of vy

(horizontal axis) and v, (vertical axis).
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FIG. 10: (Colour online) Unstable TAE eigenfunction and plasma pro les (used as a proxy for the
ICRH scenario).
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FIG. 11: (Colour online) Growth rate as a function of the maximal minority-ion perpendicular tem-
perature Thax (related to the RF power) in the ICRH-type scenario. The anisotropic Maxwellian
is compared with the isotropic one (de ned using the same desity pro le and a at temperature

equal to the ICRH maximum T, ). The stabilising FOW e ect is weak in the anisotropic case,
which is probably due to the strong localisation of the energtic-ion temperature pro le. Note that

Tmax = 400 keV corresponds roughly to the maximum ICRH powerPy = 3 MW/m 8.
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FIG. 12: (Colour online) E ect of the temperature anisotropy. The parameter 1 de nes the
ratio of the parallel temperature to the perpendicular one. Here, the maximum perpendicular
temperature (\ICRH-driven tail" in the distribution funct ion) was T, = 400 keV. Note that the
isotropic case Tt = 1 is more unstable for the inhomogeneous minority-ion temgerature pro le
used here (see Fig. 10) compared to the Maxwellian with the sae density but at temperature

pro le (Fig. 4).
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FIG. 13: (Colour online) Unstable TAE in HELIAS geometry (as suming at bulk-plasma density).
The frequency of the mode! = 111796 rad/s.
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FIG. 14: (Colour online) TAE growth rate in the HELIAS reacto r as a function of fast-ion tem-
perature. It is striking how little the FLR/FOW stabilisati on mechanisms matter in the reactor

environment. The frequency of the mode! = 111796 rad/s.
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FIG. 15: (Colour online) (a) Pro le of the particle (D-T) sou rces, used in the transport modelling of

the HELIAS plasma, plotted as a function of r = rap

s wheres is the normalised toroidal ux and

I is the minor radius of the device. (b) Predicted plasma dendy pro les (transport calculations):

electron, deuterium, tritium, and helium-ash densities. () Predicted plasma temperature pro les

(transport calculations). (d) Predicted power density of fusion alphas and the resulting energetic-

R
ion density (computed asnsast = FsqdV). () Predicted fast-ion and bulk-ion betas. The fast-ion

beta st =2 0 Prast=B? With the fast-ion pressureroughly estimated asprsi P .
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