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Abstract

Simulations of gyrokinetic energetic ions interacting with the magneto-hydrodynamic (MHD)

Alfv�en Eigenmodes are presented. The e�ect of the �nite fast-ion orbit width and the �nite fast-ion

gyroradius, the role of the equilibrium radial electric �el d, as well as the e�ect of anisotropic fast-

particle distribution functions (loss-cone and ICRH-type distributions), are studied in Wendelstein

7-X stellarator geometry using a combination of gyrokinetic particle-in-cell and reduced MHD

eigenvalue codes. A preliminary stability analysis of a HELIAS reactor con�guration is undertaken.
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I. INTRODUCTION

Alfv�en instabilities caused by energetic ions have been seen in many fusion experiments,

both in tokamak [1] and stellarator/heliotron [2, 3] devices. The associated physics has

extensively been studied theoretically in tokamak geometry [4{6]. Incomparison to toka-

maks, there are many similarities in the properties of Alfv�enic wavesand fast particles in

stellarator geometry. There are, however, also discrepancies, which can be caused by the

di�erence in the magnetic shear, the lack of axisymmetry, the absence or smallness of a

net toroidal plasma current, more complicated particle orbits in stellarators etc. [7]. The

theoretical study of fast-particle destabilized Alfv�enic instabilities in 3D geometry was pi-

oneered by Kolesnichenko from 2001 onwards [8, 9]. At that time, the physics related to

the fast-particle transport induced by the Alfv�en waves in tokamak plasmas had already

been studied intensively. The interest in fast-ion-driven Alfv�enic instabilities in 3D has in-

creased since the appearance of drift-optimized [10] stellarators, such as the Wendelstein

7-AS (W7-AS) [11], and large heliotrons such as the Large Helical Device (LHD) [12]. It

has become apparent that Alfv�en modes may play an important rolein burning stellarator

plasmas (e. g. in a HELIAS reactor [13, 14]). Recent interest has been motivated not only

by projections to stellarator reactor-relevant conditions but also by experimental �ndings of

unstable Toroidal Alfv�en Eigenmodes (TAE) and Global Alfv�en Eigenmodes (GAE) in LHD

[2] and in W7-AS [3]. The basic structure of the shear Alfv�en spectrum in 3D and the most

important stellarator-speci�c global modes (such as the Mirror Alfv�en Eigenmodes or Heli-

cal Alfv�en Eigenmodes) were discussed in Ref. [8]. Reference [9] was dedicated to a study

of the relevant wave-particle resonances using a hybrid approach: Alfv�en Eigenmodes were

computed in a uid approximation; for the kinetic fast ions, the power-transfer integral was

evaluated analytically. The fast ions were treated in the zero-orbit-width approximation,

and the e�ect of trapped ions was neglected. A similar study has been undertaken for LHD

geometry in Ref. [15], and the e�ect of localized energetic ions on theAlfv�enic stability in

optimized stellarators has been considered in Ref. [16].

Numerically, a number of tools have been developed to study fast-particle instabilities

in stellarators (see a comprehensive review in Ref. [7]). Most of these tools use a hybrid

uid-kinetic approach. In this paper, we employ a hybrid version of the EUTERPE code

[17] to study the fast-particle destabilization of Alfv�en Eigenmodes in stellarator plasmas.
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In this approach [18], the Alfv�en Eigenmodes are computed using the eigenvalue solver CKA

[18, 19] (employing the ideal-MHD version of Ohm's law). The resulting eigenmode struc-

ture and frequency are used when following the particles in the framework of the gyrokinetic

particle-in-cell code EUTERPE [17]. The power transfer can be evaluated during this pro-

cedure, which is then used to determine the linear growth rate of the mode [18]. Details

and benchmarks of the method will be published elsewhere. In this approach, we can nat-

urally include all the e�ects associated with the �nite orbit width and the �nite Larmor

radius of the fast ions. All kinds of trapped particles (helically-trapped, toroidally-trapped,

transitioning etc.) are consistently included in the description as wellas the e�ect of the

equilibrium radial electric �eld. The real magnetic geometry (computed numerically with

the VMEC code [20]) is accounted for. One can choose arbitrary fast-particle background

distribution functions: a conventional Maxwellian, slowing-down, beam-like, loss-cone, or

more complicated (e. g. realistic-NBI) distribution functions. We study the aforementioned

e�ects in context of Alfv�en Eigenmode stability for the drift-optim ized quasi-omnigeneous

con�guration W7-X [21, 22]. Also, a preliminary analysis of the Alfv�enic stability is carried

out for a stellarator reactor (HELIAS [14]) con�guration.

The structure of our paper is as follows. In Sec. II, the basic equations and their numerical

treatment are discussed. The simulations are presented in Sec. III. Our conclusions are

summarised in Sec. IV.

II. BASIC EQUATIONS AND NUMERICAL APPROACH

We use the linearised version of the three-dimensional�f PIC-code EUTERPE [17].

The code is electromagnetic and can treat all particle species (ions,electrons, energetic

particles, impurities etc.) kinetically. In the hybrid approach [18], we solve the gyrokinetic

equation for the fast ions employing thepk-formulation (see Ref. [23] for details). The fast-

particle distribution function is split into a background part and a small time-dependent

perturbation, f = F0 + �f . The background distribution function can be chosen freely. In

the following, we consider a number of background distribution functions, both isotropic

and anisotropic ones (see Sec. III for details).

If the amplitude of the �eld perturbation is assumed to be small (�f s=F0s � 1), the
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�rst-order perturbed distribution function is found from the linearized Vlasov equation:

@�f
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Here, [_R (0) ; _v(0)
k ] correspond to the unperturbed gyro-centre position and parallel velocity,

and [ _R (1) ; _v(1)
k ] are the perturbations of the particle trajectories proportional to the elec-

tromagnetic �eld uctuations [shown in Eqs. (3){(6) below]. The perturbed part of the

distribution function is discretized with markers:

�f (R ; vk; �; t ) =
NpX
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w� (t)� (R � R � )� (vk � vk� )� (� � � � ) ; (2)

where Np is the number of markers, (R � ; vk� ; � � ) are the marker phase space coordinates

and w� is the weight of a marker. The equations of motion are
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with � and Ak being the perturbed electrostatic and magnetic potentials,� the magnetic

moment, m the mass of the particle,B �
k = b � r � A � , b � = r � A � =B�

k , A � = A +

(mvk=q)b the so-called modi�ed vector potential,A the magnetic potential corresponding

to the equilibrium magnetic �eld B = r � A , b = B=B the unit vector in the direction of

the equilibrium magnetic �eld, q the charge of the energetic ion, and �0 the electrostatic

potential corresponding to the background electric �eld (which is usually of neoclassical

nature [24]). The gyro-averaged potentials are de�ned as usual:

h� i =
I d�

2�
� (R + � ) ; hAk i =

I d�
2�

Ak(R + � ) ; (7)

where � is the gyroradius of the particle and� is the gyro-phase. Numerically, the gyro-

averages are computed sampling a su�cient number of the gyro-points on the gyro-ring

around the gyro-centre position of the marker [25, 26].

The perturbed electrostatic and magnetic potentials are found from the reduced ideal-

MHD equations. The radial structure of the perturbed electrostatic potential and the fre-

quency of the global mode are obtained by numerically solving the eigenmode problem (the
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Alfv�en-wave equation) in 3D stellarator geometry:
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Here,vA is the Alfv�en velocity, j k is the ambient parallel current,p is the background plasma

pressure and� = ( b � r )b is the magnetic �eld-line curvature (note that the parallel-current

and the magnetic-curvature corrections are usually small).

After the perturbed electrostatic potential � has been obtained, the perturbed parallel

magnetic potential Ak can be solved from the parallel component of Ohm's law:

Ek = � r k� �
@Ak
@t

= 0 (9)

Numerically, the electrostatic and magnetic potentials are discretized with the �nite-element

method (Ritz-Galerkin scheme):

� (x) =
N sX

l=1

� l � l (x) ; Ak(x) =
N sX

l=1

al � l (x) ; (10)

where � l (x) are �nite elements (tensor products of B-splines [27, 28]),Ns is the total number

of the �nite elements, � l and al are spline coe�cients. Further details on the numerical

approach can be found in Refs. [17{19].

The purpose of the simulations in this paper is to compute the linear growth rate of the

eigenmode, which is given by the expression (see Ref. [18] for the derivation):

 = �
1

2W�eld

dWfast

dt
(11)

with the \�eld energy" de�ned as follows (neglecting here the small corrections related to

the ambient pressure and the parallel current [18]):

W�eld =
1
2
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and the \fast-particle power transfer" given by the expression:

dWfast

dt
= � qfast

Z
d6Z �f

�
_R (0) � r

�
h� i � vkhAk i

�
+

1
m

hAk i b � �
�
� r B + qr � 0

� �

(13)

Here,mi is the bulk-ion mass,n0 is the bulk-plasma density,qfast is the fast-particle charge,

and �f is the fast-particle distribution function. In our scheme,W�eld is precomputed on the
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grid when the simulation starts and the phase-space integral dWfast=dt must be computed on

each time step using the markers. The electrostatic and magnetic potentials do not evolve

self-consistently. Instead, the expressions of the form̂� AE (x) exp(i ! AE t +  t ) are used for

the �elds with �xed uid eigenfunction �̂ AE (x) and �xed uid eigenfrequency ! AE , both

resulting from an MHD calculation.

Since the power transfer dWfast=dt is a function of time, we compute the growth rate of the

eigenmode averaging Eq. (11) over a certain time interval. The average value is computed

after the simulation has evolved for some time. This way we can avoid the issues associated

with the initial noise and transient contributions to the wave-particle power transfer since

the mean value of Eq. (11) converges to the actual growth rate of the eigenmode in the

course of the simulation.

III. SIMULATIONS

A. General description

The simulations are performed in realistic stellarator magnetic geometry numerically cal-

culated by the VMEC code [20]. The impact of Finite fast-ion drift-Orbit Width (FOW) ef-

fects and Finite fast-ion Larmor Radius (FLR) e�ects [which enter through the gyro-average

of the perturbed �eld, see Eq. (7)] on the AE stability are considered as well as the role of

the background (e. g. neoclassical) radial electric �eld and the background (unperturbed)

fast-particle distribution function (e. g. anisotropy e�ects).

We consider a number of distribution functions, both isotropic and anisotropic ones. The

simplest case is a conventional Maxwellian with constant temperature and a radially varying

density (being the source of the free energy):

FM = n0(s)
� m

2�T 0

� 3=2

exp

"

�
mv2

k

2T0

#

exp

"

�
mv2

?

2T0

#

(14)

Here, s is the normalised toroidal ux. The fast-ion density is as follows:

n0(s) = N0 exp
�

� � n� n tanh
� s � sn

� n

��

(15)

The shape of the density pro�le can be tailored by adjusting the parameters � n (the width of

the pro�le), sn (position of the maximal density gradient), and� n (inverse density gradient

7



length). In addition to the spatial gradients, the free energy source can be associated with

an anisotropy of the velocity distribution function.

More realistic for fusion applications is the slowing-down distribution function given by

Fsd =
S� s

4� (v3 + v3
c)

�( v � vb) ; vc =

 
ni Z 2

i

ne

3� 1=2me

4mi

! 1=3

vth e (16)

Here, S is the fast-particle source (given usually by the rate of the fusion reaction), � s(s) is

the slowing-down time,vc(s) is the \critical velocity" [determined by the electron tempera-

ture pro�le Te(s)] above which the electron drag dominates over ion drag, and �(x) is the

Heaviside function with vb the \birth" velocity.

While the fusion-born alpha particles are well described by the isotropic slowing-down

distribution function, the fast ions generated by various heating methods (NBI or ICRH)

are usually characterised by ananisotropic distribution function. We will consider a few

examples of such distribution functions in Sec. III B.

B. TAE mode in W7-X geometry

We now consider W7-X geometry [21, 22]. The main parameters characterising the ge-

ometry are the rotational transform �(s) shown in Fig. 1, the magnetic �eld at the axis

B0 = 2:66 T, the major radiusR0 = 5:518 m, the minor radiusra = 0:496 m and the number

of periodsNper = 5 (reecting the discrete symmetry of the stellarator). Both the bulk and

fast ions are taken to be hydrogen. The bulk plasma densitynbulk = 1020 m� 3 is assumed to

be at. The bulk plasma temperatureTi = Te = 3 keV is at, too. The bulk-plasma beta cor-

responding to the resulting at bulk-plasma pressure is� bulk = 2 � 0 nbulk (Ti + Te)=B2
0 � 0:034.

The density pro�le of the fast ions (which is the source of the free energy needed for the

TAE destabilisation) is given by Eq. (15) with the parametersN0 = 1017 m� 3, � n = 0:2,

sn = 0:65, and � n = 3:0. These parameters correspond (very roughly) to the NBI W7-X

plasma. The magnetic �eld used corresponds to the high-mirror con�guration. The re-

sulting shear Alfv�en continuum is shown in Fig. 2. The Fourier spectrum of the Alfv�enic

perturbations is

[�; A k] =
X

m;n
[� mn ; Akmn ] exp(im� + in� ) (17)

with � and � poloidal and toroidal angles, andm and n poloidal and toroidal mode numbers,

respectively. Due to the symmetry of the magnetic �eld [the discrete symmetry with the
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period number Nper = 5 and the stellarator symmetry (�; � ) �! ( � �; � � )], this Fourier

spectrum splits into 1 + [Nper=2] = 3 linearly independent mode families [29] (corresponding

in W7-X e. g. to the toroidal mode numbersn = 0; 1; 2) where the geometry-related mode

couplings are allowed only within a single mode family (e. g. the mode withn = 0 couples

to the modes withn = 5; 10: : :, but it does not interact linearly with the n = 1 mode). The

shear Alfv�en continuum shown in Fig. 2 corresponds ton = � 1 mode family. One sees

that a toroidicity-induced gap appears in the spectrum with a globaleigenmode which has

its frequency inside the gap. This is a TAE mode with the toroidal modenumber n = � 6

and dominant poloidal mode numbersm = 6 and m = 7. The radial eigenmode structure

is shown in Fig. 3 [the e�ect of the ambient parallel current and plasmapressure has been

neglected in this calculation, see Eq. (8)]. One sees that, indeed, the mode is global and has

a characteristic TAE structure. The maximum of the mode is located, as usual in the TAE

context, at the resonant position satisfyingkkm + kkm+1 = 0 (with m = 6 in the case shown

here). Note that there are also other TAE modes in the gap.

The simplest model for the fast-ion distribution function is a Maxwellian. In this case,

the velocity dependence of the distribution function (and the location of the wave-particle

resonances) is determined by a single quantity: the fast-ion temperature Tf . The dependence

of the mode growth rate onTf at �xed fast-ion density N0 = 1017 m� 3 resulting from the

hybrid-gyrokinetic simulations is shown in Fig. 4. First, one observesthat the TAE mode

can indeed be destabilised in Wendelstein 7-X geometry. Second, onecan see the stabilising

e�ects of �nite orbit width (due to both the guiding-centre drifts a nd the gyro-motion of the

fast ions). For this purpose, simulations including the fast-ion FLR [keeping the gyro-average

in the equations of motion Eqs. (4) and (6)] are compared in Fig. 4 with the simulations

where only the guiding-centre drifts of the fast ions have been included (no FLR). In both

cases, the growth rate is bounded at high fast-ion temperatures. This e�ect is due to the

�nite width of the guiding-centre orbitsof the ions. In addition, the growth rate in the case

with the FLR e�ects included is smaller than in the case without the FLRe�ects (provided

the fast-ion temperature is not too small) indicating that the fast-ion FLR e�ects (caused

by their gyro-orbit) are stabilising with respect to the TAE mode, too. Such phenomena

have also been observed in the tokamak context (see e. g. Ref. [30] and the references cited

therein). In stellarators, the associated physics appears to be similar.

In Fig. 5, the growth rate of the same mode is plotted as the function of Tf at �xed
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fast-ion beta� f (s = 0:65) = 0:003 (for the bulk plasma,� bulk � 0:034; it is a weak function

of s for the at pro�les considered here). Similarly to Fig. 4, the FOW andthe FLR e�ects

can be observed in Fig. 5. But, in contrast to Fig. 4, the mode growth rate decreases faster

at high fast-ion temperatures (since the FOW/FLR stabilisation e�ect is not compensated

by the increase in� fast � Tfast as is the case when the fast-ion density is �xed, see Fig. 4).

Thus, the mode here is most destabilised at few hundred keV of the fast-ion temperature.

Velocity-space properties of the ambient fast-ion distribution function determine the res-

onance structure and the �nite-orbit-width e�ects. In Maxwellian case, the fast-ion temper-

ature is the only quantity entering explicitly the velocity part of the distribution function.

However, there are also other means to a�ect the location of the resonances. The resonance

condition for the fast-ion interaction with the wave can schematically be written as [7]:

! � (m + � )! � + ( n + �N per)! ' = 0 (18)

Here, ! is the frequency,m and n are poloidal and toroidal numbers (respectively) of the

wave, � and � describe the 3D geometry-induced coupling,! � and ! ' are the frequencies

of the poloidal and toroidal unperturbed motion of a fast ion. Now,these frequencies

(especially the poloidal one) can be a�ected by the ambient radial electric �eld [see Eq. (3);

here the ambient electric �eld enters through its potential �0]. Hence, the resonant structure

may be sensitive with respect to the ambient radial electric �eld since! � � Er . Indeed, our

simulations reveal such a dependence. In Fig. 6, the mode growth rate is shown as a function

of the Mach numberME = uE =cs. Here, uE is the ambient E � B velocity computed at

s = 0:5 (employing a at pro�le of the radial electric �eld) and cs =
q

Te=mi is the sound

speed. One observes a gradual decrease of the mode growth rate when moving from the \ion

root" (negative Er ) to the \electron root" (positive Er ) regime. Such a dependence may

result from a combined e�ect of the phase-space resonance shiftcaused byEr and the FOW

e�ects which bound the mode growth rate at higher fast-ion energies (temperatures). Note

that the e�ect of a Doppler shift caused by the ambientE � B rotation should be very small

for the Mach numbers considered. One can estimate it as�!=! A � uE =vA � ME
p

� � 1.

The dependence of the TAE growth rate on the ambient electric �eldobserved may be of

practical interest since the sign ofEr (electron or ion root) depends on neoclassical properties

of the plasma (collisionality etc.) and can be actively manipulated (e. g.employing various

heating scenarios). Also, the relative direction of theE � B rotation and the precession
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of trapped fast ions depends on whether the magnetic geometry issuch that the parallel

adiabatic invariant J increases or decreases with minor radius [31].

Next, we consider the e�ect of anisotropy in the fast-ion background distribution function.

One example of such an anisotropic distribution function is a combination of an isotropic

Maxwellian (the same as has been used above) and a beam distribution(de�ned by its

amplitude � b, its direction � 0, and its width � b; all are constants in the real space):

FMb = FM [1 + � bf b(� )] ; f b(� ) = exp

(

�
� � � � 0

� b

� 2
)

; � = vk=v (19)

Note that Eq. (19) can give both the \beam-like distributions" when� b > 1 and � 0 is �nite

and the \loss-cone distributions" when� b < 0 and � 0 = 0. In stellarators, the loss cones

can appear due to the radial drift motion of locally-reected particles (collisionless escape

of energetic ions). An example of a loss-cone distribution function isshown in Fig. 7. This

type of distribution-function anisotropy can be destabilising, as apparent from Fig. 8. Here,

the growth rate is shown as a function of the fast-ion temperature computed for a varying

loss-cone \width". The destabilisation is caused by the distribution-function gradient in the

pitch angle (which leads, e�ectively, to a bump-on-tail structure). However, there are also

other factors which a�ect the mode stability. For example, the number of resonant particles

and the fast-ion beta are modi�ed by the loss cone (diminished by theparticle escape). This

leads to stabilisation when the loss cone becomes larger (see Fig. 8).

Finally, consider an anisotropic (two-temperature) Maxwellian distribution function.

f 0(s; vk; v? ) =
� mh

2�

� 3=2 nh(s)

T? (s)T1=2
k (s)

exp

"

�
mhv2

?

2T? (s)
�

mhv2
k

2Tk(s)

#

(20)

An example of such a distribution function is shown in Fig. 9. In Ref. [32], a similar distribu-

tion function has been used to model the ICRH-heated \minority" ions whose perpendicular

temperature was determined by the ICRH power deposition pro�le [32, 33]:

T? (s) = Te (1 + 3�=2) ; � =
PRF (s)� s

3nh(r )Te
� 1 ; � s =

3(2� )3=2 � 2
0 mh T3=2

e

Z 2
h e4 m1=2

e ne ln �
(21)

with � s the slowing-down time andPRF the Radio-Frequency (RF) power deposition pro�le

which we choose according to the expression:

PRF (s) = P0 exp

"

�
(s � sICRH )2

2� 2
ICRH

#

(22)
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For the parallel temperature, we choose the following de�nition:

Tk(s) = Te + � T [T? (s) � Te] ; � T < 1 (23)

Here, � T is an anisotropy parameter considered to be constant for simplicity.

Consider now the TAE mode interaction with such \minority-ion" distribution functions.

The minority-ion density is de�ned as in Sec. III A [see Eq. 15] with thesame parameters

(N0 = 1017 m� 3 etc). The perpendicular temperature is determined by the RF power de-

position pro�le Eq. (22) with the parameters sICRH = 0:8, � ICRH = 0:1, and P0 chosen

appropriately to obtain the maximum perpendicular temperature required (see below). For

the parameters chosen, the TAE mode withm = (6 ; 7) and n = � 6 becomes unstable.

This mode is shown in Fig. 10 along with the minority-ion density and the perpendicular

temperature pro�les. In Fig. 11, the growth rate is plotted as a function of the maximum

minority-ion perpendicular temperature [withTmax = T? (sICRH ), see Eqs. (22) and (21)] for

the anisotropy parameter� T = 0:2. One sees that the FOW e�ects do not have much inu-

ence on the TAE growth rate (but the FLR e�ects do). This is caused by a localised fast-ion

temperature pro�le chosen for the \minority ions" whose characteristic width (see Fig. 10)

eventually becomes comparable to the fast-ion drift-orbit width. Note that a rather strong

RF drive (large perpendicular temperatures) is required for the mode to become unstable.

This is caused by the anisotropy of the distribution function: most of the fast-ion energy

is \perpendicular" whereas the resonant mode destabilisation is determined by the parallel

fast-ion temperature. The mode growth rate decreases with thetemperature anisotropy as

shown in Fig. 12.Of course, the distribution function Eq. (20) used here represents a rather

crude model for the actual ICRH-driven distribution function in stellarator geometry. This

model may still capture certain features of the real distribution function (such as the tem-

perature anisotropy) but it misses other important e�ects (e�ects of �nite ion orbit width,

variations of the minority-ion distribution function along the ux sur face, etc.). A more

exact and comprehensive modelling is needed for the ICRH-driven minority ions in W7-X

geometry to assess the role of such distribution-function properties on the Alfv�enic stability.

This problem is, however, beyond the scope of the present work and should be addressed in

future. Only then will a quantitative prediction of the ICRH e�ect on the Alfv�enic stability

become feasible in W7-X.
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C. Stability of Alfv�en Eigenmodes in HELIAS geometry

Fast particle con�nement issues arising from their interaction with Alfv�en Eigenmodes will

be of particular importance under anticipated reactor-relevant plasma conditions. Here, we

consider this topic in the case of a HELIAS con�guration (the HELIcal Advanced Stellarator

concept), which has been proposed as a candidate for the futureDEMO reactor [14]. It is an

extrapolation from W7-X based on present day knowledge. The basic parameters of HELIAS

geometry are:B0 = 4:81 T, major radius R0 = 20:3 m, and minor radiusra = 1:93 m. The

safety factor pro�le and the Fourier spectrum of the ambient magnetic �eld coincide with

that of W7-X. Hence, the structure of the shear Alfv�en continuum will be the same as it is

in W7-X, provided the bulk-plasma density pro�les coincide.

We start our considerations using the model plasma similar to that ofSec. III B, only

under reactor-relevant conditions. Speci�cally, we implement at bulk-plasma density

nbulk = 1020 m� 3, at bulk-plasma temperature Ti = Te = 15 keV, Maxwellian distribu-

tion for the fast ions (He4), and at fast-ion temperature. The fast-ion density pro�le is

given by Eq. (15) with N0 = 1018 m� 3. For such parameters, average� fast � � bulk � 0:05

(when He4 fast ions with 3.5 MeV energy are considered). Note that the average values

(order of magnitude) of the densities and temperatures chosen here are consistent with the

values predicted by the transport modelling (see below) of HELIAS plasmas. However, the

pro�les (their shape) are chosen to coincide with the pro�les used in the W7-X simulations

above (Sec. III B). For these pro�les, the shear Alfv�en continuum (normalised to the Alfv�en

frequency) coincides with the continuum shown in Fig. 2. We considerthe TAE mode with

the toroidal mode numbern = � 6 and the dominant poloidal mode numbersm = (6 ; 7)

(the same mode has already been extensively studied in the original W7-X geometry, see

Sec. III B). The eigenmode found in HELIAS geometry with the reduced-MHD eigenvalue

solver [34, 35] is shown in Fig. 13. The growth rate of the unstable TAE mode is plotted

as a function of the fast-ion temperature in Fig. 14.One sees that the FLR/FOW e�ects

(stabilising under W7-X conditions, cf. Fig. 4) will be weak in the reactor plasma since the

ratio of the fast-ion orbit width to the system size will be much smallerin the HELIAS

reactor compared to W7-X.

Finally, let us consider stability of the HELIAS plasma with respect to Alfv�en Eigenmodes

implementing realistic pro�les predicted by the transport modelling (details of the transport
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code are described in Refs. [36, 37]). The transport model has been chosen to be mainly

neoclassical in the bulk plasma with large anomalous transport at theedge. The anomalous

di�usivity scales asP0:75=n whereP is the total heating power andn is the electron density.

At a developed stage of burn, the resulting energy di�usivities at the plasma edge are between

1 � 5 m2/s, while in the plasma core they are about 1 m2/s for electrons and 1:5 m2/s for

deuterium ions. The particle source, used in the transport modelling, is shown in Fig. 15(a).

The bulk-plasma densities, temperatures, production rate of fusion alphas, corresponding

fast-ion density, the fast-ion and the bulk-plasma betas obtainedin the modelling are shown

in Figs. 15(b-e). Note that the projected steady-state fusion energy gain factorQsteady = 1

for the HELIAS reactor which requires higher pressure of the energetic alphas (compared to

burning plasmas with smallerQsteady). The shear Alfv�en continuum corresponding to the

predicted bulk-ion density pro�le is plotted in Fig. 16. Here, one seesthat the largest gap

in the continuum corresponds to the helical coupling of the Fourier harmonics (\helicity-

induced gap"). The Helical Alfv�en Eigenmode (HAE) with the dominant ( m = � 14; n = 11)

and (m = � 16; n = 16) Fourier harmonics, which is located in this gap, is shown in Fig. 17.

The steady-state distribution function of the energetic alpha particle is modelled with a

slowing-down distribution function Eq. (16) corresponding to the plasma pro�les predicted

by the transport modelling. In the case considered, the HAE mode is unstable. The growth

rate of the HAE,  = 1:8 � 104 rad/s, and the frequency! = � 4:1 � 105 rad/s, have the

ratio =! � 4:4%.

The unstable Alfv�en Eigenmodes may cause fast-ion transport (innonlinear regime).

The nonlinear uctuation channel could couple to the usual collisionless \3D-geometry"

channel (toroidal magnetic-�eld ripple loss). Such a synergy between di�erent types of fast-

ion transport (AE-induced ripple trapping [38]) may become an issue inburning stellarator

plasmas and deserves further consideration.

IV. CONCLUSION

In this paper, we have studied the interplay of energetic ions and Alfv�en eigenmodes in

stellarator plasmas. The Wendelstein 7-X stellarator and its extrapolation to a reactor-scale

HELIAS con�guration have been considered. A hybrid reduced-MHD gyrokinetic numerical

framework has been used in order to study AE mode stability in theseplasmas. FOW and
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FLR stabilisation e�ects have been observed in the W7-X plasma, butare much weaker in

the reactor. Furthermore, an e�ect of the equilibrium radial electric �eld (stabilising in the

electron root) has been demonstrated. This e�ect may be attributed to the modi�cation

of the drift fast-ion orbits in presence of the electric �eld. An anisotropy in the back-

ground fast-ion distribution function has been considered in the cases of a \loss-cone" and

an anisotropic two-temperature Maxwelliandistribution functions. The two-temperature

Maxwellian anisotropy may inhibit AE mode destabilisation since in this case most ofthe

fast-ion energy is concentrated in the perpendicular particle motion. In the reactor plasma,

the stability properties have been considered under conditions predicted by the transport

modelling. An unstable HAE mode has been found with=! � 4%.

Of course, it must be borne in mind that we have only calculated the drive and damp-

ing directly related to the fast ions. All the damping mechanisms associated with the bulk

plasma (collisional, continuum and radiative damping) have been ignored. Nevertheless,

the calculation shows that AEs could be driven unstable by alpha particles in a stellarator

reactor. A careful evaluation of the damping is thus called for.In this respect, a stepwise

approach is envisioned. As a �rst step, a uid-electron gyrokinetic-ion model will be em-

ployed to the cases already considered with the perturbative hybrid approach presented in

this paper. This model, still reduced, can however describe at a su�cient level of accuracy

interaction of AEs with shear Alfv�en continuum in a non-perturbative fashion. Such an

interaction is considered to be responsible for the continuum and radiative damping mech-

anisms (see e. g. Refs. [39{41]). The uid-electron gyrokinetic-ionmodel is already under

development and will be described in a separate publication. More comprehensive but also

rather expensive (computationally) full-gyrokinetic simulations will be undertaken after the

uid-electron results become feasible. Similar simulations have already been carried out in

tokamak geometry [30, 42, 43].Furthermore, realistic simulations of NBI- and ICRH-heated

W7-X plasmas using real (predicted) anisotropic background distribution functions as well

as predicted plasma pro�les should be undertaken using theperturbative hybrid-gyrokinetic

approach. Such simulations would be of interest as a preparation for experimental work on

W7-X. Finally, a perturbative modelling, being technically very robust, has the drawback of

working with preselected eigenmodes which, however, do not need to be dominant in the ac-

tual stability. Thus, a comprehensive assessment of Alfv�en modes in stellarators will require

a non-perturbative framework (such as the aforementioned uid-electron gyrokinetic-ion
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model or full-gyrokinetic approach). The work on the non-perturbative schemes is ongoing

and will be reported elsewhere.
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FIG. 1: (Colour online) Rotational transform in W7-X (high- mirror con�guration).
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FIG. 2: (Colour online) Shear Alfv�en wave continuum in the W 7-X con�guration ( n = 1 mode

family) corresponding to at bulk plasma density nbulk = 2 � 1020 m� 3. One can see the toroidicity-

induced gap in the spectrum. The TAE eigenmode frequency (blue straight line) corresponding to

the toroidal mode number n = � 6 and the coupled poloidal mode numbersm = 6 (green curve)

and m = 7 (brown curve) is shown inside the gap. Here, the Alfv�en frequency! A = 7 :4� 105 rad/s.
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FIG. 3: (Colour online) The eigenfunction corresponding tothe global (even) TAE mode (see the

eigenfrequency in Fig. 2). One sees thatm = 6 and m = 7 poloidal harmonics are coupled (and

dominant), in accordance with the shear Alfv�en spectrum shown in Fig. 2. The maximum of the

mode is located nears = 0 :65 (at the position of the TAE accumulation point).
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FIG. 4: (Colour online) Growth rate of the TAE mode (W7-X geom etry) as a function of the fast-

particle temperature at �xed fast-ion density N0 = 1017 m� 3 (Maxwellian fast-particle distribution

has been used). The growth rates without FLR e�ects (drift-ki netic fast ions) and with FLR e�ects

(gyrokinetic fast ions) have been considered. The frequency of the TAE mode ! TAE = 238766 rad/s.

The fast-ion beta range (measured at the position of maximalfast-ion density gradient s = 0 :65)

is 0:0006� � f � 0:012. For the bulk plasma, � bulk (s = 0 :65) = 0:034.
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FIG. 5: (Colour online) Growth rate of the TAE mode (W7-X geom etry) as a function of the

fast-particle temperature at �xed fast-ion beta � f (s = 0 :65) � 0:003. Here, bulk-plasma beta

� bulk (s = 0 :65) = 0:034 and other parameters are the same as in Fig. 4.

24



-0.012 -0.008 -0.004 0 0.004 0.008 0.012
ME

1500

2000

2500

3000

g,
  r

ad
/s

Ion root

Electron root

FIG. 6: (Colour online) Growth rate as a function of the ambient radial electric �eld (FLR e�ects

neglected). Here, the fast-particle temperatureTf = 1 MeV.
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FIG. 7: (Colour online) Loss-cone distribution function wi th parameters � 0 = 0, � b = 0 :5, and

� b = � 0:9 projected onto the (vk; v? )-plane (here vk corresponds to the horizontal axis andv?

to the vertical axis).
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FIG. 8: (Colour online) Growth rate of the TAE mode (W7-X geom etry) as a function of the

fast-particle temperature in presence of a loss cone in the distribution function. The growth rates

are plotted at di�erent \widths of the loss cone". One sees that the dependence of the TAE-

mode growth rate on the loss-cone width is non-monotonic: there is a competition between the

anisotropy drive (which wins at smaller \loss cones") and stabilisation caused by decreasing fast-

particle pressure (caused by the \prompt losses" and winning when � b increases). Here,� b = � 0:9

[see Eq. (19)].
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ICRH scenario).
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FIG. 11: (Colour online) Growth rate as a function of the maximal minority-ion perpendicular tem-

perature Tmax (related to the RF power) in the ICRH-type scenario. The anisotropic Maxwellian

is compared with the isotropic one (de�ned using the same density pro�le and a at temperature

equal to the ICRH maximum T? ). The stabilising FOW e�ect is weak in the anisotropic case,

which is probably due to the strong localisation of the energetic-ion temperature pro�le. Note that

Tmax = 400 keV corresponds roughly to the maximum ICRH powerP0 = 3 MW/m 3.
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FIG. 12: (Colour online) E�ect of the temperature anisotropy . The parameter � T de�nes the

ratio of the parallel temperature to the perpendicular one. Here, the maximum perpendicular

temperature (\ICRH-driven tail" in the distribution funct ion) was T? = 400 keV. Note that the

isotropic case� T = 1 is more unstable for the inhomogeneous minority-ion temperature pro�le

used here (see Fig. 10) compared to the Maxwellian with the same density but at temperature

pro�le (Fig. 4).
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FIG. 13: (Colour online) Unstable TAE in HELIAS geometry (as suming at bulk-plasma density).

The frequency of the mode! = 111796 rad/s.
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FIG. 15: (Colour online) (a) Pro�le of the particle (D-T) sou rces, used in the transport modelling of

the HELIAS plasma, plotted as a function of r = ra
p

s wheres is the normalised toroidal ux and

ra is the minor radius of the device. (b) Predicted plasma density pro�les (transport calculations):

electron, deuterium, tritium, and helium-ash densities. (c) Predicted plasma temperature pro�les

(transport calculations). (d) Predicted power density of fusion alphas and the resulting energetic-

ion density (computed asnfast =
R

Fsdd3v). (e) Predicted fast-ion and bulk-ion betas. The fast-ion

beta � fast = 2 � 0 pfast=B2 with the fast-ion pressure roughly estimated as pfast � P� � s.
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