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Abstract. We study a contracting universe composed of cold dark matter and radiation,
and with a positive cosmological constant. As is well known from standard cosmological per-
turbation theory, under the assumption of initial quantum vacuum fluctuations the Fourier
modes of the comoving curvature perturbation that exit the (sound) Hubble radius in such a
contracting universe at a time of matter-domination will be nearly scale-invariant. Further-
more, the modes that exit the (sound) Hubble radius when the effective equation of state is
slightly negative due to the cosmological constant will have a slight red tilt, in agreement with
observations. We assume that loop quantum cosmology captures the correct high-curvature
dynamics of the space-time, and this ensures that the big-bang singularity is resolved and is
replaced by a bounce. We calculate the evolution of the perturbations through the bounce
and find that they remain nearly scale-invariant. We also show that the amplitude of the
scalar perturbations in this cosmology depends on a combination of the sound speed of cold
dark matter, the Hubble rate in the contracting branch at the time of equality of the energy
densities of cold dark matter and radiation, and the curvature scale that the loop quantum
cosmology bounce occurs at. Importantly, as this scenario predicts a positive running of
the scalar index, observations can potentially differentiate between it and inflationary mod-
els. Finally, for a small sound speed of cold dark matter, this scenario predicts a small
tensor-to-scalar ratio.
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1 Introduction

Observations of the cosmic microwave background (CMB) — most recently [1, 2] — have
clearly established that scalar perturbations in the early universe were nearly scale-invariant.
It is thus necessary for any realistic cosmological model to generate, in some fashion, scale-
invariant perturbations.

To achieve this, many cosmological models rely on the presence of matter fields (typ-
ically scalar fields) that have not yet been observed in nature. The new matter fields are
necessary in these models as they play an essential role in the generation of scale-invariant
perturbations. While it is of course a requirement for any cosmological scenario to predict
near scale-invariance in order to be potentially viable, there are some cosmological scenarios
where it is possible to avoid the weakness of postulating the existence of unknown matter
fields and nonetheless obtain scale-invariance.

We shall study one such model in this paper. This cosmological model consists of
a spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe, with a positive
cosmological constant, cold dark matter (CDM), and radiation. These are three ingredients
known to be present in our universe, and we will not assume the existence of any other matter
fields. We also assume that the initial conditions are such that the space-time curvature is
small and the universe is large and contracting.

As the universe contracts, the space-time curvature will increase, and quantum gravity
effects are expected to become important at some point, likely when the space-time curvature
nears the Planck scale. In this work, we will assume that loop quantum cosmology (LQC)
captures the salient non-perturbative quantum gravity effects in the very early universe.
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LQC, a mini-superspace approach to quantum cosmology motivated by loop quantum gravity,
predicts that a bounce occurs near the Planck scale and that, once these quantum gravity
effects are included, the space-time is free of the singularities that appear in classical general
relativity [3–5].

Thus, this model will be that of a bouncing universe, with a matter content of radiation
and cold dark matter and a positive cosmological constant. Now, it is well known in cosmo-
logical perturbation theory that, for perturbations that are initially in the quantum vacuum
state, the Fourier modes that reach the long wavelength limit in a contracting space-time
whose dynamics are dominated by a pressureless matter field become scale-invariant [6, 7].
(Note that the long-wavelength limit of a Fourier mode does not always coincide with the
mode exiting the Hubble radius — here the relevant length scale is the sound Hubble ra-
dius, as explained in more detail later.) Furthermore, if the pressure is slightly negative, for
example due to the presence of a positive cosmological constant, then the long wavelength
perturbation modes will be almost scale-invariant with a slight red tilt. Therefore, in the
model considered here, we expect the modes that become large during the epoch of the uni-
verse that is dominated by cold dark matter to be almost scale-invariant, and those that
become large when the effective equation of state is slightly negative to have a small red tilt.

Various realizations of the matter bounce scenario suggested in [6, 7] have been consid-
ered in the literature, but in most studies the matter content is taken to be scalar fields with
specific potentials that can mimic pressureless matter fields for some specific initial condi-
tions. To the best of our knowledge, this is the first study of a matter bounce scenario where
the pressureless matter field is taken to be cold dark matter and that the effect of a positive
cosmological constant is also included. We will compare the predictions of this scenario with
other realizations of the matter bounce scenario in section 5.

In this paper we calculate the spectrum of the cosmological perturbations for this ΛCDM
bounce scenario. By the use of some approximations, it is possible to complete the calcu-
lations entirely analytically; we also solve the equations numerically in order to provide a
check on the validity of the approximations. In section 2 we study the dynamics of the back-
ground, first analytically and then numerically. Then in section 3 we calculate the evolution
of the scalar perturbations, from their initial quantum vacuum state to their final form after
the bounce in the background FLRW space-time. Once again, this calculation is first done
analytically with the help of some approximations, and is solved numerically afterwards. We
continue in section 4 by determining the spectrum of the primordial gravitational waves, and
end in section 5 with a discussion. We use units where c = 1, but keep G and ~ explicit
except where stated otherwise, typically in the sections devoted to the numerical studies.

2 Homogeneous background

As explained in the Introduction, we are interested in studying the dynamics of a flat FLRW
cosmology with a positive cosmological constant Λ and whose matter content is composed of
radiation and cold dark matter, which are modeled as perfect fluids.

Classically, the dynamics are given by the Friedmann equations, while in LQC there
exists a Hamiltonian constraint operator that generates the evolution of the wave function
representing the quantum cosmology state. While the full quantum evolution is in general
rather complicated, for sharply peaked states (i.e., states that admit a clear semi-classical
interpretation at low curvature scales) the full quantum dynamics are very well approximated
by a set of effective equations [8–10]. The key point is that since the state is sharply peaked
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(and it remains sharply peaked throughout the entire evolution, including at the bounce
point), it is meaningful to speak of an effective geometry, with an effective scale factor, and
to ask what equations of motion govern the dynamics of this effective scale factor; these
equations are called the effective equations. As radiation will dominate the dynamics in
the high-curvature regime, it is enough to consider the effective equations for a radiation-
dominated flat FLRW space-time, which are given by

H2 =
8πG

3
ρ

(
1− ρ

ρc

)
, (2.1)

where H = ȧ/a is the Hubble rate (in proper time), ρ is the energy density of the radiation
matter field, and ρc ∼ ρPl is the critical energy density, which is of the order of the Planck
energy density. In addition, the matter field satisfied the continuity equation

ρ̇+ 4Hρ = 0, (2.2)

where we have used the fact that the pressure of a radiation perfect fluid is P = ρ/3. Note
that the classical Friedmann equations are obtained in the limit ρc → ∞. In this paper, we
will restrict our analysis to the effective equations of LQC, but a full quantum treatment of
a radiation-dominated space-time in LQC is given in [11].

In the first part of this section, we will use some reasonable approximations in order to
derive some analytical results, and in the second section we present some numerical results
that in part complement the analytic results and in part provide a check on the validity of
the approximations.

To be specific, we shall make three approximations in the analytical treatment of the
background: first, we shall assume that quantum gravity effects are negligible already a
few orders of magnitude away from the LQC bounce. This has been verified in numerical
simulations [11], and can also be seen from studying the effective equations. This will allow
us to solve the classical Friedmann equations away from the bounce, and the LQC corrections
will only become relevant when the space-time curvature nears the Planck scale during the
radiation-dominated epoch.

Second, we will assume that the evolution of the background universe can be broken
into two distinct eras: the first one which is dominated by the combination of the cosmolog-
ical constant and cold dark matter, and another era which is dominated by radiation. We
assume a discontinuous change in the equation of state between these two eras, and impose
continuity in the scale factor and in the (conformal) Hubble rate during this transition. This
approximation is supported by results in section 2.2 that show that the transition between
the matter- and radiation-dominated epochs occurs very rapidly.

Finally, recall that the goal of this paper is to calculate the power spectrum of the
perturbations. As is well known, especially from calculations in inflation, the key ingredient
that determines the scale-dependence of the perturbations is the equation of state of the
background at the time that the mode reaches the long wavelength limit. Therefore, in order to
simplify calculations, we will assume a constant equation of state during the time-frame that
the perturbation modes of interest reach the long wavelength limit (i.e., when the dynamics
of the space-time are dominated by the CDM, but the cosmological constant provides a small
correction to the effective equation of state). This approximation is justified by the effective
equation of state being nearly constant during the period of interest, as seen in section 2.2.
Nonetheless, one should keep in mind that the effective equation of state — due to the
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combination of Λ and CDM — is in fact changing in time, and in general will be slightly
different for different modes. As we shall see later, this effect leads to a running of the scalar
index ns.

2.1 Analytic treatment

Using the effective equations, we shall first determine the dynamics around the bounce point,
and then solve for the scale factor at earlier pre-bounce times when the space-time curvature
is much smaller.

2.1.1 Radiation-dominated epoch

It is easy to see that (2.2) implies that

ρ(t) =
ρo
a(t)4

, (2.3)

where ρo is a constant of integration, and this can be used to solve (2.1), giving

a(t) =

(
32πGρo

3
(t− to)2 +

ρo
ρc

)1/4

,

where to is another constant of integration. It is of course possible to choose any values for
to and ρo; for convenience we shall set to = 0 so that the bounce occurs at t = 0, and ρo = ρc

so that the value of the scale factor at the bounce point is 1. Then,

a(t) =

(
32πGρc

3
t2 + 1

)1/4

. (2.4)

Well before and after the bounce (|t| �
√

3/32πGρc), the space-time curvature is much
smaller than the Planck scale and the scale factor is very well-approximated by the classical
solution

a(t) = a1/4
o

√
|t|, (2.5)

where we have defined

ao =
32πGρc

3
(2.6)

for later convenience, and the Hubble rate is given by

H =
1

2t
. (2.7)

It is also easy in the classical regime to change to conformal time η via the relation
adη = dt, which gives

|t| =
√

2πGρc

3
η2, (2.8)

which in turn shows that the scale factor in terms of conformal time is given by

a(η) =

√
8πGρc

3
|η|, (2.9)

and the conformal Hubble rate, again in the classical regime, is given by

H =
1

η
= −

(
8πGρc

3

)1/4√
−H; (2.10)

the second equality holds for the contracting epoch of the cosmology where H < 0 and H < 0.

– 4 –



J
C
A
P
0
3
(
2
0
1
5
)
0
0
6

2.1.2 Cold dark matter and Λ

Now we shall consider the earlier epoch where cold dark matter and the cosmological constant
dominate the dynamics (the ΛCDM era). In this regime, the classical Friedmann equations
in conformal time can be written as

H2 =
8πG

3
a2 (ρCDM + ρΛ) =

8πG

3
a2 ρtot, (2.11)

where ρΛ = Λ/8πG, and the combined continuity equation (also in conformal time) for cold
dark matter and the cosmological constant is given by

ρ′tot + 3H (ρtot + Ptot) = 0. (2.12)

Since PΛ = −ρΛ and PCDM = 0, it follows that the effective equation of state for cold dark
matter and the cosmological constant combined1 is Ptot = ωρtot, with −1 ≤ ω ≤ 0.

In order to solve these two equations exactly, we shall assume that ω = −δ is a constant,
and furthermore, since we are interested in the regime where the dynamics are dominated
by the cold dark matter, we also take δ � 1. Of course, the effective equation of state
does not remain constant in this setting, but recall that we are interested in calculating
the power spectrum of cosmological perturbations, and their scale-dependence depends most
sensitively on the effective equation of state at the time when they reach the long wavelength
limit. Therefore, the calculations where the spectra of the scalar and tensor perturbations are
determined are to be understood as being for the modes that reach the long wavelength limit
when the effective equation of state is given by ω = −δ, and so the specific value of δ will
vary from one mode to another. Note that this variation will be monotonic with δ becoming
closer and closer to zero for shorter and shorter wavelengths, or for larger and larger k. The
exact rate at which this occurs will depend on the relative contributions of cold dark matter
and the cosmological constant to the total matter energy density.

In the approximation that δ is constant, the total energy density behaves as

ρtot =
ρeff

a3(1−δ) , (2.13)

where ρeff is a constant of integration, and the scale factor is given by

a(η) =

[√
2πGρeff

3
(1− 3δ)(η − ηo)

]2/(1−3δ)

, (2.14)

where ηo is also a constant of integration. It follows that the conformal Hubble rate is

H =
2

(1− 3δ)(η − ηo)
. (2.15)

In order to determine the values of ρeff and ηo, let us assume that the transition between
the radiation-dominated epoch and the ΛCDM era occurs at the equality conformal time ηe.
Then, imposing that the scale factor and the conformal Hubble rate be continuous at the
transition time, we find that ρeff = ρc/a

1+3δ
e and ηo = ηe − 2/[(1− 3δ)He], where ae = a(ηe)

and He = H(ηe) respectively. Then, the scale factor can be rewritten as

a(η) = ae

(
η − ηo
ηe − ηo

)2/(1−3δ)

. (2.16)

1In fact, we expect that PCDM = ε2ρCDM with 0 < ε� 1, but here we are interested in the situation where
the small positive contribution to ω from the cold dark matter and the small negative contribution to ω from
the cosmological constant combine to give a slightly negative ω.

– 5 –



J
C
A
P
0
3
(
2
0
1
5
)
0
0
6

-14 -12 -10 -8 -6 -4 -2 0

-0.8

-0.4

0.0

0.4

0.8

-2.0 -1.6 -1.2 -0.8 -0.4

-0.08

-0.04

0.00

0.04

0.08

t (Gyr)

w=p/ρ

(a)

-14 -12 -10 -8 -6 -4 -2 0
0.0

0.2

0.4

0.6

0.8

1.0

t (Gyr)

Ω
m

Ω
Λ

(b)

Figure 1. Evolutions of the background equation of state parameter ω (the purple solid curve in
the left panel), and the density parameters Ωi ≡ ρi/ρtot (the red dotted and the blue dashed lines
in the right panel) as a function of the cosmic time t (in units of per billion years) in the model
under consideration. The horizontal axis denotes the cosmic time t. The initial values of background
parameters are assumed to be the same as today’s universe.

2.1.3 Summary

Thus, for early times η ≤ ηe, the scale factor is given by (2.16); then for ηe ≤ η the rela-
tion (2.9) holds so long as quantum-gravity effects are negligible. When quantum gravity
effects become important, it is necessary to use (2.4) to describe the dynamics of the scale
factor.

2.2 Numerics of the background dynamics

In this subsection we numerically study the background solution presented in the ΛCDM
model within the context of LQC. To be explicit, we study the background universe by
separating the evolution into two periods. In the first stage, we apply the realistic data from
the Planck results and numerically solve for the period that the contracting universe evolves
from dark energy domination to the matter-dominated phase. In particular, we assume that
the density parameters of all matter components are the same as what we observed today,
which are given by Ωm ≡ ρm/ρtot = 0.314, ΩΛ ≡ ρΛ/ρtot = 0.686 and a deduced value
Ωr ≡ ρr/ρtot = 9.23 × 10−5, respectively [2]. During this phase, the numerical result of the
background evolution is provided in figure 1.

One particularly important result is shown in the inset of figure 1a: the effective equation
of state evolves very slowly as the era of matter-domination is approached. This shows
that, for modes that reach the long wavelength limit in this time-frame, any effect due to
an evolving effective equation of state will be very small, and it is justified to make the
approximation that δ is constant in the analytic calculations.

Then, in the second stage, we consider a toy model of a universe filled with a dark matter
component and a radiation component with their energy densities evolving as follows,

ρm = ρim

(ai
a

)3(1−δ)
, ρr = ρir

(ai
a

)4
, (2.17)

respectively, where ρim and ρir are their initial values when a = ai. Note that while it would
be nice to simultaneously include both matter fields and a cosmological constant, this is
significantly more expensive from a computational point of view. These numerical studies
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Figure 2. Evolutions of the scale factor a (the blue solid curve in the left panel), the conformal Hubble
parameter H (the red dotted curve in the middle panel) and the density parameters Ωi ≡ ρi/ρtot (the
green dash-dotted and the orange dashed lines in the right panel) as a function of the conformal time η
in the model under consideration. The horizontal axis denotes the conformal time η. The background
parameters chosen for the numerics are given in eq. (2.19).

presented here already provide strong support for the approximations used in the analytic
section, and we leave more detailed numerical studies for future work.

In order to relate this stage of the dynamics with the previous one, the pressure is
taken to have a very small (but non-vanishing) negative value. Also, to make the comparison
between the analytic and numerical results as simple as possible, we adopt the conformal
time η and set the value of the scale factor a to be unity at the bouncing moment tB = 0 in
the numerical calculation. The dynamics are calculated by numerically solving the second
Friedmann equation H′ instead of the first one in (2.11), which is given by

H′ = −4πG

3
a2

(
ρtot + 3Ptot −

4ρ2
tot

ρc
− 6ρtotPtot

ρc

)
, (2.18)

in the case of LQC. In addition, the continuity equation (2.12) is applied so that the back-
ground equations of motion are self-complete after an initial value of the background energy
density has been imposed.

For the numerics, we work in units of the reduced Planck mass MPl ≡ 1/
√

8πG (with
~ = 1) for all model parameters with dimensions. As an explicit example (although not a
realistic one), we choose the values of the energy densities, the critical density ρc and an
effective equation of state parameter for the CDM at the initial moment to be

ρim = 1.1× 10−24 , ρir = 5.1× 10−28 ,

ρc = 2.9× 10−9 , δ = 0.05 , (2.19)

and our numerical results are shown in figure 2.
The evolution of the scale factor, which is depicted by a blue solid curve in the left

panel, explicitly shows that a non-singular bouncing solution is obtained in our model due to
the quantum gravity effects captured by LQC, in particular, the minimal value of the scale
factor is non-zero. From the middle panel, one can read more details about the background
evolution. For example, the absolute value of H is increasing when η is about less than
−2× 109. After that, H becomes approximately a linear function of the conformal time and
correspondingly, the universe enters the bouncing phase with H evolving from the negative
valued regime to the positive valued one. Eventually, the value ofH decreases after η ≈ 2×109
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and hence the universe naturally connects to a regular thermal expanding phase after the
bounce; there is no need for reheating.

The right panel of figure 2 characterizes the evolutions of the density parameters of the
dark matter and radiation in our model, which are defined by

Ωm(r) ≡
ρm(r)

ρtot
, (2.20)

with the subscripts “m” and “r” representing dark matter and radiation respectively. One
can see that the universe was originally dominated by the cold dark matter with Ωm ' 1,
as described the green dash-dotted curve. During the cosmic contraction the contribution of
radiation, which is depicted by the orange dashed line, grows faster than that of dark matter
and then dominates over the background evolution before the bounce. After the bounce,
the universe would have experienced a period of radiation-dominated expanding phase and
eventually enters the CDM era and hence is in qualitative agreement with cosmological ob-
servations. Note that the sharp transition between these two eras provides justification for
the assumption of a discontinuous transition between matter- and radiation-domination used
in the analytic calculations. Also, it is important to keep in mind that a more careful choice
of the initial parameters would make the model more precisely consistent with experimen-
tal data.

3 Scalar perturbations

In this section, we will calculate the final spectrum of scalar perturbations after the bounce,
assuming they begin in the quantum vacuum state in the distant past of the pre-bounce
epoch.

In cosmological perturbation theory, it is convenient to use the gauge-invariant Muk-
hanov-Sasaki variable [12]

v = zR, (3.1)

where R is the comoving curvature perturbation and

z =
a
√
ρ+ P

csH
. (3.2)

Linear perturbations can be handled in LQC by following the ‘separate universe’ approach
presented in [13, 14], and from the resulting quantum theory it is possible to derive effective
equations that can be used to calculate expectation values of sharply-peaked states. The
LQC effective equations for the Mukhanov-Sasaki variable are [15, 16]

v′′ − c2
s

(
1− 2ρ

ρc

)
∇2v − z′′

z
v = 0, (3.3)

and it is easy to see that the standard classical expression is recovered in the limit ρc →∞.
The effective equation (3.3) is expected to provide a good approximation to the full quantum
dynamics for modes that always remain large compared to the Planck length [9], which is
the case for the observationally relevant modes in the matter bounce scenario.

In this section, using (3.3) we will determine how the Fourier modes vk evolve, from
their initial quantum vacuum state, to their form as they exit the sound Hubble radius2

2Since the sound speed of the matter fields in this model is not 1, we find that the Fourier modes reach the
long wavelength limit when the mode exits the sound Hubble radius, not the Hubble radius. These quantities
differ by a factor of cs. Note that it is equivalent to state that a given mode reaches the long wavelength limit
when its ‘sound wavelength’ exits the Hubble radius.
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rsH = cs/H and finally how they propagate through the bounce. As we shall see, the
Fourier modes that exit the sound Hubble radius during the period of matter domination in
the contracting branch become scale-invariant and therefore these modes are of particular
interest. This is why in this paper we will only consider this family of the Fourier modes vk,
and ignore the modes that exit the Hubble radius either before (during the epoch dominated
by the cosmological constant) or after (during the radiation-dominated phase).

In the first part, we present analytical calculations, and in the second, numerical simu-
lations. As in the previous section, it is necessary to make certain approximations in order
to make the analytical calculations tractable and the numerical studies in the second part
serve in part to check that the approximations are valid.

3.1 Analytic treatment

We will begin by solving the dynamics of the perturbations in the ΛCDM era — and the
modes of interest are those that reach the long wavelength limit during this era — and
then determine their evolution during the radiation-dominated epoch, including through the
bounce.

In order to solve the equations of motion for vk, it is necessary to make the following
approximations: (i) we only consider the modes that reach the long wavelength limit during
the ΛCDM era, where the background matter field is modelled as a perfect fluid with a
small and negative constant equation of state as explained in section 2.1.2; (ii) we assume
continuity in vk and v′k at the spatial slice where we approximate the equation of state
changing discontinuously to the radiation-dominated epoch; and (iii) we work in the long
wavelength limit during the bounce period.

Recall from section 2.2 that the equation of state changes very slowly in the regime where
the effective equation of state is slightly negative. This supports the first approximation, since
the key ingredient in determining the long wavelength spectrum of scalar perturbations is
the equation of state of the background at the time that the given mode exits the sound
Hubble radius. Since the effective equation of state is changing slowly, we expect corrections
to the approximation of a constant equation of state to be subleading. Finally, the validity
of approximations (ii) and (iii) is verified numerically in section 3.2.

3.1.1 The ΛCDM era

For the contracting portion of the space-time where the scale factor is given by (2.16) (and
safely neglecting quantum gravity effects at this stage), (3.3) is

v′′k + c2
s k

2vk −
2(1 + 3δ)

(1− 3δ)2(η − ηo)2
vk = 0. (3.4)

Since the sound speed of cold dark matter is unknown, we set cs = ε which we assume to be
constant. We expect ε to be a small positive number.

The solutions to this differential equation are

vk =
√
−(η − ηo)

(
A1H

(1)
n [−εk(η − ηo)] +A2H

(2)
n [−εk(η − ηo)]

)
, (3.5)

where H
(1)
n and H

(2)
n are the Hankel functions, and

n =

√
2(1 + 3δ)

(1− 3δ)2
+

1

4
≈ 3

2
+ 6δ +O(δ2), (3.6)

where after the last equality we drop terms of order δ2 and higher (recall that δ � 1).
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Choosing the initial conditions to be quantum vacuum fluctuations sets A1 =
√
π~/4

and A2 = 0.
Then, as η approaches ηe, some modes satisfy −εk(η − ηo) � 1. These modes are said

to be in the long wavelength limit, and in this limit it is possible to use the small argument
expansion of the Hankel functions to show that

vk =

√
−π~(η − ηo)

4

[
(εk)n

Γ(n+ 1)

(
−(η − ηo)

2

)n
− i Γ(n)

π(εk)n

(
−2

η − ηo

)n]
(3.7)

=

√
8~
9

(εk)3/2+6δH−(2+6δ) − i
√

~
4

(εk)−3/2−6δH1+6δ, (3.8)

where in the second equality the time dependence has been rewritten in terms of the con-
formal Hubble rate, and the exponents are accurate to first order in δ, while the numerical
prefactors are only accurate to zeroth order in δ. It is straightforward to determine higher
order corrections in δ, but this will not be necessary here.

3.1.2 Radiation-dominated epoch

During the radiation-dominated epoch, the scale factor is proportional to η while the sound
speed is given by 1/

√
3, and so the Mukhanov-Sasaki variable satisfies the equation

v′′k +
k2

3
vk = 0, (3.9)

at least in the classical regime where quantum gravity effects are negligible. Note that due
to the drastic change in the speed of sound, some modes that were in the long wavelength
regime may at first be in the short wavelength limit at the onset of the radiation-dominated
epoch.

Therefore, the relevant solutions are

vk = B1 sin
kη√

3
+B2 cos

kη√
3
, (3.10)

and B1 and B2 can be determined from (3.8) by demanding that vk and v′k be continuous
at ηe. Note that as the bounce is approached η → 0 and therefore the second term with the
prefactor B2 will dominate, so we can drop B1. Imposing continuity in vk and v′k gives

B2 = −i
√

~
4

(εk)−3/2−6δ cos
kηe√

3
H1+6δ

e − i
√

3~
16

(εk)−3/2−6δk−1 sin
kηe√

3
H2+6δ

e . (3.11)

Some modes will have rebecome short wavelength modes due to the drastic change in the
sound speed. For these modes, the small argument expansion for the trigonemetric functions
cannot be used, and these terms will not be scale-invariant. Thus, we expect that scale-
invariance will only be obtained for the modes that satisfy kηe � 1. We will return to this
point later.

3.1.3 The bounce

In the contracting phase, as the bounce is approached (but before quantum gravity effects
become important) we have |kη| � 1 and in this limit the solution for the Mukhanov-Sasaki
variable (3.10) tends to

vk = B2, (3.12)

with B2 given in (3.11).
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During the bounce, all of the modes of cosmological interest remain in the long-wave-
length limit, and therefore the equation of motion for vk is

v′′k −
z′′

z
vk = 0, (3.13)

where z = a
√
ρ+ P/csH = 4

√
ρc a

3/(ao t) [recall that cs = 1/
√

3 during radiation-domina-
tion and ao is defined in (2.6)], and the solution is

vk = C1z + C2z

∫
η

dη̃

z(η̃)2
. (3.14)

Note that z is not simply proportional to a due to the quantum gravity effects that modify
the Friedmann equation at high curvatures as seen in (2.1). The integral can be evaluated
by rewriting it in terms of the proper time via the relation dt = adη, giving

vk = C1 z + C2 z t

[
2F1

(
1

2
,
3

4
;
3

2
,−aot2

)
− 1

a3

]
, (3.15)

where C2 has been redefined in order to absorb some numerical factors.

In the classical pre-bounce era (t� −√ao), this expression must agree with (3.12) and
this uniquely determines

C1 = π

√
G

6

Γ
(

1
4

)
Γ
(

3
4

) B2, C2 = −
√

2πGao
3

B2. (3.16)

Note that during this calculation it is important to keep in mind that t = −|t| in the pre-
bounce era.

It is also easy to calculate the form of the scalar perturbations in the classical post-
bounce era by taking the limit t � √ao in (3.15), which gives in terms of the comoving
curvature perturbation

Rk =
vk
z

= 2C1 +O
(
t−1
)
, (3.17)

where we have only kept the dominant contribution, namely the constant mode which is the
only one that does not decay with time.

3.1.4 Results

The amplitude of the comoving curvature perturbation of 2C1 after the bounce depends on
B2 via (3.16) and so it is easy to check whether the resulting scalar perturbations (3.17)
are scale-invariant or not. Since the only dependence of k in C1 resides in B2, a quick
examination of (3.11) suffices to determine the scale-dependence of R. As one can readily
verify, one obtains near scale-invariance only in the limit of |kηe| � 1 (otherwise the dominant
contribution would be oscillations superimposed over a red spectrum), in which case

B2 = −3 i

4

√
~ (εk)−

3
2
−6δH1+6δ

e

(
1 +O

(
k2η2

e

))
. (3.18)

Therefore, a necessary condition for scale-invariance is that

|kηe| � 1, (3.19)
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that is to say that the modes that become (nearly) scale-invariant during the matter-domina-
ted contracting era must remain outside the sound Hubble radius during the entire contracting
radiation-dominated epoch and the bounce in order to remain (nearly) scale-invariant.

For these modes, the power spectrum is

∆2
R =

k3

2π2
|R|2

=

√
3π

2

(
Γ
(

1
4

)
Γ
(

3
4

))2 √
ρc

ρPl
· |He|`Pl

ε3
×
(

8πGρc|He|
3k4

)3δ

, (3.20)

where ρPl = 1/(G2~) and `Pl =
√
G~, and the tilt is given by

ns = 1− 12 δ. (3.21)

Thus, the observation of the tilt to be ns ≈ 0.96 [1, 2] sets δ ≈ 0.003, which means that when
the wavelength k−1 exits the sound Hubble radius ε/H the effective equation of state must
have been ωeff ≈ −0.003.

Also, in this model we predict a small running of the scalar index. This is due to the
following two effects: (i) the departure from scale-invariance in a small interval of k depends
on the background effective equation of state, and (ii) the background equation of state is
dynamical. The smallest values of k reach the long-wavelength limit first, at a time when
Λ contributes slightly more to the background dynamics than it does at later times when
larger values of k reach the long-wavelength limit. Therefore, as k increases, the background
equation of state at the ‘sound-Hubble-crossing’ time also increases,

dωeff

dk
> 0, (3.22)

and since ωeff = −δ and ns = 1− 12δ, it follows that

dns

dk
> 0. (3.23)

Therefore another prediction of this realization of the matter bounce scenario is for the scalar
index ns to increase with k. Although the presence of this effect is clear in this model, its
amplitude is not known. In order to calculate the expected amplitude of dns/dk, it would be
necessary to know quite precisely the energy densities corresponding to cold dark matter and
the cosmological constant during the contracting phase, which is not an easy task especially
since we do not expect the universe to be symmetric around the bounce point, as we shall
discuss next.

Nonetheless, the qualitative result (3.23) is a clear prediction for this realization of the
matter bounce scenario.

Finally, as stated above, the results (3.20) and (3.21) only hold for Fourier modes that
satisfy the condition (3.19). In order to better understand this condition, it is useful to
rewrite it in terms of the physical wave number k = a(t) · kphys(t) and of the Hubble rate at
equality He via (2.5), (2.7) and (2.10),

kphys(te)

|He|
� 1. (3.24)
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A good choice to ensure that kphys corresponds to modes that are observed in the cosmic
microwave background today, is to choose3 k? = 0.05 Mpc−1 = 10−59`−1

Pl , which lies roughly
in the middle of the logarithmic range of the scales probed by the Planck telescope [2]. The
value of k? at the time of equality is given by the relation k?(te) = a(to) · k?(to)/a(te). With
our choice of conventions of setting a(t = 0) = 1 at the bounce, it follows that a(to) ∼ 1031.
This can be calculated from the fact that (i) the scale factor increased by a factor of ∼ 104

after matter-radiation equality until today, and (ii) that in the expanding branch matter-
radiation equality is known to occur at t+e ∼ 104 years ∼ 6 × 1054tPl giving a scale factor of

a(t+e ) = a
1/4
o
√
te ∼ 1027 (assuming ρc ∼ ρPl) at the time of matter-radiation equality in the

expanding branch. (Recall that matter-radiation equality occurs before recombination, and
the superscript ‘+’ on t+e denotes the matter-radiation equality in the expanding post-bounce
branch.)

If we assume a symmetric bounce, then it follows that the times of matter-radiation
equality before and after the bounce are symmetric around t = 0, in which case te = −6 ×
1054tPl. From this and the relation (2.7), it is easy to check that kphys/|He| ∼ 1 is of the
order of unity rather than much smaller than 1. This shows that a symmetric bounce is not
viable in this model. To make this conclusion explicit, we rewrite (3.19) as

a(t+e )H+
e

a(te)He
· a(to) k?(to)

a(t+e )H+
e
� 1, (3.25)

which in turn, since the second term is of order unity and via (2.5) and (2.7), gives

a(te)

a(t+e )
� 1. (3.26)

This relation shows that the bounce must be significantly asymmetric. Indeed, in order for
the condition (3.24) to hold, |He| must be much larger (by at least a few orders of magnitude)
than it would be in a model with a symmetric bounce, in which case it is necessary for the
matter-radiation equality to occur at much higher curvature scales in the contracting branch
than it does in the expanding branch. One possible way for this to happen would be if a very
large number of additional quanta of radiation are created during the bounce; as an aside
note that such a process would generate a significant amount of entropy.

Interestingly, it has recently been suggested that particle production may play an impor-
tant role during the bounce in LQC and this effect would cause the bounce to be significantly
asymmetric in precisely the manner outlined here [17]. That being said, it is not yet clear
whether particle production could generate the amount of asymmetry that is required for
this realization of the matter bounce to be viable. We leave this question for future work.

There are also other reasons why an asymmetric bounce is necessary in this scenario.
Assuming the Hubble parameter at te to be of the order of He ∼ 10−55t−1

Pl — as would be
the case for a symmetric bounce — then for the amplitude of the scalar perturbations to
match the observed value of ∆2

R ∼ 10−9, it would be necessary to have a very small value of
the sound speed of cold dark matter of cs = ε ∼ 10−15 (assuming ρc to be of approximately
the same order of magnitude as ρPl); such a small value of the sound speed parameter
typically leads to primordial perturbations with over-large non-Gaussianities. In order to
have a larger (although still small) value of ε and thus sufficiently small non-Gaussianities, it

3Of course, this relation has to hold for all observed k, here we simply choose a reasonable value of k in
order to better understand the consequences of imposing (3.24).
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Figure 3. Evolutions of cosmological perturbations with a fixed comoving wave number k = 2.2×10−7

in the model under consideration in the frame of LQC. The left panel shows the comparison among
the conformal Hubble radius λH = 1/H (the green solid line), the comoving sound wavelength λε =
1/εk (the red dashed line), and the regular comoving wavelength λk = 1/k (the blue dotted line).
The middle panel depicts the dynamics of primordial power spectra for curvature perturbations ∆2

R
(the blue solid curve) and gravitational waves ∆2

h (the red dashed curve) along with the bouncing
background. The right panel presents the evolution of the tensor-to-scalar ratio r (the orange solid
line). The initial conditions for the background field and model parameters are the same as for figure 2
and are given in (2.19). The initial conditions for cosmological perturbations of both scalar and
tensor types are that they are initially quantum vacuum fluctuations in the early matter-dominated
contracting phase.

is again necessary to have an asymmetric bounce. This likely requires even more asymmetry
than is needed to satisfy the condition (3.26).

Finally, many of the modes observed today reentered the sound Hubble radius during
radiation-domination. However, in order for them to be scale-invariant, in the contract-
ing branch of the universe, they must have exited the sound Hubble radius during matter-
domination. This is yet another reason that an asymmetric bounce is necessary in the ΛCDM
bounce scenario.

3.2 Numerical analysis of the perturbations

To complete the analysis of cosmological perturbations, in this subsection we perform a
numerical computation of the evolution of the primordial curvature perturbations and grav-
itational waves in the model under consideration. To be consistent with the background
numerics, we consider the universe filled with a dust matter field with its energy density
evolving as (2.13), of which the initial value is the same as the one given in (2.19). Fur-
thermore, we impose the initial conditions of the cosmological perturbations to be vacuum
fluctuations during the matter dominated contracting phase (in units where ~ = 1),

Rini
k →

e−iεkη√
2εk z

, hini
k →

e−ikη√
2k a

. (3.27)

In addition, we take ε = 0.08 and fix k = 2.2×10−7 as an example in the detailed calculation.
Our numerical results are presented in figure 3.

In the left panel of figure 3, one can see how primordial cosmological perturbations
evolve from the sub-Hubble scale to the super-Hubble region in the contracting phase. For
a fixed comoving wave number k, the curvature perturbation exits the Hubble radius much
earlier than the gravitational wave since its oscillation gets squeezed when k ∼ H/cs at the
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sound horizon which is much smaller than the Hubble radius. Consequently, one expects
that there ought to be more oscillations in the power spectrum of primordial gravitational
waves than that of primordial curvature perturbations. This expectation is exactly verified
in the middle panel of the figure, which displays the evolutions of primordial power spectra
of both scalar and tensor perturbations.

In the middle part of figure 3, one can see that ∆2
R experiences only one oscillation

and then becomes squeezed very soon with its amplitude increasing until the nonsingular
bounce takes place. However, ∆2

h experiences several oscillations during the contracting
phase and only becomes squeezed when the universe is very near the bouncing phase. They
both become conserved at super-Hubble scales after the bounce, which can be read from
the right regime of figure 3b. Interestingly, one can observe that the magnitudes of the two
spectra are comparable (though the amplitude of the scalar mode is slightly larger) during the
contracting phase but the amplitude of the scalar spectrum becomes significantly larger than
that of tensor spectrum after the bounce, and hence the tensor-to-scalar ratio is suppressed
to a small value that is consistent with observations.

This can also be seen in the right panel of figure 3 which depicts the dynamics of
the tensor-to-scalar ratio r throughout the cosmological bouncing evolution. In figures 3b
and 3c, we see that while the scalar perturbation mode passes through the bouncing phase
in a relatively smooth fashion, the magnitude of the gravitational wave mode is significantly
damped. While the amplitude of the gravitational wave increases somewhat after the bounce,
it remains significantly lower than before the bouncing phase.

In the specific example with ε = 0.08 being considered, we read approximately r ' 0.016
from the numerical computation. As we will analyze in the next section on the tensor-to-
scalar ratio, this is roughly in the same order of the analytical estimate (r ' 0.012) given
by (4.6), though the detailed values are not in exact agreement with each other. We will
comment further on this slight numerical discrepancy at the end of this section.

Another important point is that in the numerical computation we have chosen the
critical density ρc to be very small (ρc ∼ 10−9) so that the bounce scale is of order O(10−6)
Planck mass (this choice for ρc significantly lowers the computational cost of the numerics as
this causes the bounce to occur at a lower curvature scale). As a consequence, the amplitude
of the power spectrum of primordial curvature perturbations is about O(10−12) which is
approximately three orders lower than the magnitude of the observed CMB spectrum. The
numerical computation performed in this subsection is sufficient to demonstrate the formation
of primordial power spectra in the model under consideration and to verify their relations
obtained in semi-analytic analyses. However, one can improve the agreement of the amplitude
of the spectrum with observations by fine-tuning the values of the parameters in this model.

It is also important to keep in mind that it is possible to obtain a similar amplitude of
scalar perturbations even if ρc ∼ ρPl, although such a choice would require a smaller value
of |He| and/or a larger value of ε.

Finally, note that since there are two matter components used in this step of the nu-
merical computation, the sound speed parameter depends on the background evolution ap-
proximately as

cs =

{
ε for Ωm ' 1
√
ω otherwise,

(3.28)

where ε is the small constant sound speed for CDM and ω is the time-dependent equation
of state ω = Ptot/ρtot, which includes the contributions coming from the radiation field
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and therefore equals 1/
√

3 near the bounce when radiation dominates the dynamics of the
universe. This time-dependence effect has been taken into account in the above numerical
computation.

Finally, these numerical solutions also validate the approximations made in the ana-
lytical section. First, we see that in the near-bounce region it is justified to assume that
the modes of interest are in the long-wavelength limit. Furthermore, we have also numeri-
cally checked the difference between the solution obtained in the previous section under the
approximation of a discontinuous change of the equation of state, and the result plotted in
figure 3b where no such approximation is made. We do not include the graph here, as the
two curves lie practically one on top of the other, showing the validity of this approxima-
tion. A careful comparison of the two curves shows that the theoretical calculation given in
section 2.1 very slightly overestimates the amplitude of R.

This last point raises an important issue: the results presented in this paper rely either
on analytic calculations based on several approximations that are well-motivated but cer-
tainly introduce some small errors, or on numerical simulations that, while accurate enough
for our purposes here, are not high-precision numerical studies. Due to the use of these ap-
proximations and numerical simulations, the predictions presented in this paper necessarily
contain some small errors. That being said, these small errors are not expected to affect
the reliability of the estimates obtained for the predicted observables in the ΛCDM bounce
scenario we consider here, which we estimate (by comparisons between the analytical and
numerical results) to be accurate up to an overall factor of approximately 2.

4 Tensor perturbations

It is possible to also calculate the spectrum of tensor perturbations after the bounce, again
assuming that the initial state was the quantum vacuum.

The LQC effective Mukhanov-Sasaki equation for tensor perturbations is4 [19]

µ′′ −
(

1− 2ρ

ρc

)
∇2µ−

z′′T
zT
µ = 0, (4.1)

where µ = h/zT, with h being the usual tensor perturbation modes, and

zT =
a√

1− 2ρ/ρc

. (4.2)

While the ‘time-dependent potentials’ z′′/z for scalar perturbations and z′′T/zT for tensor
perturbations are not the same, the most important difference for our purposes is the fact
that the sound speed for tensor perturbations is always 1, while the sound speed for scalar
perturbations is significantly smaller than 1 during the matter-dominated phase. This effect
strongly suppresses the tensor-to-scalar ratio, as we show below.

4It is not possible to use the simplest separate universe models to handle tensor modes as they necessarily
require off-diagonal elements in the metric, which do not appear in isotropic space-times. While it is likely that
the separate universe approach could be appropriately generalized by using the anisotropic Bianchi cosmologies
to model each ‘separate universe’, this has not been done yet. Instead, the equation of motion here is derived
by demanding that the constraint algebra in the effective theory be anomaly-free. This procedure, when used
to study scalar perturbations, gives the same effective Mukhanov-Sasaki equation as what was obtained in
lattice LQC [18].
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With the tensor power spectrum defined as

∆2
h =

k3

2π2
64πG|h|2, (4.3)

and the tensor-to-scalar ratio r

r =
∆2
h

∆2
R
, (4.4)

it is possible to calculate the spectrum of the tensor perturbations in a fashion analogous to
section 3. While the calculation is a little long, it is not particularly illuminating as it follows
exactly the same steps as the one for scalar perturbations. While there are a few numerical
factors that are different, the procedure is identical and therefore here we will simply state
the results.

The power spectrum of the tensor perturbations is found to be almost scale-invariant,
although the tilt depends on the value of the effective equation of state at the time that the
mode exits the Hubble radius. Recall that the scalar modes reach the long wavelength limit
well before the tensor modes since, during the cold-dark-matter-dominated era, the sound

speed for scalar modes is c
(S)
s = ε while c

(T)
s = 1 for the tensor modes. Therefore, while the

effective equation of state when the scalar perturbations reach the long wavelength limit is
ωeff = −δ, the effective equation of state when the tensor modes exit the Hubble radius will
have changed and will be larger (as the cosmological constant contributes less to the effective
equation of state for a smaller scale factor), though still close to zero. We denote this value
of the effective equation of state by −δT, and we can bound δT above by δT ≤ δ. Then the
departure from scale-invariance is given by

nT = −12 δT. (4.5)

Note that δT, while expected to be small, may be negative and this would give a slight blue
tilt to the spectrum of the tensor perturbations. Therefore, while near-scale-invariant tensor
perturbations are predicted by this model, the exact departure from scale-invariance for the
tensor modes will depend on how the effective equation of state varies in time, and this will
determine whether there is a small blue tilt or a small red tilt.

Finally, for the particular scenario studied here, the amplitude of primordial gravita-
tional waves is predicted to be very strongly suppressed, with a tensor-to-scalar ratio of

r = 24 ε3, (4.6)

where ε refers to the sound speed of cold dark matter and r is therefore predicted to be very
small. Note that the tensor-to-scalar ratio is suppressed both by a contribution due to the
sound speed of cold dark matter, and also by a further factor of 1/4 during the bounce due
to quantum gravity effects.

There do not appear to be many estimates of the sound speed of cold dark matter in the
literature; one interesting reference is [20] which provides a bound of approximately ε2 . 0.03
(note however that in that paper the authors study a considerably different model from this
one). It is likely that in the future a better estimate for ε can be found, but nonetheless the
constraint ε2 . 0.03 already implies an upper bound of r . 0.12 on the tensor-to-scalar ratio,
a result which is in agreement with the latest observations [1, 2].
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5 Discussion

In this paper we have seen how in a contracting universe cosmological perturbations, as-
sumed to be initially in their quantum vacuum state, become scale-invariant if their sound
wavelength becomes larger than the Hubble radius when the dynamics of the universe is
dominated by cold dark matter. A small red tilt is generated when the effective equation
of state is negative due to the presence of a positive cosmological constant, and a small
tensor-to-scalar ratio is predicted.

The scale-invariant perturbations can provide appropriate initial conditions for an ex-
panding universe in order to seed structure formation if there is a bounce to connect the
contracting branch of the universe to our current expanding branch. In the realization of the
matter bounce scenario studied here, the bounce occurs due to non-perturbative quantum
gravity effects, as captured by LQC, that resolve the classical singularity and provide a quan-
tum bridge between the pre-big-bang and post-big-bang epochs. Further, the only matter
fields present in this model are assumed to be cold dark matter and radiation, together with
a positive cosmological constant.

The main predictions depend on four parameters: the scalar index ns is determined
by the effective equation of state at the time when the Fourier modes vk exit the sound
Hubble radius, while the amplitude of the scalar perturbations depend on a combination of
the sound speed of cold dark matter ε, the amount of asymmetry in the universe, which
can be parametrized by He the Hubble rate at matter-radiation equality in the contracting
branch, and the matter energy density at the bounce ρc. In particular, a symmetric bounce is
ruled out and, in order to match observations, it is necessary for matter-radiation equality to
occur at higher space-time curvature scales in the contracting branch than in the expanding
branch. This type of asymmetry can be caused by particle production during the bounce, a
process which may be important in LQC [17].

There exist several other realizations of the matter bounce scenario, some where the
bounce is caused by matter fields that violate energy conditions [21–25], and others where
it is quantum gravity effects that provide the bounce [26–31]. There are also some matter
bounce scenarios where the gravitational sector is modified not only in the high-curvature
regime, but also in the pre-bounce era in order to obtain a matter-like contracting phase
without requiring the presence of any matter fields [32, 33]. Of course, there is no a priori
reason to prefer one realization of the matter bounce scenario over another (other than
perhaps the simplicity or the elegance of a particular model). Instead, it is necessary to
determine how these realizations differ in their predictions which can then be compared to
observations.

For this reason, it is important to point out that the predictions of the different matter
bounce realizations vary in some significant aspects, concerning both CMB experiments [34–
38] as well as dark matter searches [39–41]. The recent review [38] explains the different
predictions of many of the various realizations of the matter bounce scenario and in order
to complement that paper, here we shall briefly explain how the predictions of the model
studied in this paper differ from the other realizations of the matter bounce scenario.

First, the ΛCDM bounce model studied in this paper gives a slight red tilt in a natural
fashion, something which is absent in many other realizations of the matter bounce (see for
example [25, 28, 42] for specific realizations). And second, the predicted tensor-to-scalar
ratio is very small. Most realizations of the matter bounce typically predict relatively large
tensor-to-scalar ratios, and it is often necessary to assume the presence of a large number of
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fields (and thus of entropy perturbations as well) in order to decrease the relative amplitude
of the tensor perturbations. This is not necessary here since the tensor-to-scalar ratio is
naturally predicted to be small due to the small sound speed of cold dark matter. Note that
this effect of a small cs strongly damping the value of r has also previously been noticed in a
study of the matter bounce scenario in a Bohm-de Broglie quantum cosmology model [43].

Another important point is that this scenario predicts a positive running of the scalar
index, dns/dk > 0. This result shows that it is possible for observations to differentiate
between the ΛCDM bounce scenario and inflationary models, where the running of the scalar
index is predicted to be negative. The amplitude of this effect in the ΛCDM bounce scenario
depends on the time evolution of effective equation of state during matter domination −δ,
which in turn depends quite sensitively on the parameters ΩΛ, Ωm and Ωr set as initial
conditions for the background in the contracting branch. We leave a detailed study of the
relation between these parameters and the amplitude of dns/dk for future work.

There do remain two other important open questions regarding this model that are also
left for future work. The first one concerns the importance of particle production effects
during the bounce. Will there be enough particle production to cause sufficient asymme-
try around the bounce point for this model to be viable? The second, more difficult, open
problem is to determine how the presence of anisotropies would modify the predictions of
this model. The Friedmann equation for the mean scale factor in Bianchi models shows
that anisotropies dominate the dynamics in the high curvature limit, and we should expect
them to typically become important during (and possibly for some time before and after)
the bounce in LQC. Indeed, anisotropies can modify the predictions of a number of cosmo-
logical scenarios including inflation [44]. Despite their importance, anisotropies are often
neglected as cosmological perturbation theory becomes considerably more complex in their
presence [45–48]; in particular, for non-vanishing anisotropies the equations of motion for the
scalar, vector and tensor perturbations no longer decouple.

Note that if there is an ekpyrotic phase in the contracting branch of the space-time, it is
possible to avoid the growth of anisotropies generated during matter contraction [23, 24, 49–
51] and then there is no need to include them in the analysis. However, it is certainly
possible (and outside of ekpyrotic models it appears more natural) for anisotropies to grow
and dominate the dynamics near the bounce. In this case, while the anisotropies will be
diluted soon after the bounce (see, e.g., section IIIC of [52]), they may change the spectrum
of the cosmological perturbations as they evolve through the anisotropy-dominated bounce,
and some of these modifications may ultimately be observable today. For this reason, it
is important to allow for anisotropies by generalizing the results obtained here for the case
where the background is an anisotropic Bianchi I space-time (rather than flat FLRW), and
determining precisely how anisotropies may affect the predictions of this model.

Finally, we conclude with some comments regarding the universality and robustness of
the predictions of the ΛCDM bounce scenario with respect to the physics of the bounce. In
this paper we assumed that the bounce is caused by the quantum gravity effects captured
by loop quantum cosmology. As mentioned above, it is also possible to generate a bounce
via other mechanisms, either with matter fields that violate energy conditions, or by mod-
ifications to the gravitational action as occur for example in f(R) theories. An important
property of the ΛCDM bounce scenario is that most of the salient characteristics of the pre-
dicted spectra of scalar and tensor perturbations are due to the pre-bounce physics, where
quantum gravity and other high energy effects are negligible and therefore the majority of the
predictions — including the small red tilt for the modes that exit the sound Hubble radius
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when the effective equation of state is slightly negative, as well as the positive running of the
scalar index — are independent of the high-curvature dynamics of the background space-time
at the bounce point. However, there is one effect that is partially due to LQC: the tensor-to-
scalar ratio is suppressed by a factor of 1/4 during the bounce by LQC effects (specifically,
due to the modifications that arise in the LQC effective Mukhanov-Sasaki equation for tensor
perturbations). Thus, while many predictions of the ΛCDM bounce are quite robust and are
mostly independent of the physics of the bounce, one exception is the predicted value of the
tensor-to-scalar ratio which in fact is affected by LQC effects and, if the sound speed of cold
dark matter is known, this effect could provide a potentially important observational test
for LQC.
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