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Expansion of a poly-glutamine (polyQ) repeat in a group of
functionally unrelated proteins is the cause of several inherited
neurodegenerative disorders, including Huntington’s disease. The
polyQ length-dependent aggregation and toxicity of these disease
proteins can be reproduced in Saccharomyces cerevisiae. This sys-
tem allowed us to screen for genes that when overexpressed re-
duce the toxic effects of an N-terminal fragment of mutant
huntingtin with 103 Q. Surprisingly, among the identified suppres-
sors were three proteins with Q-rich, prion-like domains (PrDs):
glycine threonine serine repeat protein (Gts1p), nuclear polyade-
nylated RNA-binding protein 3, and minichromosome mainte-
nance protein 1. Overexpression of the PrD of Gts1p, containing
an imperfect 28 residue glutamine-alanine repeat, was sufficient
for suppression of toxicity. Association with this discontinuous
polyQ domain did not prevent 103Q aggregation, but altered
the physical properties of the aggregates, most likely early in
the assembly pathway, as reflected in their increased SDS solubil-
ity. Molecular simulations suggested that Gts1p arrests the aggre-
gation of polyQ molecules at the level of nonfibrillar species,
acting as a cap that destabilizes intermediates on path to form
large fibrils. Quantitative proteomic analysis of polyQ interactors
showed that expression of Gts1p reduced the interaction between
polyQ and other prion-like proteins, and enhanced the associa-
tion of molecular chaperones with the aggregates. These find-
ings demonstrate that short, Q-rich peptides are able to shield
the interactive surfaces of toxic forms of polyQ proteins and
direct them into nontoxic aggregates.
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Expansion of a poly-glutamine (polyQ) repeat in otherwise
unrelated proteins is the cause of several inherited neuro-

logical disorders, including Huntington’s disease (HD), spino-
bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy,
and spinocerebellar ataxias 1, 2, 3, 6, 7, and 17 (1). In all these
cases, increasing the length of the polyQ repeat over a critical
threshold (above 37 Q in HD) (2) results in disease manifesta-
tion, with the length of the repeat correlating inversely with age
of disease onset (3).
According to the gain-of-toxic function theory, the polyQ

expansions increase aggregation propensity and confer to the
disease proteins the ability to populate one or more toxic con-
formations, most likely including various oligomeric and higher-
order aggregate states. These aggregate species vary greatly in
number of monomeric units, detergent solubility, binding of dyes,
and identity and mobility of interacting proteins (4–6). A prominent
hypothesis suggests that the pathologic protein aggregates expose
novel, highly interactive surfaces that mediate aberrant interactions
with other proteins, resulting in their functional impairment and
sequestration (7–9). Moreover, the aggregation process is thought
to interfere with general protein quality control pathways, including
protein folding and the clearance of misfolded proteins (10–13).

The yeast S. cerevisiae has been used extensively as a model to
explore the basic mechanisms of toxicity mediated by polyQ
expansions. The polyQ length dependence of aggregation has
been reproduced in yeast upon expression of N-terminal frag-
ments of huntingtin containing the polyQ stretch (N-Htt) (14,
15). Interestingly, toxicity, as measured by growth impairment,
was found to depend critically on the properties of the sequences
flanking the polyQ region (16). Like mammalian prions, yeast
prions are able to cause detectable phenotypes without trans-
mitting any genetic material (17), and both N-Htt aggregation
and toxicity were shown to require the [RNQ+] prion (18, 19).
Although there are numerous proteins in the yeast proteome
that contain Q-rich regions (20), there is no Htt homolog in
yeast. Therefore, any toxic effects observed in this model system
on N-Htt expression can be attributed to a gain-of-toxic function.
Although polyQ aggregation is strongly associated with cell

toxicity, the exact nature and the conformational properties of
the toxic polyQ species remain elusive. To gain insight into the
basic mechanisms of polyQ toxicity, we performed an unbiased
yeast genetic screen for suppressors of the growth defect caused
by the expression of polyQ expanded N-Htt. We identified six
genes that reproducibly restored cell growth when overex-
pressed. Surprisingly, these suppressors include several proteins
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investigate whether the Q-rich domains of Gts1p, Nab3p, and
Mcm1p are sufficient for suppression (Fig. 2A). Expression of
the Q-rich C-terminal regions of Gts1p or Nab3p was sufficient
to rescue cell growth to a similar extent as expression of the full-
length proteins. In contrast, the corresponding construct of
Mcm1p failed to suppress (Fig. 2B). Similarly, the Q-rich prion-
like proteins Yck1p and Taf12p (21), as well as the prion domain
of Sup35p (S35N) (Fig. 2A), also failed to suppress 103Q-GFP
toxicity, at least at the expression levels tested (Fig. 2C). Thus,
specific sequence features beyond a compositional bias toward
glutamine or the presence of a candidate prion domain must be
required for suppression of polyQ toxicity.
The Q-rich domains of Nab3p and Gts1p comprise less than

25% of the sequence of the full-length proteins and contain
neither the RNA recognition motif of Nab3p nor the Zn-finger
and UBA domain of Gts1p. Thus, it seemed likely that these
domains suppress the toxicity of 103Q-GFP by a mechanism
unrelated to the biological functions of the full-length proteins.
In the remainder of this study, we used Gts1p and its C-terminal
region (Gts1Q) as a model to investigate this mechanism.

Gts1p Expression Does Not Change the Prion Status of the Prion
Protein Rnq1p. 103Q-GFP toxicity can only be observed in yeast
cells when Rnq1p is present in the aggregated prion form [RNQ+]
(19). Curing the [RNQ+] status will suppress 103Q-GFP–mediated
toxicity, and indeed two previously identified loss-of-function
suppressors, rnq1Δ and hsp104Δ, cause the loss of [RNQ+] (28).
Heat shock protein 104 levels have been reported to be altered
by Gts1p expression (41), which might influence the Rnq1p prion
status and subsequently reduce 103Q-GFP toxicity. To address
this possibility, we investigated whether overexpression of Gts1p
alters the prion status of Rnq1p, using Rnq1-GFP as a reporter

protein (42). We found that expression of Gts1p neither cured
the [RNQ+] prion nor did it induce [RNQ+] in cells that had
previously been cured by treatment with guanidinium chloride
(GdmCl) (Fig. S1A). This conclusion is supported further by the
observation that 103Q-GFP remains localized in fluorescent foci
when Gts1p is overexpressed (Fig. 3A and Fig. S1B). In contrast,
cells cured of the [RNQ+] prion by GdmCl treatment showed
nearly no visible 103Q-GFP foci (Fig. S1B) (19).

Gts1p Expression Changes the Aggregation Status of 103Q-GFP. The
finding that 103Q-GFP is still present in visible foci on Gts1p
overexpression does not exclude the possibility that the presence
of Gts1p modifies biophysical properties of the aggregates. The
polyQ inclusions that are virtually indistinguishable by light mi-
croscopy may nevertheless differ in their physical properties:
they may be detergent (SDS) insoluble, containing ordered polyQ
fibrils, or detergent soluble, containing structurally amorphous
aggregates (15, 43). Using an established filter trap assay for the
detection of SDS insoluble aggregates larger than 0.2 μm (44),
we found that expression of Gts1p or Gts1Q strongly reduced the
amount of SDS insoluble 103Q-GFP present in cells, whereas
expression of the N-terminal Gts1p fragment was without effect
(Fig. 3B). Thus, Gts1p shifts the aggregation properties of the
protein from SDS insoluble to SDS soluble aggregate species
that still form visible inclusions (Fig. 3A), without reducing the
amount of 103Q-GFP that can be detected by gel electrophoresis
(Fig. 3C, input panel).
To demonstrate that Gts1p interacts directly with 103Q-GFP,

we added a myc-tag to the N terminus of Gts1p and Gts1Q
(Gts1-myc and Gts1Q-myc) to enable detection. Addition of this
tag did not change the Gts1p-mediated rescue of 103Q-GFP
toxicity (Fig. S2). Although Gts1-myc was diffusely distributed in
cells expressing 25Q-GFP (Fig. 3A), in 103Q-GFP expressing
cells, Gts1-myc was present in bright fluorescent foci colocalizing
with 103Q-GFP. Coimmunoprecipitation experiments confirmed
the association of Gts1-myc and Gts1Q-myc with 103Q-GFP (Fig.
3C), but showed only little association with 25Q-GFP (Fig. S3).
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Fig. 2. Effect of Q-rich regions on 103Q-GFP–mediated toxicity. (A) Distri-
bution of glutamine residues in Q-rich proteins. Schematic representation of
Q and N distribution in the sequences of Q-rich constructs used in this study.
N residues, cyan; Q residues, red. Sequences of truncation constructs used in
B and C are indicated by black lines. (B) The Q-rich regions of Gts1p and
Nab3p alone are sufficient to suppress 103Q-mediated toxicity. Full-length
(FL) and truncated Q-rich regions (Q) of GTS1 and NAB3 were cloned in
pCM190; MCM1 FL and MCM1 Q were cloned under the control of the
MCM1 promoter in pRS426. Growth tests were performed as described in
Fig. 1C. (C) Compositional bias toward glutamines is not sufficient to sup-
press 103Q-GFP toxicity. The Q-rich proteins Taf12p and Yck1p, as well as the
Q-rich N terminus of Sup35p (S35N) were cloned under the control of a tet-
racycline repressible promoter in pCM190. Growth tests were performed as
described in Fig. 1C.
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Fig. 3. Gts1p interacts with 103Q-GFP and modulates its aggregation status.
(A) 103Q-GFP and Gts1-myc colocalize in vivo. YPH499 was transformed with
plasmids encoding 25Q/103Q-GFP and Gts1-myc. 25Q/103Q-GFP localization
is observed via the fluorescent GFP tag (green). Gts1-myc is observed via
indirect fluorescence (red). (B) Gts1p expression reduces the amount of SDS
insoluble 103Q-GFP. Full-length Gts1p (FL), an N-terminal fragment (N), or
a fragment containing the Q-rich C terminus (Q) were preinduced before
induction of 103Q-GFP. Cells were lysed and analyzed for SDS insoluble
103Q-GFP by filter retardation assay. (C) Gts1-myc and 103Q-GFP physically
interact. YPH499 was transformed with plasmids encoding 103Q-GFP and
Gts1-myc or Gts1Q-myc. After lysis, anti-myc antibodies were used for im-
munoprecipitation (IP), followed by SDS/PAGE and Western blotting using
anti-GFP or anti-myc antibodies.
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