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Abstract. Can children reason the Bayesian way? We argue that the answer to this question depends on how 
numbers are represented, because a representation can do part of the computation. We test, for the fi rst 
time, whether Bayesian reasoning can be elicited in children by means of natural frequencies. We show that 
when information was presented to fourth, fi fth, and sixth graders in terms of probabilities, their ability to 
estimate the Bayesian posterior probability was zero. Yet when the same information was presented in natural 
frequencies, Bayesian reasoning showed a steady increase from fourth to sixth grade, reaching an average 
level of 19%, 39%, and 53%, respectively, in two studies. Sixth graders’ performance with natural frequen-
cies matched the performance of adults with probabilities. But this general increase was accompanied by 
striking individual diff erences. More than half of the sixth graders solved most or all problems, whereas one 
third could not solve a single one. An analysis of the children’s responses provides evidence for the use of 
three non-Bayesian strategies. Th ese follow an overlapping wave model of development and continue to be 
observed in the minds of adults. More so than adults’ probabilistic reasoning, children’s reasoning depends 
on a proper representation of information. 

Th ere is an apparent paradox concerning the human ability to reason according to the laws of prob-
ability. On the one hand, according to the classical work by Piaget and Inhelder (1951/1975), by 
age 12 or so, children understand the laws of combinatorics, the law of large numbers, the irrevers-
ibility of chance processes, and other characteristics of probability. Recent studies have qualifi ed 
this fi nding and demonstrated that, depending on the task, even younger children show signs of 
probabilistic reasoning (e.g., Falk & Wilkening, 1998; Schlottmann & Anderson, 1994). Piaget 
and Inhelder’s work stands in the epistemological tradition of the Enlightenment’s view of prob-
ability, according to which the laws of probability and the laws of human reasoning are two sides of 
the same coin (Daston, 1988). In Laplace’s (1814/1951) famous phrase, the theory of probability 
is “only common sense reduced to calculus” (p. 196). 

In apparent contradiction to these results, research in cognitive and social psychology since the 
1970s has been interpreted as demonstrating that many adults fail to reason according to the laws 
of probability (e.g., Gilovich, Griffi  n, & Kahneman, 2002). In the cognitive illusions program, the 
very same laws that the Enlightenment probabilists and their modern followers, including Piaget, 
thought to match intuitive reasoning––such as the law of large numbers and set inclusion––were 
seen as diffi  cult for human intuition. More recently, many of the original negative fi ndings have 
been qualifi ed and revised (e.g., Juslin, Winman, & Ohlson, 2000; Kahneman & Fredrick, 2002; 
Koehler, 1996a; Lopes, 1991). Nevertheless, a question arises. Why should Geneva children reason 
according to the laws of probability when Stanford undergraduates seem to be have problems do-
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ing so? Th is apparent paradox of early competence versus late failure has puzzled several scholars 
(e.g., Schlottmann, 2001).

In this article, we deal with a form of probabilistic reasoning that is considered diffi  cult, namely, 
Bayesian reasoning. Do children reason the Bayesian way? To the best of our knowledge, there is 
no single study on children’s Bayesian intuitions. Th ere has been research with bees, bumblebees, 
birds, and other animals, concluding that animals are fairly good Bayesians (e.g., Real, 1991; Real 
& Caraco, 1986), whereas research with adults often came to the opposite conclusion. We will 
argue that the question “Do children reason the Bayesian way?” can only be answered when it is 
posed conditional to the external representation of numerical information.

Bayesian Reasoning

Piaget and Inhelder (1951/1975) discussed the ideas of various mathematicians, mostly frequentists 
such as von Mises and Reichenbach, but Bayes’ rule is never mentioned. In this paper, we deal with 
an elementary form of Bayesian reasoning, which has been the focus of almost all studies in adults 
(see Krauss, Martignon, & Hoff rage, 1999, for an exception). Th e elementary situation consists 
of a binary hypothesis (e.g., disease or no disease) and binary data (test positive or negative). Th e 
task is to evaluate the chances of the hypothesis given the data (e.g., of disease given a positive test). 
When we use the term “Bayesian reasoning” in this paper, we refer to reasoning in regard to this 
elementary situation.

For binary hypotheses (H and not-H) and data D, Bayes’ rule is:

In words, Bayes’ rule specifi es how to derive the posterior probability p(H|D) of a hypothesis 
with the provided data. Th is probability can be derived from the base rate (or prior probability) 
p(H) in light of new data. Th e impact of the data is specifi ed by the conditional probabilities p(D|H) 
and p(D|not-H). Th e rule is commonly attributed to Th omas Bayes, but its origin is uncertain. 
Stigler (1983) concluded that the odds are that Nicholas Saunderson, who held Newton’s chair at 
Cambridge, actually discovered the rule. 

Th e Impact of Representation on Bayesian Reasoning

Conditional probabilities, as in Equation 1, are a recent way to represent uncertainties, dating back 
to the invention of the mathematical theory of reasonableness in the mid-17th century (Gigerenzer 
et al., 1989). Th ere are diff erent ways of representing uncertainties. One representation is in terms 
of natural frequencies, which correspond to the result of observing outcomes in natural environ-
ments, that is, counting without normalizing. Th is has been the format in which humans––and 
animals––have encountered information in their environments during most of their history.

We illustrate the diff erence between a representation in terms of conditional probabilities and 
natural frequencies with one of the problems (“Red Nose”) given to the children in this study. 

 p(H)p(D|H)
 p(H|D = ____________________________ (1)
  p(H)p(D|H) + p(not-H)p(D|not-H) 
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Red Nose Problem: Conditional Probabilities

Pingping goes to a small village to ask for directions. In this village, the probability that the person 
he meets will lie is 10%. If a person lies, the probability that he/she has a red nose is 80%. If a per-
son doesn’t lie, the probability that he/she also has a red nose is 10%. Imagine that Pingping meets 
someone in the village with a red nose. What is the probability that the person will lie? 

Red Nose Problem: Natural Frequencies

Pingping goes to a small village to ask for directions. In this village, 10 out of every 100 people will 
lie. Of the 10 people who lie, 8 have a red nose. Of the remaining 90 people who don’t lie, 9 also 
have a red nose. Imagine that Pingping meets a group of people in the village with red noses. How 
many of these people will lie? ___ out of ____.

When the information is in conditional probabilities, the solution can be obtained by inserting 
the probabilities into Bayes’ rule, as defi ned by Equation 1. Th e result is a probability of 47% that 
the person will lie. With natural frequencies, Bayesian computations become simpler (Gigerenzer 
& Hoff rage, 1995; Kleiter, 1994):

Natural frequencies are illustrated by the tree in Figure 1. Th ere are a cases (e.g., people), of 
which b cases show H (e.g., they are liars) and c cases do not. Among the H cases, there are d cases 
that show D (e.g., a cue such as red nose) and e cases that do not; among the not-H cases, f show D 
and g do not. Th us, the answer is: Eight out of 17 people with a red nose will lie, which corresponds 
to a probability of 47%. 

 
d p(H|D = ____ (2)

  d + f 

f
red nose

g
no red nose

e
no red nose

d
red nose

b
lie

a
People

c
do not lie

Figure 1. Illustration of a natural frequency tree. Th e total observed frequency a is split into b 
(e.g., the number of people who lie) and c (the number of people who do not lie). Th e frequency b 
out of a is the base rate (e.g., of lying). Th e frequency b is, in turn, split into d (e.g., the number of 
people with red noses among those who lie) and e (the number of people without red noses among 
those who lie). Th e frequency d out of b is the hit rate (or sensitivity). Similarly, the frequency c 
is split into f (e.g., the number of people with red noses among those who do not lie) and g (the 
number of people without red noses among those who do not lie). Th e frequency f out of c is the 
false positive rate. Bayes’ rule amounts to d/(d + f ), that is, only the two natural frequencies in the 
bolded boxes need to be attended to. Th e base rate can be ignored because it is contained in these 
natural frequencies.
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Th e reason for the computational simplifi cation is that natural frequencies still contain infor-
mation about base rates, whereas conditional probabilities are obtained by taking the base rate 
information out of the natural frequencies (i.e., normalization). As a result, when one transforms 
the natural frequencies in Equation 2 into probabilities, the base rates have to be put back into 
Equation 1 by multiplying the conditional probabilities by the base rates. Th is can be seen by 
comparing the structures of Equations 1 and 2, which are exactly the same. 

 Note that the natural frequencies correspond to the way a child would learn from direct ob-
servation, whereas conditional probabilities are derived by normalizing natural frequencies. It is 
important to keep in mind that not all frequencies are natural frequencies. For instance, relative 
frequencies do not lead to computational simplifi cation (Gigerenzer & Hoff rage, 1995, Prediction 
4 and Experiment 2; 1999). Some researchers, however, have confused natural frequencies with 
any kind of frequencies. For instance, Johnson-Laird, Legrenzi, Girotto, Legrenzi, and Caverni 
(1999) stated that “in fact, data in the form of frequencies by no means guarantee good Bayesian 
reasoning” (p. 81), and referred to a study in which normalized, but not natural frequencies were 
provided. Similarly, Evans, Handley, Perham, Over, and Th ompson (2000) tested normalized 
frequencies, found no diff erence from conditional probabilities, concluded that frequencies per se 
do not explain the facilitation of Bayesian reasoning, and presented this result as evidence against 
Gigerenzer and Hoff rage’s (1995, 1999) thesis. Yet the argument is that representations do part of 
the computations, not that frequencies per se would, for some unknown reason, facilitate Bayesian 
computations (see Brase, 2002; Hoff rage, Gigerenzer, Krauss, & Martignon, 2002). 

Multiple Cognitive Strategies

How do children and adults try to solve Bayesian-type tasks such as the Red Nose problem? Previous 
research on children’s cognitive strategies in diff erent tasks suggests that there is often not a single 
strategy (such as an adding rule), but rather a toolbox of strategies available (e.g., Siegler, 1999, 
2000). Similarly, research on Bayesian tasks has shown that adults use about fi ve diff erent strate-
gies, and that the prevalence of these strategies varies with the format of information (Gigerenzer 
& Hoff rage, 1995; Hoff rage & Gigerenzer, 1998). Th e possible existence of multiple strategies in 
children has methodological consequences. First, we will analyze strategies of children at the indi-
vidual level, rather than at the level of aggregates of individuals. Second, given the observation in 
previous research with adults that individuals sometimes switch between strategies from problem 
to problem rather than consistently using only one strategy, we will also analyze an individual’s 
strategy for each problem rather than aggregating across all problems. In other words, the unit of 
analysis is an individual-task combination. Finally, the existence of multiple strategies requires test-
ing the data of each individual-task combination against multiple hypotheses (i.e., the candidate 
strategies), rather than one null hypothesis. 

Th e frequency distributions of cognitive strategies can change systematically over time. Strate-
gies that are frequent in early age often drop out over time, and new strategies join and may become 
dominant. For instance, Siegler (1999) and Shrager and Siegler (1998) described the developmental 
change in strategies that preschoolers use for addition, such as 3 + 5, and Gigerenzer and Richter 
(1990) analyzed the developmental change in strategies used to estimate the area of rectangular 
shapes. Th e common observation is that strategy development does not proceed from using one 
strategy at one stage to using a diff erent strategy at a second stage, and so on. Rather, developmen-
tal change seems to follow Siegler’s (1999) overlapping waves model, in which multiple strategies 
coexist at each point; what changes is their onset and prevalence. Th e methodological consequence 
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of this observation is again to analyze strategies at the individual (and task) level, and to describe 
the rise and fall of strategies throughout development in terms of the frequency distribution of 
each strategy. 

Questions

Th is article addresses three questions:
(1) Does children’s ability to solve Bayesian problems depend on the information presentation? 

Specifically, do natural frequencies help children to reason the Bayesian way? If so, at what 
age?

(2) What are the cognitive strategies children use to solve Bayesian problems? How do they differ 
from the strategies adults use? 

(3) What is the developmental pattern of change in strategies?
We performed two studies with a similar design. Because both studies had the same structure, we 
will report the results together.

Method

Participants, Age, and Design

In both studies, the children were from ordinary elementary schools in Beijing. Th e adults were 
MBA students from the School of Management, Beijing University of Aeronautics and Astronau-
tics. In Study 1, the mean age of the fourth graders was 9;9 (range from 9;4 to 10;3), the mean age of 
the fi fth graders was 10;8 (range from 10;1 to 11;4), and the mean age of the sixth graders was 11;9 
(range from 11;3 to 12;6). Th e mean age of the adults was 29 (range from 25 to 35). Th e number 
of participants was 16, 15, 14, 23, and 23 for the fourth, fi fth, and sixth graders, and the two adult 
groups, respectively. In Study 1, children were tested with natural frequencies alone, whereas one 
group of adults was tested on conditional probabilities and the other on natural frequencies. 

In Study 2, the mean age of the fourth graders was 9;7 (range from 9;2 to 10;1), the mean age 
of the fi fth graders was 10;7 (range from 10;1 to 11;3), and the mean age of the sixth graders was 
11;6 (range from 11;2 to 12;2). Th e mean age of the adults was 20 (range from 19 to 23). Th e 
number of participants was 30 in each of the four groups for the natural frequency representation. 
In addition, we tested children and adults on the probability version, with 10 children in each of 
the three age groups and a total of 30 adults. We used a smaller number of children for the prob-
ability condition because we feared that establishing the probability base line might frustrate them 
if the task were too diffi  cult.

Reasoning Problems

We constructed 10 Bayesian problems whose content was suited to children. One of these is the 
Red Nose problem described above; the others are given in the Appendix. Study 1 used 7 and 
Study 2 all 10 problems. As the Red Nose problem shows, probabilities were always expressed as 
percentages. 
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Procedure

Children were tested in small groups of three to six persons. Th e adults were tested in larger groups 
in a classroom. In Study 2, children were randomly assigned to either conditional probability or 
natural frequency representation, and thus the factor representation was varied between partici-
pants. In Study 1, children were only tested on natural frequencies. Th e instruction was the same 
for all age groups: “Please solve the following problems. Each problem includes several numbers 
and a question. Please write down how you got the answer or mark the numbers you used to get 
the answer.”

Criteria for Identifying Bayesian Responses

When the Bayesian answer is 8 out of 17 (or a probability of 47%), should a child’s answer “9 out 
of 17” (or a probability of 53%) count as a Bayesian response? To avoid classifying an answer as a 
Bayesian response although the underlying strategy was in fact not a Bayesian strategy, we used a 
strict outcome criterion (similar to Gigerenzer & Hoff rage, 1995): An individual’s response has 
to be numerically exactly the same as the Bayesian solution. By the phrase “exactly the same,” we 
mean that children and adults have to report the exact frequency or probability; otherwise it is not 
coded as a Bayesian response. For instance, in the Red Nose problem, the answer “9 out of 17” 
was not coded as a Bayesian response, although the absolute diff erence from “8 out of 17” may be 
considered an insignifi cantly small deviation in a signifi cance test. Th e strict criterion diminishes 
the probability that a mere guess is mistakenly classifi ed as a Bayesian response (see below). 

In addition, participants were encouraged to circle the numbers they had used. For instance, 
one child wrote “21 + 28 = 49, 21/49 = 3/7”, circled the “21” and the “28,” and answered “3 out 
of 7” (for Problem 2, see Appendix). Th e circled numbers were used as a double check: If the 
circled numbers were inconsistent with Bayesian reasoning, then the response was not counted 
as a Bayesian response. We did not fi nd such cases; children’s numerical answers and the numbers 
they circled were consistent. 

Th e opposite error, not classifying Bayesian reasoning as a Bayesian response, might occur when 
a person reasons the Bayesian way but makes an error in the calculation, for instance, when the 
information is in probabilities that involve substantial calculations. Th erefore, if a person showed 
Bayesian reasoning in terms of process––for instance, when writing down the equation .10 × 
.80/(.10 × .80 + .90 × .10) for the Red Nose problem––but subsequently made a calculation error, 
or did not calculate the result, we classifi ed this as a Bayesian solution. Th e reason is that we are 
investigating people’s Bayesian reasoning, not their calculation skills. Th ese cases occurred only with 
probability formats, and only in adults (in 12 out of a total of 230 Bayesian responses). 

Results

Can Children Reason the Bayesian Way With Conditional Probabilities?

Th e results with probability format were straightforward (Figure 2). Adults were able to solve 49% 
of the problems (and 57% in Study 1, where children were not tested with a probability format). 
None of the fourth graders, none of the fi fth graders, and none of the sixth graders could solve any 
of the problems when the information was in probabilities. Th eir strategies seemed to be random: 
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Th ey picked one of the percentages, or added or subtracted two or three percentages, and sometimes 
answered that the probability was 160% or a similarly impossible value. Th e children seemed to 
have no clue how to solve the problems when the information was in terms of probabilities. We 
take this result as a base line for the possible eff ect of natural frequencies. 

Th e inability of children to solve these problems should be evaluated against the fact that they 
were not familiar with the mathematical concepts of probability and percentage. Percentages were, 
at the time of the study, not taught in Chinese primary schools before the middle of sixth grade 
(the sixth graders in this study were tested before they were exposed to percentages). Th e results in 
Figure 2 were consistent with the expectations of the children’s teachers, who predicted that the 
children would not be able to solve these problems, given that they had never been exposed to them. 
Were the teachers’ expectations still true when probabilities were replaced by natural frequencies? 

Can Natural Frequencies Improve Bayesian Reasoning in Children?

Fourth graders were able to solve 17% and 19% of the problems in Study 1 and 2, respectively, when 
the information was in natural frequencies (Figure 3). For the fi fth graders, this number increased 
to 30% and 42%. By sixth grade, children solved 70% and 48% of the problems. Adults reached 
a performance of 75% and 77% in Study 1 and 2, respectively. Averaged across both studies and 
weighted by the sample sizes, the results are 18.7%, 39.0%, 53.5%, and 76.1% Bayesian solutions 
for the fourth, fi fth, and sixth graders, and the adults, respectively. When one compares across 
representations, the sixth graders’ performance with natural frequencies matched and surpassed 
the performance of adults with probabilities (Figure 2).

 Table 1 shows that the Bayesian responses were not uniformly distributed across participants, 
but showed marked individual diff erences. Among the fourth graders, a large proportion could 
not solve a single one of the problems. Most others succeeded with one or two of the problems. 
Th ese could be signs of an occasional fl ash of Bayesian reasoning in this age group. Most remark-

4th Graders 5th Graders 6th Graders Adults

50

40

30

20

10

0
0 0 0

47

Bayesian Reasoning With Conditional Probabilities

Figure 2. Percentage of Bayesian solutions with conditional probabilities. Based on 60 participants 
(10 in each of the children groups and 30 adults) and 10 problems, there were a total of 600 
individual problems. None of the children could solve any of the problems.
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ably, in Study 2, one child solved all 10 problems and three solved 8 or 9 of the problems. Th ese 
extraordinary children reasoned systematically better––with natural frequencies––than a number 
of the adult MBA students. 

Th e picture for the fi fth graders is diff erent. Th e proportion of Bayesian responses was twice as 
high (Figure 2) and the interindividual variability increased (Table 1). In Study 1, 5 out of the 15 

4th Graders 5th Graders 6th Graders Adults

80

50

30

20

10

0

Bayesian Reasoning With Natural Frequencies

70

60

40

Study 1 (n = 68,
7 problems)

Study 2 (n = 120,
10 problems)

Figure 3. Percentage of Bayesian solutions with natural frequencies. In Study 1, there were 16, 15, 
14, and 23 participants in the four age groups, respectively. In Study 2, there were 30 participants 
in each group. Th e total number of individual problems (natural frequency representations) was 
476 in Study 1, and 1,200 in Study 2.

Table 1
Distribution of the Number of Bayesian Responses

Number of Bayesian responses: Study 1

Grade 0 1 2 3 4 5 6 7 8 9 10 n Total

Fourth  6 2 7 1 0 0 0  0 16  19

Fifth  6 2 1 1 2 2 1  0 15  31

Sixth  3 0 0 1 0 0 4  6 14  69

Adults  4 1 0 0 1 0 3 14 23 121

Number of Bayesian responses: Study 2

Fourth 18 5 0 0 0 1 1  1 2 1  1 30  58

Fifth 13 1 0 2 1 0 2  0 2 2  7 30 127

Sixth 11 1 2 0 0 0 0  1 8 2  5 30 144

Adults  5 0 1 0 0 0 2  0 0 4 18 30 230

Note. n = number of participants in each group. Total = number of Bayesian responses in each group. For each participant, the 
total number of Bayesian responses could vary between 0 and 7 in Study 1 (top panel) and between 0 and 10 in Study 2 (bot-
tom panel). For instance, in Study 1, six children in fourth grade and four adults could not solve any of the problems. 
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children gave the Bayesian response most of the time, whereas 6 children showed no sign of Bayesian 
reasoning––the same number as among the fourth graders. In Study 2, 7 out of 30 children found 
the Bayesian solution for every problem, whereas 13 could not solve a single problem. 

For the sixth graders, there were essentially two groups left. Th e majority of children now rea-
soned the Bayesian way for most or all of the problems. At the same time, almost one third of the 
sixth graders still showed no sign of Bayesian intuition and could solve none of the problems.

To summarize: At an age where conditional probabilities pose immense diffi  culties, natural 
frequencies can foster Bayesian reasoning in children. Sixth graders’ performance with natural 
frequencies matched the performance of adults with probabilities. But the general increase in per-
formance was accompanied by striking individual diff erences. Whereas more than half of the sixth 
graders solved most or all problems, most of the others could not solve a single one. 

How do children (and adults) who do not reason the Bayesian way attempt to solve the prob-
lems? Do they merely guess or do they use systematic, pre-Bayesian strategies?

Non-Bayesian Intuitions

In the absence of previous research with children, we started with the three most frequent non-
Bayesian strategies in adults as hypotheses (Gigerenzer & Hoff rage, 1995). Th e joint occurrence 
strategy is related to the positive testing strategy (Klayman & Ha, 1987), where people only look 
for the frequency of confi rming evidence, such as when both symptom and disease occur together. 
For this and other non-Bayesian strategies, we used the same criteria as for identifying Bayesian 
reasoning. In the Red Nose problem, the joint occurrence strategy predicts that children will use 
the number of people who have a red nose and lie (here: 8 out of 100). However, the children in our 
two studies never followed this strategy. Instead, we observed cases consistent with the two other 
strategies adults use, conservatism and representative thinking, along with two strategies that have 
not been reported in earlier studies. Th e logic of the resulting four strategies is shown in Figure 4, 
using the Red Nose problem.

Bayes
8 of (8 + 9)

Pre-Bayes
10 of (8 + 9)

Conservatism
10 of 100

Representative Thinking
8 of 10

Evidence-Only
(8 + 9) of 100

Pingping goes to a small village to ask for directions.
In this village, 10 out of every 100 people will lie.

Of the 10 people who lie, 8 have a red nose.
Of the remaining 90 people who don’t lie, 9 also have a red nose.

Imagine that Pingping meets a group of people in the village with a red nose.
How many of these people will lie? ___ out of ___.

Figure 4. Non-Bayesian and Bayesian strategies in children. For three of the strategies, arrows 
show what information children pay attention to (to avoid illegibility, arrows are omitted for two 
strategies). Th e formula underneath the name shows how the numbers are combined. For instance, 
the strategy called conservatism leads to the answer that “10 out of 100 people will lie.”
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 If a child centers on only one aspect of the problem, then this aspect is either the event to be 
predicted (e.g., people who lie), or the evidence available (e.g., red nose). If the child centers on 
the event, the following strategy results (a and b refer to Figure 1). 

Conservatism: b/a

Th e underlying intuition is to stick with one’s prior beliefs and disregard new evidence. Th is strategy 
has been labeled “conservatism” (Edwards, 1968) and “base-rate only” (Gigerenzer & Hoff rage, 
1995). It amounts to the opposite of base rate neglect. In the Red Nose problem, conservatism 
generates the answer “10 out of 100” rather than “8 out of 17.” It typically underestimates the 
Bayesian probability or frequency. In studies with natural frequencies, a small number of adult 
laypeople (Gigerenzer & Hoff rage, 1995) and physicians making diagnostic inferences (Hoff rage 
& Gigerenzer, 1998) have been reported to rely on conservatism.

If the child centers only on the evidence, then a diff erent strategy results.

Evidence-Only: (d + f )/a

Th e intuition underlying this strategy is the opposite of conservatism: People jump at the new 
evidence and disregard prior beliefs. Evidence-only disregards the base rate of the target event, and 
focuses only on how often the evidence or signal (d + f ) occurred among all cases (a). In the Red 
Nose problem, evidence-only generates the answer “17 out of 100.” Th is strategy was not reported 
by Gigerenzer and Hoff rage (1995). Th e third strategy has been observed frequently in adults and 
uses a diff erent denominator than the two centering strategies.

Representative Th inking: d/b

Th e intuition underlying this strategy is to see how often the evidence (e.g., red nose) occurs when 
the event (lying) is there. Th is strategy has been variously called “representative thinking” (Dawes, 
1986) or “Fisherian” (Gigerenzer & Hoff rage, 1995). Th e reason for the latter is because it cor-
responds to a widely-used method of hypothesis testing, known as signifi cance testing. In Fisher’s 
theory of signifi cance testing, an inference from data D to a null hypothesis H0 is based solely on 
p(D|H0), which is known as the exact level of signifi cance. As Figure 1 illustrates, the proportion 
d of b is equivalent to p(D|H). Fisher was not a Bayesian; in fact, he ridiculed Bayesian statistics as 
useless in science (Gigerenzer et al., 1989, chap. 3). Unlike Bayes’ rule, signifi cance testing ignores 
both base rates and false positive rates. Representative thinking produces the confusion of the Bayes-
ian posterior probability with the hit rate, and has been reported to describe some physicians’ and 
lawyers’ intuitions when the information is presented in conditional probabilities (Dawes, 1986; 
Koehler, 1996b). In the Red Nose problem, this strategy generates the response “8 out of 10” rather 
than the correct answer “8 out of 17.”

Only one strategy had the same denominator as Bayes’ rule.

Pre-Bayes: b/(d + f )

To the best of our knowledge, this strategy has not been reported in the literature before. We call 
it pre-Bayes because it gets the denominator right and the numerator approximates the numerator 
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in Bayes’ rule for high hit rates. Children who use this strategy focus on the number b of target 
events (such as cases of lying) rather than on the number d of cases where a cue (red nose) is present 
among the target events. In the Red Nose problem, this strategy generates the answer “10 out of 
17” instead of the correct answer “8 out of 17.” As this example illustrates, picking b instead of d 
can lead to estimates close to answers based on Bayesian reasoning. 

Some children wrote down clearly how they arrived at their answer, and here we also have process 
information for the non-Bayesian strategies. For instance, for problem 2 (salty cookies), one child 
wrote “20/100 = 1/5,” and then responded “1 out of 5” (conservatism). Another child wrote “14 + 
24 = 38, 38 : 100 = 38/100,” and then answered “38 out of 100” (evidence-only); and a third child 
wrote “14 + 24 = 38, 20 : 38 = 20/38 = 10/19,” and then answered “10 out of 19” (pre-Bayes).

Tables 2 and 3 show how often children and adults followed each of the four strategies. For 
instance, in Study 1, three fourth graders followed pre-Bayes in 2 out of 7 problems, and one fi fth 
grader did so consistently in all 7 problems. 

But how can we know whether these response patterns are the product of systematic strate-
gies, rather than of mere guessing by picking numbers randomly? Specifi cally, we need to ask for 
each candidate strategy (a) whether there were more correct responses in total than would have 
been expected if the children had guessed, and (b) whether some children followed the strategy 
systematically. It is not easy to defi ne the set of options from which children could randomly pick. 
We suggest doing this on the basis of two observations: (i) Children consistently picked either two 
or three but not more of the total of fi ve numbers specifi ed in each problem (e.g., two for conser-
vatism and representative thinking, three for pre-Bayes and evidence-only), and (ii) when children 
picked three numbers, they added––rather than subtracted––two of them. Th is results in 20 ways 
to pick two out of fi ve numbers, and in 60 ways to pick three. Th ese 80 random choices reduce to 
40 because of the logical constraint that the second number in the response “__ out of __” cannot 
be smaller than the fi rst, a constraint that children consistently followed.2 For simplicity, we defi ne 
the chance hypothesis by a uniform distribution, that is, random picking means that each of these 
40 patterns has the same probability. 

Th e fi rst question is whether the total number of patterns consistent with each of the four candi-
date strategies is actually larger than what can be expected by chance. Th e total number of children’s 
Bayesian responses is 119 (out of 315) in Study 1 and 329 (out of 900) in Study 2. Th us, we have 
196 and 571 unaccounted responses, which total 767. Assuming that these children picked ran-
domly, one expects 767/40 = 19.2 picks that look like one of the four strategies, whereas the actual 
numbers were 140, 65, 56, and 22, for pre-Bayes, conservatism, evidence-only, and representative 
thinking, respectively (Tables 2 and 3). Th at is, patterns implied by the fi rst three strategies occur 
much more frequently than expected by the chance model, whereas the same analysis shows no 
support for representative thinking. 

Th is aggregate analysis, however, does not consider the possibility of systematic individual dif-
ferences. Are there children who follow one strategy consistently? Consider fi rst pre-Bayes (Tables 2 
and 3). For Study 1, a binomial test (p = 1/40; n = 7) shows that the probability of producing three 
(or more) times the predicted pattern by chance is p = .0005. Th us, three or more answers are un-
likely to occur by chance. For the two fi fth graders who followed the predicted pattern fi ve out of 

2 One can generate 5 × 4 ordered pairs from fi ve numbers, and one of each pair (a, b) and (b, a) is eliminated 
by the logical constraint. Th is coincides with the number of nonordered pairs (where the order of a and b is 
irrelevant), which amounts to 10. Similarly, one can generate 10 nonordered triples out of 5 numbers. Each 
triple (a, b, c) of numbers picked can result in six judgments, “a out of b + c,” “b out of a + c,” “c out of a + b,” 
“a + b out of c,” “a + c out of b,” and “b + c out of a.” Since there are ten triples, this amounts to 60 judgments. 
Th e logical constraint reduces these by half. 
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seven times, the corresponding probability is in the order of one in a billion, and that of the fi fth 
grader who always followed the prediction of pre-Bayes is even smaller. For Study 2, a binomial test 
(p = 1/40; n = 10) indicates that similar systematic patterns of individual diff erences exist. Eleven 
children, for instance, followed pre-Bayes four or more times; in each case, the probability of this 
result under the chance hypothesis is p = .00007. Th e corresponding probability for the fi ve sixth 
graders whose response pattern is consistent with the pre-Bayes pattern in 8 out of 10 problems 
is smaller than one in a billion. Th us, we can conclude that there is evidence that the responses 
consistent with pre-Bayes are not random but systematic. Th is strategy is most pronounced in 
grades 5 and 6. 

By the same analysis, one can detect a comparatively small number of children who systemati-
cally follow conservatism, with two following this strategy in every problem. Th e same holds for the 

Table 2
Distribution of the Number of Children’s Responses 

Following Each of Four Strategies in Study 1

Pre-Bayes

Grade 1 2 3 4 5 6 7 Total

Fourth 4 3 0 0 0 0 0 10

Fifth 2 1 1 0 2 0 1 24

Sixth 6 0 0 0 0 0 0  6

Adults 0 0 0 0 0 0 0  0

Conservatism

Fourth 5 5 0 0 0 1 0 21

Fifth 2 0 0 0 1 0 1 14

Sixth 0 0 0 0 0 0 0  0

Adults 1 0 0 0 0 1 0  7

Evidence-only

Fourth 2 3 0 0 0 0 0  8

Fifth 0 0 1 1 1 0 0 12

Sixth 0 0 0 0 0 0 0  0

Adults 0 0 0 0 0 0 0  0

Representative thinking

Fourth 6 3 0 0 0 0 0 12

Fifth 0 0 0 0 0 0 0  0

Sixth 0 0 0 0 0 0 0  0

Adults 1 0 0 0 0 0 0  1

Note. Th e shaded part indicates response patterns whose probability under the 
null hypothesis that a child picked numbers randomly is p = .0005 or smaller 
(see text). Th e sample size is n = 16, 15, 14, and 23 in fourth, fi fth, and sixth 
graders, and adults, respectively. 
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evidence-only strategy. In contrast, there is again relatively little support for representative thinking. 
Study 1 does not provide convincing evidence. In Study 2, there are three children whose responses 
are consistent with this strategy three times. Th e probability of this result under the random picking 
hypothesis is p = .0005 in every case. Nevertheless, we conclude that this candidate strategy does 
not have the magnitude of support that the other three strategies have; there is no single child who 
follows it most or all of the time. Th e support for representative thinking is therefore open, and 
requires further backing from independent studies.

In summary, when information is represented in terms of natural frequencies, Bayesian rea-
soning, as well as three non-Bayesian strategies, can be documented in children. One of them, 
pre-Bayes, is close to Bayesian reasoning. Th e others can lead to systematic and large deviations, 
because they center on only one aspect of the problem.

Table 3
Distribution of the Number of Children’s Responses Following Each of 

Four Strategies in Study 2

Pre-Bayes

Grade 1 2 3 4 5 6 7 8 9 10 Total

Fourth 4 2 0 0 0 1 0 0 0 0 14

Fifth 0 1 0 1 0 0 2 0 0 0 20

Sixth 4 3 1 0 0 1 1 5 0 0 66

Adults 2 0 1 0 0 0 1 0 0 1 22

Conservatism

Fourth 4 1 2 1 0 0 0 0 0 0 16

Fifth 1 0 0 0 0 0 0 0 0 0  1

Sixth 1 1 0 0 0 0 0 0 0 1 13

Adults 1 0 0 0 1 0 0 0 0 0  6

Evidence-only

Fourth 0 1 0 0 0 0 0 0 0 0  2

Fifth 0 0 0 0 0 0 0 0 0 0  0

Sixth 0 0 1 0 1 1 0 0 0 2 34

Adults 0 0 0 0 0 0 0 0 0 0  0

Representative thinking

Fourth 1 0 2 0 0 0 0 0 0 0  7

Fifth 0 0 1 0 0 0 0 0 0 0  3

Sixth 0 0 0 0 0 0 0 0 0 0  0

Adults 0 0 0 0 0 0 0 0 0 0  0

Note. Th e shaded part indicates response patterns whose probability under the null hypothesis that 
a child picked numbers randomly is p = .0005 or smaller (see text). Th e sample size is n = 30 in each 
group. 
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Is Th ere a Developmental Change in Strategies?

Th e main developmental change documented is the fast increase of Bayesian responses from ap-
proximately ages 10 to 12 (Figure 3) when the information is in natural frequencies. A second 
major change concerned the rate of “guessing” (responses that were neither Bayesian nor one of 
the non-Bayesian strategies) and “no answer.” Guessing decreased from 50% in fourth graders to 
41%, 12.6%, and 16.1% in fi fth graders, sixth graders, and adults, respectively. Th e percentage 
of participants who gave no answer decreased from 9.5% in fourth graders to 1.7%, 4%, and 0%, 
respectively.

Is there also a developmental trajectory in the non-Bayesian strategies? Figure 5 suggests a de-
velopmental change akin to Siegler’s overlapping waves model. Th ere seem to be four waves:

Wave 1: Guessing. In this mental state of confusion, children and adults fi nd neither the Bayesian 
answer nor a consistent strategy. Th e responses to the problems are based on arbitrarily picking a 
few numbers, or no answer. Th e fi rst wave strongly decreases from an initial 50% in fourth graders, 
but never completely disappears and remains present in adult life.

Wave 2: Centering. Children center on one of the two aspects of the problem, the event or the 
evidence. Th is wave consists of strategies that have not yet found the proper denominator: conser-
vatism and evidence-only. Th e developmental trajectory of the second wave is less clear than that of 
the fi rst. Th e second wave is weaker than the fi rst at all ages, and seems to have a slowly decreasing 
trajectory. It also extends into adult life. 

Wave 3: Pre-Bayes. Th e third wave consists of a fi rst approximization of Bayesian reasoning, 
where children no longer center on one aspect of the problem. Th ey have found the proper de-
nominator but not yet the numerator. Th e temporal overlap between the second and third wave 
seems substantial. Pre-Bayes peaks in the older children, and can be seen as a forerunner of Bayesian 
reasoning. 

Wave 4: Bayesian reasoning. Th e fourth and last wave is Bayesian reasoning. Here, the pattern is 
again very clear. Bayesian reasoning increases monotonically with age and reaches its mode in adults.

We would like to emphasize that this sequence of waves should be seen as a hypothesis, for 
the data on which it is based is limited. Data on both younger and older children are required for 
a further test. 

4th Graders 5th Graders 6th Graders Adults

80

50

30

20

10

0

70

60

40

Guessing
Bayes
Conservatism
Pre-Bayes
Evidence-only

Figure 5. Percentage of pre-Bayesian and Bayesian strategies across both studies. For instance, 
fourth graders tried to solve 9% of all problems by using the conservatism strategy.

Child_2006.indd   14 07.07.2006   14:28:56 Uhr



Liqi Zhu and Gerd Gigerenzer 15

Conclusion

Th is article provided an ecological perspective on the development of reasoning: Th e external 
representation does part of the internal computation. Th e major result is that children can system-
atically reason the Bayesian way if the information is provided in natural frequencies rather than 
in probabilities. Th is does not exclude the possibility that other representations also foster insight, 
specifi cally if they mimic the structure of natural frequencies and lead to the same computational 
facilitation (e.g., Gigerenzer, 2002). More generally, any numerical information can be represented 
in various forms, as Roman and Arabic numbers illustrate, but these are not neutral forms for the 
same content, because they actually facilitate certain computations and insights, and hinder others 
(Martignon, Vitouch, Takezawa, & Forster, 2003). As the physicist Richard Feynman remarked, 
diff erent representations of the same mathematical formula can evoke varied mental pictures and 
lead to new solutions (Feynman, 1967, p. 53).

Aside from doing part of the computation, representations infl uence thinking in another way. 
Representations can constrain the possible set of mental strategies, and thereby the resulting judg-
ments. For instance, with Bayesian problems in the form of conditional probabilities, base rates 
need to be attended to, such as the base rate b/a of liars in Figure 1. With natural frequencies, in 
contrast, base rates need not be attended to; the ratio b/a can be ignored. Th e reason is that base rate 
information is contained in natural frequencies, whereas conditional probabilities are normalized 
with respect to the base rates. Th us, when moving from natural frequency to other representations, 
one needs to learn to pay attention to base rates. Similarly, representations constrain the possible set 
of non-Bayesian strategies as well as Bayesian shortcuts; one cannot use every strategy with every 
representation (Gigerenzer & Hoff rage, 1995). 

Natural frequency representations can provide explanations for other phenomena besides 
Bayesian reasoning. Consider an error commonly made by children (Carpenter, Coburn, Reys, & 
Wilson, 1978). When asked to fi nd the sum of 1/2 and 1/3, the answer is often 2/5. Th is is called the 
freshman error of adding numerators and adding denominators (Silver, 1986). Natural frequency 
representations can off er an account for this error. If one assumes that natural frequencies such as “1 
out of 2” and “1 out of 3” are developmentally primary and that relative frequencies (or fractions) 
such as 1/2 and 1/3 are only understood later in development, the error can be deduced. Th e reason 
is that one can add “numerators” and “denominators” of natural frequencies. For instance, in the 
Red Nose problem, “8 out of 10” people who lie have a red nose, and “9 out of 90” people who 
do not lie also have a red nose. You can add these to total “17 out of 100” people who have a red 
nose. Th is operation is correct in an environment with natural frequencies. In contrast, a relative 
frequency 8/10 is the same as 4/5, and adding the numerators and denominators of 4/5 and 9/90 
will result in an error. Our explanation for the freshman error is that children or adults apply the 
principles of natural frequencies to fractions or relative frequencies. 

Natural frequencies facilitate Bayesian reasoning because they work by simple enumeration 
without normalization (compare Equations 1 and 2). Th e power of enumeration extends beyond 
the problems studied in this article. Infants are sensitive to changes in the numerosity of a collection 
of visual objects (Antell & Keating, 1983; Starkey & Cooper, 1980); at 6 months, they seem to form 
arithmetical expectations when an object is added or taken away from a small collection (Wynn, 
1992). Fractions are hard to understand whereas collections seem to be easy (Brase, Cosmides, 
& Tooby, 1998), as illustrated by the almost universal use of fi ngers as a representational system 
(Butterworth, 1999, 2001), and brain imaging studies suggest that key number areas are closely 
connected to the fi nger circuit (Dehaene, Spelke, Pinel, Stanescu, & Tviskin, 1999). Krauss and 
Wang (2003) studied the notorious Monty Hall problem, which most adults fail at, and showed 

Child_2006.indd   15 07.07.2006   14:28:56 Uhr



16 Children Can Solve Bayesian Problems: Th e Role of Representation in Mental Computation

that correct answers can be facilitated by changing the single-event question (“should I switch or 
not switch doors”) into a frequency question (“in how many cases will switching win?”), and Krauss 
and Atmaca (2004) showed similar facilitation for children and adolescents aged 11 to 19. 

In this article, we asked: Can fourth, fi fth, and sixth graders solve Bayesian problems when the 
information is in conditional probabilities? Th e answer is no. Can Bayesian reasoning be elicited 
when the representation is switched to natural frequencies? Th e answer is yes. By sixth grade, the 
eff ect of representation was as strong as or stronger than the average eff ect on university students, 
16% versus 46% (15 problems, Gigerenzer & Hoff rage, 1995); on physicians, 10% versus 46% 
(4 problems, Hoff rage & Gigerenzer, 1998); and on members of the National Academy of Neuro-
psychology, 9% versus 63% (one problem, Labarge, McCaff rey, & Brown, 2003; see also Betsch, 
Biel, Eddelbuttel, & Mock, 1998; Cosmides & Tooby, 1996; Gigerenzer, 2002; Hoff rage, Lindsay, 
Hertwig, & Gigerenzer, 2000).

Can the present results be generalized to children in other cultures with other educational back-
grounds? In a replicate study of the present experiments with German children, Lücking (2004) has 
investigated fi fth, sixth, and seventh graders. She chose children who were one year older because, 
just like the Chinese teachers, the German teachers and experts she consulted did not believe that 
children could solve these problems––whatever the external representation might be. Furthermore, 
given the higher mathematics performance and motivation of Chinese children compared to Ger-
man children (Artelt et al., 2001; Stern, Rode, Fang, & Zhu, 2001), Lücking expected that Ger-
man children would not be able to solve the problems as early as Chinese children. However, the 
performance of the German fi fth and sixth graders was indistinguishable from that of the Chinese 
ones. She also tested the conjecture by Girotto and Gonzales (2001) that “single-step questions” 
(as used in the present study) would result in substantially lower numbers of correct solutions than 
“two-step questions” (where fi rst the value of the denominator in Equation 2, and then that of the 
numerator is asked), but found no evidence. Nor did additional questions that amplifi ed the set 
relations between frequencies increase performance.  

Let us return at the end to the beginning, to the Enlightenment’s vision that human intuition 
and the laws of probability are just two sides of the same coin, and to the contrasting view of much 
of recent cognitive psychology. What does children’s performance tell us about this apparent para-
dox? It off ers a way to resolve the contradiction. Th e solution may lie in the representation, that 
is, in the way one presents information to children and adults. When one chooses a representation 
that comes natural to the human mind and reduces computation, the Enlightenment’s view is not 
too far removed from the evidence. Confronted with conditional probabilities, in contrast, children 
are helpless, as are many adults. Th ese results have implication for teaching statistical reasoning 
(Sedlmeier, 1999). Learning to play with representations should be part of mathematics education. 
To solve a problem involves fi nding a proper representation. 
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Appendix

Reasoning Problems

Th e fi rst 7 problems were used in Study 1; all 10 problems were used in Study 2. Problem 1 (Red 
Nose) is given in the text, both in natural frequencies and in probabilities. Problems 2 through 10 
are given below in terms of natural frequencies. Th e probability version can be deduced from it, 
and is therefore omitted here.

(2) There is a large package of sweet or salty cookies with various kinds of shapes. In the package, 
20 out of every 100 cookies are salty. Of the 20 salty cookies, 14 are round. Of the remaining 
80 sweet cookies, 24 are also round. Imagine you take out a pile of round cookies. How many 
of them are salty cookies? ___ out of ___.
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(3) The principal of a school announced and explained a new school rule to all the students gath-
ering together on the playground. Then the principal said: “Those who understand what I 
mean, please put up your hands.”  70 out of every 100 students understood. Of these 70 who 
understood, 63 put up their hands. Of the remaining 30 who didn’t understand, 9 put up their 
hands. Imagine a group of students who put up their hands. How many of them understood 
the principal? ___ out of ___.

(4) 20 out of every 100 children in a school have bad teeth. Of these 20 children who have bad 
teeth, 10 love to eat sweet food. Of the remaining 80 children who don’t have bad teeth, 24 
also like to eat sweet food. Here is a group of children from this school who love to eat sweet 
food. How many of them may have bad teeth? ___ out of ___.

(5) To protect their children’s eyes, mothers always urge children not to watch too much TV. 
Suppose you want to test this belief and get the following information: 30 out of every 100 
children become near-sighted. Of these 30 near-sighted children, 21 of them watch too much 
TV. Of those 70 children with normal sight, 28 of them watch too much TV. Suppose you 
meet a group of children who watch too much TV, how many of them may become near-
sighted? ___ out of ___.

(6) In Dongdong’s town, 10 out of every 100 children are overweight. Of the 10 overweight 
children, 3 of them have overweight mothers. Of the remaining 90 children who have normal 
weight, 18 of them still have overweight mothers. Suppose you meet a group of overweight 
mothers in the town. How many of them have overweight children? ___ out of ___.

(7) A group of children are playing games with cards. Those who get a card with a picture of a cat 
on the inner side win a piece of candy. 30 of every 100 cards have a cat picture on one side. 
Of the 30 cards with a cat picture, 12 of them are red on the other side. Of the remaining 70 
cards that have no cat pictures, 35 of them are still red on the other side. Imagine Dingding 
takes out a group of red cards. How many of them have a cat picture on the other side? ___ 
out of ___.

(8) In a cold winter in a town, 40 out of every 100 people hurt their hands by the cold. Of the 
40 people who hurt their hands, 36 wear gloves in the open air. Of the remaining 60 people 
with normal hands, 30 also wear gloves. Suppose you meet a group of people who wear gloves 
in the town. How many of them hurt their hands? ___ out of ___.

(9) In a hospital, 60 out of every 100 patients get a cold. Of the 60 patients who get a cold, 42 
have a headache. Of the remaining 40 patients with other diseases, 12 also have a headache. 
Suppose you meet a group of patients who have a headache in a hospital. How many of them 
get a cold? ___ out of ___.

(10) On a campus, 90 out of every 100 young people you meet are college students of this univer-
sity. Of the 90 college students, 45 wear glasses. Of the remaining 10 young people that are 
not students of the university, 3 also wear glasses. Suppose you meet a group of young people 
who wear glasses on the campus. How many of them are students at this university? ___ out 
of ___.
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