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Figure 7. aret regulates fibrillar muscle-specific alternative splicing.

A Venn diagram comparing significantly differentially expressed (P-value < 0.05, DESeq2) genes with a log2FC > 2 between aret-IR and salm-IR. 51 genes are
co-regulated by Salm and Aret.

B Venn diagram comparing significantly differentially expressed (P-value < 0.05, DEXSeq) exons with log2FC > 2 between aret-IR and salm-IR. Note that expression of
78.6% (1119/1423) of Salm-dependent exons is also Aret dependent.

C Venn diagram comparing significantly differentially expressed (P-value < 0.05, DESeq2) genes with a log2FC > 2 between IFM:aret-IR, IFM:salm-IR, IFM:leg, and IFM:
jump muscle. Only 24 fibrillar-specific genes are co-regulated by Salm and Aret.

D Venn diagram comparing significantly differentially expressed (P-value < 0.05, DEXSeq) exons with log2FC > 2 between IFM:aret-IR, IFM:salm-IR, IFM:leg, and IFM:
jump muscle. 747 fibrillar-specific exons co-depend on Aret and Salm.

E Correlation plot of the log2FC IFM:salm-IR versus IFM:aret-IR. All significantly differentially expressed exons (n = 5939, P-value < 0.05, DEXSeq) are plotted in black,
while sarcomeric protein exons are plotted in red. Pearson’s correlation coefficients for all exons (black) and the sarcomeric exons subset (red) are indicated. Note
that many exons are co-regulated by both Salm and Aret and that Aret promotes both inclusion and exclusion of exons.

F Venn diagram comparing significantly differentially expressed (P-value < 0.05, DEXSeq) exons with log2FC > 2 between WT IFM:aret-IR IFM at 30 h APF, 72 h APF and
in 1-d adults. Notably, 781 exons (491 uniquely) are regulated at the adult time point, while only ~300 exons are regulated at each developmental time point.
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preparation, a parallel study showed that Aret regulates splicing of

sls, wupA, and ZASP52 in IFMs. Additionally, it can instruct the

fibrillar splicing mode if expressed ectopically in tubular muscle or

in S2 cells, suggesting that it regulates the splicing machinery

directly [30].

In vertebrates, alternative splicing is also a prominent feature of

different muscle types [31]. In particular in the heart, which shares

some similarities with insect flight muscle, alternative splicing is

very distinct to skeletal muscle and is one important mechanism to

control the different physiological properties of both tissues. RBM20

regulates heart-specific splicing of titin by promoting exon skipping

of the flexible PEVK exons in titin [32]. This is functionally

important as human patients with a mutation in RBM20 suffer from

hereditary cardiomyopathies [33]. A similar role for muscle-type

splicing in heart and skeletal muscle was recently identified for

RBM24 [34], highlighting the importance of muscle-type-specific

splice regulation. While both RBM20 and RBM24 contain only a

single RRM domain, the mammalian homologs of Aret called CELF

1–6 (CUGBP, Elav-like family) contain 3 RRMs with a similar

spacing as in Aret. Interestingly, they have been implicated in

regulating alternative splicing in various tissues including splicing of

troponin T in the heart [35]. However, the presence of multiple genes

makes genetic analysis difficult. This indicates that the mechanism of

Aret-mediated alternative splicing is conserved to mammals,

suggesting that insights gained in Drosophila will also be applicable

to vertebrate muscle biology.
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Figure 8. Age-dependent aret-IR fiber degeneration is caused by hyper-contraction.

A–L Hemithoraces of 90 h APF pupae (A, D, G, J), 1-day adults (B, E, H, K) and 5–7 days aged adults (C, F, I, L). Wild-type IFM fibers remain intact in aged adults (A–C),
whereas aret-IR fibers are successively ruptured and lost (D–F, red arrow heads). This fiber loss is entirely suppressed upon removal of Mhc function from aret-IR
IFMs using the Mhc [10] allele (G–L). Scale bars are 100 lm.

M–R Hemithoraces of IFM-specific Strn-Mlck knock down 90 h APF pupae (M), 1 day (N) and 5–7 days adults (O) and Strn-Mlck MiMIC [MI02893] 90 h APF (P), 1 day (Q)
and 5–7 days adults (R). Note the progressive fiber degeneration upon aging (M–R, red arrow heads). Scale bars are 100 lm.
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Materials and Methods

All fly work was performed at 27°C to enhance GAL4 activity.

Immunostainings were performed using standard protocols [36]. All

antibodies and fly stocks are listed in figure legends and in the

Supplementary Information. Fosmids tagged with GFP were gener-

ated similarly as in previous studies [11,12] and will be published in

detail elsewhere. All fosmids used in this study are listed in the

Supplementary Information. Sarcomere length was quantified based

on phalloidin staining in Fiji (Image J) and significance evaluated

with unpaired Student’s t-tests.

For the mRNA-Seq analysis, IFMs, jump muscles and entire legs

marked with Mef2-GAL4, UAS-GFP-Gma were dissected at the indi-

cated time points. RNA samples were prepared and processed

based on a published protocol [37]. Briefly, total RNA was isolated

with Tri-Pure reagent (Roche), mRNA selected over oligo-dT beads

(Invitrogen), fragmented with peak length ~300 bp, reverse-

transcribed with the Invitrogen SuperScript-III kit and dUTP labeled

during second-strand synthesis. Libraries were prepared and

sequenced according to standard Illumina protocols. RNA sequen-

cing (RNA-seq) was performed at the CSF Next-Generation Sequen-

cing Unit (http://csf.ac.at). Reads were filtered and trimmed using

the FASTX Toolkit and cutadapt and mapped to the Ensembl

BDGP5.25 genome assembly using Tophat v2.0. Reads were visual-

ized on the UCSC server by normalizing to the largest library size

(Supplementary Table S3). Libraries were evaluated with feature-

Counts v1.4.2, and differential expression analysis was performed

on the gene level with DESeq2 and on the exon/isoform level with

DEXSeq. Additional data processing was handled in R. GO analysis

was performed with GOrilla [38] and REVIGO [39]. Additional

details can be found in the Supplementary Information.

Data availability

Three supplementary datasets are provided listing: (1) all genes that

are significantly differentially expressed in the DESeq2 comparison

of IFM, leg muscle, jump muscle, salm-IR IFM, and aret-IR IFM

(Supplementary Raw Data S1); (2) all exons that are significantly

differentially expressed in the DEXSeq comparison of IFM, leg

muscle, jump muscle, salm-IR IFM, and aret-IR IFM (Supplementary

Raw Data S2); (3) all exons that are significantly differentially

expressed in the DEXSeq comparison of IFM to aret-IR IFM at 30 h

APF, 72 h APF and 1-d adults (Supplementary Raw Data S3).

mRNA-Seq data are publicly available from NCBI’s Gene Expression

Omnibus (GEO) under accession number GSE63707. Individual

libraries are available from the Sequence Read Archive (SRA) under

accession numbers GSM1555978–GSM1555995.

Supplementary information for this article is available online:

http://embor.embopress.org
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