Lithium und Flibe als Kühlmittel
für Fusionsreaktor-Blankets

W. Dänner

IPP 4/97

June 1972
Lithium und Flibe als Kühlmittel für Fusionsreaktor-Blankets

W. Dänner

IPP 4/97 June 1972

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem Max-Planck-Institut für Plasmaphysik und der Europäischen Atomgemeinschaft über die Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgeführt.
Abstract

Lithium and flibe which were both proposed as coolants for thermonuclear reactor blankets are different not only in view of their neutronic behavior but also in view of their thermohydraulic properties.

The thermal properties of both coolants are summarized and compared with those of the today wellknown sodium. The heat transport properties reveal as superior to those of sodium. The influence of strong magnetic fields upon the flow conditions and the heat transfer characteristics are pointed out.

Pumping losses and pumping power turn out as of mainly hydrodynamic nature in the case of flibe whereas they are essentially determined by MHD-pressure losses in the case of lithium and sodium.

The differences of temperature and pressure drop characteristics in a cooling channel are discussed for the case of coupling it to a steam thermal power cycle.
1. Einführung

Das Blanket eines Fusionsreaktors, der zu gleichen Teilen mit Deuterium und Tritium als Brennstoff betrieben wird, hat die Aufgaben, neues Tritium zu erbrüten und die kinetische Energie der bei der Fusionsreaktion entstehenden schnellen Neutronen in Wärme umzuwandeln. Diese Wärme muß aus der Moderatorsubstanz entfernt und einem Wärmekraftprozeß zugeführt werden.

Die bis heute bekannt gewordenen Konzepte für die Blanketauslegung sehen ausnahmslos flüssige Moderatoren vor, die entweder gleichzeitig als Träger der Wärmeenergie zum Kraftwerksprozeß benutzt werden oder ihre Energie an ein sekundäres Kühlmittel übertragen [1].

Im folgenden soll versucht werden die Probleme zu erläutern, die im Falle einer direkten Kühlung des Blankets durch den Moderator auftreten.

Als Moderator kommt vorwiegend metallisches Lithium, aber auch die Salzschmelze 2LiF-BeF₂, die unter dem Namen "Flibe" bekannt wurde, in Betracht, deren Tritium-Bruteigenschaften jedoch denen metallischen Lithiums unterlegen sind. Daneben existiert noch der Vorschlag, ein Gemisch aus Natrium und Lithium zu verwenden, dessen Lithiumgehalt allerdings so gering ist, daß man es im Hinblick auf seine Kühleigenschaften wie reines Natrium behandeln kann. Obwohl dieser Vorschlag aus verschiedenen Gründen seine ursprüngliche Aktualität wieder verloren hat, soll er in diesem Zusammenhang doch mit erwähnt werden, um damit den Vergleich mit einem heute bereits weitgehend bekannten Kühlmittel zu ermöglichen.
2. Stoffwerte

Grundlage für die Ermittlung der Kühleigenschaften bilden die thermischen Stoffdaten, im wesentlichen die Dichte, spez. Wärme, Wärmeleitfähigkeit, Viskosität und, abgeleitet aus diesen Größen, die Prandtl-Zahl; dazu kommt im Falle der Kühlung des Fusionsreaktor-Blankets noch die wichtige Eigenschaft der elektrischen Leitfähigkeit.

Die Dichte von Lithium (Abb. 1) beträgt danach nur etwa die Hälfte der von Natrium, Flibe ist hingegen etwa doppelt so schwer.

![Graphik](Abb. 1)

Dichte von Fusionsreaktor-Kühlmitteln

Abb. 2
Spez. Wärme von Fusionsreaktor-Kühlmitteln

Abb. 3
Wärmeleitfähigkeit von Fusionsreaktor-Kühlmitteln
Bei der Zähigkeit (Abb. 4) treten keine größeren Diskrepanzen auf. Lithium ist in diesem Falle mit Natrium in etwa vergleichbar, für Flibe liegt die Zähigkeit um etwa eine Größenordnung höher und weist eine stärkere Temperaturabhängigkeit auf.

Abb. 5
Prandtl-Zahl von Fusionsrektor-Kühlmitteln
Für den spezifischen elektrischen Widerstand bestehen zwischen Lithium und Natrium keine allzu großen Differenzen. Die Werte liegen, mit positivem Temperaturkoeffizienten, im Bereich zwischen 10 und 50 $\mu\Omega\cdot\text{cm}$. Der spez. Widerstand von Flibe hingegen liegt um 4 Größenordnungen höher und hat eine umgekehrte Temperaturabhängigkeit (Abb. 6).

Abb. 6
Spez. elektr. Widerstand von Fusionsreaktor-Kühlmitteln
3. Wärmemtransporteigenschaften

Bezüglich der Wärmemtransporteigenschaften kann man aus diesen Stoffdaten für die Kühliegenschaften der beiden, heute noch weitgehend unbekannten Kühlmittel folgende Schlußfolgerungen ableiten:

4. Strömungszustand

Als Kriterium hat LOEFFLER [5] im Jahre 1967 angegeben, daß eine Strömung vom laminaren in den turbulenten Bereich umschlägt, wenn die Reynoldszahl folgende Bedingung erfüllt:

\[
\text{Re} > 286 \cdot \frac{B \cdot d}{\sqrt{\eta \cdot S_{el}}}
\]

Hier bedeuten \(\text{Ha} \) die Hartmannzahl, \(B \) die magnetische Induktion, \(d \) den Kanaldurchmesser, \(\eta \) die dynamische Zähigkeit und \(S_{el} \) den spez. elektrischen Widerstand.

Abb. 7
Einfluß eines Magnetfeldes auf Rohrreibungskoeffizienten (nach Genin)
5. Wärmeübergang

Abb. 8

Nusselt-Zahl als Funktion der Reynoldszahl für Fusionsreaktor-Kühlmittel

In Ermangelung experimenteller Daten für Flibe wurde hier ebenfalls auf eine halbempirische Beziehung zurückgegriffen. Es scheint vertretbar zu sein, in diesem Falle die Kraussold'sche Beziehung für turbulente Wärmeübergang anzuwenden, da die Prandtl-Zahlen dieses Kühlmittels innerhalb des für diese Gleichung angegebenen Gültigkeitsbereiches liegen [9].
Der schraffierte Balken kennzeichnet das Gebiet des Umschlags vom laminaren zum turbulenten Strömungszustand in einer magnetfeldfreien Umgebung. Setzt man das Loeffler'sche Kriterium als gültig voraus, so ergibt sich bei Flüssigmetallströmungen in Magnetfeldern, wie sie für Fusionsreaktoren typisch sind, eine Verschiebung des Umschlagpunktes zu Reynoldszahlen zwischen 10^6 und 10^7, abhängig von der Weite des Kühlkanals. Die Unterschiede zwischen Lithium und Natrium sind dabei nicht allzu groß. Diese Verschiebung aber bedeutet, daß man bis zu diesen hohen Reynoldszahlen mit Wärmeübergangszahlen zu rechnen hätte, die den Werten für laminare Strömung entsprechen.

Trotz der weitaus geringeren elektrischen Leitfähigkeit von Flibe liefert das Kriterium von Loeffler auch für dieses Kühlmittel eine nicht zu vernachlässigende Verschiebung des Umschlagbereiches, die umso kritischer wird, je größer der Kanaldurchmesser, die Temperatur und die Kanallänge werden. Kritisch deshalb, weil im Falle einer laminaren Strömung die Wärmeübergangszahlen sehr klein werden; sie liegen etwa im Bereich von 0,1 W/cm grd und darunter.

Für die Kühlungsauslegung eines Fusionsreaktor-Blankets bedeutet das, daß man im Falle der Anwendung von Flibe eine turbulente Strömung anstreben muß. Im Falle der Anwendung eines der beiden Flüssigmetalle hingegen sollte man den laminaren Bereich nicht verlassen. Ein Umschlag zur Turbulenz würde in diesem Reynoldsbereich zu unzulässig hohen hydrodynamischen Druckverlusten führen.

Wenn man unter diesem Aspekt die Wärmeübergangszahlen betrachtet, so ergibt sich in etwa das folgende Bild:

Abb. 9 zeigt die unter gleichen Bedingungen für die Kanalgeometrie und die Strömungsgeschwindigkeit erzielbaren Wärmeübergangszahlen von Lithium und Flibe im Verhältnis zu denen von
Natrium aufgetragen über der mittleren Kühlmitteltemperatur. Unter der Voraussetzung, daß die Martinelli-Gleichung auf Lithium ebenso anwendbar ist wie auf Natrium, ergeben sich bessere Wärmeübergangszahlen für Lithium erst bei Kühlmitteltemperaturen oberhalb von 700°C. Da es sich in beiden Fällen um laminare Strömungen handelt, ist eine Abhängigkeit von der Reynoldszahl nicht gegeben.

![Diagramm](image-url)

Abb. 9

Wärmeübergangszahlen von Lithium und Flibe im Vergleich zu Natrium
6. Druckverluste und Pumpaufwand

Der erste Anteil ergibt sich aus der Kühlmittelströmung innerhalb des Magnetfeldes und ist im wesentlichen eine Funktion des Winkels, unter dem sich die Richtungen von Strömung und Magnetfeld schneiden. Fließt das Kühlmittel parallel zum Magnetfeld, so verschwindet dieser Anteil.

\[\Delta p \sim \frac{w \cdot d \cdot B^2}{\varphi_{el}} \]

mit der Kühlmittelgeschwindigkeit w, dem Kanaldurchmesser d, der magnetischen Induktion B und dem spez. elektrischen Widerstand \(\varphi_{el} \).
Geht man davon aus, daß es konstruktiv möglich ist, das Kühlmittel innerhalb des Blankets immer in Richtung der Feldlinien zu führen, so kann man den ersten Anteil der MHD-Verluste vernachlässigen. Es verbleiben dann lediglich die hydrodynamischen und die Ein- und Austrittsverluste übrig, die zu betrachten sind.

7. Ergebnisse unter Berücksichtigung der Randbedingungen

Abschließend sollen einige Ergebnisse dargestellt werden, die im Verlaufe einer vergleichenden Studie über das Kühlpotential von Lithium und Flibe angefallen sind und die typische Unterschiede der beiden Systeme offenbaren.

Für konkrete Rechnungen ist es erforderlich, gewisse Randbedingungen und Ausgangswerte festzulegen. Dazu gehören in erster Linie die Bedingungen, die sich aus der Kopplung mit dem anschließenden Wärmekraftprozeß ergeben: die mittlere Kühlmitteltemperatur t_{KM} und die Kühlmittelaufheizspanne Δt_{KM}. Daneben bilden die Wärmestromdichte q^W an der Kanalwand, die Leistungsdichte \dot{Q} im Kühlmittel selbst, die magnetische Induktion B sowie die Kanalabmessungen, gegeben durch Durchmesser d und Länge L, die Ausgangsparameter.

Berechnet wurden die Temperaturdifferenz Δt_{WK} zwischen Wand und Kühlmittel, der Druckverlust ΔP und der Pumpaufwand η_P.
der definiert wurde als die erforderliche Pumpleistung - allerdings ohne Berücksichtigung des Pumpenwirkungsgrades - bezogen auf die aus dem Kanal abtransportierte Wärmemenge.

Als Vergleichsbasis wurden eine magnetische Induktion von B = 100 kG und eine Kühlkanallänge von L = 10 m zugrundgelegt. Der Kanaldurchmesser wurde im Bereich von d = 1 bis 10 cm variiert, die Wärmestromdichte an der Kanalwand zwischen q_W = 20 und 250 W/cm²; die Leistungsichte im Kühlmittel wurde in den hier angegebenen Fällen vernachlässigt.

Abb. 10 zeigt die Ergebnisse für eine Flibe-Kühlung. In diesem Diagramm sind die Linien konstanter Temperaturdifferenz zwischen Wand und Kühlmittel und die Linien konstanten Druckverlustes eingetragen in ein Koordinatennetz, welches durch die Wärmestromdichte an der Kanalwand und den Kanaldurchmesser aufgespannt wird. Die Linien gleichen Pumpaufwandes decken sich im Verlauf mit denen gleichen Druckabfalls, wobei ein Druckabfall von 40 at ungefähr einem Pumpaufwand von 1% entspricht.
Abb. lo
Wärmeabfuhrbedingungen bei Flibe-Kühlung

Die dick ausgezogenen Linie gibt die Grenze zum laminaren Bereich an, die in diesem Falle nicht unterschritten werden sollte.

Dieses Bild kann eine Antwort geben auf die Frage, welche Wärmestromdichten man in einem mit Flibe betriebenen Blanket unter bestimmten Temperatur- und Druckbedingungen beherrschen kann. Man kann beispielsweise ablesen, daß es möglich ist bis zu 180 W/cm² abzuführen, wenn eine Temperaturdifferenz von 100°C zwischen Wand und Kühlmittel und ein Druckabfall von 10 at nicht überschritten werden soll. Der Kanal müßte dabei einen Durchmesser von ca. 2 cm haben.
Abb. 11 zeigt entsprechende Ergebnisse für eine Lithiumkühlung:

Wollte man mit Lithium ebenfalls 180 W/cm² wegbekühlen, so müßte, unabhängig davon, welcher Kühlkanaldurchmesser gewählt wird, ein Druckabfall von 80 at in Kauf genommen werden. Das ist das 8-fache dessen, womit man bei der Flibe-Kühlung zu rechnen hätte. Würde man anstelle von Lithium Natrium verwenden, so wären diese Zahlen nochmals mit einem Faktor 3

An dieser Stelle soll jedoch nochmals darauf hingewiesen werden, daß ein wesentlicher Unterschied in der Art der Druckverluste, insbesondere im Ort ihres Auftretens besteht. Im Falle der Fließkühlung handelt es sich um rein hydrodynamische Druckverluste, die im wesentlichen in der Kühllzone des Blankets selbst auftreten, im Falle der Lithiumkühlung dagegen um MHD-Druckverluste, die im Bereich des Felddurchtritts und nicht in der Kühllzone entstehen. Dort lassen sie sich jedoch durch konstruktive Maßnahmen beeinflussen, ohne dabei den Wärmeübergang in der Kühllzone in Mitleidenschaft zu ziehen. Es erscheint auf diese Weise durchaus möglich, sie so weit zu reduzieren, daß sie mit den Druckverlusten einer entsprechenden Fließkühlung vergleichbar werden.

8. Zusammenfassung

Lithium und Flibe auf dem heutigen Stand des Wissens hinsichtlich ihrer Kühleigenschaften zu beurteilen und zu vergleichen, heißt eine Untersuchung in Gegenwart noch mancher Unbekannter durchführen. Die physikalischen Eigenschaften beider Stoffe sind zwar weitestgehend bekannt. Es fehlt jedoch noch so gut wie völlig die Kenntnis des Wärmeübergangs- und Strömungsverhaltens. Für die experimentelle Thermohydraulik wird sich demzufolge in Zukunft noch ein weites Betätigungsfeld eröffnen.

Im Hinblick auf die Verwendung eines dieser beiden - oder beider - Stoffe als Kühlmittel für Fusionsreaktor-Blankets werden derartige Experimente den Einfluß von Magnetfeldern mit berücksichtigen müssen.
In Anbetracht dieser noch fehlenden Informationen können die hier dargestellten Ergebnisse nicht mehr sein als eine Richtschnur, vielleicht aber auch ein Beitrag zur Methodik künftiger Untersuchungen, die unbedingt notwendig sind, um die hier gemachten Aussagen zu präzisieren.
Literatur

[2] FREUND, J. Zusammenstellung der Stoffwerte für die Flüssigmetalle Li, Na, K, Rb, Cs. TUBIK-13, 1969

[7] CUMO, M. Elementi di termotecnica del Reattore CNEN RX/ING (69) 18

[8] COWLES, J.O., PASTERNAK, A.D. Lithium properties related to use as a nuclear reactor coolant. UCRL-50647

[12] HOFFMAN, M.A., CARLSON, G.A. Calculation techniques for estimating the pressure losses for conducting fluid flows in magnetic fields. UCRL-51ol00