Non-linear Quasi-neutral Electrostatic Plasma Waves and Shock Waves

H. Tasso

IPP 6/74 January 1969

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem Institut für Plasmaphysik GmbH und der Europäischen Atomgemeinschaft über die Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgeführt.
ABSTRACT

For the stationary one-dimensional Vlasov equation, quasi-neutrality is used instead of the Poisson equation. This allows one to obtain explicit solutions for the density as a function of the potential and to prove the positiveness of the trapped particle distribution function in a potential interval. The usefulness of this method for oscillating waves and shock-waves is obvious.
The non-linear electrostatic Vlasov equation has been studied in the stationary one-dimensional case by Bernstein, Green and Kruskal\cite{1} using the Poisson equation. The solutions were obtained in two different ways: 1) The full distribution function was given, the density of the ions and electrons was then calculated as a function of the electrostatic potential, and the Poisson equation allowed the potential to be determined. 2) The potential and the distribution functions for all ions (trapped and free) and free electrons were given; an integral equation then allowed the distribution function for the trapped electrons to be calculated. For each solution of 2) it was necessary to verify that this latter calculated function was positive.

This work will show that, by the second method, a wide class of solutions is obtained, namely the quasi-neutral solutions, for which the positiveness condition is automatically satisfied in a potential interval. The existence of such solutions is based on the non-monotony of the distribution functions with respect to the total energy of a particle. Furthermore, quasi-neutrality imposes a maximum on the relative amplitude of the potential.

The basic equations for stationary quasi-neutral waves are:

\[\frac{\partial f}{\partial t} + \frac{e}{m} \frac{\partial}{\partial x} \left[\frac{\partial f}{\partial v} \right] = 0 \]
\[(2) \quad \int_{-\infty}^{+\infty} g_{u} \, du = \int_{-\infty}^{+\infty} g_{u} \, du \quad \text{(Quasi-neutrality)} \]

\(g \) is the original distribution in \(\xi, \eta, \xi \) space integrated over \(\xi \) and \(\eta \); the subscript of \(\xi \) has been dropped. The general solution of eq. (1) is:

\[(3) \quad g_t = g_u (E_t) \]

where \(E_t = \frac{1}{2} m_t \xi^2 + e \phi \)

Substituting eq. (3) in eq. (2) and denoting "trapped" and "un-trapped" by the subscripts \(t \) and \(u \), one gets:

\[(4) \quad \int_{-\epsilon \phi_{\min}}^{\epsilon \phi_{\text{max}}} dE f_t (E) \left[2m_t(E-e \phi) \right]^{-\frac{1}{2}} = \mathcal{J} (e \phi) \]

\[(5) \quad \text{where} \quad \mathcal{J} (e \phi) = \int_{-\epsilon \phi_{\min}}^{\infty} dE f_t (E) \left[2m_t(E-e \phi) \right]^{-\frac{1}{2}} - \int_{-\epsilon \phi_{\min}}^{-\infty} dE f_t (E) \left[2m_t(E-e \phi) \right]^{-\frac{1}{2}} \]

According to eq. (4) \(\mathcal{J} (e \phi_{\min}) = 0 \). When \(f_t (E) \) and \(f_u (E) \) are given, eq. (4) is an integral equation of the convolution type and following B.G.K.[1] the solution is obtained by way of a Laplace transform:
\[\int_{-E}^{E} \left[\frac{d g}{d \nu} \left(\frac{E+\nu}{v_0} \right) \right]^{-\frac{1}{2}} \]

The derivative of \(g(\nu) \), \(\frac{d g}{d (\nu)} \rightarrow +\infty \), when \(\nu \rightarrow \phi \).

This is readily seen from eq. (5) if integration over \(E \) is replaced by integration over \(\nu \).

Equation (5) could then be written

\[g(\phi) = \int_{-\infty}^{+\infty} \frac{2 \nu}{m_c} \frac{e^{\nu}}{\sqrt{\nu}} \left(\frac{\phi}{v_0} \right)^2 \]

where \(\sigma = \text{sign } \nu \)

\[\frac{d g}{d (\nu)} = \int_{-\infty}^{+\infty} \frac{d f}{d (\nu)} d\nu - \int_{-\infty}^{+\infty} \frac{d f}{d (\sigma \nu)} d\nu - \int_{-\infty}^{+\infty} \frac{d f}{d (\nu \sigma)} d\nu + \]

\[+ \frac{1}{\sqrt{2 m_c}} \frac{1}{\sqrt{e(\nu \phi \phi_{\infty})}} \int_{-\infty}^{+\infty} \frac{2 e(\nu \phi \phi_{\infty})}{V} \left(\nu = \pm \frac{2 e(\phi - \phi_{\infty})}{V} \right) \]

Let us assume \(\nu \) integrability for \(\frac{d f}{d (\nu \sigma)} \) and \(\frac{d f}{d (\nu \sigma)} \)

and that \(f_{-\nu}(\sigma \nu) = f_{-\nu}(\sigma \nu) \) for \(\nu = \nu \phi_{\infty} \)

(The latter assumption was not made in a recent work of Montgomery and Joyce[2]).
The first three terms of eq. (8) are then finite for \(\xi \phi \rightarrow \xi \phi_{\text{min}} \).
The last term goes to \(+\infty\) when \(\xi \phi \rightarrow \xi \phi_{\text{min}} \), and makes the main
contribution to eq. (6) when \(E \rightarrow -\xi \phi_{\text{min}} \). Calculating this
contribution one gets
\[
\int_{-t}^{t} (E) \rightarrow \int_{-t}^{t} (E) \quad \text{when} \quad E \rightarrow -\xi \phi_{\text{min}} \cdot
\]
This means that there must be at least a finite interval where \(\int_{-t}^{t} > 0 \).

Finally, according to eq. (5), \(g(\xi \phi) \) becomes negative if \(\xi \phi \) is
above a certain \(\xi \phi_{\text{min}} \); because of eq. (4) \(\int_{-t}^{t} \) is no longer posi-
tive anywhere.

One example
Let us now illustrate the preceding remarks taking a simple example:

\[
\begin{align*}
\int_{+t}^{t} &= a_+ e^{-\xi \phi / \alpha}, \quad \int_{+u}^{t} (\sigma u) = a_+ e^{-\xi \phi / \alpha}, \quad \int_{+u}^{t} (\sigma c) = a_+ e^{-\xi \phi / \alpha}, \\
\int_{-u}^{t} (\sigma u) &= a_- e^{-\xi \phi / \alpha}, \quad \int_{-u}^{t} (\sigma c) = a_- e^{-\xi \phi / \alpha},
\end{align*}
\]

(9)

for electrons

\[
\begin{align*}
\int_{-u}^{t} (\sigma u) &= a_- e^{-\xi \phi / \alpha}, \quad \int_{-u}^{t} (\sigma c) = a_- e^{-\xi \phi / \alpha},
\end{align*}
\]

The choice of \(\alpha_+ \) and \(\alpha_- \) determines the average velocity of every
species. Let us calculate \(g(\xi \phi) \) for this case:

\[
\begin{align*}
g(\xi \phi) &= \frac{2a_+ e^{-\xi \phi / \alpha}}{ \sqrt{2 \pi \alpha}} \int_{0}^{\infty} e^{-(\xi \phi / \alpha)^2} dy e^{-y / \alpha} + \frac{a_+}{ \sqrt{2 \pi \alpha}} \int_{0}^{\infty} e^{-(\xi \phi - y / \alpha)^2} dy e^{-y / \alpha} \\
&+ \frac{a_+}{ \sqrt{2 \pi \alpha}} e^{\xi \phi} \left[\frac{\alpha_+ e^{-\xi \phi / \alpha}}{ \sqrt{2 \pi \alpha}} \right] \left(\phi - \phi_{\text{min}} \right) \int_{0}^{\infty} e^{-(\xi \phi - y / \alpha)^2} \frac{y}{ \sqrt{2 \pi \alpha}} (1 + \alpha_-) \
&+ \frac{a_+}{ \sqrt{2 \pi \alpha}} e^{\xi \phi} \left[\frac{\alpha_- e^{-\xi \phi / \alpha}}{ \sqrt{2 \pi \alpha}} \right] \left(\phi - \phi_{\text{min}} \right) \int_{0}^{\infty} e^{-(\xi \phi - y / \alpha)^2} \frac{y}{ \sqrt{2 \pi \alpha}} (1 + \alpha_-) \
\end{align*}
\]

(10)
\[- \frac{a_t}{\sqrt{2m_i}} e^{\frac{e^2}{2m_i T}} \int_0^\infty dy \frac{e^{\frac{y^2}{2m_i T}}}{\sqrt{e(y - \phi_{\min})}} + \frac{a_\nu}{\sqrt{2m_\nu}} \exp \left[\frac{e^2}{2m_\nu T} + \frac{e^2}{2m_\nu T} \left(\phi - \phi_{\min} \right) \right] \times \int_0^\infty dy \exp \left[\frac{\gamma}{\sqrt{2m_\nu T}} \left(1 + \alpha_\nu \right) \right] \]

The condition \(g(\phi_{\min}) = 0 \) gives the following relation between \(a_t \) and \(a_\nu \).

\[
a_\nu = \frac{2a_t}{1 + \sqrt{\frac{1}{1 + \alpha_\nu}}} \left[\frac{\infty}{\sqrt{2m_i T}} \left(2 \int_0^\infty dy \exp \left[\frac{\gamma}{\sqrt{2m_i T}} \right] + \int_0^\infty dy \exp \left[-\frac{\gamma}{\sqrt{2m_i T}} \right] \right) \right]
\]

\[
(11)
\]

Equation (6) is now used to calculate \(\tilde{f}(E) \). Changing the integration variable \(V \) in \(u = \sqrt{-(E + V)} \), we get:

\[
(12) \quad \tilde{f}(E) = a_t e^{\frac{e^2}{2m_i T}} + \left(\frac{2m_i}{\eta} \right)^{\frac{1}{2}} \int_0^\infty du \left[\frac{4a_t}{\sqrt{2m_i T}} \exp \left[\frac{E_{hiT}}{\gamma} \right] \right] \frac{e^{\frac{y^2}{2m_i T}}}{\sqrt{2m_i T}} \int_0^\infty dy e^{\frac{\gamma}{\sqrt{2m_i T}}}
\]

\[
+ \frac{2a_t}{\sqrt{2m_i T}} e^{\frac{E_{hiT}}{\gamma}} \int_0^\infty dy e^{\frac{\gamma}{\sqrt{2m_i T}}} + 2a_t \left(1 + \alpha_t \right) \exp \left[\frac{E_{hiT}}{\gamma} \left(1 + \alpha_t \right) \right] \times \frac{\mathrm{exp} \left[\frac{u^2}{\gamma} \left(1 + \alpha_t \right) \right]}{\sqrt{u^2 + E}} \int_0^\infty dy e^{\frac{\gamma}{\sqrt{2m_i T}}} + 2a_t \frac{E_{hiT}}{\gamma} \exp \left[\frac{E_{hiT}}{\gamma} \right] \frac{e^{\frac{y^2}{2m_i T}}}{\sqrt{2m_i T}} \int_0^\infty dy e^{\frac{\gamma}{\sqrt{2m_i T}}} \frac{\mathrm{exp} \left[\frac{u^2}{\gamma} \right]}{\sqrt{u^2 + E}}
\]
\[\frac{2 \bar{a}_-}{\sqrt{\bar{w}_e}} \frac{(1+\kappa_e)}{\bar{u}_{Te}} \exp\left[-\frac{E}{\bar{u}_{Te}} (1+\kappa_e) + \frac{\epsilon_{\phi_{\text{min}}}}{\bar{u}_{Te}} \right] \exp \left\{ \frac{\epsilon}{\bar{u}_{Te}} \left[\frac{1}{(1+\kappa_e)} \int_{\epsilon_{\phi_{\text{min}}}}^{\epsilon} \frac{y^2}{\bar{u}_{Te}} \frac{1}{(1+\kappa_e)} \right] \int y \exp \frac{y^2}{\bar{u}_{Te}} \frac{1}{(1+\kappa_e)} \frac{1}{\sqrt{1+\kappa_e + \epsilon_{\phi_{\text{min}}}} \right] \right\} \]

We see that for \(E = -\epsilon \phi_{\text{min}} \), \(\int_{-\epsilon}^{E} (E) = \int_{-\epsilon}^{E} (E) = \epsilon \frac{\epsilon_{\phi_{\text{min}}}}{\bar{u}_{Te}} \).

The integral term in (12) becomes negative when \(E < -\epsilon \phi_{\text{min}} \).

It is interesting to estimate at what value of \(E \), \(\int_{-\epsilon}^{E} \) ceases to be positive. We now substitute \(E = -\epsilon \phi_{\text{max}} \) in eq. (12), eliminate \(\alpha_+ \) using eq. (11), and expand in \(\sqrt{\epsilon (\phi_{\text{max}} - \phi_{\text{min}})} \) (w. h. T_i = T_e).

After complicated but straightforward calculations, we obtain up to the first order in \(\sqrt{\epsilon (\phi_{\text{max}} - \phi_{\text{min}})} \)

\[\sqrt{\epsilon (\phi_{\text{max}} - \phi_{\text{min}})} \frac{1}{\bar{a}_T} \]

\((13) \)

The equality gives the value of \(\epsilon (\phi_{\text{max}} - \phi_{\text{min}}) \) at which \(\int_{-\epsilon}^{E} \) ceases to be positive.
The results are all independent of the form of \(\phi(\chi) \). \(\phi(\chi) \) can be an oscillating function or can have a shock-like form. The density \(n(\phi) \) is given by the \(a_+ \) terms of eq. (10) in the first example. In the case of static equilibrium \(\chi_1 = \chi_2 = \infty \),

\[n(\phi) = A e^{-\frac{\phi}{kT_1}} \]

which is simply the barometric formula.

When \(\chi_1 \) and \(\chi_2 \to \infty \), \(e(\phi_{\text{max}} - \phi_{\text{min}}) \to \infty \) in which case the average velocity is approximately the thermal velocity, this seems to be a limitation for the Mach number. This is due to the thermal type of the free distribution functions (9) whose derivatives relative to \(e \phi \) becomes infinite for \(\chi_1, \chi_2 \to \infty \), in contradiction with previous assumptions. It is easy to find an example which does not behave so:

\[
\delta_{+u}(\sigma > 0) = a_+ e^{\phi - \left(\frac{E - E_{\text{max}}}{\theta_1}\right)^2} \\
\delta_{+u}(\sigma < 0) = a_+ e^{\phi - \left(\frac{E - E_{\text{max}}}{\theta_1}\right)^2} + \left(\frac{e \phi_{\text{max}} - E_{\text{max}}}{\theta_1}\right)^2 \\
\delta_{+t} = a_+ e^{\phi - \left(\frac{E - E_{\text{max}}}{\theta_1}\right)^2} + \left(\frac{e \phi_{\text{max}} - E_{\text{max}}}{\theta_1}\right)^2 \\
\delta_{-u}(\sigma > 0) = a_- e^{\phi - \left(\frac{E - E_{\text{min}}}{\theta_2}\right)^2} \\
\delta_{-u}(\sigma < 0) = a_- e^{\phi - \left(\frac{E + E_{\text{min}} + e \phi_{\text{min}}}{\theta_2}\right)^2} + \left(\frac{e \phi_{\text{min}} + E_{\text{min}}}{\theta_2}\right)^2
\]

(14)

This choice allows any Mach number and the derivatives of the chosen
functions cease to be v integrable only for infinite Mach number. Then for any Mach number there must be a finite interval $[c \phi_{m,n}, c \phi_{m,n}]$ where a quasi-neutral solution is possible.

CONCLUSION

The use of quasi-neutrality instead of the Poisson equation for non-linear electrostatic waves allows one to prove the positivity of the trapped particle distribution in a finite interval $[c \phi_{m,n}, c \phi_{m,n}]$. It is possible to give explicitly a class of solutions with a potential which depends arbitrarily on the position, but which has to be limited, and, in order that quasi-neutrality be a good approximation, must have an inhomogeneity length much bigger than the Debye length. The correction on $\mathcal{g}(c \phi)$ which comes from $\frac{d^2 \phi}{dx^2}$ if the Poisson equation is used makes a small contribution to $\mathcal{g}(c \phi)$. If $\mathcal{g}(c \phi)$ was sufficiently positive the addition of the Poisson term does not change the property. In this way, one can study static electrostatic equilibria, oscillating waves, and shock waves: The density depends on the potential in a simple way.

ACKNOWLEDGEMENT

The author is indebted to Dr. D. Pfirsch for his interest and critical reading of the manuscript.
REFERENCES

University of Iowa 68-24.
This IPP report is intended for internal use.

IPP reports express the views of the authors at the time of writing and do not necessarily reflect the opinions of the Institut für Plasmaphysik or the final opinion of the authors on the subject.

Neither the Institut für Plasmaphysik, nor the Euratom Commission, nor any person acting on behalf of either of these:

1. Gives any guarantee as to the accuracy and completeness of the information contained in this report, or that the use of any information, apparatus, method or process disclosed therein may not constitute an infringement of privately owned rights; or

2. Assumes any liability for damage resulting from the use of any information, apparatus, method or process disclosed in this report.