Druckerhöhung in der zylindersymmetrischen Lichtbogensäule bei überlagertem axialem Magnetfeld

(Pressure Increase in a Cylindrically Symmetric Arc Column located in an Axial Magnetic Field)

S. Witkowski

IPP 3/23 Oktober 1964
Druckerhöhung in der zylindersymmetrischen Lichtbogensäule bei überlagertem axialem Magnetfeld

(Pressure Increase in a Cylindrically Symmetric Arc Column located in an Axial Magnetic Field)

S. Witkowski

IPP 3/23

Oktober 1964

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem Institut für Plasmaphysik GmbH und der Europäischen Atomgemeinschaft über die Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgeführt.
Pressure Increase in a Cylindrically Symmetric Arc Column located in an Axial Magnetic Field, October, 1964 (in German).

ABSTRACT

Numerical calculations of pressure increase in the plasma of a cylindrical arc column are presented. We assume applicability of the Corona-equation. Results are given for magnetic fields up to 50 kG, external pressures of 10^{-1} to 2×10^5 dyn/cm2 and temperatures up to 80 000°C. Finally, these results are compared with calculations using the Saha-equation. (R. Wienecke, IPP 3/3).
1. Einleitung

2. Rechnungen

Wie im Laborbericht IPP 3/3 gehen wir aus von den Bewegungsgleichungen für ein Dreikomponenten-Plasma nach Schlüter [5] und spezialisieren die Gleichungen auf Zylindersymmetrie. Die kinetischen Temperaturen der Komponenten seien gleich: $T_1 = T_e = T_o = T$, es herrsche Quasineutralität $n_1 = n_e$, das Gesamtplasma sei in Ruhe $\mathbf{\omega} = 0$, das Magnetfeld habe nur eine z-Komponente und die radiale Komponente des elektrischen Stromes j_r verschwinde.
Die Umformungen bis Gl. (22) in IPP 3/3 werden unverändert übernommen. Gl. (22) in IPP 3/3 lautet

\[\frac{dp}{dr} = - \frac{e^2}{\varepsilon_0} \frac{\Theta^2}{n_i + n_o} \left[n_i \varepsilon_{ie} (\varepsilon_{io} + \varepsilon_{eo}) + n_o \varepsilon_{io} \varepsilon_{eo} \right] \frac{dp_o}{dr} \quad (1) \]

Aus dieser Gleichung sollen nun die Variablen \(p_o, n_o, n_i \) eliminiert werden. Den Zusammenhang zwischen Ionendruck \(p_i \) und Neutralteilchendruck \(p_o \) liefert hier die Koronaformel (nicht wie in IPP 3/3 die Sahaformel):

\[\frac{p_i}{p_o} = \frac{3\sqrt{3}}{16a^3} \frac{E_i}{\gamma} \frac{e^{-E_i/kT}}{E_i/kT} \left(1 + \frac{0.3}{E_i/kT} \right) \quad (2) \]

\(\alpha = \frac{1}{137} \) reziproke Sommerfeld'sche Feinstrukturkonstante

\(E_i = 13.6 \) eV Ionisationsenergie vom Wasserstoff

\(\gamma \) = Faktor zwischen 1,4 und 4 (berechnet von Elwert)

Wir verwenden \(\gamma = 1,6 \) und erhalten damit für unseren Bereich (T in °K)

\[\frac{p_i}{p_o} = K (T) = 3.3 \cdot Te \frac{45.8 \cdot 10^4}{T} \quad (2a) \]

Weitere Beziehungen liefern das Dalton'sche Gesetz

\[p = 2 p_i + p_o \quad (3) \]

und die ideale Gasgleichung

\[p_k = n_k \frac{h}{kT} \quad (4) \]
Aus der Kombination von (2) und (3) erhält man

\[p_i = \frac{K \cdot P}{1+2K} \quad (5) \]

\[p_0 = \frac{P}{1+2K} \quad (6) \]

Die Differentiation von (6) ergibt

\[\frac{d p_0}{d r} = \frac{A}{1+2K} \quad \frac{d P}{d r} - \frac{2P}{(1+2K)^2} \frac{d K}{d r} \]

Da \(T \) eine monotone Funktion des Radius \(r \) ist, kann man auch schreiben

\[\frac{d p_0}{d r} = \frac{A}{1+2K} \quad \frac{d P}{d T} \frac{d T}{d r} - \frac{2P}{(1+2K)^2} \frac{d K}{d T} \frac{d T}{d r} \quad (6a) \]

Berücksichtigt man die Beziehungen

\[n_i = \frac{P_i}{k_T} = \frac{K P}{(1+2K) k_T} \]

\[n_0 = \frac{P_0}{k_T} = \frac{P}{(1+2K) k_T} \]

so erhält man schließlich nach einigen Umformungen

\[\frac{d P}{d T} = \frac{2 P \frac{e_i^2}{c^2} \beta_z^2 \frac{d K}{d T}}{P^2(1+K)} \left[K e_i e_i (e_{io} + e_{eo}) + e_{io} e_{eo} \right] + (1+2K) \frac{e_i^2}{c^2} \beta_z^2 \quad (7) \]

Den Ausdruck für \(B_z \) entnehmen wir wie in IPP 3/3 der Druckbilanz

\[B_z^2 = B_A^2 + 8 \pi (P_A - P) \quad (8) \]

Hierin ist \(B_A \) das von aussen angelegte Magnetfeld und \(P_A \) der zugehörige, ausserhalb der Bogensäule herrschende Druck. Die Reibungskoeffizienten können als Funktion des Gesamtdrucks und der Temperatur geschrieben werden, \(K \) ist eine reine Temperaturfunktion. (7) ist daher eine Differentialgleichung in \(p \) und \(T \), die numerisch gelöst werden kann.
3. Numerische Auswertung

Die Rechnung wurde für ein Wasserstoffplasma durchgeführt. Folgende Zahlenwerte und Funktionen wurden verwendet:

Konstanten: Lichtgeschwindigkeit \(c = 3 \cdot 10^{10} \text{ cm/sec} \)
Boltzmannkonstante \(k = 1,38 \cdot 10^{-16} \text{ erg/Grad} \)
Elementarladung \(e = 4,8 \cdot 10^{-10} \text{ CGS} \)
Elektronenmasse \(m_e = 9,1 \cdot 10^{-28} \text{ g} \)
H-Atommasse \(m_o = 1,67 \cdot 10^{-24} \text{ g} \approx m_1 \)
Wasserstoffionisationsenergie \(E_i = 13,6 \text{ eV} \)

Koronaformel: \(\frac{dK}{dT} = 3,3 \left(1 + \frac{15,8 \cdot 10^4}{T} \right) e^{- \frac{15,8 \cdot 10^4}{T}} \) \(T \in 0 \circ \text{K} \)

Reibungskoeffizienten:

\[
\begin{align*}
\xi_{ie} &= \frac{4}{3} \sqrt{\frac{8}{\pi} kT m_e} \quad Q_{ie} \\
\xi_{io} &= \frac{4}{3} \sqrt{\frac{8}{\pi} kT} \frac{m_o}{2} \quad Q_{io} \\
\xi_{eo} &= \frac{4}{3} \sqrt{\frac{8}{\pi} kT m_e} \quad Q_{eo}
\end{align*}
\]

Wirkungsquerschnitte:

\[
Q_{ie} = \frac{e^4}{(kT)^2} \ln \left(\frac{kT}{e^2 n_e} \right) = \frac{e^4}{(kT)^2} \ln \left(\frac{kT}{e^2} \right) \left(\frac{A + 2K}{k \rho} \right)^{1/3} \text{ cm}^2
\]

\[
Q_{io} = 40 \cdot 10^{-16} \text{ cm}^2
\]

\[
Q_{eo} = 120 \cdot 10^{-16} \text{ cm}^2
\]
Damit kommt man schliesslich zu folgender Form der Gl. (7)

\[
\frac{d \rho}{d T} = \frac{2 \rho B^2_x}{9.85 \cdot Q_{10} \rho^2 \frac{Q_{10}}{T} \left\{ \frac{B^2_A}{T^2} \frac{K (1 + 3.3 \cdot 10^{-2} \frac{Q_{e0}}{a_{10}} + 3.6 \cdot 10^{-4} a_{e0})}{(1 + 2 K)/B^2_x} \right\}}
\]
(7a)

mit \(B^2_x = B^2_A + 2.51 \cdot 10^{-7} (p_A - \rho) \)
(8a)

in die \(Q_{10} \) und \(Q_{e0} \) in Einheiten von \(10^{-16} \text{ cm}^2 \),

die Feldstärke \(B_A \) in Einheiten \(\text{Tesla} = \frac{10^4 \text{T}}{10^4 \text{T}} \),
der Druck \(p_A \) in \(\text{dyn/cm}^2 \)

eingesetzt werden. Die Differentialgleichung (7a) wurde auf der IBM 7090 mit \(p_A \) und \(B_A \) als Parameter gelöst.

4. Diskussion der Ergebnisse

In den Fig. 1 - 9 ist der auf die beschriebene Weise berechnete Druckanstieg als Funktion der Temperatur für Außendrucke \(p_A \) von \(10^{-1} \text{ dyn/cm}^2 \) bis \(2 \cdot 10^5 \text{ dyn/cm}^2 \) und Magnetfelder von 1 bis 50 \(kT \) dargestellt. Man kann demnach mit Magnetfeldern von einigen \(10 \text{ kT} \) Druckverhältnisse von mehreren Zehnerpotenzen zwischen Bogenachse und Umgebung stationär aufrechterhalten, ohne dass Massenströme fließen, wenn der Aussendruck hinreichend klein ist (ca. 1 Torr und kleiner). In Fig. 10 sind für \(p_A = 10^4 \text{ dyn/cm}^2 \) und die beiden Magnetfeldstärken 10 und 50 \(kT \) die Ergebnisse der Rechnungen, die unter Verwendung von Saha- und Koronaformel gemacht wurden, miteinander verglichen.

Bei Gültigkeit der Koronaformel bemerkt man - dem späteren Einsetzen der Ionisation entsprechend- einen Druckanstieg erst bei höheren Temperaturen als im Sahafall.

Der erreichte Endwert (bei voller Ionisation) liegt meistens über dem Sahawert. Bei höheren Ausgangsdrucken und höheren Magnetfeldern kann es jedoch auch umgekehrt sein (Fig. 7). Verglichen mit den Abweichungen, die durch die Unsicher-
heiten in der Größe der Wirkungsquerschnitte Q_{e0} und Q_{i0} verursacht werden (siehe IPP 3/3), sind die Unterschiede im Enddruck zwischen Saha- und Koronawert vernachlässigbar.

Die Rechnungen wurden für den weiteren Druckbereich von $1 \cdot 10^{-1}$ bis $2 \cdot 10^{5}$ dyn/cm² durchgeführt. Ob die Voraussetzungen für die Gültigkeit der Koronaformel in der benutzten Form jeweils erfüllt sind, hängt unter anderem von den geometrischen Abmessungen des Plasmas ab und muss von Fall zu Fall überprüft werden. Für die höheren Werte des Druckes im behandelten Bereich wird oft die Sahagleichung eine bessere Näherung für die Plasmazusammensetzung liefern. Bei den niedrigen Drucken hingegen können Abweichungen der Temperaturen der verschiedenen Teilchensorten voneinander die Anwendung der Rechenergebnisse auf experimentelle Plasmen erschweren.
Literatur

Wasserstoff

Druckerhöhung im Magnetfeld

\[p_A = 1 \cdot 10^7 \text{[dyn/cm}^2] \]

\[Q_{io} = 70 \cdot 10^{-16} \text{[cm}^2] \quad Q_{eo} = 120 \cdot 10^{-16} \text{[cm}^2] \]
Wasserstoff
Druckerhöhung im Magnetfeld

\[p_A = 1 \cdot 10^0 \text{[dyn/cm}^2\text{]} \]
\[Q_{i0} = 70 \cdot 10^{16} \text{[cm}^2\text{]} \]
\[Q_{e0} = 120 \cdot 10^{16} \text{[cm}^2\text{]} \]

Fig. 2
Wasserstoff
Druckerhöhung im Magnetfeld

\[p_A = 1 \cdot 10^1 \text{[dyn/cm}^2\text{]} \]

\[Q_{io} = 70 \cdot 10^{-16} \text{[cm}^2\text{]} \quad Q_{eo} = 120 \cdot 10^{-16} \text{[cm}^2\text{]} \]

Fig. 3
Wasserstoff
Druckanstieg im Magnetfeld
\[p_A = 1 \cdot 10^2 [\text{dyn/cm}^2] \]
\[Q_{io} = 70 \cdot 10^{16} [\text{cm}^2] \quad Q_{eo} = 120 \cdot 10^{16} [\text{cm}^2] \]
Druckanstieg im Magnetfeld

Wasserstoff

\[p_A = 1 \cdot 10^3 \text{[dyn/cm}^2\text{]} \]

\[Q_{io} = 70 \cdot 10^{-16} \text{[cm}^2\text{]} \]

\[Q_{eo} = 120 \cdot 10^{-16} \text{[cm}^2\text{]} \]

Fig. 5
Wasserstoff

Druckanstieg im Magnetfeld

\[p_A = 1 \cdot 10^4 \text{[dyn/cm}^2\text{]} \]

\[Q_{i0} = 70 \cdot 10^{-16}\text{[cm}^2\text{]} \quad Q_{e\infty} = 120 \cdot 10^{15}\text{[cm}^2\text{]} \]

Fig. 6
Wasserstoff: Druckanstieg im Magnetfeld

\[p_A = 5 \cdot 10^4 \text{[dyn/cm}^2\text{]} \]

\[Q_{10} = 70 \cdot 10^{16} \text{[cm}^2\text{]} \quad Q_{\infty} = 120 \cdot 10^{16} \text{[cm}^2\text{]} \]

\[\text{T [}^\circ\text{K} \cdot 10^3\text{]} \]

Fig. 7
Wasserstoff
Druckanstieg im Magnetfeld

$B = 10 \, kA$

$Q_o = 70 \cdot 10^{16} \, \text{cm}^2$ $Q_o = 120 \cdot 10^{16} \, \text{cm}^2$

Fig. 8
Wasserstoff
Druckanstieg im Magnetfeld

B = 30 kG

\(Q_{o} = 70 \cdot 10^{16} \text{ cm}^2 \)
\(Q_{a} = 120 \cdot 10^{16} \text{ cm}^2 \)
Wasserstoff
Druckanstieg im Magnetfeld

\[p_A = 1 \cdot 10^4 \text{[dyn/cm}^2\text{]} \]

Fig. 10
Wasserstoff
Druckanstieg im Magnetfeld

\[p_A = 1 \cdot 10^5 \text{[dyn/cm}^2\text{]} \]

- gerechnet mit Koronaformel
- "" Sahagleichung

\(T [\text{oK} \cdot 10^3] \)

Fig. 11