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In recent work [1] it was shown how to rectify Gell-Mann’s proposal for identifying the 48 quarks and 
leptons of the Standard Model with the 48 spin- 1

2 fermions of maximal SO(8) gauged supergravity 
remaining after the removal of eight Goldstinos, by deforming the residual U(1) symmetry at the 
SU(3) × U(1) stationary point of N = 8 supergravity, so as to also achieve agreement of the electric 
charge assignments. In this Letter we show that the required deformation, while not in SU(8), does 
belong to K (E10), the ‘maximal compact’ subgroup of E10 which is a possible candidate symmetry 
underlying M theory. The incorporation of infinite-dimensional Kac–Moody symmetries of hyperbolic 
type, apparently unavoidable for the present scheme to work, opens up completely new perspectives 
on embedding Standard Model physics into a Planck scale theory of quantum gravity.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The question whether or not the maximally extended N = 8
supergravity theory [2,3] can be related to Standard Model physics 
has been under debate for a long time. Very recent work [1] has 
taken up an old proposal of Gell-Mann’s [4] on how to match 
the 48 quarks and leptons (including right-chiral neutrinos) of the 
Standard Model with the 48 spin- 1

2 fermions of maximal SO(8) 
gauged supergravity that remain after the removal of eight Gold-
stinos (as required by the complete breaking of N = 8 supersym-
metry). This scheme, which was subsequently shown to be realised 
at the SU(3) × U(1) stationary point of maximal gauged SO(8) 
supergravity [5], relies on identifying the residual SU(3) of super-
gravity with the diagonal subgroup of the colour group SU(3)c and 
a new family symmetry SU(3) f . Intriguingly, in this way complete 
agreement is found in the SU(3) charge assignments of quarks 
and leptons and the spin- 1

2 fermions of N = 8 supergravity, but 
there remained a systematic mismatch in the electric charges by 
a spurion charge of q = ± 1

6 . The main advance reported in [1]
was to identify the ‘missing’ U(1)q that rectifies this mismatch, 
and that was found to take a surprisingly simple form. However, 
this deformation cannot be explained from ‘within’ N = 8 super-
gravity (nor from a hypothetical embedding of maximal gauged 
supergravity into the known superstring theories), as U(1)q is not 
contained in its R symmetry group SU(8). In this Letter we show 
that the required deformation is, however, contained in an infi-
nite-dimensional extension of SU(8), namely the involutory ‘maxi-
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mal compact’ subgroup K (E10) of the hyperbolic Kac–Moody group 
E10, which has been proposed as a possible candidate symmetry of 
M theory [6].1 This, we believe, places the question stated above, 
and also the eventual incorporation of the chiral electroweak gauge 
interactions (not considered in [4,5]), in an entirely new context, 
by embedding (at least a subset of) the Standard Model sym-
metries into an infinite-dimensional extension of the exceptional 
duality symmetries of maximal supergravity. This approach, never 
tried before to the best of our knowledge, offers completely new 
perspectives on the possible Planck scale origin of Standard Model 
physics.

For the rest of this text we will concentrate on the fermionic 
sector of N = 8 supergravity, which consists of eight gravitinos 
ψ i

μ transforming in the 8, and a tri-spinor of spin- 1
2 fermions 

χ i jk transforming in the 56 of SU(8), whence χ i jk is fully anti-
symmetric in the SU(8) indices i, j, k, with (positive and negative) 
chirality corresponding to (upper and lower) position of the in-
dices, and χ i jk = (χi jk)

∗ . Here we will, however, restrict attention 
to the vector-like SO(8) subgroup of SU(8), for which the distinc-
tion between upper and lower indices is immaterial, whence we 
will not distinguish between χ i jk and χi jk in the remainder. The 
residual vector-like SO(8) transformations act as

χ i jk → U i
lU

j
mUk

nχ
lmn with U ∈ SO(8). (1)

1 For an earlier and conceptually different proposal based on the non-hyperbolic 
Kac–Moody algebra E11, see [7].
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In order to obtain the correct electric charge assignments of the 
quarks and leptons it was found in [1] that the U(1) subgroup of 
SU(3) × U(1) must be deformed by a new (still vector-like) U(1)q

whose action on the tri-spinor χ i jk is generated by the following 
56-by-56 matrix

I := 1

2

(
T ∧ 1 ∧ 1 + 1 ∧ T ∧ 1 + 1 ∧ 1 ∧ T + T ∧ T ∧ T

)
(2)

acting in the 8 ∧ 8 ∧ 8 representation of SO(8). Here

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

represents the imaginary unit in the breaking of SO(8) to SU(3) 
× U(1). We note that, from T 2 = −1 we have I2 = −1, whence 
(2) can be trivially exponentiated to a U(1)q phase rotation. The 
combination (2) differs from the usual co-product obtained from 
(1) with U = exp(ωT ) by the 56-by-56 matrix T ∧ T ∧ T . Impor-
tantly, the latter is not in SU(8), although it does commute with 
the SU(3) × U(1) subgroup of SO(8), and hence merely deforms
this subgroup, but does not enlarge it. We will now show how 
to accommodate the triple wedge product T ∧ T ∧ T by enlarg-
ing the R symmetry SU(8) of N = 8 supergravity to the bigger, 
and in fact, infinite-dimensional R symmetry K (E10), in accordance 
with the anticipated enlargement of the finite-dimensional excep-
tional dualities of maximal supergravities to infinite-dimensional 
groups.

To proceed we recall how the fermions of D = 11 supergrav-
ity [8] are related to those of N = 8 supergravity [2,9]. Denoting 
the (spatial) D = 11 gravitino components by �a

A (with a, b, . . . =
1, . . . , 10 and D = 11 spinor indices A, B, . . . = 1, . . . , 32) and 
adopting the temporal supersymmetry gauge �0

A = (�0�a)AB�a
B as 

in [10,11], we split the D = 11 gravitino into four-dimensional spa-
tial and internal components as follows

�a
A = (

�â
αi , �ā

αi

)
(4)

with flat spatial indices â, ̂b, . . . = 1, 2, 3 and flat internal indices 
ā, ̄b, . . . = 4, . . . , 10, whose position again does not matter as they 
are pulled up and down with δab . The D = 11 spinor indices 
A, B, . . . are split as A ≡ (α, i) into D = 4 spinor indices α, β, . . . =
1, . . . , 4 and internal SO(8) indices i, j, . . . = 1, . . . , 8 (whose po-
sition likewise does not matter here as we restrict attention to a 
vector-like symmetry). Ignoring a Weyl rescaling factor and a chiral 
redefinition, and not making a split into left-chiral and right-chiral 
components as in [9], we have

ψ i
âα ∝ � i

âα − 1

2

10∑
c̄=4

�c̄
i j

(
γ 5γâ�

j
c̄

)
α

(5)

χ
i jk
α ∝

10∑
ā=4

�ā
[i j�

ā
k]α (6)

where we temporarily suspend the summation convention for the 
indices a, b, . . . (the summation convention remains, however, in 
force for all other indices). For the implementation of the action of 
T ∧ T ∧ T we also need the following redefinition of the D = 11
gravitino [12]:

�a = �a
AB�a

B (no sum on a!) (7)
A
Because there is no summation on the spatial index a, manifest 
SO(10) covariance is lost. To emphasise this point we adopt a dif-
ferent font (a, b, . . .) although these indices have the same range 
as a, b, . . .. before [13]. Importantly, however, the position of the 
indices a, b, . . . now does matter, as they are to be raised and low-
ered with the (Lorentzian) DeWitt metric and its inverse

Gab = δab − 1 ⇔ Gab = δab − 1

9
. (8)

With the redefinition (7) the formula (6) becomes

χi jk α ∝
10∑
a=4

�a
[i j�

a
kl]�

a
lα. (9)

The action of T ∧ T ∧ T is therefore realised via (now suppressing 
D = 4 spinor indices)

χi jk → Til T jm Tkn χlmn

∝
10∑
a=4

(T �aT )[i j(T �aT )kl] Tlm�a
m (10)

where we have inserted a factor T T = −1 and used the antisym-
metry of T . Next we recall that there is a representation of the 
SO(7) �-matrices where

Tij = �45
i j (11)

(see e.g. Appendix E of [15]); it is then easy to see that

(T �aT )[i j(T �aT )kl] = �a
[i j�

a
kl] (12)

even without summation over a. Using this formula we conclude 
from (10) that the desired action takes a very simple form on the 
redefined spinors (7), to wit,

�a
iα −→ Tij�

a
jα (13)

which leaves the D = 4 spinor indices unaffected. Of course, one 
could also (though less elegantly) express this action in terms of 
the original spinors �a

A . We stress that in order to preserve the re-
lation (5), (13) must hold for all a = 1, . . . , 10. From this follows 
the action of the new generator on the D = 4 gravitino, an in-
sight that the arguments in [1] could not provide. Observe that the 
redefinition ψ i

â
→ γ âψ i

â
implied by (7) does not affect this conclu-

sion, as γ â commutes with T .
We now want to show that the action (13) is contained in 

K (E10), the supposed R symmetry of M theory. We refer to our 
previous work [10,11,13,14] for detailed explanations on K (E10), 
and here simply summarise some salient results (see also [16,17]
for related work). The group K (E10) is the involutory subgroup of 
E10 which is left invariant by the Cartan–Chevalley involution de-
fined on E10 in terms of its Chevalley–Serre presentation. As such, 
it contains the R symmetries of all D ≥ 2 maximal supergravities 
as subgroups (and thus also chiral transformations for even D); 
more specifically, we have

SU(8) ⊂ SO(16) ⊂ K (E9) ⊂ K (E10) (14)

The fermions transform in spinorial (double-valued) representa-
tions of K (E10). A remarkable property of the algebra K (E10)

is that, though infinite-dimensional, it admits finite-dimensional, 
hence unfaithful representations [11,16]. These are the Dirac [17]
and vector–spinor representations [11,16], which can be directly 
deduced from D = 11 supergravity (in addition, two ‘higher spin’ 
realisations are known [13]). As a consequence, K (E10) is not sim-
ple, because it has nontrivial (finite codimension) ideals J which 
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are associated with the unfaithful representations in the way ex-
plained in [11]. Accordingly, the quotient K (E10)/J is a finite-
dimensional group; more specifically, denoting the vector–spinor 
ideal by Jvs, evidence was presented in [13] that K (E10)

/
Jvs =

Spin(288, 32). The fact that the ‘compact’ subgroup K (E10) ⊂ E10
in this way gives rise to a non-compact quotient group is another 
unusual feature of K (E10).

A convenient realisation of the K (E10) Lie algebra generators in 
the vector–spinor representation was found in [13,14] (following 
earlier work on K (AE3) in [12,18,19]). Like the generators of E10, 
the generators kr

α of K (E10) can be labelled by E10 roots α and the 
associated multiplicity index r, but such that [14]

kr
α = −kr−α , for all E10 roots α. (15)

As shown in [13], for the vector spinor representation there is a 
concrete realisation of these generators in terms of 320-by-320 
matrices. For all real roots α of E10 (for which the multiplicity la-
bel r is not needed) we have

(kα)aA,bB = 1

2
Xab(α)�̃(α)AB (16)

where the symmetric matrix Xab is given by

Xab(α) = −1

2
αaαb + 1

4
Gab (α real) (17)

in terms of the root components αa in the ‘wall basis’ used in 
[13]; indices a, b are raised and lowered by means of (8). As ex-
plained in [13] there is a map from the E10 root lattice into the 
SO(10) Clifford algebra that associates to each root α of E10 a 
particular element �̃(α) = −�̃(−α) of the Clifford algebra; fur-
thermore the matrices �̃(α) are anti-symmetric for α2 ∈ 4Z + 2
and symmetric for α2 ∈ 4Z. Because the SO(10) Clifford algebra is 
finite-dimensional, and because there are infinitely many real and 
imaginary roots of E10, it follows that infinitely many E10 roots α
are mapped to the same element of the Clifford algebra.

To prove that (16) indeed generates the algebra K (E10), one 
substitutes the ten simple roots of E10 into (16) and verifies the 
defining relations for K (E10) [13] (the latter characterise the in-
volutory subalgebra in a manner analogous to the Chevalley–Serre 
presentation for general Kac–Moody algebras [20,21]). The Lie alge-
bra K (E10) in the vector spinor representation is thus generated by 
taking commutators of the above real root generators in all possi-
ble ways. In this way one ‘reaches’ all imaginary root spaces with 
α2 ≤ 0. However, due to the unfaithfulness of the representation 
the image of the root space elements consists of linear combina-
tions of finitely many basis elements. The generating elements, and 
thus K (E10), leave invariant the Lorentzian bilinear form

(V , W ) ≡ GabV a
A W b

A (of signature (288,32)). (18)

For general imaginary roots the formula (16) is no longer valid 
with (17). What is clear, however, is that all matrices kr

α generated 
in this way are antisymmetric under interchange of the index pairs 
(aA) and (bB), that is,

(kr
α)aA,bB = −(kr

α)bB,aA, (19)

and can thus be written as a linear combination of matrices of 
the form (16), with either Xab symmetric in (ab) and �̃(α)AB

anti-symmetric in [AB], or antisymmetric in [ab] and sym-
metric in (AB). Because all such matrices leave invariant the 
Lorentzian bilinear form (18) they all belong to the Lie algebra 
of so(288, 32) [13].
Although we do not have a general formula for arbitrary imag-
inary roots, explicit formulas do exist for null roots δ, and for 
certain time-like roots � [14]. For null roots δ, we have

(kr
δ)aA,bB = εr[aδb]�̃(δ)AB (20)

with eight transversal polarisation vectors εr . For time-like roots �
with �2 = 2 − 4n (for n ≥ 0), the corresponding kr

� can be realised 
in the form (16) by choosing a decomposition � = α + β with 
α2 = β2 = 2 and α · β = −(2n + 1); this gives

X(α)
ab (�) = −1

2
αaαb − 1

2
βaβb − (2n + 1)α(aβb) + 1

4
Gab (21)

Taking n = 1 (that is, �2 = −2) as an example and letting the 
decomposition range over all pairs of real roots (α, β) with � =
α + β one thus re-constructs the full root space, of dimension 
mult(�) = 44. For larger n the multiplicity of � increases rapidly,2

and one can no longer exhaust the full root space with the 
X(α)
ab (�).

Returning to our initial problem we note that

kaA,bB = GabT AB ≡ Gabδαβ Tij ∈ so(288,32) (22)

whence this matrix can be generated by a linear combination of 
matrices obtained by multiple commutation of the basic K (E10)

generators (because a linear combination may be required, we 
omit the root and multiplicity labels on k). To see how one can 
arrive at the requisite linear combination we note that there are 
infinitely many roots α (both real and imaginary) that satisfy 
�̃(α) = T = �45. The task of finding a K (E10) generator that imple-
ments T ∧ T ∧ T of (13) is then reduced to finding a combination of 
tensors Xab that equals Gab . We are not aware of a single root that 
achieves this but establishing the existence of a linear combination 
can be achieved as follows. In accordance with (21) one consid-
ers the set of all Xab that can arise from the commutation of two 
real root generators Xab(α) and Xcd(β) (given as in (17)) such that 
α+β = � is an imaginary root that satisfies �̃(�) = �45. Similarly, 
one can perform the same analysis for odd multiples of � given 
by (2k + 1)� since then �̃

(
(2k + 1)�

) = �̃(�) = �45. We have 
shown by an explicit computer analysis that one can find a lin-
ear combination of the generated Xab

(
(2k + 1)�

)
that equals Gab

and therefore the desired realisation of T ∧ T ∧ T on the spinors of 
D = 11 supergravity within K (E10). The generator just constructed 
only extends the R symmetry SU(8) ⊂ SO(3) × SU(8) ⊂ K (E10) and 
thus leaves the spatial rotation SO(3) symmetry untouched.

The above argument demonstrates the existence of an element 
of K (E10) that acts according to (13), but the combination identi-
fied above does not necessarily have a simple algebraic interpreta-
tion. Because the spinors φaA form an unfaithful representation of 
K (E10) there are infinitely many elements that act in this way, and 
it is thus possible that an alternative realisation of T ∧ T ∧ T ex-
ists that has a simple physical origin. For the realisation found here 
one already has to go up to level � = 18 in a level decomposition 
of K (E10) (that follows directly from the corresponding tables for 
E10 given in [22]); there is thus no easy way of reproducing this 
result by simple iteration of the low level K (E10) transformation 
rules given in [11]. The explicit realisation of the charge shifting 
U (1)q generator above relies on the existence of time-like imag-
inary roots and their integer multiples, but there may be other 
possibilities, in particular, using only real roots. In any case, it does 
not appear possible to construct the requisiteelement without use 
of the ‘hyperbolic’ over-extended root of E10, since the structure 
of the root system of the affine subalgebra e9 is too restricted. In 

2 For instance, mult(2�) = 2472, mult(3�) = 425 058 and mult(4�) =
130 593 068.
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this sense, the extension to the full hyperbolic Kac–Moody algebra 
and its involutory subalgebra could be essential for linking N = 8
supergravity to the real world.

We note that the embedding of T ∧ T ∧ T into K (E10) in 
principle also allows for a realisation of this transformation on 
the bosonic fields of the spinning E10/K (E10) model studied in 
[11], although the ambiguities related to the unfaithfulness of the 
fermionic realisation of K (E10) remain to be resolved. More pre-
cisely, while there are infinitely many combinations of K (E10) gen-
erators that act in the same way on the fermions, these will act 
differently on the bosonic coset variables on which K (E10) is re-
alised faithfully. The bosonic variables can thus in principle be 
used to remove all ambiguities.

The results of [1] and this Letter represent a significant shift 
away from the standard paradigm of how to understand the pos-
sible emergence of the Standard Model fermions from a Planck 
scale unified theory, as for instance embodied in currently popular 
superstring inspired scenarios of low energy (N = 1) supergrav-
ity. There one starts from a finite-dimensional compact Yang–Mills 
gauge group (such as E6 × E8), with the fermions transforming in a 
standard representation. This symmetry is assumed to be present 
as a space–time-based symmetry already at the Planck scale, and 
then assumed to be broken in a cascade of symmetry reductions 
as one descends to the electroweak scale. By contrast, the present 
scheme proceeds from an infinite-dimensional group that can be 
fully present as a symmetry only in a phase of the theory prior to 
the emergence of classical space and time, in accord with the proposal 
of [6], and crucially relies on the infinite-dimensionality of this group
(and the associated Kac–Moody algebra).3 We emphasise once 
again that K (E10) does possess chirality, offering new perspectives 
for the incorporation of chiral gauge symmetries, such that the 
electroweak sector of the Standard Model may eventually be un-
derstood in a way very different from currently prevailing views.

3 A curious observation also concerns the discrete subgroups of K (E10): The finite 
group PSL2(7), a maximal discrete subgroup of the family symmetry SU(3) f which 
was recently invoked to explain the quark mass hierarchy [23] sits naturally in the 
Weyl group of E7. The latter is contained in the Weyl group of E10, and thus also 
inside K (E10).
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