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Formulation of a Monte Carlo model for edge plasma transport
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1. Introduction
 The Braginskii’s fluid equations [1] for particle, momentum and energy can be
generalized into a Fokker-Planck form

where D = DIIbb + D⊥ (I-bb) is the diffusion tensor written in the same form as for the so-
called CGL pressure tensor [2], with b = B/B being the unit vector of the B-field line and I a
unit tensor. The function f stands for density, parallel momentum and ion and electron
temperature. V, DII, D⊥ and S represent transport coefficients and source terms specific to a
particular meaning of f. Whereas a standard finite-difference method solves a linear matrix for
the unknown quantities at global grid points, the Monte Carlo technique applied in the 3D
edge transport code EMC3 [3] follows microscopic ‘particles’ governed by a local transition
probability function instead. The transition probability function is derived in a local, field-
aligned orthogonal coordinate system in which the diffusion tensor is diagonal and non-trivial
metric coefficients disappear, reflecting the independence of the parallel and cross-field
transports. In addition, an independent global coordinate system is introduced to define a grid
needed for scoring Monte Carlo ‘particles’ and for representing plasma parameters. This
paper is however focussed on discussion of the transport dynamics associated with the
magnetic field geometry, rather than a complete description of the EMC3 code.

2. Microscopic transport process
The Fokker-Planck equation originated from describing the Brownian motion of

particles. To understand the relation of equation (1) to a microscopic system, we consider a
Markoff process in which the probability f (r, t+τ) at a later time t+τ is completely determined
by the probability at time t ( see e.g. Ref. [4] ):

where T(r, t+τ | r’, t) is the transition probability ( conditional probability density ). A formal
Taylor series expansion of equation (2) in τ and ∆r ( = r-r’ ) yields

One sees that, in the absence of the source, equation (1) and (3) become identical if we let

implying that equation (1) can be solved in a stochastic way. Equations (4) and (5) relate the
macroscopic variables V and D to a microscopic stochastic process described by a transition
probability T(r+∆r,t+τ|r,t). Notice that all the macroscopic variables f, V and D depend only
on r of a macroscopic size and, for a given r, the transition probability is only a function of
∆r which varies in a microscopic range. Therefore, it is reasonable to introduce two
independent coordinate systems: a global coordinate system r to define macroscopic variables
and a local ∆r to describe the dynamics of the stochastic process. In the following we restrict
our attention to discussion on transport dynamics associated with the local coordinate system.
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 The stochastic transport mechanisms are described by a transition probability function
which can be derived from equations (4) and (5) if a local coordinate system is selected at a
given point P(r). According to

it is convenient to use the three orthogonal unit vectors e1= -(b⋅∇)b/|(b⋅∇)b|, e2 = b×e1 and b
as a triplet of the local coordinate system, as shown in Fig. 1. In this coordinate system, the
transport coefficients read

Use the ansatz

and insert equations (7), (8) and (9) into
equations (4) and (5). Integration of
equations (4) and (5) yields six relevant
equations since the non-diagonal terms in
integral (5) linear in τ vanish automatically
in the orthogonal coordinates. It is found that
solutions of these equations exist only for
M,N,L≥2. For the simplest case with
M=N=L=2, we have

3. Monte Carlo simulation
Let f represent the density of particles which undergo convective and diffusive

processes in a system of a macroscopic size. The transport domain is covered by a global
mesh consisting of a finite number of cells of arbitrary form. Each cell has a non-zero volume
∆vi where the index i indicates the cell number. Assume that each particle at time t can be
identified by a δ-function δj( r - rj(t) ) where rj(t) is the location of the j-th particle. After a
small time step τ, particles are to be found at new positions rj(t+τ) due to the displacements
described by equations (9) and (10). Now, we introduce the independent random variables ξx,
ξy and ξz. Each of them has only two discrete values –1 and +1. Thus, equation (10) can be
rewritten as
According to equation (9), ξx, ξy and ξz are assigned either –1 or +1 with equal probability ½,

leading to a random walk of particles. Without specification of boundary conditions (assume
that no particles at time t+τ can reach a boundary), the position of the j-th particle at time t+τ
is determined by
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Fig. 1: Local orthogonal coordinate system
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Through equation (12) we can locate the positions of individual particles at any later time
points t+nτ. If the number of the followed particles is large enough such that at any time
points t+nτ each cell is filled by a sufficient amount of particles, the density f is simply given
by

where w j (t+nτ) is the weight of the j-th particle at time t+nτ.
Equations (12) and (13) are given in general forms without any specifications for the

global coordinates because the stochastic process happens in a local independent coordinate
system. The displacements are then mapped onto a global coordinate system through three
basis vectors which are completely determined by the B-field geometry. In order well to
understand the stochastic processes associated with the curvature of B-field lines, we consider
a simple case in which particles diffuse along a flux tube ( V = 0, D⊥ = 0). We assume that the
particles have been reached a steady-state and are source-free in the region of interest. In the
following we derive the net flux of the
microscopic particles through the cross-
section S0 at L0 (see Fig. 2). For this simple
case, the transition probability function (9)
consists, according to (10), of only two
discrete points, i.e., r1,2 = r + [V∆zτ ±
(2DIIτ)1/2]b + V∆xτe1 where r is the initial
position of a particle as shown in Fig. 2. It
can be shown that, for a small τ( V∆zτ  <<
(2DIIτ)1/2 ) and an expansion of the B-field

line at P(r) up to the second derivative, the two points r1,2 do lie on the B-field line passing
through P(r), as expected. Thus, the two terms (2DIIτ)1/2b and DIIτ(b⋅∇)b together describe the
parallel diffusion. Particles on the both sides of the surface S0 suffer displacements either in
forward or backward direction with equal probability ½. Note that only the half of the
particles located in ∆L1 = [(2DIIτ)1/2 + V∆zτ]| l=(L0+L1)/2 and ∆L2 = [(2DIIτ)1/2 - V∆zτ]| l=(L0+L2)/2

can pass through the surface S0 and thereby make contributions to the net flux ΓII.  Expanding
f, DII and S at L0 up to their first derivatives, we have

Use equation (7) for V∆z and note that b⋅∇ = ∂/∂l and ∇⋅b = B∂(1/B)∂l = (∂S/∂l)/S (∇⋅B = 0
and B⋅S = constant for the flux tube). Finally, we find that the last three terms on the right side
of equation (14) cancel exactly, resulting in a correct net flux expected from equation (1).

4. Benchmark with B2
For a simple neutral plasma consisting of a single ion species the B2 [5] and EMC3

code solve almost the same equations, except for the slight simplifications made in the 3D
code for the energy balance equations (for example, neglect of the kinetic and viscous
contributions). Therefore, it is interesting to see in which degree of accuracy the fluid
equations can be treated by the Monte Carlo method.

First, in order to guarantee a 2D orthogonal grid as required by the B2 code, the island
SOL geometry is simplified by a 2D slab model (Fig. 3). The SOL has an area of 3×9
(radial×poloidal) cm2, corresponding to the W7-AS islands with a radius of about 3 cm. For
simplicity, we ignore the private region. Secondly, we carefully examine the terms included in
the equations in both codes in order to ensure that the two codes deal really with identical
equations. For this, the kinetic and viscous energy fluxes which do not appear in the 3D code
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Fig.2: Parallel diffusive process along a flux tube
           associated with the curvature of B-field lines.
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are simply switched off from the B2 code. Comparison is carried out for a pure hydrogen
plasma with a power flux of 200 kW entering the island SOL between the
stagnation- and X-points (see Fig. 3). Instead of applying EIRENE code [6] to
determine the particle source Sp, a simple
exponential function with a radial and
poloidal decay length of 2 and 3 cm is
assumed. The source Sp has a maximum at
the position of the target cutting the
separatrix. Particles and energy get lost
only due to the target. On the left and top
boundaries the condition of VII = 0 is set
for the momentum transport due to the
island symmetry. The particle diffusion
coefficient D is taken to be 0.5 m2/s and
furthermore the relation χe = χi = 3D holds.
Calculation starts with the coupled energy
transport equations for ions and electrons
from the initial conditions of a constant
density (ne = 2×1013 cm-3) and
temperatures (Ti = Te = 20 eV). Then, Te

and Ti are determined by iterations. With
the calculated Te and Ti and the given Sp,
sequential iterations of the particle
transport and momentum balance
equations yield ne and VII. The results from
the two codes are compared in Fig. 3
which shows the poloidal profiles (radially
averaged) of Te, Ti, ne and Mach number.
The comparisons show excellent
agreement between the two codes,
although they are based on completely
different solving algorithms.

5. Summary
The transition probability function which governs the transport dynamics of the Monte

Carlo procedure used in the EMC3 code is derived in a local, field-aligned orthogonal
coordinate system in which the diffusion tensor has a diagonal form and non-trivial metric
coefficients disappear. The particle tracing procedure is formulated in a general form,
independent of the global coordinates selected. The transport properties associated with non-
uniform transport coefficients and the curvature of B-field lines are discussed in details. It is
shown that the microscopic processes described by the transition probability function give rise
to a correct macroscopic flux. Comparison of EMC3 with B2 shows excellent agreement in
spite of the completely different solving algorithms.
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Fig. 3:  Comparison of EMC3 with B2, based
             On a 2D slab model of the island SOL.


