Connected component labeling on a 2D grid using

CUDA

Oleksandr Kalentev®*, Abha Rai®, Stefan Kemnitz®, Ralf Schneider®

@ Max-Planck-Institut fir Plasmaphysik, Wendelsteinstr. 1, 17491 Greifswald, Germany
b Fachhochschule Stralsund - University of Applied Sciences, Zur Schwedenschanze 15,
18435 Stralsund, Germany
¢ Ernst-Moritz- Arndt-Universitdt, Domstr. 11, 17487 Greifswald, Germany

Abstract

Connected component labeling is an important but computationally expen-
sive operation required in many fields of research. The goal in the present
work is to label connected components on a 2D binary map. Two different
iterative algorithms for doing this task are presented. The first algorithm
(Row-Col Unify) is based upon the directional propagation labeling, whereas
the second algorithm uses the label equivalence technique. Row-Col Unify
algorithm uses a local array of references and the reduction technique intrinsi-
cally. The usage of shared memory extensively makes the code efficient. The
label equivalence algorithm is an extended version of the one presented by
Hawick et al. [1]. At the end the comparison depending on the performances
of both of the algorithms is presented.

Keywords: CUDA, GPU, parallel, connected component, component
labeling, mesh

1. Introduction

Connected component labeling is an important problem appearing in dif-
ferent fields of research. Although one can consider this problem as a general
one, namely arbitrarily graph component labeling or coloring, often the spe-
cific task of labeling connected components on a grid is of great interest. This
is needed for example in computer vision as a part of segmentation, namely

*Author for correspondence
Email address: okalenty@ipp.mpg.de (Oleksandr Kalentev)

Preprint submitted to Journal of Parallel and Distributed Computing November 3, 2010

separating the objects from the background. It reduces the image to a binary
representation, in which objects are represented by 1’s and the background
by 0’s. Another field of application are cellular automata (CA) models used
for different kind of simulation in physics, mathematics and biology.

Since the early 70s, numerous approaches for connected component label-
ing have been introduced [2, 3, 4, 5|. Most of these approaches are suitable
for sequential processing, but also some parallel algorithms have been devel-
oped [6, 7].

The use of GPUs with interfaces as CUDA [8] or OpenCL [9] opens a new
perspective for many data processing approaches. The problem of graph
component labeling with GPUs has been already addressed by Hawick et
al. [1].

In the current work, we present two algorithms for connected compo-
nent labeling on a 2D binary grid. For our implementations, we use CUDA
and measure the performances of the two algorithms on a NVIDIA TESLA
C1060. The first algorithm for the directional propagation labeling uses the
reduction technique. For the second algorithm, we improve and extend the
implementation by Hawick et al. [1], which allows one to reduce the total
memory usage and simplifies the original procedure. We demonstrate that
our implementation can be easily extended to compute different connected
component characteristics such as area or perimeter. This is of interest, e.g.
in cases where binding energies of cluster atoms change with cluster sizes.

The paper is organized as follows. In Section 2, the two algorithms are de-
scribed. Section 3 presents the comparison of the performances. In Section 4,
we conclude the paper.

2. Algorithm description

Connected component labeling in our framework is the assignment of a
unique label to each non-zero element on a 2D grid in such a way that all
non-zero neighbors get the same label. In this work we consider 2D cases
with four neighbors (north, south, east and west).

2.1. Row-Col Unification

The first algorithm is similar to a "kernel C” algorithm described in [1].
This method implements the directional propagation labeling. In the initial
"kernel C” approach, each thread is responsible for the whole row or the
column.

In our implementation, we intrinsically apply the reduction technique,
which is well known in parallel computing [10]. This technique allows one to
obtain integrated characteristics of a bunch of data, for example, the sum of
array elements. Additionally, in our implementation we use shared memory
and a local array of references. In the following Section, we describe the main
steps of the algorithm.

The main idea of the algorithm is the propagation of the label with the
smallest value. The procedure has to initialize all non-zero elements with
unique identifiers which are equal to the value of the correspondent index of
the element in the label array. Thereafter, the smallest label value propagates
along all rows and then columns (see Figure 1). Making several iterations of
such a label propagation procedure, the algorithm finally marks all elements
in each connected component with the smallest label value of this connected
domain.

Initial Row Unify Col Unify

0

oJofjojo oo

0]o o]0 of]o

0
0
0

olo|o|e

=} =} (=1 =] =} =}

ololo|lo]le|lo|e

o | o =} =} (= =] =} =}

oclo|lo|lo|lo|lo]|o|e
olo|lo|lo|lo]lo|o|e

Figure 1: RowCol Unify procedure

The current implementation of “RowCol Unify” algorithm is suitable only
for a map with size 1024 x 1024. The adaptation for other sizes was not
done due to the fact that this algorithm is much slower than the second one
(see Section 3). The algorithm is iterative and consists of two steps. The
host part is described in pseudo code in Algorithm 1. First, the label array
(mapLabelsDev) is initialized with unique identifiers. Then, two unification
procedures for rows (Uni fyRow) and columns (UnifyCol), respectively, are
called within the while loop. Each procedure requires two parameters: the
first one is the label array mentioned above; the second one is an integer
indicator for the loop termination. If UnifyRow or UnifyCol do not set this
indicator to 1, the while loop is terminated. This is possible due to the fact,

3

Algorithm 1 Row-Col Unify algorithm. Host part.
Require: mapLabelsHost, mapLabelsDev
Require: ContinuelndH ost, ContinuelndDev
mapLabelsDev <— mapLabelsH ost
call: InitializeLabels
while ContinuelndHost # 0 do
ContinuelndHost < 0
ContinuelndDev < ContinuelndH ost
call: UnifyRow(mapLabelsDev,ContinuelndDev)
call: UnifyCol(mapLabelsDev, ContinuelndDev)
ContinuelndHost <— ContinuelndDev
end while
mapLabelsHost < mapLabelsDev

that the operation of value assignment does not produce any synchronization
problems for CUDA devices in this case.

The main routine kernel is described in Algorithm 2. It is identical for
both row and column unification. The procedures for row and column pro-
cessing differ from each other only in the way they access the global memory.
The grid for this kernel is constructed in the following way: threads from the
same block access the same row or column. The layout of the global memory
is organized in such a way that the access for rows is coalesced whereas for
columns it is not. In the routine, the label array is copied first from the global
to the shared memory, where also the local array of references is allocated.
We add one more element to the front of the label and reference arrays to
avoid unnecessary conditioning during the update procedure.

Secondly, we apply an initial unification procedure which is the first step
of reduction. This is described in Algorithm 3. Each two neighboring ele-
ments are processed in each thread. If both elements in the labels array are
non-zero, then the one that has the smallest value is propagated, i. e., this
value is assigned to both array elements. The references of these elements
are initialized according to the indices of the elements: the one with the
larger index value references the one with the smaller index value which has
a reference to itself. This is shown in Figure 2.

The Continuelnd indicator is set to 1, if two neighboring non-zero ele-
ments that are not equal to each other are found.

Then, a cascade of reduction and update steps is executed.

Algorithm 2 Row-Col Unify algorithm. Main routine kernel.

Require: mapLabelsDev, shmemLabels, shmemRefs
Require: Continuelnd
shmemLabels <— mapLabelsDev
call: UnifyRowl((threadldx2+1), Continuelnd, shmemLabels, shmemRefs)
if threadld < 256 then
call: UnifyRowL((threadld 2+ 1) % 2, shmemLabels, shmemRefs)
end if
call: syncthread()
call: Update(threadld 2+ 1, shmemLabels, shmemRefs)
call: syncthread()
if threadld < 128 then
call: UnifyRowL((threadld 2+ 1) x4, shmemLabels, shmemRefs)
end if
call: syncthread()
call: Update(threadld 2+ 1, shmemLabels, shmemRefs)
call: syncthread()

if threadld < 1 then
call: UnifyRowL((threadld*2+1)x512, shmemLabels, shmemRefs)
end if
call: syncthread()
call: Update(threadld 2+ 1, shmemLabels, shmemRefs)
call: syncthread()
mapLabelsDev < shmem Labels

Copy labels from global to shared memory
R A A S A A A A A A

~-~|24]23[22[21120119118[17]15[15]14[13[12[11[10[9 l 8 l 7 l 6 l 5 l 4 l 3 l 2 l 1 |---

Reduction (Step 1)

Labels

NS NS S AP S A, AL AL, AL, AS AN P
Initialize references

[S W N N N D U G e P S

Figure 2: Row-Col Unify algorithm. Initialization and first reduction step.

Each subsequent step in the cascade requires half numbers of active
threads for the UnifyRowlL reduction procedure compared to the previous
step. However, it uses all threads in a block for an Update procedure. In Fig-
ure 3, an example of one (third) step of reduction is shown. As mentioned
before, in the first reduction step each thread processes two neighboring
elements. In the subsequent steps, the number of neighboring elements pro-
cessed by each thread doubles, i. e., in step 2 the number of elements are 4,
in step 3 the number of elements becomes 8 and so on.

Reduction (Step 3)

Labels
c Al [ar o TasTusus o [o o Jo [[s [s [s [[1 [1 [1]---
NI NI NP
References

-~-|1|1 | 1 | 1|1|5|5|5|9|9|9|9|9|13|13|13|17|17|17|17|17|21|21|21|-~-

s N

Figure 3: Row-Col Unify algorithm. Reduction & Update step 3.

In Figure 3, three groups of labels and references which are processed by
three threads are shown. The separation of groups is indicated by thicker
lines. Each thread checks the values of the two central elements of corre-

Algorithm 3 Row-Col Unify algorithm. References initialization, 1st step
of unification.
function UnifyRowl(iPos, Continuelnd, shmemLabels, shmemRefs)
if shmemLabels[iPos| # 0&&shmem Labels[iPos + 1| # 0 then
if shmemLabels[iPos] # shmemLabels[iPos + 1] then
shmemLabels[iPos| <— min{shmemLabels[i] | i = iPos,iPos + 1}
shmemLabels[iPos + 1| <— shmem Labels[iPos]
Continuelnd < 1
end if
end if
shmemRe fs[iPos| < iPos
shmemRefs[iPos + 1| < iPos
return

sponding groups (yellow). If they are non-zero, the minimum value of these
two elements is assigned to the element which is referenced by the element
with the smaller index value from the processed pair. The references are
taken from the reference array. The references of the processed pair are also
updated, 7. e., the element with the larger index value receives the same
reference as the element with the smaller index value. The updated values
in both arrays are marked in red. A detailed description of the UnifyRowL
procedure is given in Algorithm 4.

Algorithm 4 Row-Col Unify algorithm. UnifyRowL procedure.
function UnifyRowL(iPos, shmemLabels, shmemRefs)
Require: iRef
iRef < shmemRefs[iPos]
if shmem Labels[iPos| # 0&&shmemLabels[iPos + 1| # 0 then
shmemLabels[iRe f] <— min{shmemULabelsi] | i = iPos,iPos+ 1}
shmemRefs[iPos + 1] - shmemRefs[iPos]
shmemLabels[iPos + 1| < shmemLabels[iRe f]
end if

return

After the procedure UnifyRowlL is finished, all threads in a block must
be synchronized and the Update function is called in order to complete the
reduction step. Here, all threads update both labels and references for two

processed neighboring elements i. e. each element obtains the correspondent
label and reference from the element to which it currently points. Algorithm 5
summarizes the Update procedure.

Algorithm 5 Row-Col Unify algorithm. Update procedure.
function Update(iPos, shmemLabels, shmemRefs)
Require: iRef

iRef < shmemRefs[iPos]

shmemLabels[iPos| <— shmemLabels|iRe f|

shmemRe fs[iPos| <— shmemRefs|iRef]

iRef < shmemRefs[iPos + 1]

shmemLabels[iPos + 1] < shmem Labels[iRe f]

shmemRefs[iPos + 1| - shmemRefs|iRef)

return

The weak point of this procedure is the bank conflics which lead to the
serialized requests for the reading of the value needed for the update. This
gives rise of the performance drop for the whole procedure.

2.2. Hoshen-Kopelman or Label Equivalence

The second presented algorithm is similar to the well-known Hoshen-
Kopelman [2] algorithm. Recent publications by Suzuki et al. [5] and Wu
et al. [11] give a nice description of the label equivalence procedure for the
labeling of connected components in a binary image in the sequential case.

The parallel version of the label equivalence algorithm for GPUs has been
presented by Hawick et al. [1].

According to their description, the multi pass algorithm consists of three
phases which are repeated in a loop: scanning, analysis, and labeling. The
first phase constructs a forest of references, the second one connects all ref-
erences in each tree to the root, and the third one assigns the corresponding
labels according to the references.

Our implementation is significantly improved compared to the algorithm
presented by Hawick et al. [1] in terms of memory consumption: there is
no need for an additional reference array. Apart from that, it requires less
steps: the labeling phase is omitted. Other features are the usage of padding
which allows us to avoid extra conditioning for the border elements. Atomic
operations which slow down the computation dramatically due to their syn-
chronous nature are also omitted in the scanning phase. This is possible

8

due to the iterative nature of the algorithm: if collision happens, it will be
resoved during the next iterative step.

Figure 4 demonstrates the first step of the algorithm as well as the usage
of the padding. Here, left picture shows initial labels with the value equal
to the array index, starting from the left top added element. The right
one shows labels after the first step of the algorithm. Considering labels as
references one can find the forest consists of 8 trees (for convenience they are
depicted with different colors). After the second step values of all the labels
in those trees will be the same and equal to the corresponding root’s label
value, i. e., 20 for the gray region, 31 for the orange, 41 for the blue and etc.

Initial After linking

10:0:0:0:0 : 0:0:0:

ojojojo

0
oljofo
0

0|31

41 |41|31

olo|lo|lo]|o

0 |42|43

olo|lo|lo|eo]|e

75]|64|65|66|67

o|lo|lolo|lo|o]|o]o:
o|lo|lolo|lo|o]|o]o:

86|75 |76 |77 | 78|79

cioiclocioicloioto!
olololo|lo]lo]lo|o]|o:
olololo|lo]lo]|lo|o]|o:

©
=5
©
(=
®
=5
®
®

89190|91

108

©
3
©
3
©
©
r=y
=}
=)

101]102]103

coc‘ocioc‘oc‘o'cioioiolo:;
ociciocioiolociocioloioio:!

(o)
0
0
0
0
6464|5455 0
0
0
0
0

0i0ioio0io0:

o
o
(=]
(=]
o

Figure 4: Label Equivalence procedure

Listing 1 shows the initialization procedure. "UINT” stands for the "un-
signed int’ type. SIZE* and 'SIZE*PAD’ are definitions of macros for the
size of the working area and the whole area including padding, respectively.
The label array must be filled with a binary image. The procedure initializes
all non-zero elements with unique identifiers which are equal to the value of
the corresponding index of the element in the label array. This allows us to
use these values later as references.

After initialization of the label array, the main loop for the iterative label-
ing of connected components starts. Two functions are called on each step:
“Scanning” and “Analysis”. The first function represents the first phase of
the algorithm, namely the linking of the elements. This is done by choosing
the smallest nonzero label value within five elements: one central and its
neighbors (see Listing 3). As labels with zero value are ignored during the

procedure, constructed trees never connect to the background and, therefore
also with each other. As a consequence of the locality of the procedure, the
algorithm works for any number of disconnected components.

The indicator IsNotDone is only set to 1, if the label value is changed.
This is done in order to stop execution of the algorithm when no further
iterations are needed.

The second function represents the relabeling phase of the algorithm.
Here, in a while loop each thread takes a sequence of labels starting from
the current position considering them as references.

The loop is terminated when the label with the value that coincides with
the index of that element is found (see Listing 2). This procedure works
remarkably fast due to the fact that the steps which are performed previously
make the later ones shorter.

Figure 5 gives an example of such a situation. Here, the root element is
shown in gray. All labels are linked to it if they are considered as references.
For example, if for an element with index 6 (in blue) the relabeling was
already done. Then, for an element with index 10 the sequence is shorter,
because after processing element 6 the first element will be taken directly.

Indices: 1 2 3 4 5 6 7 8 9 10 11

Labels: 1 1 2 3 4 . 6 7 8 9 .

AN P N W N N N N N

Figure 5: Relabeling procedure

3. Benchmarks and Discussion

To measure the performance of the two algorithms presented before sev-
eral tests have been done. All tests presented in the following section are run
on a NVIDIA TESLA C1060.

Table 1 summarizes the results for images with such a size and different
topological and occupational settings of the image. Under topological set-
tings we understand different shapes of the connected components, whereas
occupational settings refer to the fraction of the connected components to

10

the image size. Here, “RC” stands for “RowCol Unify” and “LE” for “Label
Equivalence” algorithm. In Table 1, three different cases of the image filling
are considered: spiral (see [1] for the details), random, and blob with ran-
dom. The first one is traditionally considered to be a particularly complex
case, whereas the second and the third ones are of great interest for tasks
like cellular automata (CA).

For the CA procedure, one usually starts with a random distribution of
the occupied cells and follows their dynamics which often results in some
blobs of a certain size and a randomly distributed small noise. We com-
pare two cases for the random cell distribution with occupation ratios of 0.5
and 0.1, which means that half and 10% of the image cells are occupied,
respectively.

For the “blob with random” distribution we consider four cases with
different blob sizes (C1 - blob radius 10, C2 - 20, C3 - 50, C4 - 100). The
occupation ratio is kept fixed at 0.5. Half of the occupied cells are assigned
to blobs and the rest is randomly distributed. This choice of fixed occupation
ratio and different blob sizes result in different number of blobs for different
cases.

For the “Label Equivalence” algorithm, the performance of the extended
version of the procedure (named in Table 1 “SZ”) as well as that of the
original one (named in Table 1 “NSZ”) is measured.

To demonstrate the flexibility of our extension of the “Label Equivalence”
algorithm in addition to the pure labeling the size of each connected com-
ponent is also calculated, which is needed e.g. for calculating cluster-size
dependent binding energies in CA applications. For that purpose another
array _C'Size is used. This array must be initialized with 0’s in non-occupied
cells and with 1’s in occupied cells. The only part which have to be modified
is the “Analysis” function. Needed modifications are shown in Listing 4. The
presented code has to be added after the assignment of the label at the end

Time ms
Blobs Spiral Random
C1 C2 C3 C4 - 0.5 0.1
RC 87.16 | 87.89 | 87.27 | 87.65 || 4501.56 || 254.47 | 34.75
NSZ | 5.60 | 5.77 | 5.89 | 6.68 5.60 6.47 1.56
S7Z |16.25 | 16.28 | 15.22 | 17.30 || 38.86 14.23 | 2.11

LE

Table 1: The benchmark of the RowCol Unify and the Label Equivalence algorithms

11

Time ms
0.2 0.3 0.4 0.6 0.7 0.8 0.9 0.99

kg | NSZ | 10.33 | 15.50 | 18.90 | 39.34 | 34.12 | 33.91 | 36.30 | 24.42
SZ [16.74 [27.81[38.84 [84.21 | 95.70 | 113.60 [137.95 | 317.06
[Ttervum. [4 [5 [5 | 8 | 5 | 4 [4 | 3 |

Table 2: Random distribution with different occupation ratio.

of the function. Here, after reconnecting the element with the root of the
tree of references the size of the root is incremented by the size of the current
element, which afterwards is set to 0. In order to synchronize the summation
atomic operations are used. As a result of calculations one gets an array with
connected component sizes stored in the element with the smallest index for
each component. Other extensions to the algorithm can be done in a similar
manner.

Table 1 shows that the “Label Equivalence” algorithm is faster in all cases.
Blob sizes do not affect the speed of the second algorithm. The occupation
ratio, on the other hand, influences the speed significantly.

The case with a spiral distribution is extremely difficult to handle for
the first algorithm and very easy for the second one. It is interesting to
mention that our modification of the “Label Equivalence” algorithm needs
only 3 iterations for such a distribution regardless of the size of the map. This
shows, that the number of iterations needed for the second algorithm depends
strongly on the topology of the connected component and only weakly on
their size.

Table 2 shows the change of the performance of two modifications of the
“Label Equivalence” algorithm with respect to different occupation ratio for
the case of 2048 x 2048 grids. Here, the maximum number of iterations,
and therefore calculation time, is needed for the case of an occupation ratio
of 0.5-0.6. For other occupation ratio values the time consumption is less,
although for the case of high occupation ratio it drops slower than for the
lower ones. The reason for this is the first condition checking for the non-zero
elements.

Table 3 shows the performance of the “Label Equivalence” algorithm
with different sizes of the map. The execution time increases linearly with
the total number of cells.

Table 4 shows the performance of the second algorithm with respect to
the block size of the kernel. A significant drop of the performance occurs if

12

Time ms
1024x1024 | 2048x2048 | 4096x4096 | 8128x8128
KB NSZ 6.50 24.98 97.88 388.24
S7 14.30 55.75 217.89 870.70
Table 3: Scanning over picture size
Time ms
512 256 64 16 4 1
KB NSZ | 25.09 | 24.91 | 25.34 | 36.19 | 123.15 | 453.331
S7Z | 55.41 | 55.73 | 55.13 | 62.13 | 154.91 | 522.085

Table 4: Scanning over the size of the block

the block size gets smaller than the warp size (32 in our case). The result
is expected because the multiprocessor schedules and executes threads in
groups of 32 parallel threads (see [8]).

4. Conclusions

Two type of iterative algorithms for labeling connected components on a
2D binary grid were described. The first one is a “RowCol Unify” algorithm
which implements the directional propagation labeling technique into CUDA.
The second one is the modified version of “Label Equivalence” implemented
by Hawick et al. in [1].

It was shown that there are two major advantages of the “Label Equiv-
alence” algorithm over the “RowCol Unify” one. The first advantage is the
simpler implementation which leads to much less instructions. The second
one is concerned with a reduced number of iterations needed for the pro-
cedure to expand the smallest label on a whole connected component. In
the case of a spiral distribution of occupied cells for a 1024 x 1024 grid the
number of iterations needed was 514 for the “RowCol Unify” algorithm and
3 for “Label Equivalence”. This demonstrates, that the productivity of the
second algorithm depends on the topology weaker then the productivity of
the first one.

In general, the second algorithm is 15 ~ 35 times faster compared with
the first one. Another advantage of the “Label Equivalence” algorithm is its
capability to be easily extended to calculate additional integral characteristics
of each connected component, like size, perimeter or area.

13

Appendix A. Label Equivalence procedure listings.

Listing 1: Labels array initialization

//// Initialization with unique id’s
__global__ void InitLabels(UINT*x _Labels)
{

UINT id = blockldx.yxgridDim .xxblockDim .x+

blocklIdx .x*blockDim .x+threadldx .x;

UINT cy = id/SIZEX;

UINT cx = id — cy=*SIZEX;

UINT aPos = (cy+1)*(SIZEXPAD)+cx+1;

UINT 1 = _Labels[aPos];

Ix=aPos;

_Labels [aPos] = 1;
ki

Listing 2: Relabeling phase

__global__ void Analysis(UINTx _Labels)
{
UINT id = blockldx.yxgridDim .xxblockDim .x+
blockIdx .xxblockDim .x+threadldx .x;
UINT cy = id/SIZEX;
UINT cx = id — cy=*SIZEX;
UINT aPos = (cy+1)*(SIZEXPAD)+cx+1 ;
UINT label = _Labels[aPos];
if (label)
{
UINT r=_Labels[label |;
while (r!=1abel)
{
label = _Labels|[r];
r = _Labels[label];

}
_Labels [aPos] = label;

14

Listing 3: Linking phase

__global__ void Scaning(UINTx_Labels ,UINT*_IsNotDone)

{
UINT id = blockldx .yxgridDim .xxblockDim .x+
blockIdx .xxblockDim .x+threadldx .x;
UINT cy = id/SIZEX;
UINT cx = id — cy=*SIZEX;
UINT aPos = (cy+1)*(SIZEXPAD)+cx+1 ;
UINT 1 = _Labels[aPos];
if (1)
{
UINT lw = _Labels[aPos — 1];
UINT minl = ULONGMAX;
if (lw) minl = lw;
UINT le = _Labels[aPos + 1];
if (le&&le<minl) minl = le;
UINT 1s = _Labels[aPos — SIZEX — 2];
if (ls&&ls<minl) minl = Is;
UINT In = _Labels[aPos + SIZEX + 2];
if (In&&ln<minl) minl = In;
if (minl<l)
{
UINT 11 = _Labels[1];
_Labels[1] = min(1l ,minl);
_IsNotDone[0]=1;
}
}
}

Listing 4: Size calculation

//Size calculation
UINT n = _CSize [aPos];
if (n&&label!=aPos)

{
atomicAdd(&_CSize [label] n);
_CSize[aPos] = 0;

}

15

References

1]

J. Hoshen, R. Kopelman, Percolation and cluster distribution. i. cluster
multiple labeling technique and critical concentration algorithm, Phys-
ical Review B 14 (8) (1976) 3438-3445.

W. Pratt, Digital image processing: PIKS inside, John Wiley & Sons,
Inc. New York, NY, USA, 2001.

K. Hawick, A. Leist, D. Playne, Parallel graph component la-
belling with gpus and cuda, Tech. Rep. 12 (2010). doi:DOI:
10.1016/j.parco.2010.07.002.

URL http://www.sciencedirect.com/science/article/
B6V12-50RP1TP-1/2/7e10d£733f7fc89cf803aab74f8aec84

A. Rosenfeld, A. Kak, Digital picture processing, Academic Press, Inc.
Orlando, FL, USA, 1982.

K. Suzuki, I. Horiba, N. Sugie, Linear-time connected-component label-
ing based on sequential local operations, Computer Vision and Image
Understanding 89 (1) (2003) 1-23.

M. Manohar, H. Ramapriyan, Connected component labeling of binary
images on a mesh connected massively parallel processor, Computer
Vision, Graphics, and Image Processing 45 (2) (1989) 133-149.

R. Dewar, C. Harris, Parallel computation of cluster properties: applica-
tion to 2d percolation, Journal of Physics A: Mathematical and General
20 (1987) 985-993.

NVIDIA, Cuda programming guide 3.0.
http://developer.download.nvidia.com/compute/cuda/3_0/
toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf

NVIDIA, Opencl programming guide 2.3.
http://developer.download.nvidia.com/compute/cuda/3_0/
toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf

http://gpgpu.org/

K. Wu, E. Otoo, K. Suzuki, Optimizing two-pass connected-component
labeling algorithms, Pattern Analysis & Applications 12 (2) (2009) 117-
135.

16

