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The potential application of tungsten as a structural material has been strongly restricted by 

inherent brittleness. The hitherto metallurgical efforts to improve tungsten toughness seem to 

be still less matured. The authors have been exploring a novel toughening technique based on 

reinforcement by tungsten wires. Toughness is supposed to be enhanced through the energy 

dissipation at the wire/matrix interfaces which is caused by the controlled crack deflection and 

friction. In this work, we focus on two kinds of copper coatings for interface engineering, 

namely, copper single-layer and copper/tungsten multi-layer. Single filament composites were 

fabricated using magnetron sputtering and CVD process. The interfacial parameters were 

identified by means of fiber push-out test and microscopic fracture features were investigated. 

In this paper the results from the extensive push-out experiments are presented together with 

the fractographs. Finite element simulation was also carried out to estimate the plastic strain 

of the copper layer. Essential role of the significant plastic deformation in the overall failure 

behavior is highlighted.  
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1. Introduction 

Tungsten is attracting increasing interest in specific high temperature applications, especially 

as a plasma-facing armor material for fusion reactors, due to its refractory nature, minimal 

sputtering yield, large heat removal capability and thermal shock resistance. On the other 

hand, the potential as a structural material is still strongly restricted by its inherent brittleness 

which prevails below the ductile-to-brittle transition temperature (DBTT). There have been 

intensive efforts to improve poor tungsten toughness by means of conventional metallurgical 

methods including alloying with rhenium, severe plastic deformation to form a nano-scale 

microstructure, mechanical alloying followed by HIP also to form a nano-microstructure, and 

increase of the degree of deformation (e.g. foils or wires) [1-3]. Oxide particles dispersion 

could increase the creep strength but reduced the tensile elongation [4]. But it seems very 

difficult to achieve substantial enhancement in near future despite of the decades of research. 

Hence, in order to accelerate the progress, one needs to devise a completely novel toughening 

technique which is not affected by the ductile-to-brittle transition mechanism.  

Since mid 1980’s, ceramic matrix composites (CMC) reinforced with continuous strong fibers 

have been developed. In the meantime they were approved as a structural material equipped 

with extensive global toughness [5, 6]. Numerous experimental studies demonstrated that the 

long fiber reinforcement could endow the brittle ceramic matrix with significant toughness by 

interfacial energy dissipation. The effective energy absorption is caused by the controlled 

crack deflection (debonding) and frictional sliding at the fiber/matrix interfaces [6]. Hence, 

the fracture energy of the interface plays a key role in this process.  

Recently, the authors have been exploring the applicability of this CMC toughening concept 

for tungsten. To this end, single fiber specimens of tungsten wire-reinforced tungsten matrix 

composites (Ww/W) were fabricated and investigated by means of fiber push-out test. Their 

study was focused on the interface engineering using submicron-thick ceramic coatings. The 

chemical composition of the composites was only minimally changed by the thin coatings. 

The extensive push-out tests revealed considerable amount of energy dissipation produced by 

the brittle cracking and frictional sliding of the coated interfaces. In addition, the strength and 

toughness of the tungsten composite can be further enhanced by the toughness of the tungsten 

wire itself since the commercially available tungsten wires are normally very strong (2.5~3 

GPa) and ductile.  

Another possibility to realize the interfacial energy dissipation would be to use a soft metallic 

coating to exploit substantial plastic deformation. In this work, we discuss the feasibility of 
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metallic coatings for the interface of the Ww/W composite. First results obtained from the 

push-out experiments are presented. Two kinds of copper coatings were investigated, namely, 

copper single-layer and copper/tungsten multi-layers. Interfacial material parameters were 

identified. The microscopic fracture feature of the debonded interfaces was examined.  

 

2. Experimental procedure 

2.1. Specimen preparation 

Commercial tungsten wire with diameter of 150 m was used as reinforcement. The interface 

coatings were deposited by magnetron sputtering (MS). The single-layer copper coating was 

420 nm think, whereas the multi-layer coating consisted of four 55 nm thick copper films and 

five 110 nm thick tungsten films in an alternating way. The coatings were further coated with 

a thin tungsten film to protect the surfaces. The coated fibers were then further coated with 

tungsten using chemical vapor deposition (CVD) at 550°C to form a dense matrix mantle, 

respectively. As final product, single-filament Ww/W composite rods with a coated interface 

were fabricated (diameter: 2.5 mm, length: 35mm, filament volume fraction: 0.4%).  

Figure 1 and 2 are the scanning electron microscopy (SEM) images of the Cu single-layer and 

W/Cu multi-layer coating interface in the as-fabricated Ww/W composite, respectively. The 

longitudinal cross sections were prepared by focused ion beam (FIB). The dark stripes are 

copper coatings and the bright ones are tungsten. The micrographs exhibited intact adhesion 

between each coating layer. Energy dispersive X-ray analysis revealed a stepwise profile of 

chemical concentration at the interfaces indicating negligible inter-diffusion.  

The cylindrical rods were carefully sliced using a diamond saw to produce a set of disc-

shaped specimens with thickness ranging from 0.05 to 0.3 mm. Both of the cut surfaces were 

fine-polished. The specimen thickness was limited by the maximum allowed load (<65N) at 

which cleavage failure of the tungsten carbide indenter punch was caused.  

 

2.2. Testing procedure  

The fiber push-out test is the most popular technique to probe the interfacial properties. Load 

was slowly applied on one cross sectional end of the fiber embedded in the matrix of a sliced 

composite specimen. The reaction force and the fiber movement are recorded progressively 
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producing a characteristic load-displacement curve which reveals the debonding strength and 

frictional resistance of the interface during the push out process.  

We used an instrumented macro-indentation system (<2kN) equipped with a load sensing unit, 

holder positioning table and optical microscope. The configuration of the main push-out 

testing system is illustrated in Figure 3. The hole diameter of the supporting substrate was 400 

m and the diameter of the indenter punch was 120 m. The indentation speed was set to 1 

m/s and the time interval between two sampling points was 0.02 seconds. More than 20 

specimens were tested for each interface type. Correction was made on the measured curves 

to eliminate the contribution of the machine compliance which was measured using a stiff 

tungsten carbide substrate with the same indentation system. The estimated compliance was 1 

m/N. A typical view of a specimen after push-out test is shown in Figure 4. The SEM image 

shows partly detached copper coating on the pushed-out fiber surface. In order to expose the 

internal interface for SEM analysis before and after the push-out tests, the base of the pushed-

out filament was locally cut out using FIB. Interfacial shear strength d , fracture energy i , 

sliding friction stress o  and friction coefficient  were estimated using theoretical models 

and numerical regression.  

 

3. Results and discussion 

3.1. Push-out curve  

The measured push-out load vs. fiber-end displacement curves are plotted in Figure 5. The 

circle markers indicate the interface with the copper single-layer coating whereas the triangles 

the W/Cu multi-layer coating, respectively. In the initial loading phase the both interfaces 

showed a nearly linear response until it reached the maximum load dP  (point A). The slopes 

of the two curves were almost identical. It should be noted that the total displacements include 

the bending deflection of the whole system as well as the shear strain of the coating layers. 

The linear load-displacement response may seem to suggest a linear elastic deformation of the 

overall specimen system. But this interpretation would lead to rather surprising conclusion 

that the copper films in the single- and multi-layer coatings would have withstood fairly large 

shearing force without having undergone plastic flow.  

The copper coatings were annealed in the CVD fabrication process and thus supposed to be 

very soft. To clarify the potential plastic flow behavior of the copper coating a finite element 
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analysis (FEA) was carried out for the single-layer case taking the identical specimen 

geometry, boundary condition and push-out loading scenario into account. As input data the 

tensile test data of soft copper were used for the classical J2 metal plasticity (Prandtl-Reuss 

model). Commercial FEA code ABAQUS was used. The simulation could be conducted only 

up to indenter load of 8 N and terminated due to a convergence problem. The Figure 6 and 7 

show the simulated load-displacement response in the initial loading phase and the evolution 

of the cumulative equivalent plastic strain of the copper coating being sheared. The overall 

load-displacement response exhibited roughly linear development whereas the copper coating 

began to undergo significant plastic straining already in the early stage. Comparing the two 

data it is obvious that the apparently linear behavior is actually fully accompanied by the 

plastic yielding of the copper layer. The validity of this conclusion is however limited by the 

present size effect. Such a thin copper coating is expected to experience much larger plastic 

yield strength unlike a usual bulk specimen. It is experimentally well known that the yield 

stress of copper film increases strongly by several orders of magnitude when the thickness is 

reduced below micrometer range. This remarkable hardening phenomenon can be explained 

with severely limited dislocation movement in the thickness direction [7]. If such a size effect 

should affect the plastic behavior of the copper coating, the amount of accumulated plastic 

strain would be accordingly reduced by hardening. Unfortunately, more realistic FEA of the 

plastic strain with consideration of the size effect was not possible, since the corresponding 

plastic tensile data were not available. On the other hand, the simulation revealed that the total 

fiber displacement was mostly caused by the shear deformation of the copper interlayer which 

reached roughly 4% at point A of Figure 5. Thus it might be reasonable to suppose that plastic 

yield of the copper coating preceded the overall rupture at dP  to some extent.  

Contrary to the Cu single-layer, the W/Cu multilayer coating interface exhibited the typical 

push-out curve of a brittle interface. The characteristic shape of the curve suggests that the 

capability of plastic flow was strongly restricted by the size effect. The microstructural feature 

was different as well (to be discussed later).  

Beyond the maximum load dP , the interface coatings exhibited completely different push-out 

behaviors from each other. The W/Cu multi-layer interface revealed an abrupt load drop due 

to rapid interfacial debonding triggered by the crack initiation at the free surface edges. This 

catastrophic debonding may be attributed to the thin-thickness effect. Upon debonding, the 

stored elastic strain energy was released in sudden bursts leading to dynamic movement of the 

fiber from A to B until the fiber was fully decelerated by the frictional resistance. The 

displacement observed during this dynamic event was 28 m in 40 milliseconds. A slight load 
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increase is observed from B to C prior to the quasi-static progressive sliding stage. This load 

jump was needed to overcome the static friction force generated by the interlocking at the 

ruptured rough interface. After point C, the friction force frP  decreased gradually due to the 

decreasing contact area.  

In the case of the copper single-layer coating the interface displayed a gradual and monotonic 

decay of the load which maintained a substantial portion of the shear resistance during the 

push-out sliding stage. The larger area under the curve implies that the copper single layer 

coating could enable much larger energy dissipation (i.e. absorption of the applied work) than 

the multi-layer counterpart. The quantity of the dissipated energy after the debonding event 

could be estimated by integrating the area below each curve. The energy was measured for the 

same fiber displacement range from 0.01 to 0.08 mm. Its magnitude amounted to 0.0021 J and 

0.0014 J for the single- and multi-layer coating case, respectively. The relative difference was 

more than 30%. This dramatic contrast in the post-debonding response suggests a different 

mechanism of debonding and sliding.  

 

3.2. Calibration of interfacial parameters  

For a quantitative identification of the interfacial shearing resistance, interfacial shear strength 

d  is defined as the maximum average shear stress produced at the interface immediately 

before it begins to fail. Greszczuk [8] and Lawrence [9] formulated a relationship between the 

debonding load dP and the shear strength d  based on the shear-lag theory of pull-out test.  

)tanh(
π df

d L
d

P         (1) 

where dP  denotes the applied load at the moment of interface debonding, fd  the fiber 

diameter,  the shear-lag parameter depending on the elastic properties of the fiber and the 

matrix, and L  is the embedded fiber length. This equation can also be used for the push-out 

test case for which the embedded length L  is replaced by the specimen thickness H . d  can 

be determined by fitting the experimentally measured dP - H  data into this equation.  

The collected dP - H  data and fitting result of the both coated interfaces are shown in Figure 8. 

The debonding strength (i.e. shear strength) of the Cu/W multi-layer interface (429 MPa) is 

slightly higher than that of the Cu single-layer interface (393 MPa). These d  values suggest 

a moderate shear strength compared to a carbon-coated glass fiber-reinforced cement 

composite (50 MPa) [10] or a SiC fiber-reinforced titanium composite (500 MPa) [11].  
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Further important interfacial parameter is the interfacial fracture toughness i  which is 

defined as the fracture energy under mode II (shear) loading. Liang et al. [12] have developed 

a model to calibrate i  from a push-out test data which is expressed as  

)1e(e2
1

r

f2
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R

BrB

E
pp        (2) 

where, fr  denotes the fiber radius, p  represents the maximum applied stress on the fiber 

)( 2
fd rPp  and f12 rHB . 1B  and 2B  denotes dimensionless elastic parameters as 

follows: 
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where  and E  represent the Poisson ratio and the Young’s modulus, and the subscripts f  

and m  fiber and matrix, respectively. H  denotes the fully embedded fiber length (specimen 

thickness) and  the friction coefficient. Rp  is the residual axial stress caused by thermal 

expansion mismatch and thus becomes zero for the Wf/W composite. i  is determined by 

fitting the experimentally measured Hp  data into eq.(2). Since this equation was derived in 

the framework of elastic fracture mechanics and elastic shear-lag assumption, its validity is 

limited within small scale yielding case. Thus this approach is less adequate for the copper 

single-layer coating due to possible plastic straining.  

The fitting result for the W/Cu multilayer coating is presented in Figure 9. The calibrated 

interfacial fracture toughness was 22 J/m². The fact that the quality of the numerical fitting is 

rather unsatisfactory implies that the present model also has a limited applicability for the 

W/Cu multilayer coating. The most important implication of the data is that the i  values do 

satisfy the fracture-mechanical criterion for crack deflection and interface debonding. This 

criterion states that 25.0fi , where f  denotes the fracture toughness of the fiber. A 

typical commercial tungsten wire has f  of about 320 J/m². Substituting the measured i  data 

together with this f  value into the criterion given above, one finds that the requirement of 

crack deflection is obviously satisfied ( 25.0fi ).  

On the other hand, the area below the curves gives an indication of total amount of work done 

by the applied load. Then the absorbed energy is partly dissipated by plastic flow, fracture and 

friction and partly stored as elastic strain energy. It is noted that the amount of the work done 

on the two interface systems was closely comparable with each other. However, this does not 
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necessarily mean that the both interfaces should have a comparable fracture energy, for the 

underlying microscopic process could be dissimilar.  

The major physical origin of the frictional resistance in the progressive sliding stage can be 

attributed to the morphological mismatch of the two rough contact faces being created by the 

interface rupture. The relative motion of the two rough contact faces generates radial stress 

component as the shear load overcomes the resistance by the asperity in which radial strain is 

forced. According to Shetty who applied the shear-lag approach to frictional sliding process, 

the maximum friction load frP  can be correlated with the embedded fiber length l  as [13] 

1
2

exp
f

r
2

f
fr

r

lk

k

r
P       (3) 

The radial stress r  is generated by the roughness (morphological mismatch). k  denotes a 

dimensionless parameter defined by the elastic constants of the fiber and matrix as,  

)1( mf

fm

E

E
k  

l  equals to the embedded thickness at frP . r  and  can be determined by fitting the 

experimentally measured lPfr  data into eq.(3). The roughness induced shear stress r  is 

then obtained from r . The fitting was carried out only for the W/Cu multi-layer coating 

since the shear-lag model did not consider plastic flow. Results are as follows (see Figure 10): 

r =123 MPa, = 0.81, rr = 99 MPa.  

 

3.3. Microstructure analysis  

Figure 11 shows a SEM image of the Cu single-layer coating on the pushed-out wire surface 

after testing. Several conspicuous features are found in this fractography. First of all, the Cu 

coating experienced strong plastic deformation extensively. The plastic deformation partly led 

to shear rupture and local flaking off of the Cu coating from the wire. This fact supports the 

interpretation that actual debonding occurred at either of the two Cu/W interfaces on the 

matrix or wire side and even within the copper layer. The locally exposed W-coated surface 

of the wire showed no residual copper on it indicating clear detachment. While the Cu coating 

was partly detached from the wire, the main debonding site was the Cu/W interface on the 

matrix side. Cracks were created at both interface edges as indicated with white arrows. 

Figure 12 shows the Cu coating in detail. It remained partly attached to the wire and to the 

matrix. At this position the degree of plastic shear strain seems rather moderate. The amount 
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of plastic strain is inversely correlated to the bond strength. The cracked interface on the 

longitudinal cut section is shown in Figure 13. It demonstrates clearly that both of the Cu/W 

interfaces were debonded whereas the two W/W interfaces remained intact. It should be noted 

that the two surfaces of the fractured interface are currently in a displaced position from each 

other and thus not mating with neighboring crack face.  

Figure 14 shows the pushed out wire interface of the W/Cu multi-layer coating specimen. The 

debonding site was obviously one of the Cu layers, preferentially the outermost one. Plastic 

strain of the Cu layers seems to be quite limited. The cracked interface on the longitudinal cut 

section is shown in Figure 15. The micrograph exhibits a clearly defined debonding at the 

outer Cu/W (protection film) interface on the wire side. The internal Cu/W interfaces of the 

multi-layered coating had apparently larger bond strength. It was also observed that the plastic 

deformation of the Cu films was strongly suppressed whereas the outermost Cu layer was 

more or less plastically squeezed. This finding implicates that the contribution of plastic work 

to the whole push-out work was hardly substantial. This conclusion accords well with the 

characteristic load-displacement response in Figure 5. In Figure 16 the exposed interface of 

the ruptured Cu coating (on the fiber side) is shown. Although the apparent overall plastic 

strain was considerably small, the microscopic fracture pattern of the Cu surface revealed a 

typical deformation morphology of ductile rupture. Due to the size effect of thin thickness, the 

rupture elongation of the Cu film normal to the interface was strongly constrained. No shear 

tearing as found in the Cu single-layer coating was observed.  

 

4. Conclusion  

In this work the properties of copper coated fiber/matrix interfaces for a Ww/W composite 

were successfully investigated using fiber push-out test. Cu single-layer and Cu/W multi-layer 

coatings were considered for interface engineering. Until the global debonding event at the 

maximum load, both coatings exhibited nearly identical load-displacement responses. In the 

frictional sliding stage, however, the two coatings revealed an essentially different energy 

dissipation behavior from each other. The Cu single-layer coating showed a gradual decrease 

of load resulting in large push-out work and thus large energy absorption. On the contrary, the 

Cu/W multi-layer coating demonstrated an apparently brittle push-out response with abrupt 

load drop as is the case of a ceramic-coated interface. This difference was attributed to the 

large extent of plastic deformation of the Cu single-layer. The estimated interfacial parameters 
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implied the potential feasibility of this interface design toward realization of a high toughness 

tungsten composite material.  
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Figure captions  

 

Figure 1. SEM image of the Cu single-layer coated interface together with two W protection 

films before push-out test. Longitudinal section of the as-fabricated specimen is shown.  

 

Figure 2. SEM image of the Cu/W multi-layer coated interface before push-out test. 

Longitudinal section of the as-fabricated specimen is shown 

 

Figure 3. Schematic illustration of the push-out testing system.  

 

Figure 4. A typical SEM view of a specimen after push-out test (Cu single-layer coated 

interface).  

 

Figure 5. Measured push-out load vs. fiber-end displacement curves for the Cu single-layer 

and the Cu/W multi-layer coated interface. The specimen thickness was 0.248 mm and 0.228 

mm, respectively.  

 

Figure 6. Simulated load-displacement response in the initial loading phase predicted by FEM 

analysis. (Cu single-layer coating interface) 

 

Figure 7. Predicted evolution of the cumulative equivalent plastic strain in the copper single-

layer coating. (result of FEM analysis) 

 

Figure 8. Collected debonding load ( dP ) data as a function of the specimen thickness ( H ). 

Curve fitting result based on the Greszczuk’s equation is also plotted for the both interfaces. 

The calibrated debonding strength was 393 MPa and 429 MPa for the Cu single-layer and 

Cu/W multi-layer interface, respectively.  

 

Figure 9. Collected maximum applied stress p  data as a function of specimen thickness ( H ). 

Curve fitting result based on the Liang’s equation is also plotted for the Cu/W multi-layer 

interface. The calibrated interfacial fracture toughness was 22 J/m².  
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Figure 10. Collected maximum friction load ( frP ) data as a function of the embedded fiber 

length ( l ). Curve fitting result based on the Shetty’s equation is also plotted for the Cu/W 

multi-layer interface. The calibrated shear stress was 99 MPa.  

 

Figure 11. Cu single-layer coating on the pushed-out wire surface after testing (SEM image).  

 

Figure 12. Local view of the Cu single-layer coating partly attached to the pushed-out wire 

surface and partly to the matrix side (SEM image).  

 

Figure 13. Cracked Cu single-layer coating interface on the longitudinal cut section after 

testing (SEM image).  

 

Figure 14. Pushed out wire interface of the W/Cu multi-layer coating specimen (SEM image).  

 

Figure 15. Cracked Cu/W multi-layer coating interface on the longitudinal cut section after 

testing (SEM image). 

 

Figure 16. Exposed surface of the ruptured outermost Cu film of the W/Cu multi-layer coating 

(SEM image).  
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Figure 5. Measured push-out load vs. fiber-end displacement curves for the Cu mono-layer 

and the Cu/W multi-layer coated interface. The specimen thickness was 0.248 mm and 0.228 

mm, respectively.  
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Figure 6. Simulated load-displacement response in the initial loading phase predicted by FEM 

analysis. (Cu mono-layer coating interface) 
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Figure 7. Predicted evolution of the cumulative equivalent plastic strain in the copper mono-

layer coating. (result of FEM analysis) 
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Figure 8. Collected debonding load ( dP ) data as a function of the specimen thickness ( H ). 

Curve fitting result based on the Greszczuk’s equation is also plotted for the both interfaces. 

The calibrated debonding strength was 393 MPa and 429 MPa for the Cu mono-layer and 

Cu/W multi-layer interface, respectively.  
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Figure 9. Collected maximum applied stress p  data as a function of specimen thickness ( H ). 

Curve fitting result based on the Liang’s equation is also plotted for the Cu/W multi-layer 

interface. The calibrated interfacial fracture toughness was 22 J/m².  
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Figure 10. Collected maximum friction load ( frP ) data as a function of the embedded fiber 

length ( l ). Curve fitting result based on the Shetty’s equation is also plotted for the Cu/W 

multi-layer interface. The calibrated shear stress was 99 MPa.  
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