
ar
X

iv
:0

90
9.

06
61

v1
  [

as
tr

o-
ph

.C
O

]  
3 

S
ep

 2
00

9
Astronomy & Astrophysicsmanuscript no. 12626 c© ESO 2009
September 3, 2009

Deep U-B-V imaging of the Lockman Hole with the LBT⋆

Observations and number counts

E. Rovilos1,⋆⋆, V. Burwitz1, G. Szokoly1,2, G. Hasinger3, E. Egami4, N. Bouché1, S. Berta1, M. Salvato3,5, D. Lutz1,
and R. Genzel1

1 Max Planck Institut für extraterrestrische Physik, Giessenbachstraße, 85748 Garching, Germany
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ABSTRACT

We used the large binocular camera (LBC) mounted on the largebinocular telescope (LBT) to observe the Lockman Hole in theU, B,
and V bands. Our observations cover an area of 925 arcmin2. We reached depths of 26.7, 26.3, and 26.3 mag(AB) in the three bands,
respectively, in terms of 50% source detection efficiency, making this survey the deepest U-band survey and oneof the deepest B and
V band surveys with respect to its covered area. We extracteda large number of sources (∼ 89000), detected in all three bands and
examined their surface density, comparing it with models ofgalaxy evolution. We find good agreement with previous claims of a steep
faint-end slope of the luminosity functions, caused by late-type and irregular galaxies atz > 1.5. A population of dwarf star-forming
galaxies at 1.5 < z < 2.5 is needed to explain the U-band number counts. We also find evidence of strong supernova feedback at high
redshift. This survey is complementary to the r, i, and z Lockman Hole survey conducted with the Subaru telescope and provides the
essential wavelength coverage to derive photometric redshifts and select different types of sources from the Lockman Hole for further
study.

Key words. Surveys – Galaxies: photometry

1. Introduction

The formation and evolution of cosmic structures, such as galax-
ies, clusters, and the large-scale structure, are some of the most
important issues in modern astrophysics. According to hierar-
chical models, initial fluctuations of the dark matter mass den-
sity develop to form galaxies, clusters, and the cosmic web.
Such processes leave their footprints in different regimes of the
electromagnetic spectrum, and assembling statistically signifi-
cant samples of extragalactic objects at different wavelengths
can give valuable information on the various processes involved
in the evolution of the universe.

A very valuable tool for constructing such samples is deep
“blind” surveys, where a region in the sky with no bright sources
is observed with a long integration time. Optical surveys are

⋆ Based on data acquired using the Large Binocular Telescope (LBT).
The LBT is an international collaboration among institutions in the
United States, Italy, and Germany. LBT Corporation partners are the
University of Arizona on behalf of the Arizona university system;
Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft,
Germany, representing the Max-Planck Society, the Astrophysical
Institute Potsdam, and Heidelberg University; Ohio State University,
and the Research Corporation, on behalf of the University ofNotre
Dame, the University of Minnesota, and the University of Virginia
⋆⋆ send off-print requests to erovilos@mpe.mpg.de

very important in this context, as they are able to provide the
densest fields in terms of detected sources and serve as “an-
chor points” for the multi-wavelength coverage. After a multi-
wavelength coverage has been achieved, one could apply pho-
tometric redshift techniques (e.g. Bolzonella, Miralles &Pelló,
2000; Benı́tez, 2000; Ilbert et al., 2009) to examine the lumi-
nosities of the various sources or select source samples forspec-
troscopy.

Notable results have been reported in various fields of ex-
tragalactic astrophysics using blind deep surveys. Combining
imaging and spectroscopic surveys at different regimes of
the spectrum, different groups have been able to derive the
star formation (e.g. Hopkins, 2004) and accretion histories
(e.g. Ueda et al., 2003) of the universe and examine their co-
evolution (Vollmer, Beckert & Davies, 2008; Somerville et al.,
2008). From optical imaging and photometry alone, one can use
the information in the number count of the detected sources to
test the geometry and evolutionary models of the universe. For
example, Eucledian geometry would result in a constant slope of
0.6 in the galaxy number counts with respect to their magnitudes,
but this has been ruled out from early results in this direction
(e.g. Gardner, Cowie & Wainscoat, 1993). Measuring the num-
ber counts in different wavebands, it is evident that simple ge-
ometric models invoking a “deceleration parameter” (q) could

http://arxiv.org/abs/0909.0661v1
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not give good fits and some kind of evolution has to be taken
into account (Metcalfe et al., 1991). This effect is more severe in
blue colours in the form of excess counts at fainter magnitudes
and it is widely known as the “faint blue galaxy problem”. With
high resolution observations using the HST, Driver et al. (1995)
demonstrate that the sources responsible for the faint counts
have late-type and irregular morphologies; adding a population
of z ≃ 2 dwarf star-forming galaxies (Metcalfe et al., 1995) gives
a reasonable fit to the blue number counts data. These galaxies
contribute to the star formation at redshiftsz & 1 and are merged
or simply have evolved to non activity locally.

Support for this scenario comes from the study of the (blue)
luminosity functions of different kinds of objects at different red-
shifts. Ilbert et al. (2005) find that bluer luminosity functions
show evidence of more rapid evolution with redshift than red-
der ones, and later spectral types and bluer colours seem to play
a more important role in it (Zucca et al., 2006; Willmer et al.,
2006). However, small evolution of the disc population toz ≃ 1
is observed by Ilbert et al. (2006), but the strong evolutionof
bulge-dominated systems could be attributed to a dwarf galaxy
population (see also Im et al., 2001). The study luminosity func-
tion is limited to relatively bright objects as it is based onred-
shifts. A number count distribution can probe fainter objects and
give an approximation on the faint-end slope (Barro et al., 2009)
of the LF and help distinguish between different results (see
comparisons in Ilbert et al. 2005 and Zucca et al. 2006). In this
paper we present deep U-B-V band observations of the Lockman
Hole with the corresponding number counts to 27.5 mag(AB).

2. The Lockman Hole multi-wavelength survey

The Lockman Hole is a region with minimal galactic absorp-
tion (NHI = 4.5 × 1019 cm−2, Lockman, Jahoda & McCammon,
1986) and the absolute minimum of infrared cirrus emission
in the sky. Its position in the northern sky (α = 10h52m43s,
δ = 57◦28′48′′) makes it an ideal location for deep surveys.
Indeed it has a large multi-wavelength coverage spanning from
X-rays to meter-wavelength radio. In X-rays it has been ob-
served with the ROSAT satellite (Hasinger et al., 1998) and
more recently with XMM (Hasinger et al., 2001; Brunner et al.,
2008), reaching a depth of 1.9 × 10−16 erg cm−2 s−1 in the 0.5-
2.0 keV band. In the ultra-violet it has been observed by GALEX
(Martin et al., 2005) as one of its deep fields, with the data be-
ing publically available. In the near infrared (J and K bands) it is
a part of the UKIDSS ultra deep survey (Lawrence et al., 2007)
reaching K∼23(AB). In infrared wavelengths it was observed by
ISO using both ISOPHOT and ISOCAM (Kawara et al., 2004;
Fadda et al., 2004; Rodighiero et al., 2004) and more recently
there have been observations with Spitzer-IRAC (Huang et al.,
2004) and Spitzer MIPS (Egami et al., 2008). The Lockman
Hole is also part of the SWIRE survey (Lonsdale et al., 2003),
observed with both IRAC and MIPS and covering a much
wider (but shallower) area. There have been a number of
millimeter - sub-mm observations of the Lockman Hole,
namely with the JCMT-SCUBA (Coppin et al., 2006), JCMT-
AzTEC (Scott et al., 2006), IRAM-MAMBO (Greve et al.,
2004), and CSO-Bolocam (Laurent et al., 2005). In the radio
regime, the Lockman Hole has been observed with the VLA,
both in 5 and in 1.4 GHz (Ciliegi et al., 2003; Ivison et al.,
2002; Biggs & Ivison, 2006) and with MERLIN in 1.4 GHz
(Biggs & Ivison, 2008). Finally, in meter-wavelengths it was tar-
geted by the GMRT (Garn et al., 2008).

In this work we present the results of an imaging campaign
of the Lockman Hole in the optical. We have used the LBT to

Fig. 1. Transmission curves of the filters used (U-spec - B-Bessel
- V-Bessel) are shown by continuous lines. The dotted line rep-
resents the U-Bessel filter available on the LBC. We have chosen
the U-spec filter for the U-band on grounds of its better efficiency
and more uniform spectral coverage. These curves representthe
filters’ responses without accounting for the detectors’ responses
or the atmosphere. The detectors’ responses are slightly different
for the two arms of the telescope which might have an effect in
the V-band.

obtain deep U, B, and V images. The “red” part of the optical
imaging campaign has been conducted with the Subaru telescope
(in the r, i, and z bands) and will be presented by Szokoly et al.
(in preparation).

3. Observations

The observations were made with the Large Binocular Camera
(LBC, Giallongo et al., 2008) of the Large Binocular Telescope
(LBT) on Mount Graham, Arizona. The LBT has two 8.4 m
mirrors on a common mount and both of them are equipped
with a prime focus camera. Both LBCs contain four CCD chips
with 2048×4608pixels each. Three chips are aligned parallel to
each other while the fourth is tilted by 90 degrees and located
above them. This provides a 23×23arcmin field of view with a
sampling of 0.23 arcsec/pixel. The gaps between the CCDs are
945 nm wide, which corresponds to 18 arcsec, thus a 5-point cir-
cular dither pattern with a diameter of 30 arcsec was chosen to
provide good coverage over the whole area.

Both cameras have an 8 position filter wheel each, and to-
gether a total of 13 filters are available, covering a range from
the ultraviolet to the near-infrared. For the U-band Lockman
Hole imaging we used the special LBT U-band filter (see Fig.
1) which has a more uniform coverage and better efficiency than
the standard U-Bessel. For the other images we used the standard
B-Bessel and V-Bessel filters.

The Lockman Hole was observed in March, April and May
2007 during science demonstration time (SDT; PI: E. Egami),
when only the camera on the “blue” channel of the telescope
was available, and in 2008 and 2009 during LBTB (German
institutes’) time (PI: G. Hasinger) with both cameras avail-
able in “binocular” mode. We have chosen 2 different point-
ings as centres of the image, corresponding to the VLA (α =
10h52m08.8s, δ = 57◦21′34′′, Ivison et al. 2002) and the XMM
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U B V

SDT

21 February 2007 60
23 February 2007 30
25 February 2007 60
15 March 2007 54
16 March 2007 114
02 April 2007 30
11 April 2007 30 30
10 May 2007 60
11 May 2007 54
12 May 2007 54
19 May 2007 90
20 May 2007 60
21 May 2007 36
22 May 2007 60
11 June 2007 60

LBTB

07 March 2008 90 120 120
08 May 2008 168
09 May 2008 78
11 May 2008 240
29 December 2008 60 60
30 December 2008 60 54 30
31 December 2008 63
01 March 2009 69 69
02 March 2009 51

SDT 504 210 168
LBTB 750 303 279
Total 1254 513 441
Effective 828 333 321

Table 1. Details of the observing runs (time is in minutes). The
SDT runs were made using the blue channel only, whereas the
LBTB runs used both telescopes. The effective exposure time is
the time actually used for the final stacks.

(α = 10h52m43s, δ = 57◦28′48′′, Hasinger et al. 2001) point-
ings. These are separated by 8.6 arcmin, so there is a large area
of overlap, where our images have the highest sensitivity. During
the science demonstration time the observing time was splitin
half between XMM and VLA exposures and during the LBTB
time we concentrated on the XMM area.

The total time spent on the Lockman Hole was 36.8 hours
which are distributed among the various filters using both chan-
nels (when available) as described in Tab. 3. The exposure time
for each observation was 360 seconds initially, but it was reduced
to 180 seconds for later observing runs (May 2008 onwards), af-
ter discovering a large number of saturated sources and limited
source tracking efficiency of the telescope for long exposures.
The effective exposure time however is as observational prob-
lems such as high altitude cirrus clouds or bad seeing diminish
the quality of certain images which were not used for creating
the final stacks. As seen from Tab. 3 the time efficiency of the
three bands is in the order of 65%.

We should note here that the V-band observations were taken
using both the blue and the red arms of the telescope. The
blue arm was used during SDT, and the red during LBTB time.
Although the response curves of the two V-band filters are iden-
tical, the quantum efficiencies of the detectors are slightly dif-
ferent. For the analysis presented in this paper this effect is not
significant and we merge the two (Vb andVr) images to achieve
greater depth. However in more detailed studies, one shouldtreat
theVb andVr images separately.

4. Data reduction

For the reduction of the data we have primarily used IRAF rou-
tines included in themscred package, which is designed to re-
duce mosaic data.

4.1. Initial calibration

Initial corrections to remove the “pedestal” level of each chip
have been carried out using the overscan regions. We have
found that the level of the corrections varies significantly(up
to 5%) with the column of the chip and therefore we fitted an 8-
order Legendre polynomial to it. Residual errors (possiblyrow-
dependent) have been corrected using bias frames taken at the
beginning and end of each night with zero integration time.

Flat corrections have been made using sky flat frames taken
at either dusk or dawn (or both) for each filter at each arm of
the telescope separately. A master flat has been created for each
night, filter, and arm. We divided the bias-corrected imageswith
their respective flat fields and noticed that the outer edges of
the fourth chip, corresponding to the outer edges of the fieldof
view were extremely noisy, possibly due to poor illumination.
We flagged them as bad regions.

After flat-fielding, we corrected the images for bad pixels.
These include columns of the CCD with non linear response or
dust on the CCD surface. Bad pixel masks are created and the
correction has been made by interpolating the values of neigh-
boring pixels. Note that because of the absence of neighboring
pixels on the edges of the field of view, these areas are not cor-
rected and are simply not taken into account for the final stages
when the images are stacked.

Finally, there are some bright sources in the field which sat-
urate the response of the CCD. In the most severe cases the flux
is so high that the current affects the neighboring pixels, leav-
ing “bleeding trails”. This has a significant effect to the B and
V images and therefore these regions have been identified and
masked out.

4.2. Astrometry

Before dealing with the (arcsecond-scale) astrometric errors, we
correct each image for an initial offset, in the order of several ar-
seconds, caused by the telescope’s pointing inaccuracy. Weuse
the brightest (r < 19) sources from the USNO-A2 (Monet, 1998)
catalogue to correct for this offset. This is done by simply updat-
ing the wcs header of each file to match the coordinates of the
catalogue stars.

After having done that, we need to correct for the true as-
trometric errors caused by the camera distortion. For this pur-
pose we do not use the USNO catalogue of the brightest stars,
as proper motions could have an effect in the solutions we de-
rive. We use an astrometry corrected catalogue of the Lockman
Hole, which includes sources brighter thanV = 19. This is
based on observations made with the Canada-France-Hawaii
Telescope (CFHT, e.g. Wilson et al., 2001) and the data reduc-
tion details are in Kaiser et al. (1999). The absolute astrometry
of this catalogue is based on USNO-A2 which claimed accuracy
is 0.25 arcsec (Monet, 1998).

To apply detailed astrometrical solutions we deal with each
chip separately in order to avoid fitting for jumps between the
chips. We first apply a distortion pattern which we empirically
derived by correcting a random image and then fit a 4-order poly-
nomial to each direction of each chip. The final rms scatter we
get is in the order of 0.2 arcsec. An example of the astrometrical
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Fig. 2. Astrometrical solutions applied to an exposure image of
11 June 2007 (U-band). The image has been bias and flat cal-
ibrated but no astrometrical solution has been applied. Thear-
rows represent the shifts to the calibration sources exaggerated 8
times. To compensate for the distortion we dealt with each chip
separately and after applying an initial shift we fitted a 4thorder
polynomial to the corrections. The corrected images have anrms
scatter of∼0.2 arcsec

solutions applied (after correcting for the overall pointing offset)
is given in Fig. 2. To measure the final astrometrical accuracy, we
compare our LBT images with the USNO-A2 catalogue (see Fig.
3) and with others, such as USNO-B1, APM (Irwin et al., 1994),
SWIRE-IRAC(3.2µm) (Lonsdale et al., 2003) and L-band VLA
(Biggs & Ivison, 2006). Their positions typically agree within
0.4 arcsec and the typical standard deviation is 0.45 arcsec,
which is the value we assume to be our final astrometric ac-
curacy. The relative astrometry of the U-B-V images based
on the positions of bright (<24 mag) and realtively compact
(FWHM<1.5 arcsec) sources has a standard deviation of 0.066′′.

4.3. Background subtraction

The final step is to subtract the sky background. After having
flattened the images and having corrected for field distortions
(without preserving the flux of each pixel) the sky background is
uniform within a good approximation. To subtract it we frag-
ment the image to a grid constructed of 100x100 pixel wide
meshes and smooth each mesh by a median filter with a 5x5 pixel
kernel using sextractor (Bertin & Arnouts, 1996). We chose this
method over fitting a function to the background because it gives
better results in the vicinity of bright stars in the sense that it does
not over-correct the background.

After having subtracted the background, we re-project the
four chips of each image to a common frame, applying the com-
plex astrometrical solutions. By doing that we get rid of com-
plex headers and multiple frame images. We use the same ref-
erence image to re-project all images in all filters. Finally, after

removing any bad images due to poor observing conditions or
other problems, we stack all the images (weighted accordingto
their exposure times) to produce the U, B, and V maps of the
Lockman Hole. An example image (in the U band) and its cor-
responding exposure map is shown in Fig. 4. The regions mark
the deep VLA and XMM surveys with 10′radii, which are their
typical widths.

4.4. Flux calibration

For the B and V filters we rely on flux-calibrated images of
the Lockman Hole taken with the Calar Alto Telescope (see
Kaiser et al., 1999; Wilson et al., 2001). We select point-like
sources which are not saturated in any of the images and conduct
aperture photometry. We compare the results and derive zero-
point magnitudes for our final images. We do not find evidence
for a gradient across the image.

As there are no sources with known magnitudes in the U-
spec band, we had to rely on U-Bessel standards to derive the
zero-point offsets. We used the observations of June 11, 2007
when standard stars are observed with both the U-Bessel and
the U-spec filters. We have applied the same calibration (bias
subtraction and flat fielding) using the same bias and flat-field
images to all the target and standard star frames and did not per-
form any astrometric corrections nor we combined the calibrated
files. We measured the observed magnitudes of four standard
stars without applying any zero-point offsets and found a dif-
ference of∼ 0.67 mag. We attribute this difference to the higher
efficiency of the U-spec filter, as the spectral profiles are similar.

We then calculate the zero-point offset for the U-Bessel filter
using the equation:

UBessel[zp] = UBessel − uBessel − kU X − c.t.(U − B)

whereUBessel and uBessel are the correct and observed magni-
tudes,kU is the extinction term for the U-Bessel filter,X the
airmass of the observation and c.t. the colour term. To have
consistency between the different observations made with differ-
ent integration times, we have adopted everything totint = 1 s.
During the commissioning of the LBC-blue the extinction term
for the U-Bessel filter was measured to bekU = −0.48± 0.02
and the colour termc.t. = 0.0361. Applying theUBessel, uBessel,
and X values of the standard stars we derive:UBessel[zp] =
(26.012± 0.014)− 2.5 log texp

1sec.
To calculate the U-spec zero-point offset we shift the value of

the U-Bessel offset by the mean measured magnitude difference
of the standard stars. This is the equivalent of assuming that the
standard stars have the same magnitudes in the U-spec and U-
Bessel filters. The central wavelengths and widths of the two
filters are very similar, so such an assumption does not affect the
result in great extent. We find:Uspec[zp] = 26.073± 0.012.

To calculate the zero-point offset of the final image, where
as a result of rescaling of the individual images and combining
them the connection to the original gains has been lost, we use
the number mentioned in the previous paragraph to derive the
magnitudes of Lockman Hole sources using the raw images. For
this purpose we selected 43 non saturated sources with almost
gaussian profiles which are observed with the second chip of the
mosaic, as the standard stars. We use these 43 sources to mea-
sure the zero-point magnitude of the final combined image. We
derivezp f inal = 32.041± 0.013 and do not find any evidence
for a gradient in any direction of the image. The magnitudes

1 The LBC commissioning report can be found at
http://lbc.oa-roma.inaf.it/commissioning/
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Fig. 3. Final astrometry check using the USNO-A2 catalogue. The left panel shows the RA and DEC differences between the LBT
and USNO counterparts. The (gaussian) fits to the respectivehistograms haveσ = 0.47 arcsec andσ = 0.59 arcsec for RA and DEC
and the means are at -0.06 arcsec and -0.13 arcsec respectively. The right panels show the RA and DEC differences across the entire
LBT image, where we do not observe any systematic trends.

zero-point seeing number 50% eff. 4.5σ
(AB mag) (arcsec) of sources (AB mag) (AB mag)

U 32.911 1.06 51500 26.7 28.9
B 33.830 0.94 76071 26.3 29.1
V 34.110 1.03 68278 26.3 28.6

Table 2. Flux calibration, quality and source extraction informa-
tion of the images.

of the standard stars are given in the Landolt photometric sys-
tem (Landolt, 1992) which is based on Vega magnitudes. We
use U-Bessel AB correction calculated during the commission-
ing time (0.87), so our final zero-point offset for the U band is:
Uspec,AB[zp] = 32.911± 0.013.

Detailed information on the three (U-B-V) final images can
be found in Tab. 2.

5. Results

5.1. Source catalogues

The source detection has been done independently in each of
the U-B-V images using sextractor. Sources are identified asre-
gions where 12 or more adjacent pixels have values above 1.2
times the local background rms. The algorithm first subtracts the
background which is fitted by segmenting the image with a grid.
If the grid is too fine, a fraction of the flux of the sources will
be subtracted as background and this will be more severe for ex-
tended sources. On the other hand, a very large mesh will fail
to subtract the background near very bright objects, where stray
light contaminates the image, so the source extraction willfail in
these areas. To overcome these issues we ran sextractor in two
steps: first we used a very fine grid (with a 5× 5 pixel mesh)

to subtract the background and created a “source detection”im-
age. We then re-run sextractor in dual mode using this image to
detect the sources but measure their fluxes from the originalim-
age, where the background is subtracted using a 10× 10 pixel
mesh. This method has the drawback that the apertures where
we measure the flux are too tight for bright sources, which ap-
pear more extended in the images and as a consequence we are
losing a fraction of their flux (see Fig. 5, upper panel). Therefore
we run sextractor once more in “single mode” (with a 10× 10
pixel mesh for the background; see also Fig. 5, lower panel) and
replace the sources with magnitudes brighter than 22 of the orig-
inal catalogue with those extracted in “single mode”.

Finally, in order to avoid spurious detections, we remove
from our catalogues sources whose isophotal flux errors are
larger than the fluxes and therefore do not have reliable photom-
etry and sources whose FWHM is less than 90% of the seeing
of each image (1.06, 0.94, and 1.03 arcsec for the U, B, and V
images respectively) and are related with imaging artifacts. We
also optically inspect the remaining sources and remove obvi-
ous false detections related with bad pixels, dust on the CCDs,
bleeding trails etc as well as saturated sources. The final U,B,
and V catalogues contain 51500, 76071, and 68278 sources re-
spectively.

In order to estimate the detection limits of our catalogues we
plot the flux error against the flux of each detected source (see
Fig. 6). We do this because we used a more complex selection
algorithm to extract sources than a simple signal-to-noisecut.
The dashed lines in Fig. 6 represent signal-to-noise ratiosof 1,
2, and 3 from left to right and the red line the (empirical) “detec-
tion limit”. We notice that the faintest sources tend to be closer
to this limit and this is a result of them being point-like. The
resulting detection threshold magnitudes and signal-to-noise ra-
tios (see Tab. 2) are not detection limits in the sense that sources
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Fig. 4. Final U-band image and corresponding exposure map. The image covers both the XMM and the VLA fields, which are
marked with 10′-radii circular regios, close to their typical widths. The highest exposure is in the overlapping region between them.

with fluxes (or SNRs) above these limits are detected, they are
indicative of the sensitivity of the survey representing the low-
est flux (and respective SNR) of securely detected sources. They
also provide no information on the completeness of the survey
at a given flux (or SNR), nor an estimation of the chance of a
spurious detection. Such an analysis is described in§5.3.

5.2. Colours

To create colour catalogues of the various sources detectedin
the U, B, and V images, one could simply cross-correlate the
three source catalogues described in the previous paragraphs and
compare the fluxes in the different bands. This however would
introduce an uncertainty on the choice of the best counterpart
and moreover the deblending efficiency of sextractor varies be-
tween the different images, so a source in one catalogue might
be blended with a close pair in another or vice-versa. Therefore
we chose to select one image to extract the sources and then
measure their fluxes using the other images in dual mode.

We make the source detection on a combined image of the
three bands, theχ2-image. The PSFs of the three images we
combine do not have significant differences; the worse PSF (U-
band) is only 6% larger than the best (B-band), therefore we do
not lose in quality when combining the images as compared
to using the best PSF image and we gain in S/N. We follow
the recipe of Szalay, Connolly & Szokoly (1999) to create the
χ2-image: after carefully removing any residual background of

each image (using the “-BACKGROUND” checkimage option
of sextractor) we fit the off-source pixel histogram with a gaus-
sian, checking that the noise profile is indeed gaussian. We then
scale the three images according to their noise amplitudes and
we create theχ2-image, which is the square root of the sum of
the squares of the individual pixel values. We then extract the
sources from the combined image using the method described
in the previous paragraph and measure the fluxes in the indi-
vidual U-B-V images. Again, we consider a detection real if its
FWHM is > 90% of the PSF FWHM of the best individual im-
age (0.85 arcsec). The final colour catalogue contains 88429with
detections in all three bands.

A colour-colour (U − B vs.B − V) diagram of the Lockman
Hole sources is shown in Fig. 7. The greyscale represents the
density of sources detected in all three bands and the black
lines mark the selection area ofz & 3 objects. We also cal-
culate the colours of different galaxy SED templates from
Coleman, Wu & Weedman (1980) and a QSO template from
Cristiani & Vio (1990). The galaxy templates are extrapolated
to the Lyman break (911.25Å) and are zeroed thereafter. The
Lyman break meets the blue end of the U filter atz = 2.5 and
this is the highest redshift where the colour tracks are reliable
(solid lines). The dotted lines (z > 2.5) are shown as an approxi-
mation of the colours of high redshift galaxies.
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Fig. 6. Flux error versus flux diagrams for source detections in the U, B, and V filters. The zero-point magnitudes for the three
filters are 32.911± 0.013, 33.830± 0.014, and 34.110± 0.011 respectively. The dashed lines represent signal-to-noise ratios of 1,
2, and 3, and the red solid lines represent the (empirical) limit of the source extracting algorithm used (4.5σ). The horizontal and
vertical solid lines mark the minimum flux and the respectiveminimum flux error of the faintest sources extracted. The dotted and
dash-dotted lines mark the 50% efficiency limit and the limit of the number count analysis respectively.

5.3. Number counts

In order to derive the differential number counts of extragalactic
sources in the U, B, and V bands, we select a region in the centre
of the field with uniform exposure within a good approximation.
This region has a size of 14× 13.3 arcmin and is located in the
area where the XMM and VLA observations overlap.

The first step in calculating number counts is to estimate the
source extracting efficiency at a given magnitude. The way to
do it is to create an image with artificial sources of known mag-
nitudes and to apply the same source extracting procedure as
applied to the image, and measure the fraction of the sourcesre-
covered. We use the artdata package in IRAF to create lists of
artificial sources. They contain sources with a uniform spatial
distribution and magnitudes ranging from 16 to 29 followinga
power-law distribution with a power of 0.5. The surface bright-
ness profiles are exponential discs (resembling spirals) and r−1/4

discs, resembling ellipticals. The fraction of ellipticalgalaxies in
the random catalogues is 20% (see van den Bergh, 2001). Here,
we caution that adding a large number of artificial sources inthe
image might change its crowding properties, however we need
a large sample of sources for reliable statistics. To avoid con-
fusion, we create a list of 100000 sources and split it to 100
1000-source samples.

We plant these sources into the cutouts of the final images
and apply the same source extracting algorithm we used to cre-
ate the source catalogues. We then measure the fraction of the
artificial catalogue we retrieve, hence the efficiency of the source
detecting method at any given magnitude and average the results
of the 100 subsamples. Increasing the number of sources of each
subsample we get similar results up to the point where the num-
ber of sources is comparable to the number of “real” sources in
the region (∼ 10000). The results for all three bands are shown in
Fig. 8. This method has the drawback that the artificial sources
are mixed with real sources, and so there is no way of knowing
whether a detected source is real or an artifact. The surfaceden-
sity of sources with magnitude (at any band)< 27 is close to
2×105deg−2, which means that there is a∼ 10% probability that
a real source is within 1.5 arcsec of a random position.

To measure the spurious source detection rate we measure
the off-source noise of the science images and check that the
noise profile is gaussian. We then create gaussian noise maps
of the same amplitude and insert the artificial sources there. In
this case it is desirable to reproduce the crowding of the original
field, so we include a large number of artificial sources (30000),

which is the number of sources with magnitude< 29 we ex-
pect in this field. The source extraction output to these composite
images provides the information of the spurious detection rate,
plotted with the red lines in Fig. 8. We can see that the num-
ber of spurious sources is negligible below 26.5 mag and starts
becoming important above 28.0 mag, where the efficiency drops
to practically unusable values. From these diagrams we can also
derive the magnitude where the detecting efficiency drops below
0.5, which is a meaningful measure of the detection threshold of
the image. This threshold is 26.7 mag(AB), 26.3 mag(AB), and
26.3 mag(AB) for the U, B, and V bands respectively.

Figures 9-11 show the surface density distributions for the
three bands observed. Data points of other studies found in the
literature are also plotted. We have binned the magnitudes of
the observed sources in bins of 0.5 mag. For each bin we cor-
rected the source counts using the efficiency and spurious de-
tection information. As we are interested in galaxy counts,we
need a selection mechanism for stellar sources, and as such we
use the “stellarity index” of sextractor. This estimate works well
for bright sources, but because fainter galaxies can appearpoint-
like it fails for larger magnitudes. As a limiting magnitudewe
choose 21.5(AB). Below this limit the stellar counts are any-
way negligible with respect to the number of galaxies (see e.g.
Jarrett, Dickman & Herbst, 1994). The error bars take into ac-
count Poisson uncertainties of the uncorrected counts, efficiency
uncertainties and cosmic variance. For the latter we use thecom-
putational tool of Trenti & Stiavelli (2008), which compares the
two-point correlation function of dark matter with the volume of
the survey. As a typical redshift for our survey we usez = 1 (see
also§6.1), though using a different value in the range 0.5− 2.5
does not change the result in great extent. We find that the cos-
mic variance uncertainty is important for bright magnitudes (typ-
ically < 25.5) where the number of intrinsic objects is relatively
small. For fainter magnitudes the efficiency uncertainties dom-
inate. As an estimation of those we choose the mean efficiency
difference between the bin in question and its neighboring bins.
This way we account for the effects of binning, in other words
the different efficiencies the magnitudes within each bin have.

The surface density data can be seen in Tab. 4. We com-
pare them with the results of various other studies (Figures9,
10, 11, Tab. 3) and we are in good agreement. The small di-
agrams of Figures 9, 10, and 11 plot the depth reached by each
survey presented with respect to its covered area (the various sur-
veys used to create these figures are presented in Table 3). The
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Fig. 8. Detection efficiency histograms of the source detection algorithm used, derived from simulations. The blue lines represent
the smoothed efficiencies used to correct the surface density distributions. The red histograms are the estimates of the fraction of
detections which are spurious, using the artificial noise images.

LBT survey presented here is the deepest one in the U band ever
conducted in such a large area and among the deepest in the B
and V bands. Significantly lower limits have been achieved only
with the Hubble Space Telescope in pencil-beam surveys (HDF-
N and HDF-S), and these are highly sensitive to cosmic vari-
ance (see Sommerville et al., 2004). Comparing or results with
those from surveys of similar widths (made with the LBT and
the Subaru telescope) we find very good agreement.

6. Discussion

6.1. Number counts

The models compiled by Metcalfe et al. (1996) and
Metcalfe et al. (2001) (normalized to 18 mag using all data
available in the bibliography) are plotted against our mea-
surements for the U and B bands in Fig. 13. We plot here
three of the models presented in Metcalfe et al. (1996) and
Metcalfe et al. (2001). The short-dashed lines represent the
pure luminosity evolution model, the long-dashed line the same
model with the inclusion of a population of star-forming dwarf
galaxies, which is the best-fit model in Metcalfe et al. (1996)
and the solid line is the same pure luminosity evolution model
with a modification of the faint-end slope of the luminosity
functions of late-type spirals (α = −1.75 instead ofα = −1.5),
used to fit the multi-colour data of Metcalfe et al. (2001). We
find very good agreement with theα = −1.75 model in the
B-band, although the U-band counts are under-predicted by all
models. However, the faint-end slope of the U-band counts does
seem to support a steepening of the faint-end slope of the LF.
Barro et al. (2009) have shown that the slope of the number
count distribution assymptotically reaches−0.4(α+ 1), whereα
is the faint-end slope of the luminosty function if parametrized
by a Schechter function. Measuring the slopes of the number
counts using the five faintest points of each distribution, we
calculate the faint-end slopes of the respective luminosity
functions: αU = −1.733 ± 0.018, αB = −1.748 ± 0.006,
αV = −1.507 ± 0.018. We note that the assumed steep LF
faint end slope is in good agreement with the number count
distributions of the U and B bands, whereas the V band points
to a LF withα = −1.5 (see Metcalfe et al., 2001).

At this point it is useful to have a notion about the type of
galaxies that are best represented in our sample and their red-
shifts. A valuable tool in this direction is the colour distribution;
Fig. 7 shows the colour plot of the Lockman Hole sources with
tracks of templates of different types of galaxies. We note that

the spiral (Sbc-Scd) and irregular tracks lie closer to the bulk
of observed colours. The metallicity and extinction properties
of a galaxy can have a severe effect in its optical colours. For
that reason we reproduce Fig. 7 with a set of SED templates
which have varying stellar ages, metallicities and extinctions,
calculated with the GISSEL98 code (Bruzual & Charlot, 1993).
The results are presented in Fig. 12, where the colour tracksare
colour-coded with respect to the redshift. The distribution of
sources is well reproduced and we can see that the redshift range
most represented isz = 1.5±1. Moreover, the bulk of the colour
distribution is represented by spiral and irregular tracks, while
the ellipticals account for colours redder thanB − V = 1.

The galaxy types and redshift probed by our survey are com-
patible with the “steep faint end slope” model of Metcalfe etal.
(2001) and the slopes are also in good agreement. Therefore,
there is no need to invoke a dwarf galaxy population to assist
the sources which cause the steepening of the faint end slope,
in order to reproduce the B-band data. The U-band counts on
the other hand are underestimated by the “steep faint end slope”
model, although the slope itself agrees. In this case a dwarf
galaxy population would assist in incrasing the U-band number
counts. It would be however challenging, as such a population
is required to affect the U-band leaving the B-band unchanged.
The Ly-α line falls into the U wavelength range at a redshift
of z = 2, so a population if highly ionized Ly-α emitters is a
good candidate. However, atz = 2.5 the blue filter would also be
affected, which leaves a narrow redshift window for this hypo-
thetical population. An implication of this scenario is a sizeable
decrease in the star formation rate betweenz = 2 andz = 2.5.
Reddy et al. (2008) find an increase in the star formation rate
density betweenz ∼ 3 andz ∼ 2, which is reflected in the UV
luminosity density, and more specifically in the number density
of faint (MAB(1700 Å)> −21) UV-emitting galaxies.

A steepening of the faint end slope of the (B-band) luminos-
ity function is already evident since the first computation of its
values at redshiftsz > 0 (Lilly et al., 1995). These authors find
that the slope increases with redshift (out toz = 1.3) and that
this is an effect caused by galaxies with blue optical colours,
while the LF of red galaxies shows minimal change in its fit-
ted parameters. This result is backed up by more recent studies
(Gabasch et al., 2004; Ilbert et al., 2005; Arnouts et al., 2005;
Willmer et al., 2006; Prescott, Baldry & James, 2009) and the
general trend is that the not only blue galaxies’ LFs evolve more
with redshift than those of redder colours, their faint end slopes
are steeper as well. In cases where the LFs are computed with re-
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Reference Symbol Telescope Instrument
Alcalá et al. (2004) △ ESO/MPG 2.2 m WFI

Arnouts et al. (1997) 2
ESO 3.60 m EFOSC

ESO-NTT 3.5 m EMMI
Arnouts et al. (1999) D ESO-NTT 3.5 m SUSI
Arnouts et al. (2001) 7 ESO/MPG 2.2 m WFI
Berta et al. (2006) # ESO/MPG 2.2 m ESIS

Bertin & Dennefeld (1997) �

CERGA 0.9 m
d-MAMAESO

SERC
Cabanac et al. (2000) C CFHT UH8K
Capak et al. (2004) E Subaru Suprime
Driver et al. (1994) A WHT Hitchhiker
Drory et al. (2001) D Calar Alto 2.2 m CAFOS

Eliche-Moral et al. (2006) ✹ INT La Palma WFC
Heydon-Dumbleton et al. (1989) × UKST d-COSMOS

Furusawa et al. (2008) C Subaru Suprime
Gardner et al. (1996) ✧ KPNO 0.9 m T2KA
Grazian et al. (2009) Z LBT LBC

Guhathakurta et al. (1990) G CTIAO pr. focus CCD
Hogg et al. (1997) H Hale Telescope COSMIC

Huang et al. (2001) ✩
Calar Alto 2.2 m

CCD cameraCalar Alto 2.5 m
Jones et al. (1991) B AAT pr. focus d-COSMOS

Kashikawa et al. (2004) F Subaru Suprime
Koo (1986) K KPNO 4 m photographic plates

Kümmel et al. (2001) N Calar Alto 3.5 m Cassegrain CCD

Lilly et al. (1991) �
CFHT NSF1-TI

UH 2.2 m
Liske et al. (2003) INT La Palma WFC

Maddox et al. (1990) D UKST d-APM
McCracken et al. (2001) 3 CFHT UH8K
McCracken et al. (2003) + CFHT CFH12K
Metcalfe et al. (1991) ✧ INT La Palma RCA (prime focus)

Metcalfe et al. (1995) (a) _ INT La Palma RCA (prime focus)
Metcalfe et al. (1995) (b) ▽ WHT La Palma Tek CCD (aux Cass)
Metcalfe et al. (2001) (a) � HST WFPC2
Metcalfe et al. (2001) (b) E HST WFPC2
Metcalfe et al. (2001) (c) H WHT Tek CCD (pr. focus)

Prandoni et al. (1999) ↑ ESO-NTT 3.5 m EMMI
Radovich et al. (2004) R ESO/MPG 2.2 m WFI

Smail et al. (1995) S Keck LRIS

Songaila et al. (1990) L
CFHT

NSF1-TIUH 2.2 m
Tyson (1988) ↓ CTIO prime focus CCD

Volonteri et al. (2000) ← HST WFPC2
Williams et al. (1996) → HST WFPC2

Wilson (2003) W CFHT UH8K
Yasuda et al. (2001) # SDSS telescope SDSS imager

Table 3. Number counts data found in the literature. The symbols noted are used in Figures 9-11. A “d-” prefix before the instrument
symbolizes digitization of photographic plates.

spect to the galaxy type (Ilbert et al., 2006; Zucca et al., 2006),
little (if any) evolution of the faint end slope is found for each
galaxy type, while the slope is different for each type, the sttepest
beeing in irregulars (Zucca et al., 2006) or blue-bulge galaxies
(Ilbert et al., 2006). There is however significant change inthe
normalization and the value ofM⋆ (the characteristic Schechter
luminosity), which is interpreted as an increase in the fraction of
irregular and late-type galaxies with redshift. The steep faint-end
slope we find in the U and B bands (α ≃ −1.75) agrees with the
values fitted for irregular galaxies by Zucca et al. (2006) and is
even a bit too flat compared to the value assumed by Ilbert et al.
(2005) for the blue-bulge population (theirα = −2.0). Given
that in this survey the dominant population, especially at faint

magnitudes, is spirals and irregulars at non-local redshifts, we
support these steep faint-end slopes. The sources responsible for
the steep slopes are activly star forming and are good candidates
for the “blue dwarf” population. Driver et al. (1995) assumethat
this population consists of sources with late-type and irregular
morphologies; Ilbert et al. (2006) state that the “blue bulge” pop-
ulation could be a population of actively star-forming galaxies,
where the starburst region has bulge-like morphological char-
acteristics, like the “blue spheroid” galaxy sample of Im etal.
(2001).

An issue that still needs to be addressed is the flattening of
the number counts slope in the V-band. A mechanism that affects
the faint-end slope is supernova feedback, which is caused by
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mag U σU eff B σB eff V σV eff
(AB) (N deg−2 (0.5mag)−1) (N deg−2 (0.5mag)−1) (N deg−2 (0.5mag)−1)

17.0-17.5 - - 1.000 19 19 1.000 174 77 1.000
17.5-18.0 - - 1.000 - - 1.000 39 39 1.000
18.0-18.5 - - 1.000 39 39 1.000 19 19 1.000
18.5-19.0 - - 1.000 - - 1.000 135 77 1.000
19.0-19.5 39 39 1.000 58 39 1.000 155 77 1.000
19.5-20.0 19 19 1.000 97 58 1.000 97 58 1.000
20.0-20.5 116 58 1.000 97 58 1.000 174 77 1.000
20.5-21.0 97 58 1.000 135 77 1.000 329 116 1.000
21.0-21.5 116 58 1.000 135 77 1.000 309 97 1.000
21.5-22.0 445 135 1.000 836 195 0.994 2359 367 1.000
22.0-22.5 1005 213 1.000 1186 237 0.978 3600 502 0.999
22.5-23.0 1726 291 0.997 2748 395 0.978 5826 729 0.989
23.0-23.5 3762 504 0.997 5515 672 0.950 9933 1100 0.981
23.5-24.0 7307 810 0.979 10336 1071 0.939 15204 1499 0.955
24.0-24.5 12984 1282 0.950 17327 1609 0.925 25504 2295 0.915
24.5-25.0 21650 1933 0.910 27021 2317 0.918 40249 3340 0.856
25.0-25.5 31629 2671 0.876 41229 3298 0.891 59463 4564 0.794
25.5-26.0 50749 3950 0.837 55918 4307 0.844 75514 8690 0.711
26.0-26.5 66532 9903 0.714 80376 11135 0.757 97480 22917 0.525
26.5-27.0 92452 27568 0.486 114551 31570 0.584 125436 545930.301
27.0-27.5 137413 75439 0.235 156755 75783 0.357 147554 136349 0.109
27.5-28.0 189647 186364 0.071 223749 184589 0.155 - - -

Table 4. Differential number counts (in 0.5 mag bins), uncertainties andsource detections efficiencies for each magnitude bin of
galaxies in the U, B, and V bands

Fig. 13. Measured surface densities in the U and B band (red points), plotted with evolution models from Metcalfe et al. (1996) and
Metcalfe et al. (2001). The short-dashed lines represent the pure luminosity evolution model, the long-dashed lines the same model
with the inclusion of a population of star-forming dwarf galaxies, and the solid lines the same pure luminosity evolution model with
a steep faint-end slope of the luminosity function. The latter is in very good agreement with the B-band counts, while theU-band
counts are under-predicted by all models.

the heating of the interstellar medium through supernova expo-
sions. Nagashima et al. (2005) have modelled galaxy formation
taking this effect into account. Their predictions for the number
counts using strong or weak feedback (parametrized by the time-
scale in which supernova explosions reheat the cold interstellar
gas) differ in the faint slope with minimal impact on the normal-
ization (see Figure 18 in Nagashima et al., 2005). Fig. 14 plots
the B and V-band number counts predictions of Nagashima et al.

(2005) with our data-points; the solid and dashed lines refer to
strong and weak feedback respectively. While both predictions
seem to overestimate the observed number counts at faint fluxes,
the faint end slope of the weak feedback prediction is in good
agreement with the data for the B-band, while the V-band slope
is better interpreted with the strong feedback model. A possi-
ble explanation is that the V-band probes the same rest frame
wavelength at higher redshift. If we assume that star formation
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Fig. 5. Apertures of extracted sources in the U image. The up-
per panel shows the “dual mode” results and the lower the “sin-
gle mode” (see text) Note that the detection efficiency near the
bright object as, the deblending efficiency and the apertures of
faint sources are much better in “dual mode”, but the apertures
of bright objects are more reasonable in “single mode”.

is the dominant mechanism producing near-infrared light (where
the rest-frame B and V bands are at redshiftz > 1.5) the V-
band probes higher redshifts than the B-band. There is evidence
that the UV luminosity function has a steeper faint end slope
at z ∼ 2 (α = −1.88± 0.27, Reddy et al., 2008) than atz ∼ 3
(α = −1.60± 0.13, Steidel et al., 1999). In this case, starburst
feedback would be stronger at higher redshift, in line with our
data. So, enhanced SFR atz > 1.5 could cause the flattening of
the V-band faint slope.

6.2. Colour selection

To be able to test evolutionary models of galaxies in a greater
extent one needs to have information of the redshifts of the var-
ious objects found in a “blind” survey. However, even with the
largest telescopes available it is practically impossibleto have
complete samples beyondR ∼ 24 and use the full capacity of
photometric surveys. Moreover, the selection of targets for spec-
troscopy at such faint limits is hard because their redshiftrange
is so large that it makes it impossible to get meaningful spec-

Fig. 7. Optical colours of the Lockman hole sources in the AB
system. THe greyscale represents the density of sources detected
in all three bands are plotted. The black line marks the selection
area of U-dropout sources with redshiftz & 3 (see Fig. 12 and
§6.2). Dotted are the tracks abovez = 2.5, where the SEDs are
not well sampled. The coloured lines represent tracks of different
SED templates: blue line for ellipticals, cyan for irregular, green
for Sbc, yellow for Scd, and red for QSO.

Fig. 9. U-band surface density distribution corrected for effi-
ciency and spurious detections. The data points of this study
(seen in Tab. 4) are plotted in red dots, while various symbols
represent the results of other surveys found in the literature (see
Tab. 3), corrected to AB magnitudes. The inner plot shows the
depth of each survey (in terms of secure number count measure-
ments) with respect to its width.
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Fig. 14. Measured surface densities in the B and V band (red points), plotted with number counts from the simulations of
Nagashima et al. (2005). The solid and dashed lines represent the strong and weak supernova feedback cases respectively. The
faint end slope of the weak feedback model is in better agreement with the B-band data, while the the strong feedback modelis in
better agreement with the V-band data.

Fig. 10. Same as Fig. 9 but for the B-band

tra without pre-selecting the targets according to their redshift
range. A way to overcome this barrier is to use the photometric
redshift technique, where the SED of each source is compared
with known SED templates to derive an estimate of the redshift.
Although the accuracy of this method is limited so it cannot be
used for e.g. spatial clustering studies it can be very useful in
deriving luminosities or selecting objects in different redshift
ranges. Given the extensive spectral coverage of the Lockman
Hole it is possible to calculate photometric redshifts for alarge

Fig. 11. Same as Fig. 9 but for the V-band

number of galaxies. Details about the Lockman Hole photo-z
survey will be given in a subsequent paper.

The drawback of the photometric redshift technique is that it
requires the detection of the source in a large number of bands
spanning from the near ultraviolet to the infrared. It is how-
ever possible to select sources within a redshift range using the
“dropout” technique (e.g. Steidel et al., 2003). This technique is
used to detect the Lyman break in the spectra of galaxies when
it is redshifted between two of the observed bands. In practice
the colour-colour diagram is used to select the sources. Based on
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Fig. 12. The same plot as Fig. 7, but with with SEDs created
with the GISSEL98 code (Bruzual & Charlot, 1993) with differ-
ent metallicity and extinction properties (see Bolzonellaet al.,
2000). We use elliptical, irregular and spiral tracks, colour-coded
with redshift ranges. The bulk of the distribution is reproduced
with spiral and irregular tracks at redshift 0.5 < z < 2.5. The
z & 3 region is also marked.

the colour tracks of Fig. 12, we set the selection limits of sources
with z & 3 to:

U − B > 0.9

U − B > B − V + 1.2

B − V < 1.3

Using these limits, we find 2152 sources with redshiftz &
3 in the whole Lockman Hole region (925 arcmin2), which
gives a number density of 8375 deg−2. Steidel et al. (2003) find
6176 deg−2 U-dropoutz ∼ 3 sources using different selection
bands (Un−G vs.G−R). Using the near-infrared coverage of the
Lockman Hole we could also select sources according to their
B-z-K colours (see Daddi et al., 2004), having 1.4 < z < 2.5,
or according to their i-z colour, having 1.4 < z < 2.5 (see
Vanzella et al., 2005). Being able to select sources in distinct
redshift ranges provides a valuable tool to further test models
of galaxy evolution.

Selecting sources by their colours can also provide sam-
ples of different kinds of objects. Compton thick AGN are ac-
tive galaxies with dense environments (NH > 1024 cm−2) so
that they block even hard X-ray radiation and are not detected
even in the deepest X-ray surveys. They would provide valu-
able information in evolution studies, as they represent a dis-
tinctive phase of a galaxies lifetime and they are the “miss-
ing link” in population synthesis models of the X-ray back-
ground (Gilli, Comastri & Hasinger, 2007). The most promising
methods of detecting Compton thick AGN involves comparing
the optical and infrared fluxes of sources (Donley et al., 2007;
Daddi et al., 2007; Fiore et al., 2008; Georgantopoulos et al.,

2008). The multi wavelength coverage of the Lockman Hole in
combination with the deep X-ray observations are ideal for this
kind of study.

6.3. Follow-up

One important contribution of this study is that it providesa large
number of newly detected extragalactic objects to be further ob-
served in follow-up campaigns. A number of sources has already
been spectroscopically identified, and they have been selected
from the X-ray campaigns with ROSAT (Schmidt et al., 1998;
Lehmann et al., 2000, 2001) and XMM-Newton (Mateos et al.,
2005). With multi-object spectrographs we are now able to con-
duct spectroscopy to a large number of optical sources. The
LBT is already equipped with a near-infrared multi-slit spectro-
graph (LUCIFER; Mandel et al., 2007) which will start opera-
tion within 2009 and the optical multi-slit spectrograph (MODS;
Pogge et al., 2006) is expected to be operational in 2010. The
key scientific goals of these instruments is to conduct spec-
troscopy at cosmologically interesting redshifts. To be able to
select targets for these instruments we need a deep optical sur-
vey and a colour selection scheme similar to what described in
the previous section.

7. Summary and conclusions

In this paper we present the deep imaging campaign of the
Lockman Hole using the LBT. The Lockman Hole is an excellent
region for deep multi-wavelength observations given the mini-
mal galactic absorption. Here we report details of the U, B, and
V-band observation and the data reduction strategy. Our imag-
ing area covers 925 arcmin2 in a very well sampled region of
the Lockman Hole, with deep X-ray, infrared, and radio cover-
age. We have reached depths of 26.7, 26.3, and 26.3 mag(AB)
in the U, B, and V band respectively, in terms of 50% source de-
tection efficiency, and have extracted a large number of sources
(∼ 85000) an all three bands.

The number counts distributions are used to test galaxy evo-
lution models and and simulations. We find evidence of steep-
ening of the faint-end slope of the luminosity function in the U
and B bands, which can explain the B number count without the
need of a dwarf galaxy population. However the U counts are
under-predicted with this model and an enhancement of the star
formation rate atz = 1.5−2.5 is needed to explain them. A flatter
faint end slope observed in the V-band case could be the result
of supernova feedback.

This survey is part of an effort to conduct deep observations
of the Lockman Hole in different bands ranging from the infrared
to the X-rays. This will help us select different source classes for
further study and in addition to planned spectroscopic observa-
tions create a large database for extragalactic studies.
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