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Abstract

A global plasma turbulence simulation code, ORB5, is presented. It solves the
gyrokinetic electrostatic equations including zonal ows in axisymmetric magnetic
geometry. The present version of the code assumes a Boltzmann electron response
on magnetic surfaces. It uses a Particle-In-Cell (PIC),�f scheme, 3D cubic B-splines
�nite elements for the �eld solver and several numerical noise reduction techniques.
A particular feature is the use of straight-�eld-line magnetic coordinates and a �eld
aligned Fourier �ltering technique that dramatically impr oves the performance of
the code in terms of both the numerical noise reduction and the maximum time
step allowed. Anoter feature is the capability to treat arbitrary axisymmetric ideal
MHD equilibrium con�gurations. The code is heavily paralle lized, with scalability
demonstrated up to 4096 processors and 109 marker particles. Various numerical
convergence tests are performed. The code is validated against an analytical theory
of zonal ow residual, geodesic acoustic oscillations and damping, and against other
codes for a selection of linear and nonlinear tests.
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1 Introduction

Anomalous transport is currently one of the most active �elds of research in
magnetic con�nement fusion. The cross-�eld transport measured in Toka-
mak experiments exceeds the neoclassical predictions by upto two orders of
magnitude for the low con�nement regime (L-mode) [1]. Even in the high con-
�nement regime (H-mode) where transport is reduced near theplasma edge,
anomalous transport still persists in the core. This phenomenon is attributed
to plasma turbulence [2], which is driven by micro-instabilities [3]. The latter
are mainly generated by free sources of energy in the plasma such as density
and temperature gradients. It is now widely believed that self-organization
of turbulence plays a crucial role. It refers to a process in which the internal
organization of a system increases automatically without being guided or man-
aged by an outside source. In magnetized plasmas, self-organization mainly
appears through two di�erent structures: zonal ows [4] andlarge-scale trans-
port, such as avalanches [5] and streamers [6,7].
In general, a full kinetic treatment of micro-instabilities is needed. In this
framework, the gyrokinetic model [8] is usually su�cient for drift wave turbu-
lence at low frequency. It removes the gyorangle dependancein the original
equations, thus reducing the phase space from 6D to 5D. Various gyrokinetic
equations can be found in [9{12]. Among the di�erent approaches used to
solve the gyrokinetic equations, the Particle-In-Cell (PIC) method [8, 13{18]
is one of the most promising schemes. The distribution function is sampled
along trajectories with numerical particles (markers). The main advantage
is that memory requirements are smaller than for Eulerian codes, where the
distribution function is discretized on a 5D grid. Moreover, it is conceptually
simple, easily generalized to multi-dimensional simulations and more adapted
for complex geometries such as stellerators [19,20] than Eulerian codes. How-
ever, the PIC method unavoidably gives rise to statistical noise which can
lead to an unphysical behaviour in the nonlinear phase of thesimulation,
but signi�cant progresses have been made to limit this e�ect[21, 22]. In
addition to the solving methods, another important distinction between the
di�erent models is the simulated domain. In local simulations, turbulence is
studied on a single magnetic surface. A less restrictive method is to simu-
late a ux-tube following a given magnetic-�eld line. This approach reduces
the computer ressources needed, but imposes inconsistentT and r T pro�les
(i.e. T = const; r T = const) and generally employs unphysical radially peri-
odic boundary conditions. The global approach is certainlythe most realistic
model, because it contains the whole radial domain and therefore the e�ects
of pro�le variation.
The aim of this paper is to present the ORB5 code, originally written by
Parker [18] and further developed by Tran [13]. ORB5 is a nonlinear gyroki-
netic global code which solves the Vlasov-Poisson system inthe electrostatic
and collisionless limit, and has the unique capability of handling true MHD
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equilibria [23].
The paper is organised as follows. In section 2, the gyrokinetic equations are
derived. Section 3 presents the implementation of these equations and the
associated numerical algorithms. Section 4 shows the parallel performance of
the code. Results related to the numerical schemes and benchmarks are shown
in section 5. Finally, conclusion and future works are exposed in section 6.
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2 Gyrokinetic model

2.1 De�nitions and normalization

The code ORB5 solves the Vlasov-Poisson system in the gyrokinetic limit
for an axisymetric toroidal plasma. Magnetic surfaces are labelled with the

poloidal ux  , or by the radial coordinates =
q

 = edge =
q

~ . The geomet-
rical radial coordinate will be noted� and the poloidal angle� . The magnetic
�eld is de�ned as ~B = F ( )~r ' + ~r  � ~r ' , whereF ( ) is the poloidal cur-
rent ux function. Two di�erent kinds of magnetic equilibri a are implemented:
circular concentric magnetic surfaces, referred to asad hoc equilibrium, and
true MHD equilibria. For the latter case, ORB5 is coupled with the CHEASE
code [24], which solves the Grad-Shafranov equation. The poloidal coordinate
used is either the geometrical angle� or the straight-�eld-line coordinate � �

de�ned by

� � =
1

q(s)

Z �

0

~B � ~r '
~B � ~r � 0

d� 0; (1)

whereq(s) is the safety factor. In this paper,� represents a general poloidal
coordinate. In ORB5, the options� = � and � = � � have been implemented.
All symbols with the subscript i will be used for ion quantities, while the
subscript e will be used for electrons. It is assumed that the plasma contains
electrons and an ion species with a massmi and a chargeqi = eZi . Four nor-
malization quantities are used:qi , mi , 
 i = qi B0=mi and � s = cs=
 i , where
B0 is the magnetic �eld at axis, Te(s0) is the electron temperature in eV at
a given reference magnetic surfaces0, and cs =

q
eTe(s0)=mi is the ion sound

speed.
The gyrokinetic equations solved in ORB5 are those of reference [9] which
describe the evolution of the plasma in an inhomogeneous static equilibrium
magnetic �eld. Only the electrostatic component of the perturbation is con-
sidered, and magnetic perturbations are neglected.

2.2 Gyrokinetic Vlasov equation

The usual gyrokinetic ordering is assumed:

!

 i

�
kk

k?
�

e�
Te

�
� L;i

Ln
�

� L;i

LT;i
�

� L;i

LT;e
� � g;

� L;i

LB
� � B ;

(2)
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where! is the characteristic uctuation frequency,kk and k? are the parallel
and perpendicular components of the wave vector with respect to the magnetic
�eld, � is the uctuating electrostatic potential, � L;i is the ion gyroradius, and
Ln , LT;i , LT;e, LB are the characteristic lengths associated with the density, the
ion temperature, the electron temperature and the magnetic�eld pro�les. � g

and � B are the small parameters� g � � � , � B � � a� g, with � � = � s=a � 1 and� a

is the inverse aspect ratio. ORB5 solves the equations of motion in a 5D phase
space (~R; vk; � ), where ~R is the position of the guiding center,� = v2

? =(2B)
is the magnetic moment, with the conservation property d�= dt = 0, vk and
v? are the parallel and perpendicular components of the velocity with respect
to the magnetic �eld. The renormalised potential 	( ~R; vk; � ) in [9] has been
approximated here by the gyroaveraged electrostatic potential

	( ~R; vk; �; t ) �= h� i ( ~R; �; t ) =
1

2�

Z 2�

0
� (~x; t)� ( ~R + ~� L;i � ~x)d�; (3)

thus neglecting a term of orderO(� 2
g). Here � is the gyroangle. The gyroav-

eraged electric �eld is approximated by

h~Ei ( ~R; �; t ) �= �h ~r ~x � (~x)i ( ~R; �; t ) = �
1

2�

Z 2�

0
d� ~r ~x � (~x); (4)

where a term of orderO(� g� b) has been neglected. The polarization density
is [9]:

ni; pol =
Z

8
<

:
qi

mi B

�
� � h � i

� @f
@�

+
qi

mi 
 2
i

~r
� Z

d�
�
� � h � i

� �

�
~B
B

� ~r f

9
=

;

� ( ~R + ~� L;i + ~x)B �
kd~Rdvkd� d�; (5)

where f = f ( ~R; vk; � ) is the guiding center distribution function of the ion
species,B �

k = ~B �
k � ~B=B, and ~B �

k = ~B + mi vk=qi

�
~r � ~h

�
. The second term

of Eq. (5) has been neglected, although it is of orderO(� g): ORB5 solves the
linearized quasi-neutrality equation, so whenf is replaced by thef 0 in the
second term, it becomes smaller than the �rst one by a factor� g due to the
density and temperature gradients appearing in~r f 0. The gyrokinetic Vlasov
equation is then:

@f
@t

+
@f

@~R
�

d~R
dt

+
@f
@vk

dvk

dt
= 0: (6)

The equations of motion are given by
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d~R
dt

= vk
~h +

1

 i B �

k

 

v2
k +

v2
?

2

!
�
~h � ~r B

�
�

v2
k


 i B �
k

~h �
h
~h � (~r � ~B)

i

+
h~Ei � ~B

B �
k B

; (7)

dvk

dt
=

1
2

v2
?

~r � ~h +
v2

? vk

2
 i BB �
k

8
<

:
~h �

�
~h � (~r � ~B)

�
9
=

;
� ~r B

+ h~Ei �

8
<

:
qi

mi

~h +
vk

BB �
k

�
~h � ~r B

�
+

vk

BB �
k

0

@~h �
� 0

~r p
B

1

A

9
=

;
; (8)

where~h = ~B=B, � 0 is the permittivity of free space and~r p = p0( ) ~r  is
the pressure gradient. The second term of the right hand sideof (8) is of
order O(� 2

B ), does not inuence neither energy conservation (see section 2.5)
nor the physical results and will be neglected in all the simulations. These
equations of motion for a particle include the parallel motion, the drifts due to
the curvature and the gradient of the magnetic �eld, the diamagnetic drift and
a mirror term. For concentric circular magnetic surfaces,� 0

~r p=B is replaced
by � ~h � (~r � ~B ). Nonlinear terms are the~E � ~B drift and the vk nonlinearity,
which is mainly an acceleration term due to the parallel electric �eld.

2.3 Background equilibrium and�f method

The �f method [21] is used, i.e. the distribution functionf is split between
a time independent part f 0 and a time dependent part�f : f ( ~R; vk; �; t ) =
f 0( ~R; vk; � ) + �f ( ~R; vk; �; t ). A Maxwellian is chosen forf 0, i.e. f 0( ~R; vk; � ) =
n0(�)(2 � )� 3=2v� 3

th ;i (�) exp ( � �=Ti (�)), where � is the kinetic energy of a single
ion, � = 1=2mi v2 and is a constant of the unperturbed motion, andvth ;i =q

eTi =mi is the ion thermal velocity. Three di�erent kinds of Maxwellian can

be used, depending on the choice of the variable � as either ;  0;  ̂ , where
 0 is the canonical toroidal momentum, 0 =  + vk
 i F ( )=B2 and  ̂ is a
function of (�; �;  0) de�ned below. The axisymmetry of the tokamak implies
that  0 is a constant of the unperturbed motion, i.e.d 0

dt

�
�
�
0

= 0. The quantity

 ̂ =  0 +  0;corr (�; � ) is another constant of motion, with

 0;corr (�; � ) = � sign(vk(t0))
qi

mi
R0

q
2(� � �B 0)H (� � �B 0); (9)

where H(x) is the Heavyside function, therefore 0;corr is de�ned only for
passing particles. ̂ can be seen as the closest constant of motion to . In the
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following, f 0( ) is refered as to alocal Maxwellian, f 0( 0) as to a canonical
Maxwellian andf 0( ̂ ) as to acanonical Mawellian with correction. The Vlasov

equation is then d�f ( ~R;vk ;� )
dt = � df 0 (� ;vk ;� )

dt which can be written d�f ( ~R;vk ;� )
dt =

� ( ~E), with

� ( ~E) = � f 0(� ; vk; � )

0

@� (�)
d�
dt

�
�
�
�
�
0

+ � (�)
d�
dt

�
�
�
�
�
1

�
qi

T(�)
h~Ei �

d~R
dt

�
�
�
�
�
�
0

1

A ; (10)

where� (�) = d ln f 0(� ; vk; � )=d�. The subscript 0 refers to the unperturbed
orbits and the subscript 1 refers to the terms that depend on the perturbed
electric �eld. In most other gyrokinetic codes, with the notable exception
of the GT3D code [16], a local Maxwellian is chosen, i.e � = , and the
�rst term in the r.h.s. of Eq. (10) is neglected. A local Maxwellian can
lead to spurious zonal ow oscillations [16], since it is nota true equilibrium

distribution function, as df LM
0
dt

�
�
�
�
0

6= 0. When using a canonical Maxwellian, the

quasi-neutrality equation is no longer satis�ed as electron and ion equilibrium
densities are di�erent. In order to enforce quasi-neutrality, a radial electric
�eld quickly develops and possibly suppresses instability. To eliminate this
spurious �eld generation, the electron equilibrium density is further integrated
from the ion distribution function after the particle loading and averaged over
the poloidal angle,

ne0( ) =
1

2�

Z 2�

0

� Z
f 0( 0; �; � )� ( ~R + ~� L;i � ~x)B �

kd~Rdvkd� d�
�

d�; (11)

which minimizes the di�erence betweenn0e and n0i . Note that for small � �

plasmas, there is little di�erence between and  0 and the local Maxwellian
becomes a better approximation. Issues related to this choice are discussed in
details in Ref. [25]. When � =  ̂ , the approximation d ̂

dt

�
�
�
1

�= d 0
dt

�
�
�
1

is done. As
another alternative, sincef is constant along the trajectories,�f can be sim-
ply obtained by �f ( ~R; vk; �; t ) = f

�
~R(t0); vk(t0); � (t0)

�
� f 0

�
�( t); vk(t); � (t0)

�
:

Details of this scheme, calleddirect �f , are given in Refs. [26] and [25].

2.4 Quasi-neutrality equation

Using the usual quasi-neutrality constraint, the Poisson equation is ne = Z i ni .
The polarization density, Eq. (5), contained inni (~x; t) is simpli�ed by using
a long wavelength approximation (k? � L;i )2 � 1. The electron densityne(~x; t)
is evaluated by assuming adiabatic (or Boltzmann) electrons along the mag-
netic �eld lines. After linearization of the ion polarization density the quasi-
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neutrality equation becomes

ne0( ) +
ene0( )
Te( )

�
� (~x; t) � �� ( ; t )

�

= Z i hni 0i (~x) + Z i
~r ? �

 
ni 0( )
B 
 i

~r ? � (~x; t)

!

+ Z i �n i ;
(12)

whereh:::i is the average over the gyroangle,

hni 0i (~x) =
Z

f 0

�

�
�
 (~x); � (vk; �; ~x ); �

�
; �

�
vk; �; ~x

�
; �

�

� ( ~R + ~� L;i � ~x)B �
kd~Rdvkd� d�; (13)

and

�n i =
Z

B �
k d~Rdvkd� d��f ( ~R; vk; �; t )� ( ~R + ~� L;i � ~x): (14)

At this point, it is assumed that hni 0i (~x) = ni 0(~x) and ni 0(~x) = ne0( )=Zi for
a local Maxwellian only. Nevertheless, in this paper it is assumed that this
relation holds for any type of equilibrium distribution function, so ni 0(~x) =
ne0( )=Zi � n0( ). The �nal quasi-neutrality equation is therefore:

eZi n0( )
Te( )

�
� (~x; t) � �� ( ; t )

�
� ~r ? �

 
Z i n0(~x)

B 
 i

~r ? � (~x; t)

!

= Z i �n i : (15)

In Eq. (15), �� is the ux-surface averaged potential. This term is nonzeroonly
for axisymmetric perturbations: only the toroidal Fourier componentn = 0
gives a contribution to this term. The n = 0; m = 0 mode is commonly called
the zonal ow.

2.5 Particle and energy conservation

Despite all the approximations made in the previous sections, the model de-
rived from [9] still conserves the particle number and the energy (see [22]).
The kinetic energy of the plasma is

Ekin =
Z

mi

 

�B +
v2

k

2

!

fB �
k d~Rdvkd� d�: (16)

Its time derivative is

dEkin

dt
= qi

Z d~R
dt

� h~Ei fB �
kd~Rdvkd� d�: (17)
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In this model, the electrostatic energy can be de�ned as

E f =
qi

2

Z
d~x

�
hni i (~x; t) � n0(~x)

�
� (~x; t): (18)

The energy and particle number conservation are written:

dEkin

dt
= �

dE f

dt
; (19)

dNph

dt
=

d
dt

Z
fB �

kd~Rdvkd� d� = 0: (20)
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3 Numerical implementation

This section describes the implementation of the gyrokinetic model exposed
in section 2. The general scheme of the code is shown in Fig. 1.

3.1 �f discretization: the Particle-In-Cell method

The Particle-In-Cell (PIC) method [27] is commonly employed in gyrokinetic
simulations [8,16,17,22,28]. The perturbed distributionfunction is discretized
in the 5D phase space along trajectories withN markers (also called tracers),
carrying a weight w. In ORB5, �f is discretized as:

�f =
Nph

N

NX

p=1

1
2�B �

k

wp(t)�
�

~R � ~Rp(t)
�
�

�
vk � vk;p(t)

�
�

�
� � � p(t0)

�
; (21)

whereNph is the number of physical particles. Each marker is characterized by
its weight wp(t) and by its location

�
~Rp(t); vk;p(t); � p(t0)

�
in the phase space.

Integrating Eq. (21) over a small volume 
p, the temporal evolution of �f is
obtained by solving the Vlasov equation for each weightwp(t):

dwp(t)
dt

=
N

Nph
� ( ~E)p
 p; (22)

with � ( ~E) given by equation (10), 
 p = B �
k d~Rdvkd� d�= dN represents the

volume occupied by one marker in phase space and dN is the number of
markers in an in�nitesimal volume of phase space:

dN =
N

Nph
f L ( ~R; vk; v? )J (�; s; ' )dsd� d'v ? dvkdv? d�: (23)

The markers' loading is speci�ed by the probability density function
f L ( ~R; vk; v? ). The conventional loading is such that markers have a distri-
bution function p(s) = 1 � f g + f g exp

�
(s � s0;L )2=� s2

L

�
in space, wheres0;L

and � sL are input parameters, and are uniformly loaded in (vk; v? ). A cut-o�
is applied at (vk; v? ) = � vvth ;i (s), where � v is speci�ed on input. During a
simulation, the markers' distribution in the (s; jvj) plane is stored for di�erent
times. This information is further used to build a newf L ( ~R; vk; v? ). This
method is calledoptimized loading[22], and is aimed to minimize the statisti-
cal variance of the weights during the nonlinear phase of a second simulation
which uses the newf L ( ~R; vk; v? ). Two di�erent ways of initializing the weights
(or equivalently the perturbation �f ) have been implemented. Thewhite noise
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initialization is de�ned by:

�f p(t0) = Apf 0

�
~Rp(t0); vk;p(t0); v? ;p(t0)

�

 p (24)

Ap is a pseudo-random number obtained with a Hammersley sequence, whose
maximum amplitude is given on input. This scheme has the disadvantage that
the initial perturbation is inversely proportional to the number of markers in
the simulation. The simulation takes an increasing time, roughly proportional
to the number of markers, until the physical modes emerge of the initial noise.
Instead, the idea is to build a physical initialization, called mode initialization,
independent of the number of markers:

�f p(t0) = 
 p

A0f 0

�
~Rp(t0); vk;p(t0); � p(t0)

�

(m2 � m1 + 1)( n2 � n1 + 1)

�
�
�
�
�
�

T
�
s0

�

~r T
�
s0

�

�
�
�
�
�
�

�
�
�
�
�
�

~r T
�
sp(t0)

�

T
�
sp(t0)

�

�
�
�
�
�
�

�
m2X

m= m1

n2X

n= n1

cos
�
m� p(t0) � n' p(t0)

�
(25)

where m0; m1; m2; n0; n1; n2 are input parameters. This initialization will be
stronger by choosingm0 = [ � nq(s0)], where [:::] denotes the integer part,
as ITG modes are aligned with the �eld lines. It has the advantage that
the initial perturbation converges with the number of markers and the initial
phase of the simulation, until the physical modes develop, is independent of
the number of markers.

3.2 Equations of motion

Tracers can be pushed either in cylindrical coordinates (r; '; z ) or in mag-
netic coordinates (� � ; s; ' ). In order to avoid the singularity at the mag-
netic axis that would appear in d� � =dt, it is more adequate to use (�; �; ' ) =
(scos� � ; ssin� � ; ' ). Among the numerous advantages of using magnetic co-
ordinates, this set of coordinates avoids numerical interpolations during the
construction of the perturbed density. Depending on the computer architec-
ture, the simulation can be speeded up by 40%. For both ad hoc and MHD
equilibria, equilibrium coe�cients needed for the pushingare obtained with
linear interpolations from a (r; z) or a (s; � � ) grid.
For the integration of Eqs. (7), (8) and (22), a Runge Kutta integrator of order
four is implemented in ORB5.
When a particle leaves the plasma, or equivalently whens > 1, it is reected:
� ! � � . This scheme may lead to a small violation of unperturbed conserved
quantities for equilibria that are not up-down symmetric.
The particle pushing is speeded up (up to 40%) by using a cachesorting algo-
rithm: particles are sorted in the poloidal plane everynCS time steps, where
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nCS is given on input.

3.3 Discretisation of quasi-neutrality equation

The quasi-neutrality equation (15) is solved with linear, quadratic or cubic
B-splines �nite elements [30]. The perturbed potential is discretized as:

� (~x; t) =
X

�
� � (t)� � (~x); (26)

where � stands for (j; k; l ), f � � (t)g are coe�cients and f � � (~x)g are tensor
products of 1D B-splines of orderp, � � (~x) = � p

j (s)� p
k(� )� p

l (' ). The B-splines
are de�ned on a (Ns; N � ; N ' ) grid. To get a linear system forf � � (t)g, the
Galerkin method [31] is used. The system is then:

X

�
A �� � � (t) = b� (t); (27)

with:

A �� =
Z

d~x
n0( )

Z i Te( )

�
� � (~x)� � (~x) � �� � (s) �� � (s)

�
+

n0( )
B 
 i

~r ? � � (~x) � ~r ? � � (~x);

b� (t) =
Nph

N

NX

p=1

wp(t)
2�

Z 2�

0
d� � �

�
~Rp + ~� L;i;p (� )

�
: (28)

Note that the matrix is real, symmetric and positive de�nite. The building
of b� (~x; t) is called the charge assignment. This projection onto the �nite
element basis is the main source of numerical noise. It becomes obvious that
higher order splines are bene�cal for the noise reduction, as they have a more
extended shape. The perpendicular gradients are approximated to lie in the
poloidal plane, ~r ?

�= ~r pol = ~r s @
@s+

~r � @
@�. Due to the axisymmetry in the

toroidal direction, the system can furthermore be decoupled in ' . Applying a
discrete Fourier transform on� � and b� , and inserting these relations in (27)
yields, in Fourier space:

X

�
A �� �̂ (n)

� (t) =
b̂(n)

� (t)
M (n);p

; (29)

where (�; � ) now stand for 2D indices, �̂ (n)
� , b̂(n)

� (t) are Fourier coe�cients of
� � and b� , and M (n);p is de�ned by:

N 'X

l0=1

Z
d' � p

l0(' )� p
l (' ) exp

 
2�i
N '

n(l0 � l )

!

= M (n);p: (30)
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M (n);p can be computed analytically for any spline orderp. The matrix A ��

and the right hand sideb� de�ned in Eq. (28) are modi�ed with the Dirich-
let boundary conditions � (s = 1; �; '; t ) = 0 and the regularity condition
� (s = 0; �; '; t ) = � (s = 0; � = 0; '; t ). The matrix de�ned in Eq. (28) can be
decomposed asA �� (~x) = A lwa

�� + AZF
�� , whereAZF

�� contains the ux surface av-
eraged terms only. The linear system associated withA lwa

�� can be solved with
a sparse iterative solver, using the SSOR-preconditionnedconjugate gradient
method. It is not adequate forAZF

�� because its band is full. Another alter-
native is a direct solver using LAPACK routines. Although faster, it requires
more memory. The memory needed to store the matrix becomes rapidly pro-
hibitive as the grid size is increased. To reduce the memory storage, a parallel
solver using SCALPACK routines has been implemented in ORB5, giving a
reduction factor up to Ns=8 for the memory of the matrix.

3.4 Gyro-averaging

The integral over the gyration angle for both electric �eld and perturbed
density is computed with aNg = min

�
(32; max(4; 4� L;i;p =� L;i )

�
discrete sum,

where � L;i;p = v? ;p=
 i;p is the marker gyroradius and 
i;p is the cyclotron
frequency of the marker. Although it has been shown that a 4-points dis-
cretization is su�cient to describe perturbations up to k? � L;i � 1 [28], a
gyro-adaptative method reduces noise since it acts like a Bessel �lter [22].
The position (r � ; z� ) of the marker on the Larmor ring is simply:

r � = rGC + � L;i;p cos� (31)
z� = zGC + � L;i;p sin� (32)

When orbits are evolved in magnetic coordinates, the position of a marker is
obtained by a Taylor expansion:

� �
�= � GC + ~� L;i;p � ~r �

�
�
�
GC

(33)

� �
�= � GC + ~� L;i;p � ~r �

�
�
�
GC

(34)

Where:

~� L;i;p = � L;i;p

0

@
~r s

j ~r sj
cos� +

~B � ~r s

j ~B � ~r sj
sin�

1

A (35)

This implementation has been successfully applied in [32] for the linear gy-
rokinetic code LORB5 [33].
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Using Eqs. (4) and (26), the gyro-averaged electric �eld is given by:

h~Ei = �
1

2�

X

�
� � (t)

Z
d� ~r � �

�
~R + ~� L;i (� )

�
(36)

To achieve the best energy conservation, it is important to employ exactly
the same gyro-averaging procedure for the charge assignment and the electric
�eld [22].

3.5 Fourier �lter

In order to reduce the noise, we apply a Fourier �lter on the discretized per-
turbed density.

Fbi;j;k =
X

m;n
f i;m;n

bbi;m;n (t) eim� ein' (37)

A Fourier �lter is of great interest since physically non relevant modes can
be removed from the simulation. The poloidal Fourier �lter should be chosen
wide enough so as to include all modes relevant to the physicsproblem at hand,
although a formal proof of energy conservation including Fourier �lters cannot
be done in toroidal geometry. One of the simplest �lter, called square�lter, is
obtained by suppressing modes outside a window [nmin : nmax ] � [mmin : mmax ]
speci�ed on input. However, this kind of �lter is inconsistent with the gy-
rokinetic ordering, as it retains modes withkk=k? much bigger than� � [34].
Indeed, ITG modes tend to align with the �eld lines. Mathematically, it
means that these modes are such thatkk = ( q(s)r )� 1

�
m + nq(s)

�
! � � ,

consistent with the gyrokinetic ordering (2). Som should be near� nq(s).
Toroidal-ITG modes are composed of a superposition of a fewm compo-
nents around m = � nq(s), resulting in kk t (q(s)r )� 1. In both cases, it
is enough to keep a narrow window of modes in order to describeall phys-
ically relevant modes. The idea here is to de�ne a surface-dependent �lter
that suppresses highkk modes. For eachn 2 [nmin : nmax ], the poloidal modes
[� nq(s) � � m]

T
[mmin : mmax ], where � m is an input parameter, are re-

tained. It is very useful to use� � as the poloidal coordinate: the poloidal
width of the spectrum for a toroidal mode is narrower with thestraight-�eld-
line coordinate than with the geometrical poloidal angle� . In addition, when
� di�ers from � � (in case of elongation, triangularity or low aspect ratio),the
mode is not peaked aroundm = nq(s). Finally, the width of a toroidal mode
spectrum increases with the plasma size when� is used, whereas it is in prin-
ciple independent of plasma size with� � . The bene�cial inuence of a small
� m will be explained in section 5.
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3.6 Code Parallelization

Gyrokinetic simulations are extremely CPU time and memory demanding.
Therefore, ORB5 is massively parallelized with MPI routines. A decomposi-
tion concept calleddomain cloning [35,36] is applied:P = PCP' , whereP is
the total number of processors,P' is the number of domains in the' direc-
tion and each domain is clonedPc times. After each charge assignment, the
perturbed density is summed over the clones. After each stepin the particle
pushing, the markers are sorted to their appropriate' domain. The parallel
direct solver described above is using a third MPI communicator, usually but
not necessarily taken identical to the clone communicator.This paralleliza-
tion scheme o�ers great exibility because it can be tuned todi�erent types
of parallel platform architectures.

3.7 Relations between physical and numerical parameters and � � scaling

Depending on the physical case under study, the ORB5 numerical parameters
should be set up as follows. The radial mesh resolution depends on the max-
imum k� � L;i that should be resolved, wherek� is the radial component of the
wave number. With cubic B-spline �nite elements there should be at least 3
points per wavelength. Thus

Ns >
3

2�
(k� � L;i )max

a
� L;i

: (38)

Similarly, for a maximum k� � L;i that should be resolved up to the magnetic
surfacesmax , where k� is the poloidal component of the wave number, the
poloidal mesh should be set to

N � > 3smax (k� � L;i )max

a
� L;i

: (39)

Since the perturbations tend to be aligned with magnetic �eld lines the toroidal
mesh should be chosen as

N ' � N � =q(s) : (40)

The time step should satisfy the following three requirements:

! k� t � 1; ! � � t � 1; ! ExB � t � 1; (41)

with ! k = kkvk, kk = ( q(s)r )� 1
�
m + nq(s)

�
, ! � = vth ;i (d ln T=d�)k� � L;i and

! ExB = k? vExB . There is a limiting value ofkk beyond which the ITG modes
get strongly Landau damped. An estimate can be obtained froma dispersion
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relation [37], and taking the limit � i ! 1 :

jklim
k jr = (1 =2)(r=L T;i )k� � Li (42)

The �eld-aligned Fourier �lter of width � � m gives jkkjmax = � m=rq(s). In
order to resolve the physically relevant modes up tojkkj lim the width of the
�eld-aligned Fourier �lter should be

j� mj >
q(s)

2
r

LT;i
k� � Li : (43)

It is worth mentioning that it does not scale with a=� L;i , since the typical
values ofk� � L;i present in ITG turbulence do not depend ona=� L;i . When
quasi-neutrality equation is solved with� , Eq. (43) is no longer a good estima-
tion. Note also that � m should be large enough so that the �ltered perturbed
density does not have discontinuities across magnetic surfaces. Mathemati-
cally, it is expressed as �m > nq 0(s)=Ns. Using Eqs. (38) and (39) with
(k� � L;i )max = ( k� � L;i )max = smax = 1, the last condition can be written:

� m & 2ŝ; (44)

where ŝ = sq0(s)=q(s) is the magnetic shear. The �rst criterion of Eq. (41)
gives


 i � t �
r
a

a
� L;i

q(s)
j� mj

(45)

or, if j� mj is chosen as in Eq.(43),


 i � t �
2(a=� L;i )(r=a)
(r=L T;i )k� � L;i

: (46)

The second criterion gives


 i � t �
(a=� L;i )(r=a)
(r=L T;i )k� � L;i

: (47)

The third criterion can be expressed in terms of the Mach number M =
vExB =vth ;i as


 i � t �
1

M k ? � L;i
: (48)

For most cases of interest for ITG driven turbulenceM is found to be of the
order of 10� 2 and k? � L;i is at maximum of order unity. Using local estimates
for the time step, it appears that! k is the fastest frequency of the system with
a square �lter, independently of the plasma size. With a �eld-aligned �lter, kk

scales with� � and so for large plasmas! E � B becomes the fastest frequency.
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The time step can be increased by a factor 10, hence the simulations are
strongly shortened. More details can be found in [34].

3.8 Density and temperature pro�les

A given pro�le A = Ti ; Te or n0 is de�ned by:

1
A

dA

d ~ 
= �

a
LA

 

1 � cosh� 2
h

s0
� A

i
!

2

4 cosh� 2
�

s� s0
� A

�
� cosh� 2

�
s0

� A

�
3

5

: (49)

a=LT;i , a=LT;e, a=Ln , � T;i , � T;e, � n and s0 are input parameters. All the
gradients are peaked ats0, therefore ITG modes should develop around that
magnetic surface. Temperature pro�les are normalized by their value at s0.
The density is normalized with the volume averaged density.Fig. 2 show
typical pro�les used in ORB5.
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4 Scalability

All simulations have been performed on the IBM BlueGene/L and Pleiades
clusters of the Ecole Polytechnique F�ed�erale de Lausanne. The former has
4096 PowerPC 700 MHz bi-processor nodes. The cluster has twodi�erent
modes. In thecoprocessormode (CO), one processor is used with 512 MB
memory. In the virtual node (VN) mode, both processors are used but with
only 256 MB memory each. Simulations done on the Pleiades cluster used 32
2.8 GHz Pentium 4 processors with 2GB memory.
To measure the scalability, short simulations were performed at �xed grid size
(Ns = 128; N � � = 256; N ' = 512 for the VN mode and Ns = 128; N � � =
256; N ' = 256 for the CO mode). The SCALAPACK parallel solver with 16
clones is employed. Simulations with 512, 1024, 2048 and 4096 processors
have been made by varying the number of processors in the' direction P' .
For each number of processors, several simulations with di�erent number of
markers per processor have been done. Since the size of the matrix is �xed,
the time dedicated to the solver (backsolve and Fourier transforms) should be
proportional to the number of toroidal slices per processor. The time dedicated
for the particles (pushing + charge assignment) is assumed to scale linearly
with the number of markers per processor. Finally, the communication time
is mainly due to the ' -partition of the markers. It is hard to give a simple
estimate to the communication time, since it depends on the time step, the
cluster architecture, and the ion temperature. For the largest simulation done
(1.5M markers/processor), the communication time represents 10% of the total
simulation time. Therefore, the time per iteration is modelled as:

t it = K s
N ' Pc

P| {z }
solver

+ K m
N
P| {z }

markers

+ tcomm| {z }
communication

; (50)

whereK s and K m are constants to be determined. Fig. 3 displays the time per
iteration t it as a function of the number of markers per processorN=P. The
dependance is linear, as expected. However, the slope of these �ts, namely
K m seems to slowly increase withP, which illustrate a slight derivative from
an ideal scaling. K s and K m have been obtained by a linear �t oft it as a
function of N=P at �xed P = 512. Therefore, the measured time per iteration
can be further compared to the �tted time t f

it . Fig. 4 shows the ratiot it =tfit
as a function ofP. The maximum value of the relative degradation due to
the increase of the number of processors is only 15 %. E�ects of tcomm can
be included by �tting t it � tcomm instead of t it . In that case, the maximum
relative degradation falls down to 10 %.
Globally, these results show the excellent scaling properties of ORB5 up to
4096 processors.
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5 Simulations results

5.1 Field-aligned �lter

The �eld-aligned �lter has been tested with the following input parameters:
mi = 1; a = 40� � ; B0 = 1 [T]; R0 = 1 [m]; R0=a = 5. The density pro�le
is at, Ti = Te, R=LT;i = 12, � T;i = 0:208, s0 = 0:5. N = 2 24 �= 16 M
markers, � t = 40 
 � 1

i . The initial distribution f 0 is a canonical maxwellian
with correction, (see (9)).�f is obtained through the conventional�f scheme
and is initialized with white noise. The quasi-neutrality equation is solved
with cubic B-splines on aNs = 128; N � � = 128; N ' = 64 grid with the parallel
direct solver. The main parameter of the �eld-aligned �lter is the width � m.
By keeping only smallkk modes, the number of Fourier modes kept in the �lter
is strongly reduced. A square �lter hasNs(2mmax + 1)(2 nmax + 1) / (� � )� 3

whereas a �eld-aligned �lter has approximativelyNs(2� m + 1)(2 nmax + 1) /
(� � )� 2. The latter reduces the number of modes by about (� � )� 1. In [38],
it is shown that numerical noise, due to the projection of thecharge density
onto a �nite number of markers, mainly depends on the square root of the
number of markers per Fourier modes. In that sense, a �eld-aligned �lter
should improve the quality of a simulation without a�ecting CPU time, in
contrary to an increase of the numbers of tracers. A good indicator of the
quality of the simulation is the energy conservation described at section 2.5.
Fig. 5 shows the relative energy conservation �E=Ef , where � E = Ekin (t) +
E f (t) � Ekin (t0) � E f (t0) for simulations with square and �eld-aligned �lters
. In a noise-free simulation, or equivalently in the limit ofan in�nite number
of markers and an in�nitely small time step, � E=Ef should be zero. A gain
of 2 orders of magnitude in the relative energy conservationis obtained as
the �lter goes from square to �eld-aligned. With a square �lter, the energy
deviation represents approximatively 1% of the initial energy of the plasma
which is an unacceptable value. Fig. 6 displays the volume-averaged radial
heat ux Q, de�ned by

Q =
1
V

NX

p=1

wp
1
2

mv2
p

h~Ei � ~B
B �

k B
�

~r  

j ~r  j

�
�
�
�
�
� ~Rp ;vk ;p ;� p

(51)

whereV is the volume of the torus, for �eld-aligned and square simulations. In
the latter case, a numerical heating develops in the late nonlinear phase. This
kind of phenomenon is typical when too few markers are used. The square
�lter simulation would explode because of numerical noise if it was continued.
This simple simulation already points out the link between the number of
markers and the number of Fourier modes kept in the simulation. After the
saturation, the plasma should reach a quasi-steady state. This property is
obviously lost, as can be seen from Fig. 7 . However, for the �eld-aligned �lter,
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the energy ofn 6= 0 modes is constant for late times (see Fig. 8). On Fig. 9,
the radially averaged energy spectrum of then = 6 mode in the poloidal space
is shown at di�erent times for a square �lter simulation. In the linear phase,
the mode is peaked nearm = � 12 = � nq(s0) as n = 6 and q(s0) = 2. After
the saturation, the peak energy becomes smaller but the spectrum becomes
much broader. On Fig. 10, the spectrum is normalized to the energy peak
of the mode. The spectrum is no longer peaked andm components which
are far away fromnq(s0) contain a very signi�cant part of the total toroidal
mode energy. The �eld energy of alln 6= 0 modes is growing in time but the
peak energy decreases: this is a clear evidence that numerical noise is created
because of highkk modes. It is of course suppressed by applying a �eld-aligned
�lter (see Fig. 8). In this case, the only growing mode is the zonal ow, which
is not really a�ected by the parallel dynamics as it is strongly dominated by
the m = 0 component. Its energy increases mainly due to numerical noise,
which is still kept in the �eld-aligned �lter. The bad qualit y of the square �lter
can be observed in Fig. 11, which shows the electric potential on a magnetic
surface. The resulting structure is clearly a superposition of high kk modes,
whereas the �eld-aligned �lter naturally preserves the �eld-aligned structure
of ITG modes.
The determination of � m is a very important step. A too small value of �m
will obviously cut some relevant physics, whereas a too large � m introduces
additional numerical noise. The argument to �x � m is to converge the growth
rate of toroidal modes in the linear phase. Fig. 12 shows the evolution of the
mode n = 6 for di�erent values of � m and a square �lter simulation. Small
� m cases unsurprisingly yield lower growth rates. Convergence is reached
with � m = 5. To summarize, smart Fourier �ltering is a powerful numerical
scheme to improve the quality of a PIC simulation: by relaxing the time step
criterion and by decreasing the number of Fourier modes in the simulations,
CPU time is reduced by 2 orders of magnitude. In addition, the�eld-aligned
�lter should be even more e�cient in the limit of small � � plasmas.

5.2 Convergence with number of markers

In collisionless gyrokinetic simulations, convergence isa subtle notion. For
PIC simulations, not only the time step and the grid resolution need to be
carefully chosen, but the number of markers plays a crucial role as well. In-
deed, numerical noise inherent to the PIC method may determine the level of
transport in ETG simulations [39]. In ITG PIC simulations, due to the strong
inuence of the zonal ow, the situation is di�erent, however the question of
the required number of markers for convergence still remains. By measuring
the level of numerical noise in ETG simulations, it has been established that
the number of markers required is linked to the number of Fourier modes in
the simulation [38]. A study of numerical noise in ITG simulations is beyond
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the scope of this paper. Here, the question of convergence isapproached by
means of physics diagnostics. Fig. 14 shows the evolution ofthe volume av-
eraged heat ux for di�erent numbers of markers. The overshoot is shifted in
time, as the initial level of the perturbation is inversely proportional to

p
N .

The sole Fig. 14 is not su�cient to say if a reasonable convergence is reached
or not. This di�culty can be overcome by using the mode initialization with a
single mode (m0; n0) (see section 3.1). Fig. 13 shows againQ for a marker scan
performed with the mode initialization. As the number of tracers is increased,
the di�erent curves look more and more alike during the wholesimulation.
This gives con�dence about the number of tracers needed for aconverged
simulation. From 32 M markers, all the heat ux curves are quite close to
each other. Note that both initialization give quite di�erent overshoots: for
the mode initialization, a single toroidal mode strongly dominates since the
beginning of the simulation, whereas all toroidal modes have approximatively
the same initial energy when the white noise initializationis employed. In
this context, a multiple mode initialization would be more appropriate, but
in principle the convergence level of a simulation should not depend on the
initialization.

5.3 The Rosenbluth-Hinton test

The test consists in comparing the numerical calculation ofthe time evolu-
tion of the axisymmetric potential with the analytical result, valid for circular
magnetic surfaces in the limit of large aspect ratio, obtained by Hinton and
Rosenbluth [40]. The gyrokinetic Vlasov equation for the zonal ow compo-
nent, i.e. n = m = 0, is analytically solved and the axisymmetric component
of an electrostatic perturbation is found to linearly damp and a residual ow
level is found. Therefore, theE � B velocity (v~E � ~B , normalized to the initial
value v~E � ~B (0)), generated by a pure axisymmetric density perturbation, is
expected to behave as:

v~E � ~B

v~E � ~B (0)
= (1 � AR0 ) e�  G t cos (! Gt) + AR0 (52)

whereAR0 is the residual, at the radial position� :

AR0 =
1

�
1 + 1:6q(s)2 (�=R 0)� 1=2

� (53)
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and ! G,  G are respectively the frequency and the decaying rate of the velocity
perturbation [41]:

! G =

 

1 +
1

2q(s)2

! 1=2 p
2vth ;i

R0
(54)

 G = ! G exp
�

� q(s)2 �
1
2

�
(55)

The expression for the frequency (54) was derived in [41]. Anunderestima-
tion or overestimation of the residual zonal ow would lead to an incorrect
prediction of the ion di�usivity � i . Therefore a numerical code must provide
the correct residualAR0 in order to produce reliable physical results.
The zonal ow damping test has been performed in linear mode,which means
that nonlinear terms in particle trajectory equations havebeen suppressed.
In order to reproduce the results of Hinton and Rosenbluth, we solve only
for the n = 0; m = 0 component of the electrostatic potential, the other
modes are Fourier �ltered. Input parameters aremi = 1; a = 40� � ; B0 =
1:44 [T]; R0 = 5 [m]; R0=a = 10. The density and temperature pro�les are
at, Ti = Te. The safety pro�le is monotonic and two di�erent magnetic sur-
faces have been studied,s0 = 0:5; q(s0) = 1 :15 ands0 = 0:7; q(s0) = 1 :33. The
grid is Ns = 64; N � = 64; N ' = 64, the number of markers isN = 16 M ,
the time step is � t = 50 
 � 1

i and a canonical Maxwellian with correction is
used. The initial condition has been prepared in order to obtain an axisym-
metric ion density perturbation. The results must not depend on the initial
conditions, therefore two di�erent perturbations of the ion density have been
tested, �n i (s) = �n i; 0 cos (�s ) and �n i (s) = �n i; 0 sin (�s ), where �n i; 0 is chosen
so that

D
v~E � ~B

E

s
(t = 0) = 0 :07 vth ;i . The results of the ORB5 simulations are

plotted in Figs. 15 and 16. In these �gures, theE � B velocity normalized at
the initial value v~E � ~B =v~E � ~B (0) is plotted as a function of time. As a reference,
the residual evaluated from Eq. (53) and the exponential decay predicted by
Eq. (55) are also plotted. In all cases the results are in goodagreement with
the residual predicted by Rosenbluth-Hinton theory. Table1 gives a summary
of the frequencies! G and decaying rates G from the simulations, compared
to the values predicted by the theory. We �nd an overall good agreement
between numerical results and theory predicted values.

5.4 CYCLONE benchmark

In Ref. [43], several uid, gyrouid and gyrokinetic codes are compared
for the so called CYCLONE test case, which represents local parameters
from an ITER-relevant DIII-D H-mode shot [42]. The paramters are � � =
1=175; a = 0:48 [m]; B0 = 1:91 [T]; R0 = 1:32 [m]; s0 = 0:624 (corresponds to
� 0 = 0:5a),q(s0) = 1 :4; Ti = Te; R0=LT;i = 6:9; � i = Ln=LT;i = 3:12; ŝ = 0:78
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� T;i = 0:3. N = 2 26 �= 83 M markers, � t = 40 
 � 1
i . The quasi-neutrality

equation is solved with cubic B-splines on aNs = 128; N � = 448; N ' = 320
grid and a �eld-aligned �lter with � m = 5, is applied. The value of� � is the
smallest possible having regard to the computational power. Benchmarking
ORB5 for these parameters is crucial in order to have con�dence in the code.
A �rst simple test is presented on Fig. 17. ORB5 has been run inthe linear
mode. � � has been changed to 1=140, a local maxwellian and the exact same
equilibrium pro�les have been employed in an e�ort to have similar parame-
ters between the di�erent codes. Both codes show excellent agreement.
The numerical quality of CYCLONE nonlinear simulation is shown through
the relative energy conservation on Fig. 18. In the linear phase, the �eld en-
ergy is very small and the relative energy conservation can be arbitrarily high,
but in the nonlinear phase relative energy conservation becomes a valid check.
For this CYCLONE simulations, energy is conserved up to verylong times
within 30 % of the �eld energy, which is a remarkable value fora global PIC
code. This energy deviation represents 10� 5 of the initial kinetic energy of the
system. As the quasi-equilibrium state establishes, numerical noise grows and
slowly leads to the loss of energy conservation. However, for late times the
system is close to marginal stability because of pro�le relaxation so the state
of the system will not provide any new physical information.Hence it is use-
less to continue a PIC collisionless simulation to very longtimes. Therefore a
strong relative energy deviation for late times is not signi�cant. The situation
could be di�erent if collisional sources were added to the simulation.
Nonlinear benchmark is usually performed by plotting the ion di�usivity de-
�ned by � i � � Q=(ni

~r Ti ) versusR0=LT;i . Note that no assumption is done
on Q, ni and ~r Ti : these pro�les are reconstructed with appropriate moments
of Vlasov equation and then smoothed using splines with tension interpola-
tion [44]. In [43], Dimits proposed a �t to express the ion di�usivity as a
function of R0=LT;i when the system has reached (quasi-)steady state:

� i

� Dimits

�= 15:4
�

1 � 6
LT;i

R0

�

; (56)

with � Dimits = � GB a=Ln where � GB = ( � � )2 cs=a is the gyro-Bohm transport
coe�cient [45]. There are two di�culties in benchmarking ORB5 against the
Dimits �t, which has been obtained with a ux-tube code. Firstly, spatial
averaging must be applied since ORB5 is a global code. Secondly, the lack of
sources implies that the temperature pro�le is not frozen asin ux-tube codes
and relaxes during the simulation. It is therefore much adequate to char-
acterize the radial transport by a cloud of points (� i ; R0=LT;i ) representing
the time evolution of space averaged values rather than witha single point.
Such a procedure has been applied in [46]. ORB5 results are displayed in
Fig. 19. At the begining of the simulation, the radial transport is null and the
logarithmic gradient variation is very weak. Then the turbulence establishes,
leading to pro�le relaxation. Finally, the system is in quasi-equilibrium state,
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meaning that the ion di�usivity decreases to 0 and the logarithmic gradient
is close to marginal stability. The cloud of points is well located around the
Dimits �t. The dispersion is more important for small averaging widths � s.
A large � s allows the reduction of global pro�le e�ects, which may leadto
di�erent predictions [47,48], especially for the relatively large � � used in these
ORB5 simulations. Local pro�les are shown in Fig. 20. Remarkhow fast the
pro�le relaxes to a quasi-equilibrium state. A way to prevent this phenomenon
would be to decrease� � , thus reducing global e�ects. Unfortunately simula-
tions at lower � � were not possible because of the limited computational power.
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6 Conclusion

The global collisionless PIC code ORB5 is a powerful tool formicro-
instabilities studies. It relies on a gyrokinetic model which conserves energy
and particle number, providing useful checks of the numerical solution at each
time step. Based on the�f method, this codes uses true equilibrium functions
to prevent spurious zonal ows. Several noise reduction techniques are im-
plemented, such as adaptative gyro-averaging, optimized loading and Fourier
�ltering. In this paper, it is shown that simulations based on �eld-aligned
Fourier �ltering combined with the use of straight-�eld lin e coordinates have
lead to a speedup of 2 orders of magnitude. More precisely, the time step is
relaxed by removing the highkk modes from the turbulence spectrum, which
are anyhow inconsistent with the gyrokinetic ordering, andthe number of
markers needed in the simulation is strongly reduced because the simulation
contains much less Fourier modes. By using a straight-�eld-line poloidal
coordinate instead of the poloidal geometrical angle, the required width of
the �eld-aligned �lter is minimal and most importantly becomes independent
of the plasma size. The latter remark is of considerable interest as future
tokamaks such as ITER will have extremely small� � . Magnetic coordinates
and the �eld-aligned �lter are therefore important steps towards the simula-
tion of realistic devices. ORB5 also di�ers from other gyrokinetic codes as
it evolves particle orbits in magnetic coordinates, therefore avoiding costly
interpolations during charge assignment. ORB5 shows excellent scalability
properties: a proper parallelization is crucial with the development of large
scale computers. The question of convergence with the number of markers has
been studied by applying a physical initialization of the perturbation instead
of random noise. Finally, the code has been successfully benchmarked against
other gyrokinetic codes. The next step will be the implementation of several
relevant e�ects missing in the recent model, such as kineticelectron dynamics,
collisions, impurities, electromagnetic e�ects, sourcesand sinks, in order
to reduce the gap between experimental and theoretical transport predictions.
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POISSON SOLVER
• direct
• parallel
• preconditionned conjugate gradient

COMPUTAT ION OF GYROAVERAGED ELECTRIC FIEL D
• Drift-kinetic
• Ng points gyro-averaging
• gyro-adaptativescheme

PARTICLE PUSHING
• 4th order Runge-Kutta
• Cache sorting

MARKERS BOUNDARY CONDITION

df COMPUTAT ION:
• Standard df method
• Direct df method

INPUT: PARTICLE LO ADING
• UNIFORM
• SPECIFIED
• OPTIMIZED

INPUT: EQUILI BRIUM
• MHD (from CHEASE code)
• AD HOC
Initial distribution function:
• LOCAL Maxwellian
• CANONICAL Maxwellian (+ electron density 
integration)
Coordinate system:
• TOROIDAL coordinates (s,q,j )
• MAGNETIC FIELD LINES coordinates(s,q* ,j )

CHARGE ASSIGNEMENT:
• SQUARE filter
• DIAGONAL filter

INPUT: df INI TIALI ZATION
• white noise initialization
• mode initialization

Figure 1. ORB5 scheme.
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Figure 7. Energy of toroidal modes for a square �lter simulation. Dashed line is
the n = 0 mode.
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Figure 8. Energy of toroidal modes for a �eld-aligned �lter s imulation with � m = 4.
Dashed line is then = 0 mode.
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Figure 15. ~E � ~B velocity at s0 = 0 :5 (left) and s0 = 0 :7 (right) as a function
of time. The solid line is the result of the ORB5 simulation in linear mode, with
cos (�s ) perturbation. The dotted line is the residual and the dashed line is the
exponential decay from Rosenbluth-Hinton theory.

pert s0 ! G (Eq. (54)) code! G  G (Eq. (55)) code G

cos 0.5 0:0059 0:0062� 0:0002 � 0:0009 � 0:0009� 0:0001

cos 0.7 0:0057 0:0058� 0:0002 � 0:0006 � 0:0007� 0:0001

sin 0.5 0:0059 0:0062� 0:0002 � 0:0009 � 0:0008� 0:0001

sin 0.7 0:0057 0:0058� 0:0002 � 0:0006 � 0:0006� 0:0001
Table 1
Comparison between analytical and numerical values for! G and  G.
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Figure 16. ~E � ~B velocity at s0 = 0 :5 (left) and s0 = 0 :7 (right) as a function
of time. The solid line is the result of the ORB5 simulation in linear mode, with
sin (�s ) perturbation. The dotted line is the residual and the dashed line is the
exponential decay from Rosenbluth-Hinton theory.
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