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Abstract

A global plasma turbulence simulation code, ORBS5, is preseted. It solves the
gyrokinetic electrostatic equations including zonal ows in axisymmetric magnetic
geometry. The present version of the code assumes a Boltzmarelectron response
on magnetic surfaces. It uses a Patrticle-In-Cell (PIC),f scheme, 3D cubic B-splines
nite elements for the eld solver and several numerical noise reduction techniques.
A patrticular feature is the use of straight- eld-line magnetic coordinates and a eld
aligned Fourier ltering technique that dramatically impr oves the performance of
the code in terms of both the numerical noise reduction and tle maximum time
step allowed. Anoter feature is the capability to treat arbitrary axisymmetric ideal
MHD equilibrium con gurations. The code is heavily parallelized, with scalability
demonstrated up to 4096 processors and 20marker particles. Various numerical
convergence tests are performed. The code is validated agat an analytical theory
of zonal ow residual, geodesic acoustic oscillations andamping, and against other
codes for a selection of linear and nonlinear tests.
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1 Introduction

Anomalous transport is currently one of the most active eld of research in
magnetic con nement fusion. The cross- eld transport meased in Toka-
mak experiments exceeds the neoclassical predictions by toptwo orders of
magnitude for the low con nement regime (L-mode) [1]. Evemithe high con-
nement regime (H-mode) where transport is reduced near thplasma edge,
anomalous transport still persists in the core. This phenoemon is attributed
to plasma turbulence [2], which is driven by micro-instabiiies [3]. The latter
are mainly generated by free sources of energy in the plasmels as density
and temperature gradients. It is now widely believed that $korganization
of turbulence plays a crucial role. It refers to a process inhich the internal
organization of a system increases automatically withoutding guided or man-
aged by an outside source. In magnetized plasmas, self-argation mainly
appears through two di erent structures: zonal ows [4] andarge-scale trans-
port, such as avalanches [5] and streamers [6, 7].

In general, a full kinetic treatment of micro-instabilities is needed. In this
framework, the gyrokinetic model [8] is usually su cient fa drift wave turbu-
lence at low frequency. It removes the gyorangle dependanoethe original
equations, thus reducing the phase space from 6D to 5D. Vau® gyrokinetic
equations can be found in [9{12]. Among the di erent approdees used to
solve the gyrokinetic equations, the Particle-In-Cell (RC) method [8, 13{18]
is one of the most promising schemes. The distribution furion is sampled
along trajectories with numerical particles (markers). Tl main advantage
is that memory requirements are smaller than for Eulerian aes, where the
distribution function is discretized on a 5D grid. Moreoverit is conceptually
simple, easily generalized to multi-dimensional simulains and more adapted
for complex geometries such as stellerators [19, 20] thanl&ian codes. How-
ever, the PIC method unavoidably gives rise to statistical @ise which can
lead to an unphysical behaviour in the nonlinear phase of theimulation,
but signi cant progresses have been made to limit this e ecf21, 22]. In
addition to the solving methods, another important distin¢ion between the
di erent models is the simulated domain. In local simulatims, turbulence is
studied on a single magnetic surface. A less restrictive nhetd is to simu-
late a ux-tube following a given magnetic- eld line. This goproach reduces
the computer ressources needed, but imposes inconsisténand r T pro les
(i,e. T =const;r T = const) and generally employs unphysical radially peri-
odic boundary conditions. The global approach is certainlthe most realistic
model, because it contains the whole radial domain and thdoee the e ects
of pro le variation.

The aim of this paper is to present the ORB5 code, originally miten by
Parker [18] and further developed by Tran [13]. ORBS5 is a nankar gyroki-
netic global code which solves the Vlasov-Poisson systemtire electrostatic
and collisionless limit, and has the unique capability of halling true MHD



equilibria [23].

The paper is organised as follows. In section 2, the gyrokiieeequations are
derived. Section 3 presents the implementation of these exions and the
associated numerical algorithms. Section 4 shows the pdehlperformance of
the code. Results related to the numerical schemes and bemzlrks are shown
in section 5. Finally, conclusion and future works are exped in section 6.



2 Gyrokinetic model
2.1 De nitions and normalization

The code ORB5 solves the Vlasov-Poisson system in the gynoddic limit
for an axisymetric toroidal plasma. Magneticqsurfaces aa&s@elled with the

poloidal ux , or by the radial coordinates= = ¢ge= ~. The geomet-
rical radial coordinate will be noted and the poloidal angle . The magnetic
eldisdenedasB=F( )r' +r ', whereF ( ) is the poloidal cur-
rent ux function. Two di erent kinds of magnetic equilibri a are implemented:
circular concentric magnetic surfaces, referred to asl hoc equilibrium, and
true MHD equilibria. For the latter case, ORB5 is coupled wih the CHEASE
code [24], which solves the Grad-Shafranov equation. Thelpiolal coordinate
used is either the geometrical angle or the straight- eld-line coordinate

de ned by

Z ~1
_ 1 B r 0; (1)
ds) o B r O

where ((s) is the safety factor. In this paper, represents a general poloidal
coordinate. In ORBS5, the options = and = have been implemented.
All symbols with the subscript i will be used for ion quantities, while the
subscript e will be used for electrons. It is assumed that the plasma cainhs
electrons and an ion species with a mass; and a chargeqg = eZ;. Four nor-
malization quantities are used:g, m;, i = gBe=m; and s = c;= ;, where
By is the magnetic eld at axis, Te(Sp) is the edectron temperature in eV at
a given reference magnetic surfacg, andcs = eT.(Sg)=m; is the ion sound
speed.

The gyrokinetic equations solved in ORB5 are those of referee [9] which
describe the evolution of the plasma in an inhomogeneous t&taequilibrium
magnetic eld. Only the electrostatic component of the penrbation is con-
sidered, and magnetic perturbations are neglected.

2.2 Gyrokinetic Vlasov equation

The usual gyrokinetic ordering is assumed:

ok e w o ow
i k’? Te I—n I—T;i I—'II:Ie o (2)
G B



where! is the characteristic uctuation frequency,k, and k, are the parallel
and perpendicular components of the wave vector with resgeo the magnetic
eld, isthe uctuating electrostatic potential, |, is the ion gyroradius, and
Ln, L1, LT, Lg are the characteristic lengths associated with the densjtthe

ion temperature, the electron temperature and the magnetield proles.

and g are the small parametersg . B agWith = ¢=a land ,

is the inverse aspect ratio. ORB5 solves the equations of nmt in a 5D phase
space R;Vk; ), whereR is the position of the guiding center, = v3=(2B)

is the magnetic moment, with the conservation property & dt = 0, v, and

v, are the parallel and perpendicular components of the veldgiwith respect

to the magnetic eld. The renormalised potential (R;vk; ) in [9] has been
approximated here by the gyroaveraged electrostatic poteal

142
(Rivg; ;t)=hi(R; ;t)= > (6t) (R+ ~  %d; (3)

thus neglecting a term of orderO( 5). Here is the gyroangle. The gyroav-
eraged electric eld is approximated by

142
FEI(R; ;t)= hirx (0i(R;;t)= > d M (%); (4)

where a term of orderO( 4 p) has been neglected. The polarization density
is [9]:

8 9
Z < z =
_ 9 . @f g _ - B _
ni;pol - . rnl—B h i @ + m, i2r d h i g ~f
(R+ ~ + x)B dRdvd d; (5)

wheref = f(R;vy; ) is the guiding center distribution function of the ion
speciesB, = B, B=B,andB, = B+ miw=q I T . The second term
of Eq. (5) has been neglected, although it is of ord€( 4): ORB5 solves the
linearized quasi-neutrality equation, so wher is replaced by thef, in the
second term, it becomes smaller than the rst one by a factory due to the
density and temperature gradients appearing in fo. The gyrokinetic Vlasov
equation is then:

@f @f dR  @fdv, .
@t-'-@ E-F@H_O' (6)

The equations of motion are given by
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whereti = B=B, , is the permittivity of free space andrp = p{ )f is
the pressure gradient. The second term of the right hand sidef (8) is of
order O( ), does not in uence neither energy conservation (see saxti 2.5)
nor the physical results and will be neglected in all the sintations. These
equations of motion for a particle include the parallel motin, the drifts due to
the curvature and the gradient of the magnetic eld, the dianagnetic drift and
a mirror term. For concentric circular magnetic surfaces, o~ p=B is replaced
by h (7 B). Nonlinear terms are theE B drift and the v nonlinearity,
which is mainly an acceleration term due to the parallel eléec eld.

2.3 Background equilibrium andf method

The f method [21] is used, i.e. the distribution functiorf is split between
a time independent partf, and a time dependent partf : f(R;vy; ;t) =
fo(R;vk; )+ f (R;vk; ;t). A Maxwellian is chosen forf g, i.e. fo(R;vk; )=
no()2 ) *2vy3()exp(  =Ti()), where is the kinetic energy of a single
hon, = 1=2m;v? and is a constant of the unperturbed motion, and/,; =
eTi=m; is the ion thermal velocity. Three di erent kinds of Maxwelian can
be used, depending on the choice of the variable as either o; ", where
o is the canonical toroidal momentum, o = + v, ;F( )=B? and "is a
function of (; ; o) de ned below. The axisymmetry of the tokamak implies

that ¢ is a constant of the unperturbed motion, i.e.“'d—t0 0" 0. The quantity
N

= o+ ocor(; ) is another constant of motion, with
q__
eon(i )= SigNGA(to) “Ro 2 B oH( B o) ©)

where H(x) is the Heavyside function, therefore ¢.cor IS de ned only for
passing particles.” can be seen as the closest constant of motion to In the



following, fo( ) is refered as to alocal Maxwellian, fo( o) as to acanonical
Maxwellian andf (") as to acanonical Mawellian with correction. The Vlasov

equation is then ! (F:j;t"k; ) = dfO(d;thi ) which can be written & (F:j:tvk; )
(E), with
0 1
d d 4 ... dR
© ol WS 0 dt 0 @, TO dto’( )

where ()=dIn fo( ;v; )=d. The subscript O refers to the unperturbed
orbits and the subscript 1 refers to the terms that depend onhe perturbed
electric eld. In most other gyrokinetic codes, with the noable exception
of the GT3D code [16], a local Maxwellian is chosen, i.e = , and the
rst term in the r.h.s. of Eq. (10) is neglected. A local Maxwéian can

lead to spurious zonal ow oscillations [16], since it is nca true equilibrium

distribution function, as dfgL:A 6 0. When using a canonical Maxwellian, the

guasi-neutrality equation is no longer satis ed as electroand ion equilibrium
densities are dierent. In order to enforce quasi-neutrdly, a radial electric
eld quickly develops and possibly suppresses instabilityTo eliminate this
spurious eld generation, the electron equilibrium densjtis further integrated
from the ion distribution function after the particle loading and averaged over
the poloidal angle,

122 2

Neo( )= > fol 057 ) R+ ~i %BydRdvid d d; (11)

which minimizes the di erence betweemg. and ng. Note that for small
plasmas, there is little di erence between and , and the local Maxwellian
becomes a better approximation. Issues related to this cloei are discussed in

details in Ref. [25]. When = " the approximation %—: = dd—t" . is done. As
another alternative, sincef is constant along the trajectories,f can be sim-
ply obtained by f (R;vi; ;t)=f R(to);w(to); (to) fo ( 1);w(t); (to) :

Details of this scheme, calledlirect f , are given in Refs. [26] and [25].

2.4 Quasi-neutrality equation

Using the usual quasi-neutrality constraint, the Poissonguation isne = Zin;.
The polarization density, Eq. (5), contained inn;(x;t) is simpli ed by using
a long wavelength approximation K, | )2 1. The electron densityne(x; t)
is evaluated by assuming adiabatic (or Boltzmann) electr@along the mag-
netic eld lines. After linearization of the ion polarization density the quasi-



neutrality equation becomes

eNeo( )

n + x;t it
©()*r Ty 0 G |
niol ) ! (12)
= Zilnjoi (%) + Zif IIB? — > (%1) +Zing
whereh::i is the average over the gyroangle,
z
migi (x) = fo (3); (Vs %) 5 Vi %
(R+ ~, %)B,dRdvd d; (13)
and
z
ni= BdRdwd d f (R;v; ;t) (R+ i %): (14)

At this point, it is assumed that ;gi (%) = njo(%) and nio(%) = ne( )=Z for
a local Maxwellian only. Nevertheless, in this paper it is asimed that this
relation holds for any type of equilibrium distribution function, so njo(%) =
Neo( )=Z  no( ). The nal quasi-neutrality equation is therefore:

|

eZino( ) Fo 6y =2Zin: (1)

Te( )

Zing(%)

(xt)  (;t) > B

In Eq. (15), isthe ux-surface averaged potential. This term is nonzeronly

for axisymmetric perturbations: only the toroidal Fourier componentn = O

gives a contribution to this term. Then =0; m = 0 mode is commonly called
the zonal ow.

2.5 Particle and energy conservation

Despite all the approximations made in the previous sectisnthe model de-
rived from [9] still conserves the particle number and the emgy (see [22]).
The kinetic energy of the plasma is

Z Vz!
Evn= m B + Ek fB (dRdvid d: (16)

Its time derivative is

_ Z
d(Ejtk'” =g %—T hEifB ,dRdvid d: (17)



In this model, the electrostatic energy can be de ned as

Z
Ef:% dx i () Ne(%)  (x1): (18)

The energy and particle number conservation are written:

dEkin _ dEf.
& - dt (19)
dNgy _ d * fB  dRdvid d =0: (20)
dt ~ dt k k T
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3 Numerical implementation

This section describes the implementation of the gyrokiniet model exposed
in section 2. The general scheme of the code is shown in Fig. 1.

3.1 f discretization: the Particle-In-Cell method

The Particle-In-Cell (PIC) method [27] is commonly employg in gyrokinetic

simulations [8,16,17,22,28]. The perturbed distributiofunction is discretized
in the 5D phase space along trajectories witN markers (also called tracers),
carrying a weightw. In ORB5, f is discretized as:

Npp X1
f=207 —w() RORy(D) i Viplt) p(to) © (21)
p=1 k

whereNp, is the number of physical particles. Each marker is characiged by
its weight wy(t) and by its location Rp(t); vicp(t); p(te) in the phase space.
Integrating Eq. (21) over a small volume , the temporal evolution of f is
obtained by solving the Vlasov equation for each weighw,(t):

dwp(t) _ N .
" N, e (22)

with  (E) given by equation (10), , = B,dRdv,d d=dN represents the
volume occupied by one marker in phase space ant ds the number of
markers in an in nitesimal volume of phase space:

dN = leL(R;Vk;V?)J( 's;' )dsd dv 5 dvdvod : (23)
ph

The markers' loading is specied by the probability density function
fL(R;vk;Vv,). The conventional loading is such that markers have a distr
bution function p(s) =1 fg+ fgexp (s SeL)?= s¢ in space, wheresy,
and s_ are input parameters, and are uniformly loaded iny; v- ). A cut-o
is applied at (v;Vv.) = Vin.i(S), where  is specied on input. During a
simulation, the markers' distribution in the (s;jvj) plane is stored for di erent
times. This information is further used to build a newf (R;vy;Vv,). This
method is calledoptimized loading[22], and is aimed to minimize the statisti-
cal variance of the weights during the nonlinear phase of acemd simulation
which uses the new  (R; vy; V> ). Two di erent ways of initializing the weights
(or equivalently the perturbation f ) have been implemented. Thevhite noise

11



initialization is de ned by:

f p(tO) = Apf 0 Rp(to), Vk;p(tO); V-, ;p(tO) p (24)

A, is a pseudo-random number obtained with a Hammersley seqeenwhose
maximum amplitude is given on input. This scheme has the didsantage that

the initial perturbation is inversely proportional to the number of markers in
the simulation. The simulation takes an increasing time, naghly proportional

to the number of markers, until the physical modes emerge dié initial noise.

Instead, the idea is to build a physical initialization, cadled mode initialization,

independent of the number of markers:

Aofo Rp(to);Vk;p(tO); p(tO) T So rT Sp(to)
P(my my+1)(nz ni+1) FTs, T Sp(to)
X2 X2

f p(to) =

cos m p(to) n' p(to) (25)

m=min=ni

where mg; my; mMy; Ng; N1; N, are input parameters. This initialization will be
stronger by choosingmg = [ nq(sp)], where [::] denotes the integer part,
as ITG modes are aligned with the eld lines. It has the advartge that
the initial perturbation converges with the number of markes and the initial

phase of the simulation, until the physical modes develops independent of
the number of markers.

3.2 Equations of motion

Tracers can be pushed either in cylindrical coordinates;(;z ) or in mag-
netic coordinates ( ;s;' ). In order to avoid the singularity at the mag-
netic axis that would appear in d =dt, it is more adequate touse ( ;' )=
(scos ;ssin ;'). Among the numerous advantages of using magnetic co-
ordinates, this set of coordinates avoids numerical integbations during the
construction of the perturbed density. Depending on the coputer architec-
ture, the simulation can be speeded up by 40%. For both ad hoacdi MHD
equilibria, equilibrium coe cients needed for the pushingare obtained with
linear interpolations from a (;z) or a (s; ) grid.
For the integration of Egs. (7), (8) and (22), a Runge Kutta inegrator of order
four is implemented in ORB5.
When a particle leaves the plasma, or equivalently whesm> 1, it is re ected:
! . This scheme may lead to a small violation of unperturbed cserved
guantities for equilibria that are not up-down symmetric.
The particle pushing is speeded up (up to 40%) by using a cacberting algo-
rithm: particles are sorted in the poloidal plane everyncs time steps, where

12



Ncs IS given on input.
3.3 Discretisation of quasi-neutrality equation

The quasi-neutrality equation (15) is solved with linear, gadratic or cubic
B-splines nite elements [30]. The perturbed potential is @cretized as:

X
(%t) = (t) (%, (26)

where stands for (;k;1), f (t)g are coe cients and f (x%)g are tensor
products of 1D B-splines of ordem, ()= P(s) {( ) [('). The B-splines
are dened on a (Ns;N ;N.) grid. To get a linear system forf (t)g, the
Galerkin method [31] is used. The system is then:

X
A (®=b(); 27)
with:
S O & S AL 00 Py
- ZiTe( ) B ~ ? !
_ N X w(t) £ 2 |
b (t)= pr:l ;— 0 d Rp+ ~ip () ¢ (28)

Note that the matrix is real, symmetric and positive de nite. The building
of b (x%;t) is called the charge assignment This projection onto the nite
element basis is the main source of numerical noise. It becesnobvious that
higher order splines are bene cal for the noise reductionsdhey have a more
extended shape. The perpendicular gradients are approxited to lie in the
poloidal plane,, = g = Fs2+ 7 2. Due to the axisymmetry in the
toroidal direction, the system can furthermore be decoupdein ' . Applying a
discrete Fourier transform on and b, and inserting these relations in (27)

yields, in Fourier space:

)
M (n)p’

X
A () = (29)

where (; ) now stand for 2D indices, "™, ") (t) are Fourier coe cients of
and b, and M (WP is de ned by:

¢ A PCem on(P ) =M, (30)
10=1 '

Nz

13



M (WP can be computed analytically for any spline ordep. The matrix A
and the right hand sideb de ned in Eq. (28) are modi ed with the Dirich-
let boundary conditions (s = 1; ;"t ) = 0 and the regularity condition

(s=0;;5t )= (s=0; =0;"t). The matrix de ned in Eq. (28) can be
decomposed a#& (%) = A" + AZF where A" contains the ux surface av-
eraged terms only. The linear system associated with™? can be solved with
a sparse iterative solver, using the SSOR-preconditionn@dnjugate gradient
method. It is not adequate forA%" because its band is full. Another alter-
native is a direct solver using LAPACK routines. Although fater, it requires
more memory. The memory needed to store the matrix becomegidly pro-
hibitive as the grid size is increased. To reduce the memoripgage, a parallel
solver using SCALPACK routines has been implemented in ORBSiving a
reduction factor up to Ns=8 for the memory of the matrix.

3.4 Gyro-averaging

The integral over the gyration angle for both electric eld ad perturbed
density is computed with aNg = min (32, max(4;,4 ip= ri) discrete sum,
where i, = V.= ip IS the marker gyroradius and ;, is the cyclotron
frequency of the marker. Although it has been shown that a 4gmts dis-
cretization is su cient to describe perturbations up to k, | 1 [28], a
gyro-adaptative method reduces noise since it acts like a &el lIter [22].
The position (r ;z ) of the marker on the Larmor ring is simply:

When orbits are evolved in magnetic coordinates, the posith of a marker is
obtained by a Taylor expansion:

= ect ip [ G (33)
= ec Tt “Lip r G (34)
Where:
0 1
s B s .
~ip = Lip @—cOS + ———sin A (35)
jirsi JB s

This implementation has been successfully applied in [32)rfthe linear gy-
rokinetic code LORB5 [33].

14



Using Egs. (4) and (26), the gyro-averaged electric eld isigen by:

. 1 X z
Ei= - ® dfFf R+-i() (36)

To achieve the best energy conservation, it is important tomploy exactly
the same gyro-averaging procedure for the charge assigntmand the electric
eld [22].

3.5 Fourier lter

In order to reduce the noise, we apply a Fourier lter on the dicretized per-
turbed density.

X . -
Fhjx = fimn Bn () €™ € (37)

m;n

A Fourier lter is of great interest since physically non reévant modes can
be removed from the simulation. The poloidal Fourier Iter iould be chosen
wide enough so as to include all modes relevant to the physm®blem at hand,
although a formal proof of energy conservation including Ewier Iters cannot
be done in toroidal geometry. One of the simplest Iter, caid square lter, is
obtained by suppressing modes outside a window,fi, : Nmax]  [Mmin @ Mmax]
speci ed on input. However, this kind of lter is inconsistent with the gy-
rokinetic ordering, as it retains modes withky=k, much bigger than [34].
Indeed, ITG modes tend to align with the eld lines. Mathematcally, it
means that these modes are such thadt, = (g(s)r) * m + ng(s) ! ,
consistent with the gyrokinetic ordering (2). Som should be near nq(s).
Toroidal-ITG modes are composed of a superposition of a few compo-
nents aroundm = ng(s), resulting in ke t (g(s)r) 1. In both cases, it
is enough to keep a narrow window of modes in order to describ# phys-
ically relevant modes. The idea here is to de ne a surface{uendent Iter
that suppresses1higrkk modes. For each 2 [Nmin : Nmax], the poloidal modes
[ nq(s) m]  [Mmin : Mmax], Where m is an input parameter, are re-
tained. It is very useful to use as the poloidal coordinate: the poloidal
width of the spectrum for a toroidal mode is narrower with thestraight- eld-
line coordinate than with the geometrical poloidal angle. In addition, when
diers from  (in case of elongation, triangularity or low aspect ratio)the
mode is not peaked arounan = nq(s). Finally, the width of a toroidal mode
spectrum increases with the plasma size whenis used, whereas it is in prin-
ciple independent of plasma size with . The bene cial in uence of a small
m will be explained in section 5.
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3.6 Code Parallelization

Gyrokinetic simulations are extremely CPU time and memory emanding.
Therefore, ORB5 is massively parallelized with MPI routinge. A decomposi-
tion concept calleddomain cloning[35, 36] is applied:P = PcP. , whereP is
the total number of processorsP. is the number of domains in the direc-
tion and each domain is cloned. times. After each charge assignment, the
perturbed density is summed over the clones. After each stapthe particle
pushing, the markers are sorted to their appropriat¢é domain. The parallel
direct solver described above is using a third MPI communitar, usually but
not necessarily taken identical to the clone communicatorThis paralleliza-
tion scheme o ers great exibility because it can be tuned tdi erent types
of parallel platform architectures.

3.7 Relations between physical and numerical parametersdan scaling

Depending on the physical case under study, the ORB5 numeailgarameters
should be set up as follows. The radial mesh resolution demsnon the max-
imum k ; that should be resolved, wherd is the radial component of the
wave number. With cubic B-spline nite elements there shoul be at least 3
points per wavelength. Thus

a

No> o (K 1) (39

max )

L;i
Similarly, for a maximum k | that should be resolved up to the magnetic
surface smax, Where k is the poloidal component of the wave number, the
poloidal mesh should be set to

a

N > 3Smax (K (39)

L;i )max L

Since the perturbations tend to be aligned with magnetic el lines the toroidal
mesh should be chosen as

N N =qs): (40)
The time step should satisfy the following three requiremést

e t L0t Llgeg t 1 (41)
with 1 = kevi, ke = (g(s)r) * m+nq(s) , ! = vp,(dInT=d )k ; and

I exe = Ko Vexg . There is a limiting value ofk, beyond which the ITG modes
get strongly Landau damped. An estimate can be obtained fromn dispersion

16



relation [37], and taking the limit ;!'1
jkimjr = (1=2)(r=L1;)k (42)

The eld-aligned Fourier Iter of width m givesjkimax = mM=rq(s). In
order to resolve the physically relevant modes up tik,j"™ the width of the
eld-aligned Fourier Iter should be

. ._qs) .

It is worth mentioning that it does not scale with a= i, since the typical
values ofk ; present in ITG turbulence do not depend oma= ;. When
guasi-neutrality equation is solved with , Eq. (43) is no longer a good estima-
tion. Note also that m should be large enough so that the Itered perturbed
density does not have discontinuities across magnetic saces. Mathemati-
cally, it is expressed as m > nqqs)=Ns. Using Egs. (38) and (39) with
(k' Li)max = (K Li)max = Smax = 1, the last condition can be written:

m & 24 (44)

where €= sd{s)=q(s) is the magnetic shear. The rst criterion of Eq. (41)
gives

r-a qs)

: i S 45
| a (i j mj (49)
or, if ] mjis chosen as in Eq.(43),
2(a= ;i )(r=a)
ot LA S A 46
I (r=Lri)k v (46)
The second criterion gives
(a= Li)(r=a) | (47)

it -_—
(r=Lti)k L

The third criterion can be expressed in terms of the Mach nungs M =
VExB :Vth;i as
1

ot - 48

i MKs 0 (48)
For most cases of interest for ITG driven turbulencév is found to be of the
order of 102 and k, ; is at maximum of order unity. Using local estimates
for the time step, it appears that!  is the fastest frequency of the system with
a square lter, independently of the plasma size. With a eldaligned lIter, ki
scales with and so for large plasmas$ ¢ g becomes the fastest frequency.
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The time step can be increased by a factor 10, hence the sintidas are
strongly shortened. More details can be found in [34].

3.8 Density and temperature pro les

A given prole A = T;; Te or ng is de ned by:

2hsi!
1 cosh“ =
1dA_  a A

w

(49)

Ad~ La
4 cosh? s %0 cosh ? S5

a=Lr;, a=Lr.e, @=Ln, Ti, Te, n and sy are input parameters. All the
gradients are peaked asy, therefore ITG modes should develop around that
magnetic surface. Temperature pro les are normalized by #ir value at sg.
The density is normalized with the volume averaged densityFig. 2 show
typical pro les used in ORBS5.
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4 Scalability

All simulations have been performed on the IBM BlueGene/L ah Pleiades
clusters of the Ecole Polytechnique Fecerale de LausanneThe former has
4096 PowerPC 700 MHz bi-processor nodes. The cluster has tdicerent
modes. In thecoprocessormode (CO), one processor is used with 512 MB
memory. In the virtual node (VN) mode, both processors are used but with
only 256 MB memory each. Simulations done on the Pleiades sler used 32
2.8 GHz Pentium 4 processors with 2GB memory.

To measure the scalability, short simulations were perfored at xed grid size
(Ng = 128;N = 256;N. = 512 for the VN mode andNgs = 128;N =
256 N. = 256 for the CO mode). The SCALAPACK parallel solver with 16
clones is employed. Simulations with 512, 1024, 2048 and @Q&ocessors
have been made by varying the number of processors in thedirection P. .
For each number of processors, several simulations with drent number of
markers per processor have been done. Since the size of therimas xed,
the time dedicated to the solver (backsolve and Fourier tragforms) should be
proportional to the number of toroidal slices per processoil he time dedicated
for the particles (pushing + charge assignment) is assumed scale linearly
with the number of markers per processor. Finally, the comnmication time
is mainly due to the' -partition of the markers. It is hard to give a simple
estimate to the communication time, since it depends on thame step, the
cluster architecture, and the ion temperature. For the largst simulation done
(1.5M markers/processor), the communication time represats 10% of the total
simulation time. Therefore, the time per iteration is moddéd as:

N. P N
t=Kep * Kep * fomy (50)
| —{z—1} | {z=} communication
solver markers

whereK s and K ,, are constants to be determined. Fig. 3 displays the time per
iteration ti; as a function of the number of markers per processdi=P. The
dependance is linear, as expected. However, the slope ofsthets, namely
Kmn seems to slowly increase witl?, which illustrate a slight derivative from
an ideal scaling. K5 and K, have been obtained by a linear t ofty as a
function of N=P at xed P =512. Therefore, the measured time per iteration
can be further compared to the tted time t|,. Fig. 4 shows the ratiot; =t
as a function of P. The maximum value of the relative degradation due to
the increase of the number of processors is only 15 %. E ectbtg,mm can
be included by tting t;y tcomm instead ofty. In that case, the maximum
relative degradation falls down to 10 %.

Globally, these results show the excellent scaling prop&s of ORB5 up to
4096 processors.
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5 Simulations results
5.1 Field-aligned Iter

The eld-aligned Iter has been tested with the following imput parameters:
mi =1;a=40 ;Bg=1[T];Ro =1[m];Rp=a=5. The density prole
is at, Tj = Te, R=Lt; = 12, 14 = 0:208,50 = 0:5. N = 2% = 16 M
markers, t =40 ' The initial distribution f, is a canonical maxwellian
with correction, (see (9)).f is obtained through the conventionalf scheme
and is initialized with white noise. The quasi-neutrality guation is solved
with cubic B-splines on aNg = 128;N = 128;N. = 64 grid with the parallel
direct solver. The main parameter of the eld-aligned lIteris the width m.
By keeping only smallky modes, the number of Fourier modes kept in the Iter
is strongly reduced. A square lter hasNs(2Mmax + 1)2Nmax +1) / () 3
whereas a eld-aligned Iter has approximativelyNg(2 m+1)(2Nyax +1) /

( ) 2. The latter reduces the number of modes by about () . In [38],
it is shown that numerical noise, due to the projection of theharge density
onto a nite number of markers, mainly depends on the squareoot of the
number of markers per Fourier modes. In that sense, a eldighed Iter
should improve the quality of a simulation without a ecting CPU time, in
contrary to an increase of the numbers of tracers. A good iraditor of the
quality of the simulation is the energy conservation desdred at section 2.5.
Fig. 5 shows the relative energy conservationE=E;, where E = Ey(t) +
Ef(t) Exn(to) Es(to) for simulations with square and eld-aligned lIters
. In a noise-free simulation, or equivalently in the limit ofan in nite number
of markers and an in nitely small time step, E=E; should be zero. A gain
of 2 orders of magnitude in the relative energy conservatios obtained as
the lter goes from square to eld-aligned. With a square lIter, the energy
deviation represents approximatively 1% of the initial engy of the plasma
which is an unacceptable value. Fig. 6 displays the volumesxaged radial
heat ux Q, de ned by

0= 1 X w iz Ei B
= = - :
Vo, "2 " BB

(51)

R

RpVip: p

whereV is the volume of the torus, for eld-aligned and square simations. In
the latter case, a numerical heating develops in the late nbmear phase. This
kind of phenomenon is typical when too few markers are used.h& square
lter simulation would explode because of numerical noisé it was continued.
This simple simulation already points out the link between hte number of
markers and the number of Fourier modes kept in the simulatio After the

saturation, the plasma should reach a quasi-steady state. his property is
obviously lost, as can be seen from Fig. 7 . However, for theldealigned lter,
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the energy ofn 6 0 modes is constant for late times (see Fig. 8). On Fig. 9,
the radially averaged energy spectrum of the = 6 mode in the poloidal space
is shown at di erent times for a square Iter simulation. In the linear phase,
the mode is peaked neam = 12 = nq(sg) ash =6 and q(sp) = 2. After
the saturation, the peak energy becomes smaller but the spregn becomes
much broader. On Fig. 10, the spectrum is normalized to the ergy peak
of the mode. The spectrum is no longer peaked and components which
are far away fromnq(sp) contain a very signi cant part of the total toroidal
mode energy. The eld energy of alh 6 0 modes is growing in time but the
peak energy decreases: this is a clear evidence that numaritoise is created
because of highkx modes. Itis of course suppressed by applying a eld-aligned
Iter (see Fig. 8). In this case, the only growing mode is theanal ow, which
is not really a ected by the parallel dynamics as it is stronty dominated by
the m = 0 component. Its energy increases mainly due to numericabise,
which is still kept in the eld-aligned Iter. The bad qualit y of the square Iter
can be observed in Fig. 11, which shows the electric poteriten a magnetic
surface. The resulting structure is clearly a superpositioof high k, modes,
whereas the eld-aligned lIter naturally preserves the eb-aligned structure
of ITG modes.
The determination of m is a very important step. A too small value of m
will obviously cut some relevant physics, whereas a too laxg m introduces
additional numerical noise. The argumentto x m is to converge the growth
rate of toroidal modes in the linear phase. Fig. 12 shows theadution of the
moden = 6 for di erent values of m and a square lIter simulation. Small
m cases unsurprisingly yield lower growth rates. Convergends reached
with  m =5. To summarize, smart Fourier ltering is a powerful numeical
scheme to improve the quality of a PIC simulation: by relaxig the time step
criterion and by decreasing the number of Fourier modes in ¢hsimulations,
CPU time is reduced by 2 orders of magnitude. In addition, theeld-aligned
lter should be even more e cient in the limit of small  plasmas.

5.2 Convergence with number of markers

In collisionless gyrokinetic simulations, convergence & subtle notion. For
PIC simulations, not only the time step and the grid resolutbn need to be
carefully chosen, but the number of markers plays a cruciable as well. In-
deed, numerical noise inherent to the PIC method may determe the level of
transport in ETG simulations [39]. In ITG PIC simulations, due to the strong
in uence of the zonal ow, the situation is di erent, however the question of
the required number of markers for convergence still reman By measuring
the level of numerical noise in ETG simulations, it has beerstablished that
the number of markers required is linked to the number of Foigr modes in
the simulation [38]. A study of numerical noise in ITG simuldons is beyond
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the scope of this paper. Here, the question of convergenceapgproached by
means of physics diagnostics. Fig. 14 shows the evolutiontbé volume av-
eraged heat ux for di erent numbers of markers. The overshat is shifted in
time, as the initial level of the perturbation is inversely poportional to = N.
The sole Fig. 14 is not su cient to say if a reasonable conveegce is reached
or not. This di culty can be overcome by using the mode initidization with a
single mode o; ng) (see section 3.1). Fig. 13 shows agaihfor a marker scan
performed with the mode initialization. As the number of traers is increased,
the di erent curves look more and more alike during the wholeimulation.
This gives con dence about the number of tracers needed for @nverged
simulation. From 32 M markers, all the heat ux curves are quite close to
each other. Note that both initialization give quite di erent overshoots: for
the mode initialization, a single toroidal mode strongly dminates since the
beginning of the simulation, whereas all toroidal modes hawpproximatively
the same initial energy when the white noise initializatioris employed. In
this context, a multiple mode initialization would be more @propriate, but
in principle the convergence level of a simulation should hdepend on the
initialization.

5.3 The Rosenbluth-Hinton test

The test consists in comparing the numerical calculation ahe time evolu-
tion of the axisymmetric potential with the analytical resut, valid for circular
magnetic surfaces in the limit of large aspect ratio, obtagd by Hinton and
Rosenbluth [40]. The gyrokinetic Vlasov equation for the zml ow compo-
nent, i.,e. n = m = 0, is analytically solved and the axisymmetric component
of an electrostatic perturbation is found to linearly damp ad a residual ow
level is found. Therefore, theE B velocity (vg 5, normalized to the initial
value vg 5 (0)), generated by a pure axisymmetric density perturbatio, is
expected to behave as:

Ve B t
—= = _=(1 Agr)e S'coslst)+ A 52
Ve 5 (0) ( Ro) s gt) Ro (52)

where Ag, is the residual, at the radial position :

. 1
AR Teqe2(=Rg) 53)
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and! g, ¢ are respectively the frequency and the decaying rate of thelacity
perturbation [41]:

1 7 2V
| = ’
o= Mo R &9
1
c=!cexp Q(S)Z > (55)

The expression for the frequency (54) was derived in [41]. Amderestima-
tion or overestimation of the residual zonal ow would lead ¢ an incorrect
prediction of the ion di usivity ;. Therefore a numerical code must provide
the correct residualAg, in order to produce reliable physical results.

The zonal ow damping test has been performed in linear modehich means
that nonlinear terms in particle trajectory equations havebeen suppressed.
In order to reproduce the results of Hinton and Rosenbluth, & solve only
for the n = 0;m = 0 component of the electrostatic potential, the other
modes are Fourier ltered. Input parameters arem; = 1;a = 40 ;Bg =
1:44 [T];Ro = 5 [m]; Ro=a = 10. The density and temperature pro les are
at, T; = Te. The safety pro le is monotonic and two di erent magnetic su-
faces have been studiedy, = 0:5; q(sp) = 1:15 andsy = 0:7;q(So) = 1:33. The
grid is Ng = 64; N = 64;N. = 64, the number of markers isN = 16 M,
the time step is t =50 ;* and a canonical Maxwellian with correction is
used. The initial condition has been prepared in order to obtn an axisym-
metric ion density perturbation. The results must not deped on the initial
conditions, therefore two di erent perturbations of the ian density have been
tested, Bi(s) E Nio cos(s)and ni(s)= njoesin(s), where n;. is chosen
so that vg g . (t =0) =0:07 vgi. The results of the ORB5 simulations are
plotted in Figs. 15 and 16. In these gures, th&e B velocity normalized at
the initial value vp =V g (0) is plotted as a function of time. As a reference,
the residual evaluated from Eg. (53) and the exponential dag predicted by
Eqg. (55) are also plotted. In all cases the results are in go@greement with
the residual predicted by Rosenbluth-Hinton theory. Tablel gives a summary
of the frequencied ¢ and decaying rates ¢ from the simulations, compared
to the values predicted by the theory. We nd an overall good greement
between numerical results and theory predicted values.

5.4 CYCLONE benchmark

In Ref. [43], several uid, gyrouid and gyrokinetic codes & compared
for the so called CYCLONE test case, which represents locahqameters
from an ITER-relevant DIII-D H-mode shot [42]. The paramtes are =

1=175a=0:48 m];Bo = 1:91 [T]; Rp = 1:32 [m]; so = 0:624 (corresponds to
o = 0:5a),q(s0) = 1:4;T; = Te; Ro=Lt; =6:9; { = L,=Ly; =3:126=0:78
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1 =0:3. N =2% = 83M markers, t =40 ! The quasi-neutrality
equation is solved with cubic B-splines on &l = 128;N = 448;N. = 320
grid and a eld-aligned Iter with m =5, is applied. The value of is the
smallest possible having regard to the computational poweBenchmarking
ORBS for these parameters is crucial in order to have con dee in the code.
A rst simple test is presented on Fig. 17. ORB5 has been run ithe linear
mode. has been changed to-1140, a local maxwellian and the exact same
equilibrium pro les have been employed in an e ort to have snilar parame-
ters between the di erent codes. Both codes show excellengraement.

The numerical quality of CYCLONE nonlinear simulation is slown through
the relative energy conservation on Fig. 18. In the linear @se, the eld en-
ergy is very small and the relative energy conservation carelarbitrarily high,
but in the nonlinear phase relative energy conservation bemes a valid check.
For this CYCLONE simulations, energy is conserved up to verjong times
within 30 % of the eld energy, which is a remarkable value foa global PIC
code. This energy deviation represents 10 of the initial kinetic energy of the
system. As the quasi-equilibrium state establishes, numeal noise grows and
slowly leads to the loss of energy conservation. Howevery fate times the
system is close to marginal stability because of pro le retation so the state
of the system will not provide any new physical informationHence it is use-
less to continue a PIC collisionless simulation to very longmes. Therefore a
strong relative energy deviation for late times is not sigréant. The situation
could be di erent if collisional sources were added to thersulation.
Nonlinear benchmark is usually performed by plotting the i di usivity de-
ned by Q=(n; T;) versusRy=Lt;. Note that no assumption is done
on Q, nj and r T;: these pro les are reconstructed with appropriate moments
of Vlasov equation and then smoothed using splines with teing interpola-
tion [44]. In [43], Dimits proposed a t to express the ion diusivity as a
function of Ro=Lt,; when the system has reached (quasi-)steady state:

. L
L =154 1 6L ; (56)
Dimits R0
With pimis = osa=L, where gz = ( )*cs=ais the gyro-Bohm transport

coe cient [45]. There are two di culties in benchmarking OR B5 against the
Dimits t, which has been obtained with a ux-tube code. Firstly, spatial
averaging must be applied since ORB5 is a global code. Sedgnthe lack of
sources implies that the temperature pro le is not frozen am ux-tube codes
and relaxes during the simulation. It is therefore much ademte to char-
acterize the radial transport by a cloud of points (i; Ro=Lt;) representing
the time evolution of space averaged values rather than with single point.
Such a procedure has been applied in [46]. ORB5 results arspiayed in
Fig. 19. At the begining of the simulation, the radial transprt is null and the
logarithmic gradient variation is very weak. Then the turbuence establishes,
leading to pro le relaxation. Finally, the system is in quasequilibrium state,
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meaning that the ion di usivity decreases to 0 and the logathmic gradient
is close to marginal stability. The cloud of points is well loated around the
Dimits t. The dispersion is more important for small averagng widths s.
A large s allows the reduction of global pro le e ects, which may leadto
di erent predictions [47,48], especially for the relativly large  used in these
ORBS5 simulations. Local pro les are shown in Fig. 20. Remarkow fast the
pro le relaxes to a quasi-equilibrium state. A way to preventhis phenomenon
would be to decrease , thus reducing global e ects. Unfortunately simula-
tions at lower  were not possible because of the limited computational poxkve
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6 Conclusion

The global collisionless PIC code ORB5 is a powerful tool fomicro-
instabilities studies. It relies on a gyrokinetic model whih conserves energy
and particle number, providing useful checks of the numeatsolution at each
time step. Based on thef method, this codes uses true equilibrium functions
to prevent spurious zonal ows. Several noise reduction teeiques are im-
plemented, such as adaptative gyro-averaging, optimizeddding and Fourier
ltering. In this paper, it is shown that simulations based o eld-aligned
Fourier Itering combined with the use of straight- eld lin e coordinates have
lead to a speedup of 2 orders of magnitude. More preciselyettime step is
relaxed by removing the highky modes from the turbulence spectrum, which
are anyhow inconsistent with the gyrokinetic ordering, andhe number of
markers needed in the simulation is strongly reduced beca&uthe simulation
contains much less Fourier modes. By using a straight- elihe poloidal
coordinate instead of the poloidal geometrical angle, theequired width of
the eld-aligned lter is minimal and most importantly becomes independent
of the plasma size. The latter remark is of considerable inkst as future
tokamaks such as ITER will have extremely small . Magnetic coordinates
and the eld-aligned lIter are therefore important steps tavards the simula-
tion of realistic devices. ORBS5 also di ers from other gyroketic codes as
it evolves particle orbits in magnetic coordinates, therefe avoiding costly
interpolations during charge assignment. ORB5 shows exiegit scalability
properties: a proper parallelization is crucial with the deelopment of large
scale computers. The question of convergence with the numlmoé markers has
been studied by applying a physical initialization of the peurbation instead
of random noise. Finally, the code has been successfully blemarked against
other gyrokinetic codes. The next step will be the implemeation of several
relevant e ects missing in the recent model, such as kinetalectron dynamics,
collisions, impurities, electromagnetic e ects, sourceand sinks, in order
to reduce the gap between experimental and theoretical traport predictions.
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Figure 2. Logarithmic gradient (top) and pro le (bottom) us ed in ORB5.
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Figure 3. Time per iteration as a function of N=P for the VN mode (left) and the
CO mode (right) of BGI/L.
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Figure 5. Relative energy conservation for a square lIter sinulation (black, solid)
and a eld-aligned simulation (red, dashed).
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Figure 6. Volume averaged radial heat ux for a square Iter simulation (black,
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Figure 15. E B velocity at sp = 0:5 (left) and sg = 0:7 (right) as a function
of time. The solid line is the result of the ORB5 simulation in linear mode, with
cos (s ) perturbation. The dotted line is the residual and the dashdl line is the
exponential decay from Rosenbluth-Hinton theory.

pert | so | ! g (Eq. (54)) code! g c (Eq. (55)) code ¢

cos | 0.5 0:0059 0:0062 0:0002 0:0009 0:0009 0:0001

cos | 0.7 0:0057 0:0058 0:0002 0:0006 0:0007 0:0001

sin | 0.5 0:0059 0:0062 0:0002 0:0009 0:0008 0:0001

sin | 0.7 0:0057 0:0058 0:0002 0:0006 0:0006 0:0001
Table 1

Comparison between analytical and numerical values fot g and .
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Figure 16. E B velocity at sp = 0:5 (left) and sg = 0:7 (right) as a function

of time. The solid line is the result of the ORB5 simulation in linear mode, with

sin(s) perturbation. The dotted line is the residual and the dashdl line is the

exponential decay from Rosenbluth-Hinton theory.
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