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Multiple haplotype-resolved genomes reveal
population patterns of gene and protein diplotypes
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To fully understand human biology and link genotype to phenotype, the phase of DNA
variants must be known. Here we present a comprehensive analysis of haplotype-resolved
genomes to assess the nature and variation of haplotypes and their pairs, diplotypes, in
European population samples. We use a set of 14 haplotype-resolved genomes generated by
fosmid clone-based sequencing, complemented and expanded by up to 372 statistically
resolved genomes from the 1000 Genomes Project. We find immense diversity of both
haploid and diploid gene forms, up to 4.1 and 3.9 million corresponding to 249 and 235 per
gene on average. Less than 15% of autosomal genes have a predominant form. We describe
a ‘'common diplotypic proteome’, a set of 4,269 genes encoding two different proteins in over
30% of genomes. We show moreover an abundance of cis configurations of mutations in the
386 genomes with an average cis/trans ratio of 60:40, and distinguishable classes of cis-
versus trans-abundant genes. This work identifies key features characterizing the diplotypic
nature of human genomes and provides a conceptual and analytical framework, rich
resources and novel hypotheses on the functional importance of diploidy.
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uman genomes are diploid by nature. In an ideal world

without technical limitations, we would approach genome

analysis by reading both the maternal and paternal
sequences independently. We would determine which homo-
logous genes, proteins and regulatory sequences were the same or
different!, and distinguish the latter by their unique combinations
of variants. Thus, beyond variants, we would catalogue and
characterize their haplotypes and pairs thereof, diplotypes,
representing functional units. To link genetic variation to gene
function and phenotype, we would distinguish diplotypes further
by their specific configurations of mutations. Cis configurations
with two or more mutations on the same chromosome, for example,
leave one form of the gene unperturbed, while trans configurations
with mutations on both chromosomes may affect both forms of the
gene?. Transcriptomes would be defined by expression of either one
or both parental homologues in spatiotemporal and environmental
context. The functionally active genome would be viewed as the
result of the specific haploid or diploid protein forms interacting in
genome-wide networks.

While tens of thousands of human genomes have been read out
as ‘mixed diploid’ sequences to date, just over a dozen have been
molecularly haplotype resolved3® and reported mostly with a
technical focus. The diplotypic nature of the human genome and
its potential functional implications have, however, barely been
addressed. With our previous work, we have generated a virtually
completely haplotype-resolved genome, ‘Max Planck One’
(MP1)* and performed dissection of an individual’s ‘diplotype™:
determined the molecular diplotypes encoding 17,861 autosomal
genes at the sequence and protein level; assessed the cis versus
trans configurations of perturbing mutations; annotated cis and
trans in relation to gene function and disease and examined the
occurrence of protein diplotypes in pathways and ‘haploid
landscapes™°.

Here we present a first systematic analysis of diplotype
architecture at the population level. As a starting point, we
describe a new set of 12 molecularly haplotype-resolved European
genomes. With MP1 and NA12878 resolved by us previously*~>,
an unprecedented set of 14 molecularly phased genomes laid the
foundation for our analyses, complemented and expanded by up
to 372 statistically resolved genomes of European descent from
the 1000 Genomes Project (1000G)!. With the analysis of
multiple haplotype-resolved genomes we aimed to get a clearer
picture of the ‘true’ molecular toolbox underlying cellular and
organismal processes and their variation in a population.
Moreover, we aimed to extract common features and principles

characterizing diploid gene and genome function. We addressed
the following specific objectives: (i) to determine the entirety of
different gene and protein haplotypes and diplotypes in the
European population, and evaluate their frequencies of
occurrence (FoO); (ii) to examine whether certain classes of
genes preferentially encode two different forms of the protein to
gain insight into the potential functional importance of diploidy
and (iii) to evaluate the distribution of cis versus trans
configurations of mutations at the gene and whole-genome
level to uncover common patterns of phase.

In summary, our analysis of multiple haplotype-resolved
genomes reveals a large diversity of haploid and diploid gene
forms, in the range of several millions in 386 genomes, with the
vast majority of genes lacking a predominant form. This diversity
converges upon a ‘common diplotypic proteome (CDP)’, a
distinctive subset of genes preferentially encoding two different
proteins. Moreover, we find that mutations predicted to alter
protein function exist, in each of the 386 genomes, significantly
more frequently in cis than in trans, with an average cis/trans
ratio of 60:40. In addition, we observe different classes of cis- and
trans-abundant genes. With these results, we identify key features
characterizing the diploid landscape in human genomes (for
overview see Fig. 1), and contribute novel insights into the ‘true
nature of genetic variation’, which cannot be understood without
knowing the distribution of variants on each of the two parental
sets of chromosomes.

Results

Twelve molecular haplotype-resolved genomes. To haplotype-
resolve 12 individual genomes from a representative German
population cohort, we applied our fosmid pool-based next gen-
eration sequencing approach, described in detail earlier*!? and
corroborated by resolving HapMap trio child NA12878 (ref. 5)
(Methods). Between 32 and 52 super-pools were sequenced for
each of the 12 individuals on SOLiD platform. This generated
between 20 and 63 Gb of uniquely mapped reads per genome,
resulting in 3.5-12.5 X mean haploid genome coverage with, on
average, 89% of the autosomes covered at >2 x. Depending on
the number of pools sequenced and the read coverage obtained,
up to 818,000 phase-informative fosmids (400,000 on average)
were detected in each individual genome (Supplementary Table 1;
Supplementary Fig. 1la,b). Fosmids were found to be roughly
distributed equally between the two haplotypes of each autosome.
The single nucleotide polymorphism (SNP) alleles in fosmid

Definition 1
Pairs of haplotypes, the same or different

Diploid landscape in human genomes: Key features

Diplotypes
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Pairs of different haplotypes
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d Large diversity of haploid and diploid gene forms
with most genes lacking a predominant form
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Figure 1| Overview of key features characterizing the diploid landscape. A summary of the key features describing the diplotypic nature of human
genomes in European population samples is presented in context with the specific definitions of ‘diplotypes’. Gene and protein level analyses are

distinguished.
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sequences and phase-informative heterozygous SNPs were called
and validated as described*. Heterozygous SNP calls correlated
with the number of pools sequenced and fosmids detected
(Supplementary Fig. 1c,d). Rigorous SNP filtering was performed
(Methods); false positive call rates, likely to reduce phasing
accuracy, were 0.2% on average (0.08-0.50%); for additional
accuracy estimates see Supplementary Table 2. In each of the
individual genomes between 1.21 and 2.44 million SNPs were
detected, corresponding number of phase-informative,
heterozygous SNPs were between 0.48 and 1.41 million
(Supplementary Table 3a). Notably, in the region of highest
variability, major histocompatibility complex (MHC), up to
11,789 total SNPs and 7,841 heterozygous SNPs were identified. A
detailed survey of heterozygous SNPs, their characteristics,
distribution, functionally relevant classes and potential disease
relevance is given in Supplementary Table 4.

We phased each of these 12 individual genomes by applying
RefHap!3 (Methods), resolving the vast majority of their detected
SNPs (86-99%). The extent and completeness of phasing
correlated with sequencing depth; 58-81% of the autosomes
were assembled into ~ 8,000-16,000 contigs of up to 5.2 Mb, with
an N50 contig length® of 340 kb on average (range 169-629 kb) in
the seven most completely resolved genomes (Supplementary
Table 3a). In particular, the highly complex MHC region was
phased across 75-97% of its length, with an average N50 length of
1.3Mb (range 220kb-3.1 Mb). The extent of phasing allowed
determination of the concrete molecular haplotype pairs for up to
12,976 autosomal genes (73%) per genome, 48% on average
(Supplementary Table 3b), including 10kb upstream regions in
nearly half of the cases. Between 598 and 1,630 potentially
damaging mutations per individual (predicted by use of SIFT'*
and PolyPhen-2 (ref. 15)) (Methods) and between 886 and 1,478
genome-wide association (GWA) SNPs (Supplementary Table 4)
were assigned to phase context.

We then assessed the extent and nature of molecular diplotypes
within each individual diploid genome. To which extent do
maternal and paternal chromosomes encode different genes,
proteins and potential regulatory sequences? Up to 84% of all
autosomal genes (primary transcripts) contained at least one
heterozygous SNP and so had two different molecular forms. The
10kb upstream sequences were diplotypes in up to 78% of cases,
and the transcripts together with upstream sequences produced
diplotypic gene regions in up to 95% of cases. The vast majority of
all diplotypes, ~90%, contained two or more heterozygous SNPs
that could exist in either cis or trans configurations and therefore
required phasing. We were able to determine the concrete pairs of
molecular haplotypes in up to 95% of cases, 65% on average
(Supplementary Table 5a). Consistently 16-22% of all genes
within each individual diploid genome were found to encode two
different proteins, defined by the presence of at least one non-
synonymous SNP (nsSNP) causing an amino acid (AA) exchange.
Between 3 and 6% contained two or more AA exchanges and 1%
on average two or more potentially perturbing AA exchanges, the
concrete cis or trans configurations of which we resolved in up to
86% of cases, 66% on average (Supplementary Table 5b). Between
57 and 73% of these mutations were found to reside in cis and
between 27 and 43% in trans. Taken together, substantial and
overall similar fractions of gene and protein diplotypes constitute
the molecular foundation of organismal function within each of
these individual genomes. The question is now, how many
different, unique molecular diplotypes and underlying haplotypes
do exist in this sample and to which extent these are shared.

Immense diversity of haploid and diploid gene forms. The
related, more general question concerns the entirety of unique

haploid and diploid gene forms that constitute the ‘diploid
hardware’ of cellular and organismal functions and their variation
in population samples of defined size. Can saturation be reached
when size increases? With MP1 (ref. 4) and NA12878 (ref. 5), a
total set of 14 molecularly haplotype-resolved genomes provided
the basis for population-level analyses. These genomes allowed
comprehensive comparative evaluation of molecular versus
statistical phasing data (Methods). With an overall phase
discordance of 3.6% for exome data, 5.3% for transcript data
and 5.9% genome-wide data (Supplementary Table 6a,b;
Supplementary Note 1), the complementary use of 1000G
statistical haplotype data appeared suitable to corroborate
preliminary results, and should facilitate revealing larger patterns
or differences, if present. To scale up analyses, we utilized
57CEU® and the entire set of European ancestry-based genomes,
372EURM.

At first, we determined the entirety of unique haplotypes in
relation to increasing number of genomes (Methods;
Supplementary Note 2). Sets of 5, 10 and 14 molecularly
haplotype-resolved genomes were examined and corresponding
subsets were extracted from 57CEU. Selection bias was controlled
and proved negligible (Supplementary Table 7; Supplementary
Methods). In five molecularly phased genomes, the entirety of
unique haplotypes amounted to 79.5% of all measured haplotypes
(~60,000). The corresponding fraction obtained from 57CEU
was 74.3%, at a full haplotype count of ~ 166,000; thus, ~36% of
all haplotypes could be analyzed across these subjects at the
molecular level. In 10 and 14 molecularly phased genomes,
fractions of 68.7% and 63.4%, respectively, were unique and
corresponding fractions in 57CEU were highly similar. The
fraction of unique haplotypes decreased to 43.7% in 57CEU and
reached with 33.5% the flat part of the curve in 372EUR (Fig. 2a;
Supplementary Table 8a). To conclude, where we study small
number of genomes such as five, there is roughly a 75% chance
that any haplotype encoding a gene-of-interest may be unique;
that is, not yet having been identified in any other genome. In 57
genomes, almost every second haplotype is expected to be unique
and over a population size of 300, roughly every third.

The absolute number of unique haplotypes increased
substantially (34-fold) from 5 to 372 genomes, with 4.1 million
different gene forms still far from reaching a plateau (Fig. 2a;
Supplementary Table 8b). Diversity corresponded to 8, 14 and
18 unique haplotypes ‘per gene’, an average across all autosomal
genes and 5, 10 and 14 molecularly resolved genomes,
respectively. The corresponding numbers extracted from
1000G were nearly identical, and increased to 50 and 249
haplotypes ‘per gene’ (Fig. 2b; Supplementary Table 8c).
Finally, the diversity of haplotypes encoding potential
regulatory, 10 kb upstream sequences was, with 2.8 haplotypes
per kb on average, even larger than genic haplotype diversity
(2.2 haplotypes per kb).

The analysis of both, haplotypes and diplotypes is equally
important and biologically meaningful. Because differential
expression is widespread!’™!° either one of the haplotypes or
the diplotype can exert ‘gene function’, potentially creating three
different biological states. Both haplotypes and diplotypes can
play a key role in disease®2°~21, An importance of diplotypes over
haplotypes in relation to drug response has been demonstrated??.
The diversity of diplotypes was even higher: their fractions
relative to total diplotype count amounted to 93.4% in 5, to 81.8%
in 14 genomes; corresponding results from 1000G were nearly
identical. About 75% of all diplotypes were unique in 57CEU and
over 60% in 372EUR (Fig. 2a; Supplementary Table 8a). Their
absolute numbers exhibited an even stronger increase than
haplotypes and almost reached an equal amount, 3.9 Mio, in
372EUR, indicating increased combinatorial space with growing
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Figure 2 | Diversity of unique gene and protein haplotypes and diplotypes. Overall scheme: the number of unique, different haplotypes (red colours)
and pairs thereof, diplotypes (blue colours) presented relative to increasing number of haplotype-resolved genomes, drawn from the 14 molecularly
resolved (14G) and statistically resolved genomes of European ancestry from the 1000G database''® (colour/symbol codes in inboxes); (a,b) gene
haplotypes and diplotypes; (¢,d) protein haplotypes and diplotypes; (a,c) haplotypes and diplotypes expressed as whole-genome counts and (b,d) as global
averages ‘per gene'. (See also Supplementary Note 2). Haplotypes and diplotypes correspond to autosomal RefSeq Hg18 genes from UCSC table browser.
(a) Decreasing curves present fractions of unique gene haplotypes and diplotypes relative to all measured haplotypes and diplotypes; increasing curves
present their absolute numbers. (Note that total diplotype input count equals half of haplotype input count.) Data points correspond to 5, 10 and 14
genomes from 14G (squares as colour coded) and 5, 10, 14, 57, and 372 genomes of European ancestry derived from 1000G database (symbols, colour-
code in inbox). An additional data point, 200 genomes (1000G) were integrated to anchor graphs. Haps, haplotypes, dips, diplotypes, No, number. (b)
Unique gene haplotypes and diplotypes presented as global averages ‘per gene’ for given sample sizes; number of unique haplotypes and diplotypes were
added up across given number of haplotype-resolved genomes and divided by the number of autosomal genes that were variable across given sets of
genomes (>93%). (Note that the absolute number of diplotypes equals half of the haplotypes, explaining the relatively lower number of unique
diplotypes). Data are shown for 14G and subsets thereof and 1000G-derived sets of genomes, as indicated by their colour-coding. Avg, average. (c¢) Unique
protein haplotypes and diplotypes analogous to a. Prot, protein. (d) Average number of unique protein haplotypes and diplotypes ‘per gene’ analogous to b.

abundance of molecular haplotypes (Fig. 2a; Supplementary
Table 8b). Such diversity corresponded to a range of 5 to 236
unique diplotypes ‘per gene’ on average (Fig. 2b; Supplementary
Table 8c). Evaluation of probable bias of haplotype/diplotype
quantification introduced by phasing (switch) errors resulted in a
potential overestimation of molecular haplotypes by ~14%, of
statistical haplotypes by ~25% (Methods; Supplementary
Methods). This would reduce the number of unique haplotypes
to 3.1 Mio in 372EUR, lowering the fraction of unique gene
haplotypes relative to total input count at most by ~ 8%.

Taken together, the analysis of multiple haplotype-resolved
genomes unveiled an exorbitant diversity of both haploid
and diploid gene forms, encoding potential variation in
gene function in the European population. Providing a first
quantitative framework, our data allowed extrapolation of
the number of unique ‘haps and dips’ for much larger
European ancestry-based samples. For example, between 1.7
and 2.3 billion unique haplotypes and between 4.3 and 5.5

billion diplotypes were projected for one million genomes
(Methods; Supplementary Table 9), the lower numbers were
corrected for potential overestimation.

No major gene form in the vast majority of genes. With an
immense diversity of gene forms evident, we moved to the single
gene level, asking to what extent our results were compatible with
a conventional conception of a ‘wild-type’ or major gene form.
We classified all genes by frequency of occurrence of their hap-
lotypes and diplotypes into three distinct categories: (1) Genes
that have one major haploid or diploid form, which accounts for
at least 50% of the measured haplotypes or diplotypes; (2) Genes
that have at least one common haplotype or diplotype, defined by
a frequency of >20% and (3) Genes that exhibit only haplotypes
or diplotypes below this frequency threshold.

Strikingly, genes that had one major haplotype (category 1)
represented by far the smallest fraction of all autosomal genes.
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Figure 3 | Categorization of autosomal genes. Pie charts show classification of autosomal genes into three categories based on frequency of occurrence
(FoO) of their unique haplotypes (red colours) and diplotypes (blue colours). For instance, category 1 includes all genes that have one predominant
haplotype or diplotype, accounting for >50% of all measured haplotypes or diplotypes; the definitions for categories 2 and 3 genes are analogous.
Fractions of these categories (%) are relative to the total of autosomal RefSeq Hg18 genes assigned. Data shown for the sets of 14 molecularly haplotype-
resolved genomes (14G) and 57CEU and 372EUR statistically resolved genomes derived from 1000G database™ .

With 14-15% nearly identical in 14 molecularly resolved
genomes, 57CEU and subsets thereof, the fractions remained in
the same range even in much higher number of genomes
(372EUR) (Fig. 3a; Supplementary Table 10a). This category
included 2,242 genes on average, their major gene forms
accounting for ~70% of all haplotypes independent of sample
size (Methods; Supplementary Table 10b). This set of genes was
significantly enriched®® for G-protein coupled receptor genes

(GPCRs), genes involved in immune functions and
developmental genes including those involved in brain
development ~ (P-values  between  2.61x10~7%  and

9.73 x 10~ %% Methods). The average number of haplotypes
‘per gene’ was between 3 and 22, much lower than the global
averages described above (Supplementary Table 10c). These
results demonstrate that the vast majority of genes, over 85%, do
not encode one predominant haplotype. ‘Therefore, the concept
that there is one predominant or ‘wild-type’ form of a gene and
few rare or ‘mutant’ forms is overly siml)listic and misleading’
(quote from the study by Stephens et al.>*).

The rule rather than the exception is that each gene represents
the equivalent of multiple different forms, which account for only
limited fractions of all haplotypes observed. Category 2 genes that
have at least one common haplotype with a frequency >20%
were found to constitute roughly one third of all genes (Fig. 3a;
Supplementary Table 10a). Notably, all common haplotypes
accounted for less than half (43-47%) of all haplotypes
(Supplementary Table 10b). Category 2 genes encoded mainly
immune functions (other than category 1) and translational
mechanisms (P<1.79 x 10 ~©-0.0013). Category 3 comprised the
majority of all autosomal genes, with over half constituted by
non-common haplotypes with frequencies <20% (Fig. 3a),
substantial fractions of which were ‘singleton haplotypes’
(Supplementary Table 10b). Such fragmentation of gene forms
was underscored by the fact that much higher number of
haplotypes ‘per gene’ (up to 399 on average) were determined
(Supplementary Table 10c). Category 3 was strongly enriched for

genes that play an important role in regulation of the functions of
the nervous system and behaviour (P<5.35x 10~ 16—
4.04 x 10 ~°) (Supplementary Note 3). As expected, the haplo-
type spectra of genes correlated with their number of SNPs and
lengths (Supplementary Fig. 2a-h). The lists of genes in each of
the three categories are provided (http://www.molgen.mpg.de/
~ genetic-variation/genes_categories/).

Classifying genes by their diplotype spectra unveiled an even
higher complexity constituting diploid gene function. Once any
two haplotypes of a gene combine to make a diplotype, its
resulting frequency is always lower than the frequency of either of
the parental haplotypes. Thus, the fractions of genes that have one
major diplotype were reduced to about half (5-7%) across all
sample sizes (Fig. 3b; Supplementary Table 10a-c). The same
applied to the category of genes that have at least one common
diplotype (14-18%). As a consequence, the fractions of genes that
exhibited non-common diplotypes were found largely expanded
(75-81%); importantly, as many as one half of all genes in this
category were encoded by diplotypes with frequencies <5% or
‘singleton diplotypes’.

Protein haplotype and diplotype diversity. How does this
diversity of gene forms translate into diversity of protein forms?
Analyses were performed analogous to those described above,
using the subset of nsSNPs that cause AA exchanges. With
1.3-1.7 nsSNPs on average in the variable genes and considerable
fractions of invariable coding regions, the diversity of haplotypes
and diplotypes at the protein level was substantially reduced. The
entirety of unique protein haplotypes relative to all measured
haplotypes accounted for 18.5% in five genomes; similar results
were obtained from the corresponding 57CEU-derived subset.
The fractions decreased to 2% in 57CEU and 1.1% in 372EUR
(Fig. 2¢; Supplementary Table 11a). The entirety of unique pro-
tein diplotypes amounted to over 33%, 5.6% and 3.4% of total
diplotype count in 5, 57 and 372 genomes, respectively. These
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fractions were equivalent to ~ 28,000, 53,000 and 207,000 dif-
ferent protein diplotypes encoding potential variation in protein
function (Fig. 2¢; Supplementary Table 11b).

Translating these whole-genome-based estimates into global
averages ‘per variable gene’, roughly 2-9 unique protein
haplotypes and 5-13 unique protein diplotypes were calculated
for 5 up to 372 genomes (Methods; Fig. 2d; Supplementary
Table 11c). For extrapolations up to one million genomes see
Supplementary Table 9. Over 80% of the variable genes had one
major protein haplotype, over 63% had one major protein
diplotype and one third had common protein diplotypes (5-20 on
average). A small fraction, roughly 4%, consisted of non-common
and private protein diplotypes only (Supplementary Table 12).
For ‘personal protein diplotype signatures’ see Supplementary
Table 13.

Taken together, the diversity of haploid and diploid protein
forms was much lower than their counterparts at the DNA
sequence level. The absolute numbers were, however, still
considerable, particularly of the protein diplotypes, up to 90%
of which encoded two different proteins in the population. These
can allow huge functional versatility of diploid genomes as an
inherent key feature of diploidy and play an important role in
biological variation within and between cells and organisms.

A common diplotypic proteome. To further dissect the potential
functional importance of diploidy, we asked whether certain
classes of genes were particularly likely to encode diplotypic
proteins. Across all genomes, consistently between 16 and 22% of
the autosomal genes (18% on average) were found to encode two
different proteins (Supplementary Tables 5b and 14). Thus, to
what extent do these genomes share genes that occur as protein
diplotypes; is there a subset of genes that encode two different
proteins particularly frequently? In other words: do mutations
‘rain’ over all genes, or preferentially affect specific classes of

genes? So we analyzed, first, the distribution of diplotype fre-
quencies for all genes in each of the four samples: our 14 mole-
cularly phased genomes and a corresponding set selected from
57CEU, the entire set of 57CEU and 372EUR. Second, we
extracted, from each of these samples, sets of genes that were
diplotypes in increasingly larger fractions of genomes. Third, we
tested to which extent the extracted sets of genes overlapped to
derive a common subset of genes that preferentially encode two
different proteins in European population samples, which we
termed as ‘common diplotypic proteome’.

To begin with, we counted for each of the 17,861 autosomal
protein-coding genes the number of genomes where the gene
existed as a protein diplotype (Methods). ‘Diplotype’” was scored
by presence of any one or more of nsSNPs, essentially considering
it a property of the gene. Then we sorted the genes by increasing
diplotype frequencies. In all data sets, the sorting showed a highly
similar distribution of diplotype frequencies, with increasingly
smaller number of genes being diplotypic in increasingly higher
number of genomes. At the extreme, genes were diplotypic in all
genomes (Supplementary Fig. 3a-d). Plotting diplotype frequen-
cies relative to total genome count (100%), the curves were highly
parallel at frequencies > 5% (Fig. 4a). We extracted, from each of
the samples, the concrete gene sets that exhibited protein
diplotypes with frequencies above defined thresholds, from 5 up
to 90% of total genome count. Gene numbers were roughly in the
same range for defined frequency thresholds, showing an overall
parallel decrease (Fig. 4b; Supplementary Table 15a).

We then examined to what extent these extracted gene sets
were the same. Thus, we analyzed the overlaps between our 14
molecularly resolved and 57CEU genomes, and between 57CEU
and 372EUR, separately for each of the defined frequency
thresholds (Methods). The strongest overlaps were found at a
frequency threshold of >30% (Fig. 4b; Supplementary
Table 15b). The number of genes exhibiting diplotype frequencies
above this threshold, 5,951 in 372EUR and 4,665 in 57CEU
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Figure 4 | Subsets of autosomal genes encoding protein diplotypes. (a) Autosomal genes sorted by increasing protein diplotype frequencies in the sets
of 14 molecularly haplotype-resolved (14G), 57 and 372 statistically resolved genomes from 1000G database'®, as colour-coded. The x-axis indicates
the number of (sorted) genes. Diplotype frequency of a gene defined by its number of protein diplotypes relative to the total number of genomes examined
(y-axis). Protein diplotype defined by presence of at least one nsSNP. (b) Number of autosomal genes encoding protein diplotypes as a function of
increasing frequency thresholds, 5 to 90% of total genome count (x-axis). For example, roughly 3,000 genes exhibit protein diplotypes in at least 30% of
the 14 molecularly resolved genomes (14G) and roughly 6,000 genes in at least 30% of 372EUR genomes (colour-coded). "' indicates the number of
genes encoding protein diplotypes in at least one or two genomes in each of the three sample sets shown. The two graphs in the upper part show, for each
of the frequency thresholds, the percentages of genes encoding protein diplotypes that are shared (y-axis right) when 14G and 57CEU-derived gene sets
(yellow graph) and 57CEU and 372EUR-derived gene sets (orange graph) were intersected (). Percentage values of genes refer to the smaller sample set.
The dotted line marks the frequency threshold resulting in the highest overlap. The number of genes exhibiting diplotype frequencies above this threshold
of 30%, 5,951 in 372EUR and 4,665 in 57CEU, were significantly higher as compared with chance (P<4.6 x 10 2 and P< 9.3 x 10 ~3, respectively) based
on a binomial test.
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(Supplementary Table 16a), were significantly higher as com-
pared with chance (P<4.6 x 102 and P<9.3 x 10~ 3, respec-
tively, based on a binomial argument) (Supplementary Methods).
Integrating the sets of genes contained within the overlaps
(Methods), we obtained a total of 4,269 genes that were shared by
at least two distinct sample sets, the ‘CDP’. These genes
also shared 88% with an expanded set of 628 phased genomes
from the 1000G database'!. A subset of the CDP, 793 genes,
contained two or more potentially functionally significant
mutations, which can reside in either c¢is or trans
configurations. Thus, this gene set represents a common
core set of ‘phase-sensitive’ genes in the European population,
where the phase of mutations is particularly likely to be of critical
importance for protein function, phenotype and clinical genome
interpretation. These gene sets are available for download at
http://www.molgen.mpg.de/ ~ genetic-variation/
common_diplotypic_proteome/.

The CDP showed a significant overrepresentation of certain
gene ontology (GO) groups (global tests P<0.001-0.009), using
the programme FUNC?’ (Methods). These groups included
GPCRs, in particular olfactory receptors (ORs), and other
membrane and cell-surface proteins, as well as proteins related
to the immune system, such as the MHC (Class I and II), and
drug metabolism (P<2.36 x 10 ~4°-0.003). These results were
corroborated by the analysis of functional pathways using the
ConsensusPathDB?>  (Methods); gene sets showed highly
significant  overlaps (P <7.66 x 10~39-2.38 x 10~ %)  with
pathways involving OR and GPCR-related signalling and signal
transduction, (extra-cellular matrix related) processes of inter-
cellular communication, immunoregulatory processes and
membrane-linked drug transport. Importantly, genes involved
in Alzheimer’s disease and various kinds of cancers were found to
be highly and significantly enriched (P<5.4x 10~ 1%). The
potential significance for cancer of the CDP was supported by
strong overlaps with genes contained in the COSMIC cancer
database (P<1.89x1071*-273x10~%). In addition, the
common core set of ‘phase-sensitive’ genes was found strongly
enriched for a spectrum of immune diseases and diabetes

200 [l Genes with cis-abundance

(P<2.6 x 10 %-6.05x 10 ~°). Moreover, we uncovered a
strong overrepresentation of transcription factors (TFs) (hyper-
geometric test, P<0.02), especially Kriippel-type zinc finger TFs
(hyper-geometric test, P<1x 10~ %). Taken together, the
extraction of a CDP allows focusing the potential functional
impact of diploidy on definable classes of genes. These primarily
play a role in inter- and intra-cellular signalling and immune
processes, presumably to modulate cell-cell communications and
fine tune expression patterns in cells.

Cis- versus trans-abundant genes. To analyze protein diplotypes
in more detail, we examined the distribution of mutations on
each of the two parental chromosomes. Are mutations distributed
randomly, or can we distinguish patterns of phase? We assessed
all autosomal protein-coding genes with two or more potentially
perturbing mutations, counting the number of cis and trans
configurations for each gene in each of the sample sets described
(Methods). We then determined for each gene the difference
between cis and trans counts as a measure of abundance of either
configuration. Sorting the genes by difference revealed, from left
to right, ‘cis-abundant’ genes with very positive (>0) values
declining to very negative (<0) values, indicating ‘trans-abun-
dant’ genes. Expressing the negative values as absolute differences
resulted, in all samples, in U-shaped curves with exceedingly cis-
or trans-abundant genes at the extreme ends and a relatively long
corridor of ‘mixed’ genes in between (Fig. 5). Overall, cis abun-
dance was more pronounced, as indicated by a mean difference of
153 for cis-abundant genes, compared with 113 for trans-abun-
dant genes. Subsequently we composed a superset of all cis and
trans configurations, providing the basis for further analyses
(Methods).

To examine whether certain groups of genes encoding protein
diplotypes tended to exist preferentially in cis or trans config-
urations, we performed a GO enrichment analysis using the rank-
test option of FUNC. This allows identification of GO groups
with a preference for either end of the spectrum without setting a
concrete cutoff criterion. While the global test was significant for
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Figure 5 | Cis- versus trans-abundant genes. Autosomal protein-coding genes sorted by decreasing cis-abundance from left to right. The x-axis indicates
the number of (sorted) genes. Cis-abundant genes (blue) defined by positive differences between their cis and trans counts (y-axis left). For
trans-abundant genes (red), initially calculated as increasingly negative differences and sorted towards the right end of the x-axis, the absolute differences
are presented as trans-cis counts (y-axis right). Curves are shown for the sets of 372EUR and 57CEU statistically haplotype-resolved genomes from
1000G database™'® and for the 14 molecularly resolved genomes. GO groups with a preference for either end of the spectrum are described in text.
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all three taxonomies for genes with trans-abundance (P<0.002-
0.025), only ‘molecular function’ was significant for cis abundance
(P=10.007), indicating that genes with trans-abundance are more
strongly enriched for certain functional groups. In particular,
immune genes, membrane-related genes, genes related to drug
response, cell metabolism and fate dominated among the trans-
abundant genes (P<8.25x 10~%9-0.0001). The ‘molecular
functions’ enriched among cis-abundant genes were GPCRs,
particularly ORs, and extra- and intra-cellular signalling mole-
cules (P<1.55x 10 ~2°-4.03 x 10 ~99). Thus, we were able to
further differentiate some of the GO groups found enriched in the
CDP with respect to their preferential configurational profile.
Furthermore, cis- and trans-abundant genes were found
distinctively enriched for a number of pathways: cis-abundant
genes for ‘signal transduction’ (P<6.69 x 10 ~13), trans-abun-
dant genes for (MHC related) immune responses, inter-cellular
immunoregulatory interactions and autoimmune processes
(P<3.06 x 10~ %), Finally, trans-abundant genes were found
strongly overrepresented in gene sets associated with a broad
spectrum of immune and autoimmune system diseases, diabetes
mellitus, asthma and different types of cancers (P<1 x 10~2),
while cis-abundant genes were underrepresented in disease gene
sets with the exception of ‘tumour thrombi’ (P=0.048). These
results indicate that certain sets of genes preferentially occur in cis
or trans configurations, that pathways may distinctively be
influenced by either cis- or trans-abundant genes, and that trans
configurations are more often associated with diseases.

Whole-genome cis abundance of mutations 60:40. Overall, cis
configurations, leaving one form of the gene unperturbed, would
be expected to occur more frequently in an individual genome to
preserve organismal function. Thus, we determined the ratio of
cis to trans configurations across all autosomal protein-coding
genes for each individual genome in all sample sets (Methods). In
fact, a striking phase imbalance was observed: without any
exception, in each of the 14 molecularly phased genomes
(Supplementary Table 16), 57CEU (Supplementary Table 14) and
372EUR statistically phased genomes, cis configurations of
potentially perturbing mutations occurred significantly more
frequently than trans configurations (P<7.68 x 10~ 8-
211 x 10 3), resulting in an overall ratio of about 60:40 (Table 1;
Supplementary Note 4). This global cis abundance with a ratio of
60:40 was also observed, when expanding analyses to the total set
of nsSNPs (P<5.98 x 10 ~7-1.33 x 10 ~>; Table 1). We dissected

Table 1 | Whole-genome cis-abundance of mutations.

Set of phased Cis Trans s.d.  P-value’
genomes configurations  configurations
(%)* (%)*
Potentially perturbing mutations+$
146l 64.1 359 57 21x10°3
57CEUY 60.4 396 29 745x10°°
372EURT 61.7 383 21 7.68x108
Non-synonymous SNPs®
146l 59.6 40.4 29 133x10°°
57CEU" 58.1 1.9 1.8 5.98x10~7
372EURT 57.0 43.0 13 4.67x1077

SNP, single nucleotide polymorphism.

*Mean value.

FExact binomial test.

Predicted by use of PolyPhen-2 (ref. 15) and SIFT™.

§Autosomal RefSeq hg18 genes from UCSC table browser.

||Haplotype-resolved by application of fosmid pool-based next generation sequencing®.
<Statistically haplotype-resolved genomes from 1000 Genomes Project'16,

cis and trans configurations further in relation to the number of
mutations contained within a gene. This allowed at the same time
controlling for a potential overestimation of cis configurations
due to lower coverage of some genomes. By far the most frequent
configurations, >70%, were pairs of mutations, the majority
(67%) of which resided in cis (Supplementary Table 17a). The
second most frequent configurations (16-18%) were combina-
tions of three mutations, occurring in equal proportions in cis or
trans. As expected, with growing number of SNPs, trans config-
urations were found to dominate increasingly, for example, 70:30
in the case of five SNPs. Again, the results from both molecularly
and 1000G-resolved genomes were nearly identical. The same
applied to the configurations constituted by nsSNPs (Supple-
mentary Table 17b).

Global cis abundance is mainly driven by pairs of mutations
that are overwhelmingly in cis. Dissecting this result further, we
examined the cis/trans ratio in relation to inter-mutation
distance. For average distances between 20 and 27,446 bp, the
cis fractions were between 82 and 62%. The remaining 10% of
mutation pairs were in cis in at least 50% of cases, up to a distance
of 93,765bp (Supplementary Fig. 4a—c; Supplementary Note 5).
To examine the cis/trans ratio in relation to mutation frequency,
we compared pairs of common mutations (average frequency
0.23) with pairs of rare mutations (average frequency 0.0037),
resulting in cis fractions of 84.3% and 49.4%, respectively
(Supplementary Note 6).

Differences in phase configurations. As shown by Benzer? and
others?®~%7, cis versus trans configurations between identical
(null) mutations, even Mb apart, can result in profound
alterations of phenotype and disease progression. Therefore,
pairs of identical mutations that can ‘switch’ phase may be
particularly important. Performing all possible pair-wise genome
comparisons (69,192) across the largest available set of 372EUR
allowed extraction of a set of 1,047 ‘phase-alternate’ genes (http://
www.molgen.mpg.de/ ~ genetic-variation/phase_alternate_genes/;
Methods), which carry pairs of identical, potentially perturbing
mutations in both cis and trans configurations. Although identical
in mutational genotype, these genes can have different underlying
haplotypes. Thus, the clinical and functional interpretation of
mutations in these genes may critically depend on their phase in
any individual genome. This set of genes was found significantly
enriched for a variety of diseases including Alzheimer’s disease,
immune system diseases, different types of cancers and diabetes
mellitus (P<7.49 x 10~ 7-0.0000).

In a second step, we expanded our analyses of pairs of
potentially perturbing mutations to larger distances in the
Megabase range (Methods). In principle, differences in phase
configurations between any two diploid genomes were evaluated
at adjacent, shared heterozygous positions along phased
sequences, using a ‘sliding window’ approach. Performing
69,192 pair-wise genome comparisons allowed identification of
all pairs of mutations that can ‘switch’ phase in any genome of the
sample (372EUR; Methods). The results are presented as a sorted,
genome-wide list of 23,801 ‘anchor’ mutations shown in
conjunction with their 3’ downstream ‘phase-alternates’ (http://
www.molgen.mpg.de/ ~ genetic-variation/phase_alternate_muta-
tions/). This resource may assist interpretation of potentially
functionally and phenotypically relevant mutations in the context
of phase in European ancestry-based samples.

Discussion

To gain further insight into the ‘fundamental importance of
diploidy’?® for the understanding of human genomes and disease,
we have performed a population-level analysis of nearly 400
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haplotype-resolved genomes of European ancestry. We have
extracted key features characterizing the diplotypic nature of
human genomes: an immense diversity of both gene haplotypes
and diplotypes underlying variation in gene function; a common
diplotypic proteome and non-random patterns of cis and trans
configurations of mutations, with an ‘unfailing’ global 60:40 cis
abundance and distinguishable classes of cis- versus trans-
abundant genes. With our results, we provide a conceptual,
analytical and quantitative framework charting the yet largely
unexplored diploid landscape. Moreover, we provide rich
resources including data sets of common diplotypic genes/
proteins, which will facilitate targeted approaches at all omics
levels to explore the role of diploidy for cellular, organismal and
phenotypic diversity, within and between species, in health and
disease. Finally, our portrait and quantification of the ‘true’
molecular basis underlying individual variation in gene and
genome function highlights both the indispensability and
challenges of diplotype analysis for the development of valid
approaches to precision medicine.

In our work, we have integrated sets of molecularly and 1000G
statistically haplotype-resolved ~genomes!!. At an initial
discordance of few per cent, the smallest between exome data
(4%), both data sets yielded remarkably similar results. This
shows that 1000G data are suitable to address key questions
concerning the nature of (functional) diplotype architecture in a
population, and generate hypotheses towards potential functional
implications of diploidy. Where, however, personal genome
analysis calls for maximum phasing accuracy to interpret
clinically relevant variation validly, deep molecular haplotyping
is required.

Our global view of haplotype/diplotype diversity in relation to
population size suggests that current efforts are still far from
capturing the majority of gene forms and that saturation may not
even be achievable. The concept of a predominant, ‘wild-type’
form of ‘the’ gene appears obsolete for over 85% of genes,
challenging traditional ‘Mendelian’ views. This highlights
the need for an expansion of current concepts of ‘the’ gene?’,
along with the development of appropriate documentation
and language. The enormous diversity of haploid and diploid
gene forms raises fundamental questions concerning the
relationships ~ between  sequence(s), structure(s) and
function(s)?!. Computational approaches are required to
condense complexity, for instance classification of functionally
related/similar ~ sequences?®.  Furthermore,  experimental
approaches are required, which focus firstly on the analysis of
combinations of variants as compared with single mutations??,
and secondly three different states per gene, either one of the
haplotypes and the diplotype. Finally, our estimates of diversity
represent yet the lower end, anticipating the challenges of
incorporating structural variation®? and increasing the number of
genomes.

Exorbitant diversity at the gene level was found to converge
upon a common diplotypic proteome, a subset of genes
preferentially encoding two different proteins, allowing gene
functions to be differentially exerted and/or diversified. Thus, the
CDP may represent a ‘major modulating principle’ generating
diverse cellular and physiological outcomes in individual organ-
isms, and at the population level giving rise to phenotypic
diversity, adaptive and evolutionary processes"* Enrichment
results suggest an important role of diploidy for preserving
flexibility of receptor-mediated cell-cell communications,
immune-related processes and transcriptional regulation. The
‘wrong’ alleles being active, the CDP may prepare the ground for
pathological conditions, as was supported by strong enrichment
of cancers, Alzheimer’s, immune and other diseases. Strikingly,
several diplotypic gene classes such as ORs and other cell-surface/

receptor or immune-related proteins are known to be subjected to
mono-allelic expression!®3!, Thus, the relationship between the
CDP, mono-allelic expression®> and also allele-specific
expression' 7! requires clarification. So does the role of the
CDP in transcriptome diversity within and between individuals,
species, tissues, developmental and physiological stages, health
and disease. The CDP represents a new aspect of the highly
complex proteome®3, as such subject to further diversification
through alternative splicing and post-translational modifications.
The molecular validation of the mutations defining these protein
diplotypes will present future challenges®*.

The extent and nature of diplotypes in individual genomes and
the population as a whole demonstrate the importance of phase-
sensitive approaches for precision medicine. Our data provide key
information on the diversity of any potential target molecule for a
drug candidate in the European population, suggesting models of
population stratification for roughly 96% of all autosomal genes
and ~5-20 different protein haplotypes/diplotypes per target.
They enable moreover valid population-specific in vitro drug
screening assays. Where optimization of individual treatment
measures is, however, based on systems approaches, the existing
protein alternates can introduce huge diversity of gene-gene
interactions and functional outcomes. Thus, tailoring therapeutic
measures to each individual will strongly benefit from further
advances in this emerging field of diploid genomics.

Methods

Selection and characterization of individuals. The 12 individuals, MP2-13,
were, as was MP1 (ref. 4), probands from the representative German population
cohort PopGen®®. At the time of ascertainment by random sampling, these
individuals (three males and nine females) were between 53 and 60 years of age,
without pathological findings in the physical examination or routine laboratory
check (exclusion criteria), and without a history of severe diseases*. They were part
of a ‘Haploid Reference Resource’ of 100 fosmid libraries generated from 100
probands and integral part of the ‘Max Planck Haplome Resource’. For all
probands, genomic four-digit HLA-typing data were obtained; individuals carrying
known MHC sequence haplotypes as well as unknown and disease-related
haplotypes were selected. Genotypic data, generated by Affymetrix 1000K typing
were available for 11 individuals. All probands were of European ancestry and
showed a strong correlation of > 0.95 (linkage disequilibrium (LD) values) with the
HapMap-CEU samples®3°. Ethical consent has been obtained from the Ethics
Committee, the University of Kiel, and informed consent was obtained from the
study participants.

Fosmid library construction. High molecular weight DNA (genomic DNA
(gDNA)) was prepared from 5ml EDTA blood. Fosmid library preparation was
carried out as described?; for necessary key steps see http:/genome.cshlp.org/
content/21/10/1672.full, for description in full detail see http://genome.cshlp.org/
content/suppl/2011/08/03/gr.125047.111.DC1/Hoehe_GR_Supplementary.pdf.
Briefly, 20 pg of gDNA were mechanically sheared to generate DNA fragments of
~40kb. These fragments were used to prepare a complex fosmid library using the
Epicentre EpiFOS Fosmid Library Production Kit according to the manufacturer’s
protocol. The haploid ligation products were packaged into phage particles and
amplified by transfection of Escherichia coli (Epil00) cells. Mass transfection
generated ~ 1.44 x 10° fosmid clones, equivalent to ~7 x coverage of each
haploid genome. Mass transfected E. coli cells were distributed into three 96-well
plates. Thus, each of the 288 wells contained random mixtures of ~ 5,000 fosmids,
representing ~ 5% of the genome. These 288 pools were stored as glycerol-bacterial
stocks to ensure long-term availability of the library. Complexity and evenness of
genome representation were validated, as was library quality. To increase
throughput, the three 96-well plates were combined into one, generating ‘super-
pools’ of ~15,000 fosmids. The probability that complementary haplotypes may
co-occur within a super-pool of ~ 15,000 fosmids is P<0.0112, which was verified
by analysis of our fosmid pool-based sequencing data.

Fosmid pool-based NGS to haplotype-resolve whole genomes. Multiple super-
pools from these libraries were sequenced using a SOLiD platform, as described in
detail?, see http://genome.cshlp.org/content/21/10/1672.full and http://
genome.cshlp.org/content/suppl/2011/08/03/gr.125047.111.DC1/
Hoehe_GR_Supplementary.pdf. Briefly, super-pools were bar-coded and up to 16
multiplexed pools were sequenced in a single flow cell. SOLiD sequencing libraries
were prepared for 32 up to 52 unique fosmid super-pools per individual
(Supplementary Table 1). With each pool covering ~15% of the genome, the
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sequencing of 32 pools from an individual’s library, each at 1-2 X coverage, was
expected (based on earlier simulation studies) to result in a ~7-14 x whole-
genome haploid coverage®. In total, 460 bar-coded fragment libraries and 8 mate-
paired libraries were generated from purified fosmid pool DNA. Specifically, ~3 ug
of purified fosmid DNA was sheared and size-selected DNA (100-150 bp) was
ligated to SOLiD adaptor sequences containing unique barcode identifiers. Bar-
coded SOLiD sequencing libraries were subjected to emulsion PCR. The quality of
generated templated beads was checked by a work flow analysis (WFA) run prior to
full sequencing of at most 650 million templated beads per slide (SOLiD V3 + /V4).
Mate-pair libraries were generated by circularization of sheared and size-selected
fosmid DNA (insert size of 3.5kb) and processed as described. In addition, a
SOLID sequencing library was prepared from pooled gDNA samples from 18
PopGen individuals and sequenced at lower coverage according to standard
protocols to increase the accuracy of heterozygous SNP calling in low coverage
regions.

Fosmid detection. SOLiD reads were mapped and aligned to the reference genome
(hg18) with Bioscope 1.3 (www.solidsoftwaretools.com) using default parameters.
Duplicate reads, reads that did not map uniquely, and low quality reads (< q30)
were removed. Approximately 80% of all sequencing reads were unambiguously
assigned to unique barcodes, allowing separation of multiplexed sequencing reads
into their original fosmid pool.

The detection of fosmid sequences was carried out as described?. Essentially, we
examined coverage pile-ups of mapped reads in each sequenced fosmid pool. To
begin with, the expected coverage was calculated as the ratio of total mapped bases
to expected amount of DNA in the pool. The genomes were divided into bins of
1kb, and each mapped read assigned to its appropriate bin. To detect the fosmids,
we used a sliding window approach to locate suitable length regions containing
reads above the coverage threshold defined dynamically based on the total number
of mapped bases. Fosmids were identified as un-gapped contigs of 3 to 45kb in
length, with their chromosomal coordinates assigned (http://genome.cshlp.org/
content/suppl/2011/08/03/gr.125047.111.DC1/Hoehe_GR_Supplementary.pdf).

SNP detection and quality control. SNPs were called using the fosmid-aware
SNVQ SNP caller, a novel Bayesian model for SNV discovery and genotyping
based on quality scores®. To begin with, we verified for each fosmid pool that only
one of the two alleles was present. Then, the fosmid sequences, which were
separately obtained from each pool, were combined to one virtual pool to identify
phase-informative heterozygous positions. We then performed fosmid-specific
allele calls for these heterozygous positions using the SNVQ SNP caller. To
generate a highly accurate input set for phasing, the following filters were applied:
(i) SNPs with SNVQ quality scores <30 were removed; (ii) SNPs detected in
regions, where the read coverage was too high (>50 x ) or too low (<3 x ), were
removed and therefore variant loci with too low a coverage excluded from
downstream analysis; (iii) novel heterozygous SNPs (not in dbSNP134) were
required to have >3 x coverage of each allele; (iv) artificial SNPs generated by
mapping the hgl8 genome back to itself were removed; (v) SNPs overlapping with,
or residing within, 3 bp of indels (d{bSNP134) were removed. Thus, to eliminate
false positives to ensure the accuracy of phasing, we have accepted a higher
proportion of false negatives. Heterozygous and homozygous SNPs from
Affymetrix 1000 K chip data were integrated into the SNP data set. For each
individual genome, error rates for SNP calling were estimated using Affymetrix
1000 K data as reference (Supplementary Table 2).

Fosmid pool-based phasing. Fosmid sequences were separated and tiled into
contiguous molecular haplotype sequences based on allelic identity at multiple
heterozygous positions within the re§ions of overlap. To this end, we applied our
heuristic phasing algorithm ReFHap!?, which can deliver highly accurate results
even at low coverage and produce high-quality haplotypes at higher efficiency’>.
Briefly, the input matrix for ReFHap contains all haplotype-informative,
heterozygous SNP positions, corresponding fosmid alleles and fosmid coordinates.
The ReFHap phasing algorithm uses a graph construction that allows reduction of
the SIH problem to the Max-Cut problem, facilitating highly precise assembly of
fosmids (http://genome.cshlp.org/content/suppl/2011/08/03/gr.125047.111.DC1/
Hoehe_GR_Supplementary.pdf). The quality of phasing was validated for each
individual genome by comparison to 1000G phasing data. To assist phasing of the
genetically highly complex MHC region, we integrated fosmid pool-based
enrichment data, obtained from 11 individuals by using the Agilent SureSelect and
NimbleGen systems.

Biological analysis methods (I). For analysis of autosomal genes, RefSeq genes®®

were downloaded from UCSC table browser (hg18). All transcripts belonging to a
gene were merged and the coordinates defining this entire region were used for
subsequent analysis, resulting in a final set of 17,861 genes*. To predict a potential
impact of an AA substitution on the structure and function of a human protein, we
used PolyPhen-2 (ref. 15) and SIFT!%. To optimize for sensitivity in this genome-
wide analysis and detect all AAs that potentially affect an individual, we took the
union of PolyPhen-2 and SIFT, using default threshold values of 0.85 and 0.05,
respectively. The annotation of disease-related SNPs was performed using GWA

10

Studies, the Genetic Association Database (GAD) and OMIM data obtained from
UCSC (hg18) table browser.

Use of 1000G consortium data. In the first phase of analyses, we utilized the then
available Pilot Phase data set from 57 European ancestry-based samples, 57CEU%;
haplotype data were downloaded from ftp:/ftp.1000genomes.ebi.ac.uk/voll/ftp/
release/2009_04/). To expand our analyses, we used the Phase I data of 1,092
genomes'! (ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20100804/). We extracted
the subgroup of 372 European ancestr}/-based samples (372EUR) including
57CEU; for details see Abecasis ef al.!! Phased data were available across all
genomes and genes, with ‘no call’ rates between 2.1 and 6% and routine use of
imputation in the case of missing data!l. Key results derived from Pilot Phase
57CEU data set were tested against Phase I 57CEU data ensuring validity of results.
Key results were moreover corroborated in a total of 628 genomes including 256
genomes of East Asian origin'!. 1000G annotation information
(ftp.1000genomes.ebi. ac.uk/voll/ftp/release/ 20100804/) was used to analyze
protein diplotypes and the phase configurations of potentially damaging mutations
in 57CEU and 372EUR.

Molecular versus statistical phasing. For comparative evaluation, we phased the
12 molecularly resolved genomes statistically using the 57CEU data sets as the
required supplementary population data source (ftp://ftp.1000genomes.ebi.ac.uk/
voll/ftp/release/2009_04/). We applied the programme fastPhase’” with default
parameters and option p in order to utilize the 57CEU haplotype data sets to
supplement the input data from each of the molecularly resolved genomes. The
latter included the heterozygous, reference and non-reference calls that had been
obtained for each genome from its combined fosmid sequence read data?, filtered
for the SNP positions that the genome in question shared with the 57CEU data set.
Subsequently, we compared molecular and statistical phase at adjacent SNP pairs
using a ‘sliding window’ approach, and counted the number of phase-discordant
SNP positions. In addition, phase discordance was evaluated for genes (primary
transcripts) and exonic sequences. Phase discordance was calculated, dividing the
number of phase-discordant SNPs assessed genome wide by the total number of
heterozygous positions evaluated. The fractions of phase-discordant SNPs were
also calculated separately for each of the 22 autosomal chromosomes and then
averaged (results shown). The fractions of phase-discordant SNPs in transcripts
and exonic sequences were assessed analogously. Finally, phase-discordant SNPs
were annotated in relation to disease by use of GWA Studies, the GAD and OMIM
data obtained from UCSC hgl8 table browser.

Analysis of unique gene haplotypes and diplotypes. To determine the number
of unique molecular haplotypes and diplotypes, we utilized the ReFHap output data
generated for each individual genome, containing all phased SNP alleles linearly
ordered by their genomic coordinates (hg18). First, these ReFHap output data were
merged into an integrated data set of 14 molecularly haplotype-resolved genomes.
This data set was then consolidated into a haplotype input matrix, with each row
representing a heterozygous coordinate and each column representing one of two
phased nucleotides of an individual genome. Thus, two adjacent columns contain
the unique combinations of nucleotides that characterize the haplotype sequences
of a given genome. The haplotype input files downloaded from the 1000G database
were structured identically. Then, the heterozygous coordinates were intersected
with the RefSeq (hg18) gene coordinates to select the heterozygous positions within
primary transcripts. Corresponding 1000G files were filtered accordingly. This
allowed, for each gene, immediate extraction of a sub-matrix containing all phased
haplotypes of this gene in rows, providing the basis to extract its different haplo-
types. Only those genes were included in cross-subject comparisons that had full
haplotype counts in 5, 10 and 14 molecularly resolved genomes. A haplotype was
defined as being ‘different’, or unique, if its nucleotide sequence differed in at least
one position from the nucleotide sequence of all other haplotypes. We sorted the
rows by alphabetic identity and removed the duplicates to obtain a list of the
unique haplotypes for each gene.

The unique pairs of haplotypes (diplotypes, definition 1) were determined
analogously. To this end, the two haplotypes of each gene were combined to form
one linear nucleotide sequence. This allowed generation of a gene level diplotype
matrix, with each row representing one diplotype. A diplotype was defined as unique,
if its combined nucleotide sequence differed in at least one position from all other
diplotypes. Then each diplotype was compared with all of the other diplotypes of the
gene and duplicates were marked. Since the two haplotypes of a diplotype can be
combined into one linear sequence in two ways, both possible combinations were
evaluated and subjected to comparisons. Duplicate entries were removed to extract
the list of unique diplotypes for each gene in defined number of genomes.

To estimate the potential impact of switch errors in molecular and statistical
phasing on the quantification of unique haplotypes and diplotypes, we have (i)
assessed the distribution of existing phase-discordant sites across all genes in the
molecular data set, and (ii) assessed the probability that genes are assigned false
statistical haplotypes, based on a median ‘switch distance’ of 300kb described for
1000G haplotypes!! (details in Supplementary Methods).

To estimate the potential impact of missing data in the case of incompletely
molecularly haplotype-resolved genomes, we have tested and corroborated the
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quantification of haplotype diversity in simulation studies. These showed that
fractions of 75, 50, 25 and 5% of all genes still produce representative results,
expressed as percentages relative to total input count (deviation in the case of
missing data at most by 0.7%) or as averages across given gene counts (deviation at
most by 0.1%). As an inherent feature of fosmid-based methodology, the genomic
regions that are phased may differ between genomes and the number of genes for
which phase is simultaneously available across genomes decreases for increasing
number of genomes*!.

Once the unique haplotypes and diplotypes were determined for each gene, we
assessed their FoO. These were derived from the gene level haplotype/diplotype
matrices, counting the duplicate rows and calculating their fractions of total
haplotype/diplotype input rows. The assessment of FoOs provided in a first pass
the basis to classify autosomal genes into three distinct categories based on their
frequency spectra. Then, the FoOs of the major, common and un-common
haplotypes were calculated separately for each of these three categories.

Analysis of unique protein haplotypes and diplotypes. Analyses were per-
formed analogous to those described for the gene haplotypes, using the subset of
nsSNPs that cause AA exchanges; thus, ‘protein’ haplotypes and diplotypes refer to
protein-coding sequences and pairs thereof. Averages ‘per gene’ were calculated per
total number of protein-coding sequences assessed, and per variable protein
sequences (shown in Supplementary Table 12c).

Population fit and extrapolation. To extrapolate the number of unique genes and
protein haplotypes and diplotypes (definition 1) to much larger population sizes,
we approximated the data values for 10,000 up to 1 million genomes with a power
function, based on the available data for 5 up to 372 genomes. After fitting the
datapoints for 5, 10, 14, 20, 40, 57, 200, 372 and 628 genomes, the number of
unique gene haplotypes y, were approximated with the function y, = 97.006 x

— 01803 "R2 — 0.96 and the number of unique gene diplotypes y, with the function
Yp=104.87 x ~00836 RZ—0.99. The number of unique protein haplotypes y. were
approximated with the function y. = 38.346 x 0640, R2—0.95 and the number of
unique protein diplotypes y4 with the function yg=70.173 x ~ %347, R =0.96. The
numbers for one million genomes were evaluated in addition under assumption of
phasing (switch) errors (Supplementary Methods).

Extraction of CDP. All key steps to derive the CDP have been outlined in main
text. First, we scored all genes in each genome as ‘protein diplotype’ that had at
least one nsSNP. The resulting genome level data sets were merged into a sample
level set of genes encoding protein diplotypes, and the diplotype frequency
(diplotype counts per total genome count) for each gene derived. Subsequent steps
are as described. To intersect 57CEU and 372EUR, we routinely subtracted 57CEU
from 372EUR as a subset thereof to take advantage of the largest available Eur-
opean sample. The genes that were shared by either intersection (14G with 57CEU
and 57CEU with 372EUR) at the threshold with the strongest overlap (30%) were
integrated into one gene set, the CDP. Thus, this set contained genes that were
validated by presence in at least two of the three data sets analyzed. The sequential
procedure of analyzing overlaps appeared preferable to avoid 14G being the lim-
iting factor for the extraction of a CDP, while on the other side utilizing the
advantage of both molecular and statistical data sources. For additional validation,
we intersected the CDP with the subset of genes that encoded protein diplotypes in
at least 30% of 372EUR, resulting in an overlap of 91%. Simulation studies were
performed to validate the CDP against chance occurrence (Supplementary
Methods) and derive statistical significance values validating the cutoff at a
diplotype frequency threshold of 30%.

Analysis of phase configurations. To analyze the phase configurations of
potentially damaging mutations and their distribution at the whole-genome level,
we first applied PolyPhen-2 (ref. 15) and SIFT! to the ReFHap output files
generated from each of the 14 molecularly phased genomes. The resulting
intermediate output files had the mutations denoted by 1 (alleles different from the
reference sequence)®>, and the reference sequence alleles denoted by 0. The specific
combinations of mutations were contained in two adjacent columns representing
‘Haplotype 1’ and ‘Haplotype 2’, with the rows representing the heterozygous
coordinates and their gene IDs. Corresponding 1000G-derived files for 57CEU and
372EUR were filtered for potentially damaging mutations using the 1000G
annotation information described above and intermediate output files prepared
accordingly.

To assess the concrete phase configurations, we used and automated the
following approach: column 1 representing ‘Haplotype 1’ was examined, moving
5’ to 3’ from cell to cell, each containing allele 1 or 0 assigned to a genomic
coordinate and gene ID. Where only one cell was assigned to a certain gene ID, a
gene had only one potentially damaging mutation and therefore was removed,
ensuring that only those mutations that required phasing were evaluated Then, the
series of alleles across all cells assigned to the same gene ID were stored as units and
subjected to assessment of phase configuration. If all stored alleles in column 1
were solely 1s or 0s, a cis configuration was scored; otherwise a trans configuration
was scored. This procedure generated a result file for each genome, which

contained the gene IDs with cis or trans assigned, allowing immediate calculation
of the cis/trans ratio and the average ratios across 14G, 57CEU and 372EUR.

To examine the distribution of cis and trans configurations at the single gene
level, the genome level result files were merged into sample level data sets, and the
number of cis and trans configurations were assessed separately for each of the
17,861 RefSeq genes. To evaluate the relative abundance of either configuration, the
difference between cis and trans counts was chosen as a measure, because it
appeared more robust than the ratio of cis to trans. The latter proved more
vulnerable to small deviations in the divisor. Moreover, a binomial approach was
tested, calculating for each gene the probability (binominal distribution) of
deviating from a random distribution of cis and trans configurations, leaving most
of the genes (73.5%) abundant for either configuration. Cis- or trans-abundant
genes were distinguished based on difference values as described in main text. To
create an as robust as possible basis for further evaluation of cis- versus trans-
abundant genes, the three sample level data sets were combined to a superset,
compiling a list of 4,757 genes with their cis and trans counts assigned. This list
served as input for the Wilcoxon rank test? to perform GO enrichment analysis
with a preference for either end of the spectrum without setting a concrete cutoff
criterion. Then the 4,757 genes were sorted by difference (cis-trans) and 200 genes
(manually chosen threshold of ~5% from 4,757 genes) extracted from both ends.
These were used as input for pathway analysis.

Analysis of phase differences. Phase differences between genomes and genes
were assessed at shared heterozygous sites (Supplementary Note 7). To begin with,
we performed pair-wise genome comparisons in 372EUR to identify pairs of
identical potentially damaging mutations that resided in both cis and trans con-
figurations. To this end, all phased heterozygous SNPs in each genome were filtered
for mutations using the annotation information at ftp.1000genomes.ebi.ac.uk/voll/
ftp/release/20100804/. Then we performed all possible pair-wise genome com-
parisons (0.5 x 3722 = 69,192 comparisons) to determine the pair-wise overlaps of
mutations by intersecting their chromosomal coordinates. Thus, the resulting
69,192 intermediate data sets contained, for each pair of genomes, the chromo-
somal coordinates of their shared mutations in row with their phase information,
with 1s denoting the perturbing mutations (different from the reference sequence)
and Os the reference alleles. Columns 1 and 2 contained ‘Haplotype 1’ and
‘Haplotype 2’ of the first, and columns 3 and 4 contained both haplotypes of the
second of the intersected genomes. Then, to assess phase differences within each of
these intermediate data sets, a sliding window approach was applied (5" — 3') with
a window size of two mutations. Within the window, phase information from the
first genome was compared with phase information from the second, evaluating
columns 1 and 3: Where one column contained only 1s or Os, and the other both 1
and 0, the pair of mutations was recorded as phase different, with their chromo-
somal coordinates assigned (median distance between two potentially damaging
mutations 3.6 Mb). In the next step, all these pairs were merged into a sample level
data set where the entirety of phase-different mutation pairs was aligned against
their genomic coordinates 5'-3'. This data set was filtered to contain only mutation
pairs that were observed twice. Finally, the entirety of phase-different pairs of
mutations was condensed (removing all duplicate entries) into a sorted list of
anchor mutations (5 mutations), each with their adjacent 3’ ‘phase-alternate’
mutations arrayed in one row. The set of ‘phase-alternate’ genes was extracted by
selecting all phase-different mutation pairs that had both their chromosomal
coordinates within the exon boundaries of the same gene. Notably, in roughly 28% of
these genes, one or more additional perturbing, nonshared mutations were present.

Biological analysis methods (Il). GO-Annotation for all genes was downloaded
from Biomart (February 2012). For gene sets of interest, a GO group enrichment
analysis was performed using FUNC (https://func.eva.mpg.de/)>, choosing the
hyper-geometric test, a cutoff of at least five genes per group, and 1,000
permutations. If the global test indicated significant enrichment, the refinement
was executed for GO groups that were significant before refinement with P<0.05,
and reporting GO groups that were significant after refinement with P<0.05. To
test for enrichment of disease genes we utilized the Gene Set Enrichment Analysis
(http://www.broadinstitute.org/gsea/index.jsp)*. We only chose the category
‘curated gene sets’, which contains sets of genes that have been associated with
certain diseases. We report disease gene sets that are enriched in our gene lists of
interest with P<0.05. Input data for enrichment analyses of categories 1, 2 and 3
genes were not normalized for gene length® (Supplementary Note 3).

For exploring functional content of gene sets of interest, an over-representation
analysis was performed with human molecular pathways using the
ConsensusPathDB tool (CPDB, http://consensuspathdb.org, release 26 (ref. 40).
Gene sets of 200 cis-abundant and 200 trans-abundant genes, serving as input, were
analyzed setting a threshold of P<0.001 (hyper-geometric test). To filter out
unspecific enrichment, we only took pathways into account with minimum overlap
of five genes with the gene sets. As the background set, we used 17,861 RefSeq
genes>® downloaded from the UCSC table browser (hgl8). Only chromosomes
1-22 were included in the analyses. The input gene set representing the CDP was
analyzed requiring a minimum overlap of 20 genes. This accounts for the large
number of input genes (4,269) in this gene set to avoid unspecific enrichment with
larger pathways. Corrections for multiple testing were integrated in all described
programmes applied to GO and pathway analysis.
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Data access. Sequence alignments and haplotypes for all molecularly phased
genomes are available from the website http://www.molgen.mpg.de/ ~ genetic-
variation/ngs_data/. In addition, haplotypes for all molecularly phased genomes
can be viewed in a UCSC browser session at http://www.molgen.mpg.de/ ~ genetic-
variation/UCSC_12phasedgenomes. Data files related to gene categories, the ‘CDP’
and ‘phase-alternate’ genes can be downloaded from http://www.molgen.mpg.de/
~ genetic-variation/diploid_landscape/.
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