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Abstract

The achievable efficiency for external current drive through electron-cyclotron waves in a demon-

stration tokamak reactor is investigated. Two possible reactor designs, one for steady state and one

for pulsed operation, are considered. Beam propagation, absorption and current drive are modelled

employing the beam tracing technique and including momentum conservation in electron-electron

collisions. It is found that for midplane injection the achievable current drive efficiency is limited

by second-harmonic absorption at levels consistent with previous studies. Higher efficiencies can

be achieved by injecting the beams from the top of the machine, exploiting wave absorption by

more energetic (less collisional) electrons. Current drive efficiencies competitive with those usually

obtained by neutral beam current drive are reported. These optimum efficiencies are found for

frequencies around 230 GHz and 290 GHz for the steady-state and the pulsed DEMO, supposed

to operate at a magnetic field B = 5.84 T and B = 7.45 T, respectively.
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I. INTRODUCTION

To be commercially attractive, a fusion reactor based on the tokamak principle should be

operated under stationary conditions, or at least over several hours with a short downtime

in between (during which the central solenoid is recharged while the plant is still producing

electricity). To this aim, the fraction of the plasma current induced by the transformer

during the flattop should be zero or close to zero. This implies a maximization of the

fraction of non-inductive current, which relies on one side on the bootstrap effect [1, 2] and

on the other side on externally driven currents, produced by the injection of electromagnetic

waves or energetic neutral particles [3]. One of the schemes for external current drive

commonly employed in magnetic-confinement fusion devices relies on the injection of mm-

wave beams that resonantly interact with the cyclotron motion of the electrons [4–7]. From

the technological point of view, electron cyclotron current drive (ECCD) is considered the

most mature among the heating and CD systems envisaged for ITER, due to the availability

of reliable high-power sources and to the simplicity of the wave-plasma coupling. In spite of

this, due to the lower CD efficiency (current driven per unit injected power) as compared with

other CD methods, in particular neutral beam injection, ECCD alone is not considered as an

option for ITER steady-state scenarios within the present design [8]. It should be considered,

however, that the design parameters of present ECRH systems (including ITER) have not

been selected with the main goal of maximizing the amount of driven current. Moreover,

the attractiveness of a CD system in a power plant is determined, in addition to the CD

efficiency, also by its efficiency in converting electrical power into injected power (wall-plug

efficiency). To quote an example, conversion efficiencies up to 57% have been recently

reported for ITER-relevant gyrotrons [9], which is higher than presently achieved for NBI

systems. Finally, ECCD has the advantage that the launchers require just a small slot in

the blanket and the first tritium barrier can be incorporated into the vacuum vessel.

The goal of the present paper is to assess the CD efficiency that can be reached with EC

waves in a tokamak under reactor conditions. For this purpose, it is useful to introduce two

figures of merit often employed in the investigations of CD efficiency. The first one is the

dimensionless quantity ζCD , defined as [10]

ζCD =
e3

ε2
0

neR0

Te

ICD

P
≈ 32.7

n20RmIA

TkeVPW

, (1)

where e is the elementary charge, ne is the electron density, Te is the electron temperature,

2



R0 is the major radius of the plasma, ICD is the total driven current, P is the injected

power and the numerical constant in the second step follows from expressing the various

quantities in the units shown as a subscript (the density is in units of 1020 m −3 ). A

second expression for the CD efficiency often used in the literature is

γCD =
n20RmIA

PW

, (2)

sometimes denoted as η20 , which is dimensional and does not contain the temperature in

the denominator. The dimensionless efficiency ζCD should capture the basic dependence of

the CD efficiency on temperature due to the change of collisionality and therefore describe

the effect on CD of varying the region in velocity space where the wave-particle interaction

takes place, whereas γCD is more useful as a measure of the effect of temperature variation

on the total driven current, whose maximization is ultimately the goal of a CD system in a

reactor. Peak on-axis ECCD estimated for ITER Scenario 2 [11] results in ζCD ≃ 0.25−0.3 .

An efficiency comparable to that obtained by NBCD implies ζCD ≃ 0.5 − 0.55 . In terms

of γCD , typical numbers quoted for ITER are around 0.2 for ECCD and 0.3 for NBCD

[8]; for DEMO, Ref. [12] quotes γCD = 0.2 for ECCD at 200 GHz and γCD = 0.45 –

0.55 for NBCD depending on the acceleration voltage. As stated above, the design of the

170 GHz ECRH/ECCD system for ITER does not imply an optimal CD efficiency, but

is rather the result of a compromise between the state of the art in the technology and

needs of different physics applications (heating, bulk CD, stabilization of MHD modes).

In particular, it is known that higher wave frequencies would lead to increased efficiencies

[13, 14]. In the present study, no constraint is imposed on the choice of the parameters

of the EC antenna (frequency, position, steering angles, etc.), since our goal is to evaluate

the achievable efficiency for a set of consistent DEMO configurations and understand the

relevant limiting factors. A study of the flexibility that should be allowed in the antenna

setup in order to cover possible deviations of the plasma from the assumed scenario implies

a knowledge of the design constraints which is still not available. It is noted, however, that

a reactor will likely work around a very restricted operational point, so that experimental

flexibility is not predicted to become a main design driver.

There is still no consensus on the global parameters of a demonstration power plant

(cf. Table I in Ref. [15]). Two different options are considered in this paper. The first

one (describing a tokamak operating under stationary conditions) is close to the ITER-98
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design, while the second one (corresponding to a pulsed machine) is assumed to have a higher

magnetic field, larger major radius and larger aspect ratio [16, 17]. These configurations

are described in Sec. II. The optimization of the ECCD efficiency is discussed in Sec. III.

It is already stressed at this point that the CD modelling performed here, based on linear

absorption and on the adjoint method [18] for the determination of the CD efficiency, includes

the corrections for momentum conservation derived in Ref. [19, 20], that in general lead to a

higher CD efficiency with respect to the case without momentum conservation (typically by

about 20% for large injection angles and high current drive), in agreement with the results

of quasi-linear calculations [13, 21]. In order to allow a better understanding of the results

of Sec. III, some considerations on ECCD under reactor conditions are developed in Sec. IV.

A summary of the results and conclusions are presented in Sec. V.

II. DEMO PARAMETERS

The first DEMO configuration used in our ECCD calculations corresponds to a machine

supposed to operate under steady-state conditions, with major radius R0 = 8.5 m, minor

radius a = 2.83 m, on-axis magnetic field B = 5.84 T, normalized pressure βN = 2.95

(a parameter list for both DEMO models described in this section is given in Table 1).

Two sets of kinetic profiles, calculated using the transport code ASTRA [22], have been

considered. The first one assumes a peaked density profile, according to recent theoretical

studies predicting density peaking with decreasing collisionality [23–25], while the second

set retains the same βN value but assumes flat density inside the H-mode pedestal as in

the most conservative assumptions for the ELMy H-mode scenario for ITER [26].

DEMO model B [T] R [m] R/a Ip [MA] ne0 [1019 m−3] Te0 [keV]

Steady-state (peaked/flat ne) 5.84 8.5 3 19.1/22.8 15.0/9.3 53/64

Pulsed (peaked/flat ne) 7.45 9.6 4 14.4/17.3 16.8/10.4 57/54

Table 1. Parameters for steady state and pulsed DEMO considered in this paper. The two values for plasma

current, central electron density and central electron temperature refer to the peaked-density and flat-density

options, respectively.

More specifically, in the “peaked-density” case, the shape of the density and temperature

profiles is taken according to ASDEX Upgrade “improved H-mode” shots (also known as
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“hybrid” mode of operation [27, 28]) and the actual density is linked to the plasma current

Ip by imposing the Greenwald fraction [29] at the edge ( n20/nGW = 1 at ρp = 0.9 , with

nGW = Ip/πa2 , where Ip is expressed in MA and a in m, and ρp is the square root of the

normalized poloidal flux). The current itself is chosen to be the minimum current required

for ignition, Ploss = Pfus/5 (an H-mode enhancement factor H = 1.2 is assumed), which

turns out to be 19.1 MA for the peaked-density case and 22.8 MA for the flat-density case.

This last value agrees with Ip = 23 MA of Ref. [16], where also a flat density profile was

assumed. The different values of the plasma current in the peaked and flat-density case

explain the different density at the pedestal top in both cases. The temperature profile is

re-scaled such as to maintain the targeted value of βN . A similar approach is explained in

detail in Ref. [30]. Density and temperature profiles are shown in Fig. 1.
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Fig. 1. Density and temperature profiles employed in ECCD calculations (steady-state DEMO) as a function

of the square root of the normalized poloidal flux. Solid blue curves: “flat-density” case; dashed red curves:

“peaked-density” case.

As mentioned in the Introduction, also machine parameters describing a pulsed device

have been considered. To achieve a substantial pulse length (6-hours discharge in this case),

a large central solenoid must be accommodated. Moreover, a large aspect ratio favours long-

pulse operation. Correspondingly, this design features R0 = 9.6 m, a = 2.4 m, B = 7.45

T, βN = 2.6 . Density and temperature profiles have been calculated according to the same

criteria as those for the steady-state design. Ignition is found for a plasma current of 14.4

and 17.3 MA for the peaked-density and flat-density case, respectively.
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III. OPTIMIZATION OF THE ECCD EFFICIENCY

The ECCD calculations reported in this paper are performed with the beam tracing

code TORBEAM [31, 32], which employs the paraxial approximation to describe diffraction

effects [33, 34]. The modelling of absorption and current drive involves the fully-relativistic

absorption routines written for the codes GRAY [35, 36] and TORAY [37], whereas the CD

efficiency is computed using Lin-Liu’s routine [38], augmented with the procedure to ensure

momentum conservation in electron-electron collisions [19, 20, 39] first developed for the

TRAVIS code. The effective charge is Zeff = 2.57 for the steady-state DEMO and Zeff = 1.95

for the pulsed DEMO. This high value of Zeff (which is detrimental for ECCD, as the driven

current scales roughly as (5 + Zeff)
−1 ) has the purpose of ensuring a sufficient level of core

radiated power needed to protect the divertor [16].
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Fig. 2. Contour lines of major radii (in metres) at which the first-harmonic absorption starts to be pos-

sible, i. e. satisfying Ω(R)/ω =
√

1 − N2

‖ (left: steady-state DEMO parameters; right: pulsed DEMO

parameters).

Before turning explicitly to the results of beam-tracing calculations, it is useful to recall

that the (relativistic) resonance condition [40]

nΩ

ω
= γ − N‖u‖ (3)

( n is the harmonic number, Ω = eB/me the electron cyclotron frequency, ω the wave

frequency, γ =
√

1 + u2 the relativistic Lorentz factor, where u = p/mc is the normalized

momentum, and N‖ the component of the refractive index vector N = ck/ω parallel to

the equilibrium magnetic field) can be satisfied only for parallel momenta that lie between
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the two roots

u‖,∓ =
N‖nΩ/ω ∓

√

(nΩ/ω)2 − (1 − N2
‖ )

1 − N2
‖

, (4)

so that first-harmonic absorption becomes possible starting from R ≤ Ω0R0/(ω
√

1 − N2
‖ ) ,

where Ω0 is the cyclotron frequency at the geometric axis. This first resonance point for

first-harmonic absorption is sometimes called the pinch point [13] and is characterized by

u‖,pp =
N‖Ω

ω
(

1 − N2
‖

) . (5)

Fig. 2 reports the values of R at which first harmonic absorption starts for different values

of the wave frequency and of the parallel refractive index. Note that for high N‖ (optimum

CD efficiency is usually found in a range 0.7 <
∼ N‖

<
∼ 0.8 in the calculations presented in

this paper) a small variation of N‖ results in a large shift of the first-harmonic resonance.

600 700 800 900 10001100
R [cm]

-400

-200

0

200

400

z 
[c

m
]

-1
28

.6

-81.0

-33.3

-33.3

14.3

14.3

61
.9

61.9

10
9.

5

109.5

0.0 0.2 0.4 0.6 0.8 1.0
r/a

0.000

0.002

0.004

0.006

0.008

0.010

0.012

dP
/d

V
 [M

W
/m

^3
]

Fig. 3. Propagation of a Gaussian beam (left) and absorption profile (right) for horizontal injection in

the plane of the magnetic axis (steady-state DEMO, peaked density; ω/2π = 215 GHz, toroidal injection

angle β = 40◦ ). The green nearly-vertical line in the left plot shows the position of the first-harmonic cold

resonance Ω/ω = 1 . Slightly less than 10% of the power is absorbed by second cyclotron harmonic for these

parameters.

Current drive for the steady-state DEMO design discussed in Sec. II is analyzed first

and in more detail, as a high CD efficiency is particularly critical for stationary operation.

We start with the performance of an equatorial launcher, injecting the EC power from the

midplane at zero poloidal steering angle α . Fig. 3 shows the propagation of a beam in the

poloidal plane and the corresponding power deposition profile for a typical TORBEAM run.
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Fig. 4. Deposition radius (square root of the normalized poloidal flux) and parallel refractive index for

propagation in the midplane (poloidal injection angle α = 0 ) from (R, Z) = (12.0, 0.5) m as a function of

wave frequency and toroidal injection angle β (steady-state DEMO, peaked density case).

In principle, maximum current drive on a given flux surface can be obtained on the

high-field side, since this minimizes the impact of trapped particles. For this reason, it

is beneficial to choose a high wave frequency, thus setting the resonance layer at smaller

values of R . However, this implies that the wave travels through a broader region where no

first-harmonic absorption is possible, but where second-harmonic absorption can be already

significant. Since second-harmonic interaction reduces the power available for efficient (first-

harmonic) current drive at the desired position, it has an undesired parasitic effect on the

envisaged CD scheme [13, 41]. For DEMO parameters, it is found that parasitic absorption

starts to be significant when the peak first-harmonic absorption is still on the low-field side of

the magnetic axis, so that high-field-side CD turns out to be very challenging (down-shifted

heating schemes relying on injection from the high-field side towards larger major radii

turn out to be unsuitable for driving a large current, basically because of the unfavourable

alignment between the beam and the magnetic field, which leads to low values of N‖ ).

Fig. 4 shows the normalized deposition radius ρp (i. e. the radial position of maximum

absorption) and the corresponding parallel refractive index N‖ for the peaked-density case

as a function of the wave frequency and of the toroidal steering angle β . Increasing the

wave frequency at constant β , the cold resonance is moved towards smaller values of R

and hence to smaller ρp (the interaction takes place on the low-field side, as stated above).

However, increasing simultaneously also β (thus increasing the Doppler shift), the power

can be delivered at a nearly constant radial position (Fig. 4, left panel), but with increasing
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N‖ (Fig. 4, right panel), with a beneficial effect on the CD efficiency. This can be seen

in Fig. 5, where the current drive figures of merit ζCD and γCD , defined respectively in

Eqs. (1) and (2), are shown.
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Fig. 5. Current drive efficiencies ζCD and γCD for the same case as in Fig. 4.

Since the main goal of a CD system in a fusion reactor is to significantly contribute to

the total plasma current, the quantity to be optimized is γCD rather than ζCD . Moreover,

due to the fact that the scaling of the driven current with respect to Te is weaker than

linear (cf. Sec. IV), optimizing ζCD would favour low temperatures, i. e. large values of

ρp . This can be observed in Fig. 5, where the region of maximum ζCD shifts to larger

ρp with respect to the region of maximum γCD . It is stressed that in this paper the issue

concerning the best radial location for ECCD in order to sustain a given scenario is not

addressed; some remarks on this point are presented in Sec. V. The CD efficiency γCD

has a maximum around ω/2π = 215 GHz and β = 40◦ , with values just below 0.32 (the

corresponding driven current being ICD ≃ 28 kA/MW). Repeating the same exercise for

the flat-density case, a maximum γCD around 0.27 is found at nearly the same frequency

and injection angle (note that, because of the lower density, the driven current in the flat-

density case is larger, ICD ≃ 33 kA/MW). The slightly lower efficiency for the flat-density

case as compared to the peaked-density case is due to the fact that the absorption takes

place at larger ρp , where the fraction of trapped particles is higher (the flat-density case

has smaller Shafranov shift, so that the resonance layer intersects the flux surfaces at larger

ρp ). It is noted that these values for frequency, injection angle and γCD are in line with

the results reported in Ref. [13], where a saturation (due to parasitic absorption) at around

γCD = 0.3 for temperatures above 30 keV and for midplane injection was observed (as
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quoted earlier, the steady-state DEMO parameters considered here are in fact similar to the

ITER parameters analyzed in Ref. [13]).

30 40 50 60 70
25

30

35

40

45

50

55  

ρ

α

 

β

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

30 40 50 60 70
25

30

35

40

45

50

55  

γ
CD

α

 

β

0.05

0.1

0.15

0.2

0.25

0.3

0.35
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(10.5, 3.5) m, as a function of the poloidal injection angle α and the toroidal injection angle β , for a

wave frequency of 230 GHz (steady-state DEMO, peaked density case).

The sensitivity of this scheme to second-harmonic absorption can be illustrated by in-

creasing the frequency from 215 to 225 GHz, or decreasing the toroidal injection angle from

40◦ to 35◦ , that leads to an increase of parasitic absorption from 6% of the total absorbed

power to 31% and 23%, respectively.

Clearly, the path through the region of parasitic absorption can be reduced by moving the

EC antenna to smaller major radii. This can be achieved by placing it in the upper part of

the machine, which also ensures good alignment for co-ECCD. The CD efficiency for a beam

injected from (R, Z) = (10.5, 3.5) m is shown in Fig. 6. Values of γCD close to 0.4 can be

reached for ω/2π = 230 GHz with peak at ρp = 0.25 . This higher efficiency can be mainly

ascribed to the fact that the beam energy is absorbed by more energetic (less collisional)

electrons as compared to the case of midplane launch, according to the mechanism discussed

later in Sec. IV. The angular range in the (α, β) plane for which these high CD efficiencies

are obtained is relatively small (right panel of Fig. 6). As already observed with reference

to Fig. 2, a small change in the injection geometry and hence in N‖ can result in a large

shift of the first-harmonic resonance layer.

The dependence of the maximum CD efficiency and of the corresponding deposition radius

on the wave frequency for different launch locations is plotted in Fig. 7.
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wave frequency for the launch positions indicated in the legend (peaked-density case).

It can be seen that by moving the antenna from the midplane to a more and more elevated

position, the maximum efficiency is obtained for higher and higher frequencies. At the same

time, the location of the deposition radius shifts outwards. The maximum efficiency is

achieved where the effect of high Te on the CD efficiency is still not spoiled by the parasitic

absorption. Efficiency values γCD > 0.3 are obtained in a radial range 0.2 <
∼ ρp

<
∼ 0.4 .

For top injection a similar trend as for equatorial injection is found when the peaked-

density case is replaced by the flat-density case, i. e. the CD efficiency decreases and the

maximum efficiency moves towards larger values of ρp (maximum γCD = 0.33 at ρp =

0.37 ).
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density case). Launch positions are (R, Z) = (13.0, 0.5) m and (R, Z) = (12.0, 3.0) , respectively. The

frequency in the top-injection case is 290 GHz

For the pulsed-DEMO design presented in Sec. II, similar qualitative trends as for the
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steady-state option are found. From a quantitative point of view, because of the much

higher magnetic field presently foreseen for the pulsed DEMO in EU-studies, the optimum

CD efficiency occurs at higher frequencies. A comparison between midplane and top injection

is shown in Fig. 8. Again, injection from an upper port leads to higher CD efficiencies. The

best efficiency is achieved for a frequency around 290 GHz. Because of the larger aspect

ratio (smaller trapped-particle fraction) and the smaller value of Zeff , the amount of driven

current can be very high, resulting in CD efficiencies γCD > 0.45 .

Since these high values of γCD are also due to the high temperatures foreseen in the

DEMO options considered so far, a different design for the pulsed DEMO is shortly consid-

ered to conclude this section. The main global parameters are R0 = 9 m, a = 2.25 m,

B = 6.8 T, βN = 2.25 . The central electron temperature Te0 is 19 keV for the peaked-

density case ( ne0 = 16.1×1019 m −3 ) and 26 keV for the flat-density case ( ne0 = 8.8×1019

m −3 ). For these temperatures, which are in the same range as those envisaged for the

ITER ELMy H-Mode scenario, parasitic absorption is far less critical.
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m, as a function of the poloidal injection angle α and the toroidal injection angle β , for a wave frequency

of 270 GHz (lower-temperature pulsed DEMO, peaked density).

The achievable CD efficiency and the corresponding deposition radius for a wave frequency

of 270 GHz and injection from an upper port located at (R, Z) = (11, 2.5) m can be seen

in Fig. 9. The maximum value of γCD is around 0.36. At these temperatures, the centre of

the plasma is not “screened” by parasitic absorption and the maximum CD efficiency occurs

near the magnetic axis.
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IV. CURRENT DRIVE IN REACTOR-GRADE PLASMAS AND INTERPRETA-

TION OF BEAM-TRACING RESULTS

In order to achieve a better understanding of the results presented in Sec. III, some

peculiarities of ECCD under very high temperatures, such as those envisaged for DEMO

plasmas, should be kept in mind. Similar conditions, that have been considered in previous

studies for the old ITER design [13], are approached only in simulations for ITER advanced

scenarios [41]. In particular, two points are addressed in this section, namely the scaling of

the CD efficiency with the electron temperature and the increased efficiency found for top

injection.
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Fig. 10. Driven current (ampere per injected watt) for equatorial (left) and top injection (right), as discussed

in Sec. III (steady-state DEMO, peaked-density case) obtained multiplying the nominal temperature profile

by the factor shown on the horizontal axis (for lower temperatures than those reported in the plots, the

absorption of the EC power starts to be incomplete). Circles refer to calculations that include momentum

conservation, crosses to results obtained in the high-speed limit. The dashed curves are obtained dividing the

driven current by the power fraction (decreasing with increasing temperature) available for first-harmonic

absorption.

As already noted in the previous section, in the case of ECCD in very-high-temperature

fusion plasmas, a major role is played by second-harmonic parasitic absorption, that depletes

the beam energy available for first-harmonic current drive. In Fig. 10 it is shown that

increasing the temperature while keeping all the other parameters unchanged (the beam

trajectory, calculated from the cold-plasma dispersion relation, is not affected by a change

in Te ), the driven current exhibits a sort of saturation at high Te . In Fig. 10, the plasma

parameters and injection locations are those found in Sec. III to correspond to optimum
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efficiency for the steady-state DEMO option, i. e. ω/2π = 215 GHz, β = 40◦ for midplane

injection (left panel) and ω/2π = 230 GHz, β = 42◦ and α = 50◦ for top injection (right

panel). The reason for this “saturation” of the driven current with increasing temperature

is mainly the increasing second-harmonic absorption. The dashed lines in Fig. 10 show

in fact that “renormalizing” the driven current to the energy effectively available at each

temperature for first-harmonic current drive leads to a monotonous dependence on Te .

However, despite of this renormalization, the scaling of the CD efficiency with Te remains

weaker than linear. The reason for this behaviour is discussed in the following (cf. Fig. 11).

Incidentally, it is noted that Fig. 10 also confirms that the typical impact of including

momentum conservation in ECCD calculation is of the order of 20%, as mentioned in Sec. I.

To further clarify the dependence of the CD efficiency on the electron temperature, it is

instructive to consider the evolution of the ratio between the driven current density j and

the absorbed power density p while the beam propagates through the region of resonant

interaction. In Fig. 11, j/p is plotted as a function of the local temperature along the

beam trajectory (only the first-harmonic region is considered). In both the left and right

panels, the upper bunch of curves is obtained with momentum conservation, the lower

bunch in the high-speed limit. In each bunch, the temperature profile is varied as in Fig. 10

multiplying the temperature profile by a factor between 0.6 and 1.2. The dashed lines

connecting the symbols on the curves allow us to infer the dependence of the CD efficiency

on the temperature, since equal symbols refer to equal positions along the ray.

At the start of first-harmonic absorption (i. e. at the pinch point where Ω/ω =
√

1 − N2
‖ ,

marked by diamonds), the ratio j/p is nearly independent from Te in the high-speed limit,

while it slightly decreases with Te when momentum conservation is included. Later on, a

nearly linear dependence of j/p on the temperature can be observed at each position along

the beam path. The slope of the corresponding straight line is not constant, but rather

increases while the beam crosses the resonant region. At higher temperatures, when wave

absorption is stronger, the current is driven closer to the pinch point (see also Fig. 12 that

show the position of peak current drive max(dICD/ds) , where s is the arclength along the

central ray). As we have just observed, closer to the pinch point the dependence of the CD

efficiency on Te is weaker (in the limiting case of very strong absorption just after the pinch

point, there would be no temperature dependence at all in the high-speed limit). This is

the main reason for the less-than-linear scaling of the driven current with respect to Te .
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Fig. 11. Ratio j/p as a function of the temperature along the ray for equatorial (left) and top injection

(right). The nominal temperature profile (steady state DEMO, peaked density) is multiplied by 0.6 (blue

solid curve), 0.8 (red dashed), 1.0 (black dash-dotted) and 1.2 (green dotted). The upper curves refer to

momentum-conserving ECCD calculations, the lower curves to high-speed-limit results. Equal symbols along

the curves correspond to equal positions along the ray.

This behaviour can be understood from the analytic expression for j/p , which can be

written in the form [cf. e. g. Eq. (7) of Ref. [42]]

j

p
∝

∫ u‖,+

u‖,−
du‖P(u‖)ηu(u‖)

∫ u‖,+

u‖,−
du‖P(u‖)

(6)

where P and ηu represent the normalized absorbed power and the specific current drive

efficiency per unit momentum u , respectively, and the resonance condition is used to express

the dependences on u and u⊥ in terms of u‖ . In Eq.(6), the dependence on temperature is

mainly contained in the Maxwellian factor entering P . Thus, at the first point in resonance,

where the integration range collapses to the single point u‖,− = u‖,+ = u‖,pp , see Eq. (5),

the factor P(u‖,pp) simplifies from Eq. (6) and j/p is proportional to ηu(u‖,pp) , which is

independent on Te in the high-speed limit and decreases slightly with Te if momentum

conservation is included, as shown in Fig. 10. As the resonance range in u‖ “opens”, the

factor ηu , which increases with velocity (roughly as u‖u(u‖) ), receives more and more

weight as the temperature increases. The “local” linear scaling of j/p with Te can be then

inferred simply from a dimensional argument and is of the form j/p ∝ a + bTe rather than

j/p ∝ Te . The same scaling applies to the total driven current only if parasitic effects are

absent and if width of the region where the wave-plasma interaction takes place does not

change significantly with temperature. Both requirements are not met for high-CD schemes

under reactor conditions.
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Fig. 12. Ratio j/p as a function of the normalized radial coordinate ρp calculated along the beam trajectory

for equatorial (left) and top injection (right). As in Fig. 10 and 11, the nominal temperature profile (steady

state DEMO, peaked density) is multiplied by 0.6 (blue solid curve), 0.8 (red dashed), 1.0 (black dash-

dotted) and 1.2 (green dotted). The upper curves refer to momentum-conserving ECCD calculations, the

lower curves to high-speed-limit results. The open circles show the position of peak current drive dI/ds .

The previous discussion allows us also to understand an important feature of ECCD from

a vertically displaced antenna as compared to midplane injection. In Fig. 12, the ratio j/p

of Fig. 11 is shown now as a function of ρp along the ray. First harmonic absorption starts

at ρp slightly larger than 0.5 for equatorial launch and at ρp slightly smaller than 0.5 for

top launch, the difference being due to the higher wave frequency in the latter case. It is

important to stress, however, that N‖ and Ω/ω at the pinch point are very close in both

cases. As seen in Fig. 12, j/p decreases much faster with ρp for midplane injection than

for top injection. The reason for this behaviour is the fact that the variation of Ω(R)/ω

for oblique crossing of the resonance is slower than for horizontal crossing. Correspondingly,

the resonant momentum range expressed by Eq.(4) opens more slowly. Since the integrands

involved in j/p , cf. Eq. (6), peak near the lower integration bound u‖,− because of the

Maxwellian factor in P(u‖) , if u‖,− decreases more slowly from its value at the pinch

point, the wave is damped on faster electrons and the Fisch-Boozer effect [43] is enhanced.

The values of j/p at peak current drive are about 20% higher for top injection than for

equatorial injection, accounting for most of the efficiency increase observed in TORBEAM

calculations (the remaining gain in CD can be ascribed to trapped-particle effects, since for

top injection the absorption is not located in the midplane as for equatorial injection). At

the same time, the damping becomes weaker and the absorption profile broadens, as shown

by the different ρp -ranges in the left and right panel of Fig. 12. The process just described
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can be considered as the relativistic, low-field-side counterpart of the effect discussed by

Karney and Fisch [44] for the case of X-mode current drive from the high-field side.

V. SUMMARY AND CONCLUSIONS

Before summarizing the results of this paper, it is useful to add some remarks concerning

the theoretical model adopted here to calculate propagation and absorption of EC wave

beams. The use of the cold-plasma dispersion relation to determine the beam path should

be well justified, since warm-plasma effects are reportedly largest for close-to-perpendicular

propagation [45], whereas in this paper high N‖ -values are considered. However, an explicit

check of the validity of this conclusion would be desirable. One could also question the

validity of the paraxial approximation for schemes with significant oblique incidence onto

the resonance layer. In this case, good confidence is given by recent results showing that the

paraxial technique is in very good agreement with the exact solution of the wave equation

obtained in a simplified planar geometry intended to mimic the conditions typical for heating

and CD from the ITER upper launcher [46, 47]. The combination of linear absorption and

adjoint determination of the CD efficiency offers a well-benchmarked, reliable tool for the

investigation of the CD efficiency. The broad absorption profiles typical of high-CD injection

geometries result generally in relatively low power densities, ruling out quasi-linear effects

[48] even for an injected power of several hundred MW (except possibly for the very centre

of the plasma column, which is however usually not affected by the peak EC deposition in

our simulations). An evaluation of synchrotron losses on the CD efficiency [49] is still to be

addressed.

This paper shows that a comparatively high ECCD efficiency can be obtained in reactor-

grade plasmas. The estimates for the figure γCD for the steady-state DEMO design exhibit

peak values between 0.3 and 0.4 depending on the assumptions on the kinetic profiles,

and even above this value for the high-magnetic field, pulsed reactor considered here. The

maximum efficiency is usually achieved at poloidal radii around ρp ≃ 0.3 , where high

temperatures are attained at still low parasitic absorption. The high efficiency reported here

is due to several factors. First of all, the EC driven current has been computed including

momentum conservation, which leads to higher values (by about 20%) as compared to the

the high-speed-limit scheme usually employed in linear calculations and in systems codes
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(momentum conservation was included in the quasi-linear simulations of Ref. [13], where

indeed similar CD efficiencies for equatorial injection were reported). Moreover, the electron

temperatures resulting from our assumptions on the density profile and on the target βN

are somewhat higher than those considered in previous analyses. However, to circumvent the

saturation of the CD efficiency at high temperatures due to increasing parasitic absorption,

the injection position and the frequency must be selected carefully. High CD efficiency is

obtained moving the launch position towards the high-field side. This can be achieved by

injecting the beams from a port in the upper part of the vessel.

The optimum beam frequencies emerging from the DEMO parameters considered in this

study are in a range around 230 GHz for the steady-state and 290 GHz for pulsed operation.

A high CD efficiency is clearly more crucial for a stationary than for a pulsed tokamak,

so that the constraints on the frequency could be relaxed in the latter case. Anyhow, this

implies a serious challenge to the developers of gyrotron sources. On the other hand, one

could observe that this applies also to other possible candidates for bulk current drive in a

tokamak reactor, as e. g. neutral beam injection at 1 to 2 MeV.

The optimization of the CD efficiency is only a first step towards the design of a CD

system for reactor operations. The optimum ECCD configuration depends on the kind of

plasma scenario envisaged for (nearly) steady-state discharges. In general, it can be assumed

that the “best” location for ECCD will result from the balance between the need for high

CD efficiency (which would privilege the hotter plasma core) and that for high bootstrap

fraction (implying that q should not drop to too low values, which is of course also desirable

for stability reasons). In this sense, one could speculate that the fact the peak CD efficiency

is found here around ρp ≈ 0.3 matches these requirements. Obviously, since this system

is supposed to drive a significant part of the plasma current, the effects of the injection of,

say, at least 200 MW on a given magnetic configuration and on the corresponding profiles

is to be investigated self-consistently, as done e. g. in Ref. [12]. This study is planned for

the near future.

ACKNOWLEDGMENTS

We would like to dedicate this paper to the memory of Grigori V. Pereverzev.

This work has been partly performed within the frame of the EFDA Power Plant Physics

18



& Technology Work Programme under task WP12-DAS-HCD01-T05.

[1] R. J. Bickerton, J. W. Connor, and J. B. Taylor, Nature Physics 229, 110 (1971).

[2] A. G. Peeters, Plasma Physics and Controlled Fusion 42, B231 (2000).

[3] C. Gormezano et al., Progress in the ITER Physics Basis Chapter 6: Steady State Operation,

Nuclear Fusion 47, S285 (2007).

[4] M. Bornatici, R. Cano, O. De Barbieri, and F. Engelmann, Nuclear Fusion 23, 1159 (1983).

[5] V. Erckmann and U. Gasparino, Plasma Physics and Controlled Fusion 36, 1869 (1994).

[6] T. C. Luce, IEEE Transactions on Plasma Science 30, 734 (2002).

[7] R. Prater, Physics of Plasmas 11, 2349 (2004).

[8] F. Wagner et al., Plasma Physics and Controlled Fusion 52, 124044 (2010).

[9] K. Sakamoto et al., Nuclear Fusion 49, 095019 (2009).

[10] T. C. Luce et al., Physical Review Letters 83, 4550 (1999).

[11] G. Ramponi, D. Farina, M. A. Henderson, E. Poli, G. Saibene, O. Sauter, H. Zohm, and

C. Zucca, Nuclear Fusion 48, 054012 (2008).

[12] J. Garcia et al., Nuclear Fusion 48, 075007 (2008).

[13] R. W. Harvey et al., Nuclear Fusion 37, 69 (1997).

[14] ITER Physics Basis Expert Group on Energetic Particles, Heating and Current Drive, ITER

Physics Basics Editors: Chapter 6: Plasma Auxiliary Heating and Current Drive, Nuclear

Fusion 39, 2495 (1999).

[15] H. Zohm, Fusion Science and Technology 58, 613 (2010).

[16] D. J. Ward and W. E. Hen, EFDA Task Report TW6-TRP-002 (European Fusion Develop-

ment Agreement, 2007).

[17] D. J. Ward, Plasma Physics and Controlled Fusion 52, 124033 (2010).

[18] T. M. Antonsen and K. R. Chu, Physics of Fluids 25, 1295 (1982).

[19] N. B. Marushchenko, H. Maassberg, and Y. Turkin, Nuclear Fusion 48, 054002 (2008).

[20] N. B. Marushchenko, H. Maassberg, and Y. Turkin, Nuclear Fusion 49, 129801 (2009).

[21] N. B. Marushchenko et al., Physics of Plasmas 18, 032501 (2011).

[22] G. V. Pereverzev and P. N. Yushmanov, ASTRA: Automated System for Transport Analysis

in Tokamaks (IPP Report 5/98, 2002).

19



[23] C. Angioni et al., Physical Review Letters 90, 205003 (2003).

[24] G. V. Pereverzev et al., Nuclear Fusion 45, 221 (2005).

[25] M. Greenwald et al., Nuclear Fusion 47, L26 (2007).

[26] T. Casper et al., Nuclear Fusion 52, accepted for publication (2012).

[27] A. Staebler et al., Nuclear Fusion 45, 617 (2005).

[28] A. C. C. Sips et al., Nuclear Fusion 47, 1485 (2007).

[29] M. Greenwald et al., Nuclear Fusion 28, 2199 (1988).

[30] G. Tardini et al., Nuclear Fusion 49, 075004 (2009).

[31] E. Poli, G. V. Pereverzev, A. G. Peeters, and M. Bornatici, Fusion Engineering and Design

53, 9 (2001).

[32] E. Poli, A. G. Peeters, and G. V. Pereverzev, Computer Physics Communications 136, 90

(2001).

[33] G. V. Pereverzev, Reviews of Plasma Physics 19, 1 (1996).

[34] G. V. Pereverzev, Physics of Plasmas 5, 3529 (1998).

[35] D. Farina, Fusion Science and Technology 52, 154 (2007).

[36] D. Farina, Fusion Science and Technology 53, 130 (2008).

[37] E. Westerhof, Implementation of TORAY at JET (Rijnhuizen Report RR-89-183, 1989).

[38] Y. R. Lin-Liu, V. S. Chan, and R. Prater, Physics of Plasmas 10, 4064 (2003).

[39] N. B. Marushchenko, C. D. Beidler, and H. Maassberg, Fusion Science and Technology 55,

180 (2009).

[40] M. Brambilla, Kinetic Theory of Plasma Waves (Clarendon Press, Oxford, 1998).

[41] D. Farina et al., Nuclear Fusion 52, 033005 (2012).

[42] D. Farina and R. Pozzoli, Physics of Fluids B 2, 574 (1990).

[43] N. J. Fisch and A. H. Boozer, Physical Review Letters 45, 720 (1980).

[44] C. F. F. Karney and N. J. Fisch, Nuclear Fusion 21, 1549 (1981).

[45] E. Westerhof, Plasma Physics and Controlled Fusion 39, 1015 (1997).

[46] O. Maj, G. V. Pereverzev, and E. Poli, Physics of Plasmas 16, 062105 (2009).

[47] O. Maj, A. A. Balakin, and E. Poli, Plasma Physics and Controlled Fusion 52, 085006 (2010).

[48] R. W. Harvey, M. G. McCoy, and G. D. Kerbel, Physical Review Letters 62, 426 (1989).

[49] S. V. Kasilov and W. Kernbichler, Physics of Plasmas 3, 4115 (1996).

20


