Ion chemistry in H$_2$-Ar low temperature plasmas

M. Sode,1,a) T. Schwarz-Selinger,1 and W. Jacob1

Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstraße 2, D-85748 Garching, Germany.

(Dated: 12 August 2013)

A rate equation model is devised to study the ion composition of inductively coupled H$_2$-Ar plasmas with different H$_2$-Ar mixing ratios. The model is applied to calculate the ion densities n_i, the wall loss probability of atomic hydrogen β_H, and the electron temperature T_e. The calculated n_i's of Ar$^+$, H$^+$, H$_2^+$, H$_3^+$ and ArH$^+$ are compared with experimental results. Calculations were made for a total gas pressure of 1.0 Pa. The production and loss channels of all ions are presented and discussed in detail. With the production and loss rates the density dependence of each ion on the plasma parameters are explained. It is shown that the primary ions H$_2^+$ and Ar$^+$ which are produced by ionization of the background gas by electron collisions are effectively converted into H$_3^+$ and ArH$^+$. The high density of ArH$^+$ and Ar$^+$ is attributed to the low loss to the walls compared to hydrogen ions. It is shown that the H$^+/H_2^+$ density ratio is strongly correlated to the H/H$_2$ density ratio. The dissociation degree is around 1.7%. From matching the calculated to the measured atomic hydrogen density n_H the wall loss probability of atomic hydrogen on stainless steel β_H was determined to be $\beta_H = 0.24$. The model results were compared with recently published experimental results. The calculated and experimentally obtained data are in fair agreement.

PACS numbers: 52.20.-j, 52.25.-b, 52.27.Cm, 82.33.Xj

Keywords: argon, hydrogen, ICP, ion densities, energy-resolved mass spectrometry, rate equation system

a)Electronic mail: maik.sode@ipp.mpg.de
I. INTRODUCTION

In surface engineering H\textsubscript{2}-containing plasmas have a wide range of applications, for example in etching4, film deposition5-7 and surface passivation, hydrogenation and oxide reduction8-11. Furthermore, H\textsubscript{2}-Ar mixtures were successfully applied for hydrogenation of thin film transistors12 and to control the surface properties of polymers13. Hopf et al. observed chemical sputtering of hydrocarbon films with very high rates if energetic Ar and atomic hydrogen interact simultaneously14 with carbonaceous surfaces. Therefore, Voitsenya et al. proposed H\textsubscript{2}-Ar discharges for the removal of hydrocarbon deposits in magnetic fusion devices15.

In a previous study ion densities, the electron density, the electron temperature, the gas temperature and the dissociation degree were measured in a H\textsubscript{2}-Ar inductively coupled low-temperature plasma16. Quantitative results for the considered ion species were shown as a function of Ar fraction. With the electron density measured with the Langmuir probe and a simple model for the sheath, absolute densities of all ion species present in the plasma were determined. In addition, electron temperature, atomic hydrogen density, and gas temperature were measured.

To enable a comparison of these experimental results16, in particular the ion densities, we devised a rate equation model. Comparable models for H\textsubscript{2}-Ar low-temperature plasmas have been published earlier. For example, Kimura and Kasugai measured the electron temperature and electron density as well as the density of atomic hydrogen in argon hydrogen ICP plasmas and compared the results with a global model of the discharge17. They also presented modeling results for the mass-resolved ion fluxes but unfortunately they did not measure them. Hjartarson et al.18 studied a global model for a low pressure high density H\textsubscript{2}-Ar discharge. Ion densities were calculated but only compared to uncalibrated signal intensities of the ion species from Gudmundsson19,20. Comparable quantitative comparisons between experimental and modeling results were previously published for hollow cathode dc discharges in H\textsubscript{2}-Ar mixtures by Méndez and coworkers21,22. Their glow discharge is operated at a high voltage of several hundred volts and the sheath is relatively thick. The ion mean free path length for their plasma conditions (between 0.5 and 10 Pa) is smaller than the sheath thickness. Therefore, collisions of high energetic ions in the sheath occur which significantly change the ion energy and ion species distributions. Furthermore, they have to take high energetic electrons (\textgreater\ 50 eV) into account to describe the appearance of Ar2+ well. The ion species Ar2+ was not observed experimentally in our studies due to the absence of such high energetic electrons. As a result, a direct comparison with the here studied system is not possible.

The article is organized as follows: A short description of the measured quantities is given in Sec. II. In Sec. III the rate equation model is presented. In Sec. IV the calculated results are presented. The discussion is given in Sec. V. The summary can be found in Sec. VI.
FIG. 1. Schematic representation of the plasma chamber: (1) vacuum chamber made of stainless steel, (2) quartz dome, (3) planar inductive coil, (4) upper electrode, (5) plasma volume. The distance between the upper and lower electrode is $l_{el} = 60$ mm. The upper and lower electrode are circular with a radius of $r_{el} = 65$ mm. The chamber has a radius of $r_{ch} = 125$ mm and the total height is $l_{ch} = 360$ mm.

II. EXPERIMENT

In the following we subsume briefly the experimental results. A detailed description of the experimental procedures as well as the measured results can be found in Ref.16. The experimental setup consists of a cylindrical stainless steel plasma chamber. The discharge is generated by a planar coil with 5 turns and 100 mm in diameter. The coil is driven by a radio frequency (rf) generator with a maximum power of 600 Watt operating at 13.56 MHz (Dressler Cesar 136). The coil is separated from vacuum by a quartz dome23. The top part of the dome is 10 mm thick and acts as the dielectric window for the rf power. The outer diameter d_{el} of the quartz dome and the upper steel electrode is $d_{el} = 2r_{el} = 131$ mm where r_{el} is the corresponding radius. The distance l_{el} between both electrodes is $l_{el} = 60$ mm. The plasma is mainly generated in the assumed cylinder with the volume $V = \pi r_{el}^2 l_{el}$ between the two electrodes. Fig. 1 shows a schematic representation of the plasma chamber.
Measurements were conducted for a total gas pressure of 1.0 Pa. The plasma chamber was pumped with a turbo molecular pump with Hohlweck stage to achieve a good compression also for H₂. A butterfly valve in front of the turbo molecular pump allows to throttle the pumping speed. All experiments were conducted with a fixed butterfly position so that the residence time of the species was constant. The incoming gas flows were adjusted with mass-flow controllers. Mass spectrometer investigations have shown that the flux ratios of Ar and H₂ are not identical to the partial pressure ratios for the applied experimental conditions. The actual Ar partial pressure fractions \(f_{\text{Ar}} \) used in the experiment were, therefore, determined with a mass spectrometer\(^\text{16} \). The partial pressure fractions for Ar and H₂ for determining \(f_{\text{Ar}} \) were measured prior to plasma ignition. These values do not differ significantly from the values measured after plasma ignition.

The H₂-Ar plasmas were characterized by an energy-dispersive mass spectrometer (plasma monitor, PM), a retarding field analyzer, optical emission spectroscopy and a Langmuir probe. A procedure was presented that allows determining quantitatively the absolute ion densities of \(\text{Ar}^+ \), \(\text{H}^+ \), \(\text{H}_2^+ \), \(\text{H}_3^+ \) and \(\text{ArH}^+ \) from the plasma monitor raw signals. This calibration procedure included applying a Langmuir probe to convert plasma monitor signals in absolute fluxes. The conversion from fluxes to densities was based on a sheath and density profile model. The calibration procedure resulted in a significant change of the relative contributions of the \(\text{H}_x^+ \), \(\text{Ar}^+ \), and \(\text{ArH}^+ \) plasma monitor signals compared with the derived absolute densities for the \(\text{ArH}^+ \), \(\text{Ar}^+ \), and the \(\text{H}_x^+ \) ions. This is mainly due to two factors: the mass dependence of the transmission of the PM and the conversion from ion fluxes to ion densities.

The rotational temperature, \(T_{\text{rot}} \), of the hydrogen molecule was derived from the rotational lines \(Q_1 - Q_3 \) of the Q-branch of the H₂ Fulcher-\(\alpha \) diagonal band (\(v' = v'' = 2 \)) to (540±50) K. This value was taken as an estimate of the gas temperature and was applied to calculate the gas densities for the model. The dissociation degree of hydrogen is here defined...
as \(n_H/n_{H_2}\) with \(n_H\) being the atomic hydrogen density and \(n_{H_2}\) the molecular hydrogen density in the plasma. \(n_H/n_{H_2}\) was determined by actinometry using the ratio of the \(H_3/Ar_{750}\) lines. The dissociation degree was around 1.7 % with an error \(\Delta(n_H/n_{H_2}) = 0.4\%\). It was nearly independent on Ar content in the investigated mixing ratio range.

With the Langmuir probe the electron energy distribution function (EEDF), the electron temperature \(T_e\), and the electron density \(n_e\) were measured. The EEDFs of the considered plasma conditions can be described by a bi-Maxwellian distribution with two distinct electron temperatures. The low energy regions of the EEDFs are characterized by a higher electron temperature than the high energy region. \(T_e\) determined from the high energy region of the EEDF was in good agreement with the \(T_e\) determined from the plasma potential. Additionally, the electron temperature was calculated by a simple model based on the particle balance for one ion species only. A Maxwellian EEDF was used to obtain the required ionization rate coefficients for the particle balance equation. The such calculated \(T_e\) agreed with the measured values obtained from the high energy part of the EEDF\(^{16}\). It was concluded that the \(T_e\) determined from the plasma potential is the most reliable \(T_e\) to characterize this plasma (see Sec. IV D in Ref.\(^{16}\)). The measured \(T_e\) decreases from 5.2 eV for pure \(H_2\) to 2.9 eV for pure \(Ar\). Increasing the Ar fraction at constant rf input power caused a strong increase of the plasma density. Therefore, the rf power was adjusted in order to minimize the variation in \(n_e\). \(n_e\) was maintained in a range of about \(3 \times 10^{16}\) m\(^{-3}\) for all Ar containing mixtures. For the pure \(H_2\) plasma \(n_e\) decreased to about \(1 \times 10^{16}\) m\(^{-3}\).

The measured mass-resolved ion densities \(n_i\) of species \(i\) and the electron density \(n_e\) are shown in Fig. 2 as function of \(f_{Ar}\). The considered \(H_2\)-Ar plasma consists of five main ion species. For the pure hydrogen plasma the dominant ion species is the \(H_3^+\) ion with a measured density of \(6.3 \times 10^{15}\) m\(^{-3}\). \(H_2^+\) and \(H^+\) show a 3 times and 20 times lower measured density than \(H_3^+\), respectively. With increasing \(f_{Ar}\) the measured \(H_3^+\) densities \((x = 1, 2, 3)\) decrease nearly exponentially with decreasing \(H_2\) fraction while the ratio between them remains roughly constant. In mixed \(H_2\)-Ar plasmas the \(ArH^+\) ion is the dominant ion and contributes about 2/3 to the total ion density in the Ar fraction range from 12.6 to 72.3 %. \(Ar^+\) is the second most abundant ion species in this range and shows as expected an increasing measured density with increasing \(f_{Ar}\).

III. MODEL

A. General remarks

In attempts trying to theoretically describe low-temperature plasmas typically global models are used to calculate the electron temperature, the electron density and the species densities by solving the power and the particle balance under the quasi-neutrality condition self-consistently\(^{17,18,24-26}\). In contrast, the model applied here considers only the particle balance under quasi-neutrality condition. As consequence, the electron density cannot be calculated in our model and has to be provided as input parameter.

We apply a rate equation system to calculate the ion densities \(n_i\), the wall loss probability of atomic hydrogen \(\beta_H\), and the electron temperature \(T_e\) in \(H_2\)-Ar plasmas with different
mixing ratios. The model considers six charged species (electrons, Ar\(^+\), ArH\(^+\), H\(^+\), H\(_2^+\), H\(_3^+\)), one radical species (H atom) and the two background gas species Ar and H\(_2\). For argon three excited species are considered which are presented in Sect. III G. Altogether the model comprises 12 species. 9 species densities are calculated. The densities of the 3 species, H\(_2\), Ar and the electrons, are used as input parameters. For the particle balance, collisions in the volume and losses to the plasma-surrounding walls are taken into account. The model is zero-dimensional and predicts species densities in the plasma center. In the following subsections the model assumptions, the calculation procedure, the volume reactions, and the wall losses are discussed in detail.

The main input parameters for the model are all the required collision rate coefficients. This data basis is explained in detail in Sec. III E. The remaining input parameters are experimentally obtained quantities, namely the electron density \(n_e\), the gas temperature \(T_g\), the total pressure \(p\), the radical density \(n_H\), the Ar fraction \(f_{Ar}\), and the geometry of the discharge vessel. The background gas densities \(n_j\) (\(j = H_2\) or Ar) are calculated by the ideal gas law \(n_j = p_j/(k_BT_g)\) where \(k_B\) is the Boltzmann constant. The model output values are \(n_i\), \(T_e\), and \(\beta_H\). The \(n_i\)'s are obtained by solving the system of rate equations which is explained in Sect. III C. A variation in \(T_e\) which is, strictly speaking, an input parameter in the rate equation system is used to fit the quasi neutrality as boundary condition. This is explained in detail in Sect. III D. A variation in \(\beta_H\) which is, strictly speaking, also an input parameter in the rate equation system is used to fit the calculated to the experimentally obtained atomic hydrogen density. This is explained in detail in Sect. III F 2.

B. Model assumptions

The model is based on the following assumptions and simplifications:

1. The model is 0-dimensional.
2. The loss of particles to the surrounding walls is volume averaged.
3. Electron collisions with the background gas (H\(_2\) and Ar) are taken into account.
4. Heavy particle (i.e. ions and atomic hydrogen) collisions with the background gas (H\(_2\) and Ar) are considered.
5. Three-body interactions are neglected due to the low pressure.
6. The temperature of the neutrals and ion species is described by one gas temperature \(T_g\) which is set equal to the measured rotational temperature \(T_{rot}\) of the H\(_2\) molecules. Only for atomic hydrogen a higher temperature is used (see Sect. III F).
7. The ion and radical densities are calculated for the steady state.
8. H\(^-\) is not considered here due to very low concentrations with respect to the electron density\(^{17}\).
9. Vibrationally excited H\(_2\) is not considered.
10. Excited Ar (1s and 2p states) is considered (see Sect. III G).

In general, volume recombination processes are improbable in this pressure regime and with chamber dimensions in the 100 mm range. For electron-ion recombination reactions this is due to the low ionization degree of the order of \(10^{-4}\). Nevertheless, electron-ion
recombination reactions are not neglected in this work but are of secondary importance. On the other hand, recombination of hydrogen atoms to molecules in the plasma volume are neglected since for recombination a third collision partner would be required which is rather improbable in the considered pressure regime.

C. Particle balance

The rate equation system is based on the continuity equation:

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (\vec{\Gamma}_i) = R^G_{tot} - R^L_{tot},$$

(1)

where n_i is the density of species i, $\vec{\Gamma}_i = n_i \vec{v}_i$ is the particle flux to the wall with velocity \vec{v}_i, R^G_{tot} and R^L_{tot} are the total reaction rates for production (gain) and destruction (loss) of species i, respectively. In steady state, total production and loss rates must balance so that the time variation $\partial n_i/\partial t$ for each species i is zero. In this way a set of equations for the steady-state particle densities is compiled.

For a typical volume reaction k where a species m with density n_m reacts with species j with density n_j to create species i, the gain rate for i is:

$$R^G_{i} = n_m n_j K_k.$$

(2)

K_k denotes the rate coefficient for this reaction k which is a measure for the corresponding reaction probability. Here k is used as index for an individual reaction. Similarly, for the loss of i in a volume reaction \tilde{k} where i reacts with the species \tilde{j} the loss frequency $\nu^L_{\tilde{k}}$ is given by $\nu^L_{\tilde{k}} = n_j K_{\tilde{k}}$. It is related to the corresponding reaction rate by $R^L_{\tilde{k}} = n_i \nu^L_{\tilde{k}}$.

D. Calculation

Solving Eqn. 1, which is a rate equation system with many species, is in general associated with some difficulties briefly discussed in the following. In general, the investigated rate equation system can be nonlinear. Furthermore, the rate equations are coupled and the rate coefficients can have different powers so that the equations become stiff. Stiffness means that the differential equation system has simultaneously solution parts which vary very slowly in time and other parts which change very fast. To solve Eqn. 1 with the aforementioned difficulties the online available solver ”Kinetic PreProcessor”27,28 (KPP) is used for the nonlinear, coupled and stiff rate equation system. An advantage of KPP is that the rate equations are generated automatically from the given set of reactions. In KPP the rate equation system is solved using the Rosenbrock algorithm. The algorithm is based on semi-implicit Runge-Kutta methods with adaptive stepsize. To achieve self-consistency the quasi-neutrality has to be fullfiled which is imposed externally as an additional boundary condition. The calculated (index c) electron temperature T^c_e is varied to achieve the quasi-
neutrality:

\[n_e = \sum n_i, \quad (3) \]

where \(i \) is the ion species. \(T_e^\ast \) is accepted if the condition \(0.98 \leq (\sum n_i)/n_e \leq 1.02 \) is satisfied. A small change in electron temperature strongly affects the quasi-neutrality, so that the model has a high sensitivity with respect to the electron temperature. This narrow range of tolerable deviation of quasi-neutrality corresponds to a variation in electron temperature of less than 1% for the considered conditions.

E. Volume collisions

The reaction rate of an arbitrary reaction \(k \) is determined by the rate coefficient \(K \). In case of gas phase collisions the rate coefficient is calculated by integration of \(\sigma_k v_{ij} \) over the velocity distributions \(f_i(\vec{v}_i) \) and \(f_j(\vec{v}_j) \) of two colliding particles \(i \) and \(j \) with velocities \(\vec{v}_i \) and \(\vec{v}_j \), respectively:

\[
K_k = \langle \sigma_k v_{ij} \rangle = \int \int \sigma_k(v_{ij})v_{ij}f_i(\vec{v}_i)f_j(\vec{v}_j)d\vec{v}_id\vec{v}_j. \quad (4)
\]

Here \(v_{ij} = |\vec{v}_i - \vec{v}_j| \) is the absolute value of the relative velocity and \(\sigma_k \) is the cross section for the corresponding reaction. \(\sigma_k \) is a function of \(v_{ij} \). Typically, \(\sigma_k \) is given as a function of the center-of-mass or relative energy \(E_{ij} \) where \(E_{ij} = \mu_{ij}v_{ij}^2/2 \) with the reduced mass \(\mu_{ij} = m_i m_j/(m_i + m_j) \).

In this work a Maxwellian energy distribution with temperature \(T_i \) is used to describe the particle velocity distributions. For the background gas and the ion species this is valid because they are in thermal equilibrium. In general, for electrons the EEDF can differ significantly from a Maxwellian EEDF. However, as outlined in Sec. II the measured electron temperature agrees with a calculated electron temperature based on the assumption of a Maxwellian EEDF. Therefore, the assumption of a Maxwellian EEDF for the considered rate coefficients is reasonable.

1. Electron collisions

For collisions of electrons with heavy particles such as atoms or molecules Eqn. 4 can be rewritten because the electron mass is much lower than the atom or molecule mass and the electron energy is much higher than the heavy particle energy. The rate coefficient \(K_k \) then yields:

\[
K_k = \sqrt{\frac{8eT_e}{\pi m_e}} \int_0^\infty \sigma_k(E)e^{-\frac{E}{T_e}} \frac{E}{T_e} dE, \quad (5)
\]

where \(e \), \(m_e \), \(E \) and \(T_e \) are the elementary charge, the electron mass, the electron energy and the electron temperature, respectively. The transformations \(v_e \rightarrow E = m_e v_e^2/(2e) \) (\(v_e \) - electron velocity), \(k_B T/e \rightarrow T_e \) and \(\sigma_k(v_e) \rightarrow \sigma_k(E) \) were applied to obtain an equation as a function of electron energy \(E \) because generally \(\sigma_k \) is given as a function of \(E \). \(E \) and \(T_e \)
TABLE I. Reaction set with rate coefficients K for electron collisions with index k (T_e in eV). The rate coefficients of the most important reactions 1.1-1.5 are calculated from the corresponding cross sections which are taken from the indicated references. Reaction 1.6-1.10 are of lower importance and the corresponding K's are directly taken from the given references.

<table>
<thead>
<tr>
<th>k</th>
<th>reaction</th>
<th>K (m3s$^{-1}$)</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>e$^-$ + H$_2$ → 2H + e$^-$</td>
<td>$8.4 \times 10^{-14} T_\text{e}^{-0.45} \times e^{-11.18/T_\text{e}}$</td>
<td>σ from\cite{29}</td>
</tr>
<tr>
<td>1.2</td>
<td>e$^-$ + H → H$^+$ + 2e$^-$</td>
<td>$1.1 \times 10^{-14} T_\text{e}^{0.29} \times e^{-15.28/T_\text{e}}$</td>
<td>σ from\cite{30}</td>
</tr>
<tr>
<td>1.3</td>
<td>e$^-$ + H$_2$ → H$^+_2$ + 2e$^-$</td>
<td>$2.3 \times 10^{-14} T_\text{e}^{0.19} \times e^{-17.87/T_\text{e}}$</td>
<td>σ from\cite{29}</td>
</tr>
<tr>
<td>1.4</td>
<td>e$^-$ + H$_2$ → H$^+$ + H + 2e$^-$</td>
<td>$9.4 \times 10^{-16} T_\text{e}^{0.45} \times e^{-29.94/T_\text{e}}$</td>
<td>σ from\cite{29}</td>
</tr>
<tr>
<td>1.5</td>
<td>e$^-$ + Ar → Ar$^+$ + 2e$^-$</td>
<td>$3.7 \times 10^{-14} T_\text{e}^{0.38} \times e^{-17.14/T_\text{e}}$</td>
<td>σ from\cite{31}</td>
</tr>
<tr>
<td>1.6</td>
<td>e$^-$ + H$_2^+$ → H$^+$ + H + e$^-$</td>
<td>$1.5 \times 10^{-13} \times e^{-1.97/T_\text{e}}$</td>
<td>K from\cite{17}</td>
</tr>
<tr>
<td>1.7</td>
<td>e$^-$ + ArH$^+$ → Ar + H</td>
<td>1.0×10^{-15}</td>
<td>K from\cite{32}</td>
</tr>
<tr>
<td>1.8</td>
<td>e$^-$ + H$_3^+$ → 3H</td>
<td>$2.8 \times 10^{-15} T_\text{e}^{0.48}$</td>
<td>K from\cite{32}</td>
</tr>
<tr>
<td>1.9</td>
<td>e$^-$ + H$_2^+$ → H$_2$ + H</td>
<td>$1.6 \times 10^{-15} T_\text{e}^{0.48}$</td>
<td>K from\cite{32}</td>
</tr>
<tr>
<td>1.10</td>
<td>e$^-$ + H$_2^+$ → 2H</td>
<td>$1.4 \times 10^{-15} T_\text{e}^{0.43}$</td>
<td>K from\cite{32}</td>
</tr>
</tbody>
</table>

are both given in eV. In the literature the rate coefficients for electron collisions are usually given in an Arrhenius form to describe the dependence on T_e:

$$K_k = K_{k0} T_\text{e}^{x_k} e^{-E_{k0}/T_\text{e}},$$

(6)

where K_{k0}, x_k, and E_{k0} are constants.

The values for the considered electron collisions are compiled in Tab. I. From here on the reaction rates K_k will be labeled according to the index k for the corresponding reactions which are listed in Tabs. I - IV. As will be shown in Sect. IV A, ionization and dissociation of the background gas (i.e., reactions 1.1 to 1.5 in Tab. I) are the most important electron reactions. For these 5 reactions K_k was calculated individually by applying Eqn. 5 for a fixed T_e in steps of $\Delta T_\text{e} = 0.05$ eV. The corresponding cross sections were integrated in the energy range from the threshold energy of the considered process to at least 200 eV. The considered T_e range lies between 2 to 10 eV. In this range the calculated K_k was fitted according to Eqn. 6. σ_k were taken from Yoon et al.\cite{29} for electron collisions with H$_2$, from Shah et al.\cite{30} for electron collisions with H, and from Wetzel et al.\cite{31} for electron collisions with Ar. Yoon et al.\cite{29} compiled a collection of recommended values of cross sections for electron collisions with hydrogen molecules. We consider these data as the presently most reliable data set. Shah et al.\cite{30} and Wetzel et al.\cite{31} measured electron ionization cross sections and compared their results to existing literature data. Their values agree with published data within 15 %. The remaining rate coefficients ($k = 1.6$—1.10) were taken directly from literature. For electron-ion recombination processes (reactions 1.7 to 1.10) the rate coefficients are taken from Florescu-Mitchell and Mitchell\cite{32} where values for dissociative recombination of several molecular ions are tabulated and reviewed.

A comparison of the most important K_k's with other literature sources was made to assess the scatter of the data. K_k with $k = 1.1$—1.5 presented in Tab. I were compared to data
TABLE II. Reaction set for ion-molecule reactions k. Rate coefficients K are taken from different literature sources as indicated. * - K is calculated from the corresponding cross section.

| k | reaction | K (10$^{-16}$m3s$^{-1}$) | Ref.35 (used) | Ref.17 | Ref.18 | Ref.36*
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>$\text{H}_2^+ + \text{H}_2 \rightarrow \text{H}_3^+ + \text{H}$</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>$\text{ArH}^+ + \text{H}_2 \rightarrow \text{H}_3^+ + \text{Ar}$</td>
<td>6.3</td>
<td>15</td>
<td>15</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>$\text{H}_2^+ + \text{Ar} \rightarrow \text{ArH}^+ + \text{H}$</td>
<td>21</td>
<td>-</td>
<td>23</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>$\text{H}_2^+ + \text{Ar} \rightarrow \text{Ar}^+ + \text{H}_2$</td>
<td>2.0</td>
<td>-</td>
<td>2.2</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>$\text{H}_3^+ + \text{Ar} \rightarrow \text{ArH}^+ + \text{H}_2$</td>
<td>3.7</td>
<td>-</td>
<td>0.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>$\text{Ar}^+ + \text{H}_2 \rightarrow \text{ArH}^+ + \text{H}$</td>
<td>8.7</td>
<td>6.0</td>
<td>7.4</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>$\text{Ar}^+ + \text{H}_2 \rightarrow \text{H}_3^+ + \text{Ar}$</td>
<td>0.2</td>
<td>0.8</td>
<td>2.1</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

from Hjartarson et al.18 and Kimura and Kasugai17 in a T_e range of 3 to 7 eV. Hjartarson et al. used the same literature source for $\sigma_{1.1} - \sigma_{1.3}$. Probably due to different fit procedures and different considered energy and T_e ranges the here presented $K_{1.1} - K_{1.3}$ differ by up to 10% from Hjartarson et al. Reaction 1.4 was not considered by Hjartarson et al., therefore, we cannot compare. For the ionization of Ar Hjartarson et al.18 used the cross sections of Ref.33 whereas we used Ref.31. The difference for $K_{1.5}$ amounts to 15%. Kimura and Kasugai17 used for the hydrogen reactions cross sections of Janev et al.34 to calculate their rate coefficients. A comparison of our rate coefficients with those of Kimura and Kasugai17 yields that $K_{1.2}$ and $K_{1.5}$ agree within 15%. In contrast, K_k with $k = 1.1, 1.3,$ and 1.4, i.e., the K’s for the electron collisions with molecular hydrogen, differ depending on T_e by a factor of 0.3 to 13 from the present K’s. Due to the fact that the here used literature source for σ_k (Ref.29) is more recent and provides recommended values we used these data. We note that Hjartarson et al. also used this data set.

2. Ion-molecule collisions

A simplified form for the rate coefficient of ion-molecule reactions (reaction k) between particle i and j is derived in the following. A special but frequent case in ion-molecule reactions is the ion-induced dipole scattering where σ_k is proportional to $E_{ij}^{-0.5}$ in the low energy range up to 1..10 eV24,37. In this case the product $\sigma_k v_{ij}$ in the integral of Eqn. 4 becomes independent of energy because $\sigma_k \propto E_{ij}^{-0.5}$ and $v_{ij} = (2E_{ij}/\mu_{ij})^{0.5}$. Here, $E_{ij} = 1.5k_B T_g$ is used. As a consequence, Eqn. 4 simplifies to:

$$K_k = \sigma_k(E_{ij})v_{ij}. \quad (7)$$

The used K_k’s for ion-molecule reactions are all taken from a compilation by Anicich35 and are listed in Tab. II. Anicich provides a collection of recommended values of rate coefficients for a wealth of bimolecular ion-molecule reactions for a gas temperature of 300 K. The gas temperature in the here investigated plasma is in the range between 300 and 800 K. However,
this should not significantly influence the rate coefficients due to the fact that in most cases K is independent of T_g as discussed above.

In Tab. II we compare the data of Anicich35 with the rate coefficients used by Kimura and Kasugai17, Hjartarson et al.18. In addition, values derived from Bogaerts and Gijbels36 are shown that will be used in Sec. III F 1. Hjartarson et al. considered all ion-molecule reactions of Tab. II whereas Kimura and Kasugai17 only considered reactions 2.1, 2.2, 2.6, and 2.7. In Bogaerts and Gijbels36 one can find a complete set of σ_k as function of energy. This includes elastic and inelastic scattering and ion-molecule reactions leading to production of other species. The cross sections of Bogaerts and Gijbels36 are converted into rate coefficients according to Eqn. 7 for the experimentally obtained $T_g = 540$ K (see Sect. II) to allow a direct comparison in Tab. II. Our values for $K_{2,1}$ and $K_{2,6}$ agree reasonably well with the three other references17,18,36. Similarly, $K_{2,3}$ and $K_{2,4}$ agree well with the values of Hjartarson et al. and Bogaerts and Gijbels. The maximal deviation is a factor of 1.6 which has to be considered as rather good for rate coefficients of ion-molecule collisions. For $K_{2,2}$ Hjartarson et al. and Kimura and Kasugai use the same value which is a factor of 2.4 higher than ours whereas the value of Bogaerts and Gijbels is closer to the here used value. However a factor of 2.4 is still a moderate deviation for rate coefficients of ion-molecule collisions. The deviation for $K_{2,5}$ is much larger. The ratio between Hjartarson et al. and the value used in this work is $K_{2,5}^{\text{Hjartarson}}/K_{2,5}^{\text{this work}} = 0.027$. The value of Bogaerts and Gijbels is even 0. The value for $K_{2,7}$ in Hjartarson et al. and Bogaerts and Gijbels is a factor of about 12 and that of Kimura and Kasugai a factor of 4.4 higher than our value. The influence of the used rate coefficients on the model results will be discussed in Sec. V.

F. Wall losses

The main loss process for ions and radicals in a low-temperature plasma in the pressure range from 0.1 to 10 Pa is the flux to the wall. Volume recombination is improbable in this pressure regime (see Sec. III B). For the wall loss the discharge geometry is important because it determines the mean distance between the plasma center and the walls. Here a cylindrical geometry is assumed with a cylinder height l and cylinder radius r. The distance between the upper and lower electrode is $l_{el} = 60$ mm. The upper and lower electrode are circular with a radius of $r_{el} = 65$ mm, whereas the chamber has a radius of $r_{ch} = 125$ mm. The total height of the chamber is $l_{ch} = 360$ mm. Because there is no radial side wall between the upper and lower electrode at r_{el} and due to an aspect ratio $l_{el}/r_{el} \lesssim 1$ only axial losses to the upper stainless steel electrode or lower quartz dome are considered. This assumption was also made in an earlier investigation describing an experiment with a comparable chamber geometry (see appendix in Osiac et al.38). Therefore, in the following calculations the limit $r \rightarrow \infty$ will be applied.
TABLE III. Considered reactions with corresponding cross sections σ between ions and the background gas mixture H$_2$-Ar taken from Bogaerts and Gijbels36 and calculated for a gas temperature of 540 K. * - σ is calculated from the corresponding rate coefficient.

<table>
<thead>
<tr>
<th>k</th>
<th>reaction</th>
<th>σ (10$^{-19}$ m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>H$^+$ + H$_2$ → H$^+$ + H$_2$</td>
<td>9.0</td>
</tr>
<tr>
<td>3.2</td>
<td>H$^+$ + Ar → H$^+$ + Ar</td>
<td>7.9</td>
</tr>
<tr>
<td>3.3</td>
<td>H$_2^+$ + H$_2$ → H$_2$ + H$_2^+$</td>
<td>0.04</td>
</tr>
<tr>
<td>3.4</td>
<td>H$_2^+$ + H$_2$ → H$_3^+$ + H</td>
<td>6.6</td>
</tr>
<tr>
<td>3.5</td>
<td>H$_2^+$ + Ar → ArH$^+$ + H</td>
<td>6.7</td>
</tr>
<tr>
<td>3.6</td>
<td>H$_2^+$ + Ar → Ar$^+$ + H$_2$</td>
<td>1.2</td>
</tr>
<tr>
<td>3.7</td>
<td>H$_3^+$ + H$_2$ → H$_3^+$ + H$_2$</td>
<td>7.8</td>
</tr>
<tr>
<td>3.8</td>
<td>H$_3^+$ + Ar → H$_3^+$ + Ar</td>
<td>8.8</td>
</tr>
<tr>
<td>3.9</td>
<td>H$_3^+$ + Ar → ArH$^+$ + H$_2$</td>
<td>0</td>
</tr>
<tr>
<td>3.10</td>
<td>Ar$^+$ + H$_2$ → ArH$^+$ + H</td>
<td>3.5</td>
</tr>
<tr>
<td>3.11</td>
<td>Ar$^+$ + H$_2$ → H$_2^+$ + Ar</td>
<td>0.75</td>
</tr>
<tr>
<td>3.12</td>
<td>Ar$^+$ + Ar → Ar$^+$ + Ar</td>
<td>4.9</td>
</tr>
<tr>
<td>3.13</td>
<td>Ar$^+$ + Ar → Ar + Ar$^+$</td>
<td>4.8</td>
</tr>
<tr>
<td>3.14</td>
<td>ArH$^+$ + H$_2$ → ArH$^+$ + H$_2$</td>
<td>5.5</td>
</tr>
<tr>
<td>3.15</td>
<td>ArH$^+$ + H$_2$ → H$_2^+$ + Ar</td>
<td>1.7</td>
</tr>
<tr>
<td>3.16</td>
<td>ArH$^+$ + Ar → ArH$^+$ + Ar</td>
<td>10.6</td>
</tr>
</tbody>
</table>

1. Wall loss for ions

We assume that ions reaching the wall recombine with a probability of 1. Either they recombine directly (H$^+$ + wall → H, H$_2^+$ + wall → H$_2$, Ar$^+$ + wall → Ar) or dissociatively (H$_3^+$ + wall → H$_2$ + H, ArH$^+$ + wall → Ar + H). For the case of dissociative recombination the produced atomic hydrogen is assumed to be reflected from the surface with a probability of 1. The rate coefficients K_{wi} for the loss of positive ions to the walls are based on the uniform density discharge model for low and intermediate pressures of Lieberman and Lichtenberg24:

$$K_{wi} = \frac{A_{eff}}{V} v_{B,i}. \quad (8)$$

Here $v_{B,i} = \sqrt{e T_e / M_i}$ denotes the Bohm velocity of an ion species i with mass M_i, $V = \pi r^2 l$ the plasma volume and A_{eff} an effective area surrounding the plasma. A_{eff} is given by:

$$A_{eff} = 2 \pi r (h_l + h_r). \quad (9)$$

h is the ion density ratio between plasma edge and plasma center. h is different for axial (h_l) and radial (h_r) loss (Godyak39):

$$h_l = \frac{0.86}{\sqrt{3 + \frac{1}{2 \lambda_i}}} \quad (10)$$
and
\[h_r = \frac{0.8}{\sqrt{4 + \frac{r}{h_r}}}. \]
(11)

As mentioned above it is assumed that \(r \) is infinite. This implies that \(h_r \) is zero and, therefore, that the density profile in the radial direction is flat. For our geometry the surface-to-volume ratio yields \(A_{\text{eff}}/V = 2h_l/l_{\text{el}} \).

\(\lambda_i \) is the mean free path length for ions traversing the background gas consisting of two species \(j \) (\(j = \text{H}_2, \text{Ar} \)) with density \(n_j \):
\[1/\lambda_i = \sum_{j,k} \sigma_k n_j. \]
(12)

\(\sigma_k \) denotes the cross section for the collision (reaction \(k \)) of the ion with the background gas atom or molecule. \(\sigma_k \) is taken from Bogaerts and Gijbels\(^36\) where one can find a complete set of \(\sigma_k \) as function of energy. For comparison the rate coefficients of Anicich\(^35\) which are used for the volume reactions of the rate equation model are converted into cross sections according to Eqn. 7. The description of the ion diffusion through the background gas requires also data for elastic and inelastic scattering which are not provided by Anicich\(^35\). The differences of the data set between Bogaerts and Gijbels and Anicich as shown in Tab. III and discussed in Sec. III E 2 have only a very low influence on the calculated \(\lambda_i \). The values for individual \(\sigma_k \)'s are shown in Tab. III for \(E_{ij} = 1.5k_B T_g \) with \(T_g = 540 \text{ K} \) as obtained experimentally (see Sect. II).

2. **Wall loss for atomic hydrogen**

Atomic hydrogen is lost by reactions at the chamber walls. It is described by the loss rate coefficient which is the inverse of the loss time. The wall loss rate coefficient \(K_{\text{wH}} \) of atomic H is composed of a diffusive part \(K_D \) and a surface loss part \(K_s \):\(^40\)
\[\frac{1}{K_{\text{wH}}} = \frac{1}{K_D} + \frac{1}{K_s} = \frac{\Lambda^2}{D_H} + \frac{V}{A_H} \frac{2(2 - \beta_H)}{\beta_H} \frac{1}{v_H} \]
(13)

(\(\Lambda \) - diffusion length, \(D_H \) - diffusion constant of H, \(V \) - plasma volume, \(A_H \) - wall area for loss of H, \(\beta_H \) - surface loss probability for H, \(v_H \) - mean velocity of H).

\(K_D \) describes the diffusion to the wall. \(K_D \) is a function of \(\Lambda \) and \(D_H \). The diffusion length \(\Lambda \) is given by\(^40\):
\[\frac{1}{\Lambda^2} = \left(\frac{\pi}{l} \right)^2 + \left(\frac{2.405}{r} \right)^2. \]
(14)

For our geometry with \(l = l_{\text{el}} \) and \(r \to \infty \) the diffusion length is \(\Lambda = l_{\text{el}}/\pi \). The expression for the diffusion constant is taken from Lieberman and Lichtenberg\(^24\) and extended to diffusion.
through a background gas which consists of several species j:

$$\frac{1}{D_H} = \sqrt{\frac{8}{\pi k_B T_H}} \sum_j \sigma_{Hj} n_j \sqrt{\mu_{Hj}},$$ \tag{15}$$

which is identical with Blancs law (see, e.g., Ref. 41). Here the temperature of atomic hydrogen T_H is used because it determines the mean collisional energy of hydrogen with the background gas. The cross sections are estimated by the hard-sphere model where $\sigma_{Hj} = \pi (r_H + r_j)^2$ is calculated by the atomic hydrogen and collision partner radii r_H and r_j, respectively. For atomic hydrogen the Bohr radius is assumed. For molecular hydrogen and argon the radii are calculated from the gas kinetic cross sections given in Ref. 24 with the hard-sphere model, i.e., $r_{H_2} = 1.47 \, \text{Å}$ and $r_{Ar} = 2.00 \, \text{Å}$.

k_s is the loss rate at the walls. k_s is a function of the surface-to-volume ratio, v_H and especially β_H. v_H is calculated by the mean velocity of atomic hydrogen: $v_H = \sqrt{8k_B T_H/\pi M_H}$ with M_H being the mass of atomic hydrogen.

In the following we estimate the temperature of atomic hydrogen T_H. Atomic hydrogen is produced by dissociation and the atoms gain approximately half of the dissociation energy ($E_{\text{diss}} = 4.45 \, \text{eV}$34). This energy will be dissipated by collisions with the background gas. The degree to which this energy is dissipated depends on the background pressure and, hence, on the mean number of collisions with background gas species. Tatarova et al.42 determined the atomic hydrogen temperature in H_2, H_2-He and H_2-Ar microwave plasmas by measuring the Doppler broadening of the H$_\alpha$ line. Their plasma conditions were: operating pressure 30 Pa and microwave power 600 W. They found atomic hydrogen temperatures between 3000 and 4000 K depending on gas admixture. Furthermore, they measured the Doppler temperature of the He line at 667.8 nm and the rotational temperature of H_2 molecules which ranged between 300 and 900 K. That means for their conditions the H atom temperature was a factor of 3 to 10 higher than the gas temperature. Because our operating pressure of 1.0 Pa is considerably lower than that of Tatarova et al. we have to assume that in our case the atomic hydrogen temperature is even higher. For simplicity we assume that in our case the temperature of atomic hydrogen is 6000 K (= 0.52 eV). The sensitivity of the model on this estimate will be discussed in Sec. IV C.

For low β or low pressure K_{wH} can be approximated with k_s (see Ref. 40). For high β ($\beta \approx 1$) or high pressure K_{wH} can be approximated with K_D (see Ref. 40). For $\beta = 1$ all hydrogen atoms reaching the wall are lost, no H returns from the surface. For high pressure the transport to the wall determines the flux reaching the surface. If the pressure is high the density profile is rather peaked in the center such that the density at the wall is comparatively low.

In the following the determination of β will be discussed. In our case the wall loss is determined by recombination (H + wall $\rightarrow 1/2 \, H_2$). β is material-dependent. In our experiment the plasma interacts with two chamber wall materials: stainless steel (upper electrode) and quartz (dome containing the coil). Quartz has a low β_H around 0.001 and stainless steel a higher β_H in the range of 0.01 . . 0.243-45. Therefore, only the area of the upper electrode is considered for the loss surface of H, i.e., $A_H = \pi r_{el}^2$. There are several
TABLE IV. Reaction set for excited argon with rate coefficients K for a reaction k. The electron temperature T_e is considered in eV.

ways to determine K_w and especially β_H. The simplest way would be to use data of β_H from literature. Unfortunately, they vary over more than one order of magnitude and are very sensitive to the experimental set-up. Another way is to measure the loss time of H in the afterglow\cite{43,44,45}. However, this is very elaborate and will be a topic of a forthcoming publication. A third way is to derive it from the measured dissociation degree n_{H_2}/n_{H_2}. To do so, β_H is used as fit parameter for the rate equation system. Based on the assumption that β_H does not depend on the plasma conditions, the calculated dissociation degree density n_{H_1}/n_{H_2} is fitted to the measured dissociation degree n_{H_1}/n_{H_2} for different Ar fractions by minimizing χ^2 through a variation of β_H. Assuming Gaussian uncertainties in n_{H_1}/n_{H_2} the χ^2 is calculated by\cite{46}:

$$\chi^2 = \sum_{f=1}^{Z} \left(\frac{n_{H_1,f}/n_{H_2} - n_{H_1,f}/n_{H_2}(\beta_H)}{\Delta(n_{H_1,f}/n_{H_2})} \right)^2$$

(16)

where f is an index for the plasma condition, Z is the total number of considered values ($Z = 4$ for the case considered here), and $\Delta(n_{H_1,f}/n_{H_2})$ is the error of the measured dissociation degree. Because T_e (see Sec. III D) is practically independent of n_{H_1}/n_{H_2} first the quasi-neutrality and, therefore, T_e is calculated. Because the production rate for H strongly depends on T_e, the n_{H_1}/n_{H_2} fitting procedure is performed after calculating T_e.

G. Excited Argon

To assess whether or not metastable argon Ar_m influences the dissociation of hydrogen, Ar_m is included in the model. To do this a simplified collisional radiative model is applied\cite{17}. This model takes into account only the most relevant electronically excited states. Here, Ar_m designates the excited Ar levels $1s^5$ and $1s^3$ in Paschen’s notation. Similarly, Ar_r designates the excited Ar species in the $1s^4$ and $1s^2$ level and $Ar(2p)$ the excited Ar species in the $2p^{10}$ to $2p^1$ level. The considered reactions are summarized in Tab. IV. They are based on the reaction set of Kimura and Kasugai\cite{17}. Kimura and Kasugai take into account 18 reactions for the excited Ar states. In a preceding study we found that this reaction set can be reduced to the 8 reactions shown in Tab. IV. These 8 reactions are the dominant
ones which are sufficient to calculate the metastable Ar density n_{Ar_m} (see Ref. 47). Other reactions of excited Ar, such as the reaction $\text{Ar}_m + \text{Ar}_m \rightarrow \text{Ar}^+ + \text{Ar} + e^-$, are not relevant for our plasma conditions due to the low pressure. However, for pressures higher than 1 Pa this reaction cannot be neglected48,49. For the wall loss of Ar, Eqn. 13 is used with the corresponding values for Ar, i.e., $\beta_{\text{Ar}_m} = 1$ (see Ref. 18).

IV. MODEL RESULTS

The calculations are made exactly for the plasma conditions applied in the experiment (see Sec. II). In addition, results for very low and very high Ar fraction are calculated, namely $f_{\text{Ar}} = 5, 87$ and 95 %. For these additional Ar fractions n_e is required as input parameter in the model. It was determined by linear interpolation between neighboring measured values of n_e.

A. Ion chemistry

The most important reactions for the production of ions in a low-temperature plasma are the ionization by inelastic electron collisions with the background gas. In our case the background gas consists of H$_2$ and Ar. The corresponding primary ions are H$_3^+$ and Ar$^+$. A small contribution (percent range) of atomic H$^+$ ions is also produced as primary ions. One would expect that H$_3^+$ and Ar$^+$ are also the dominant ion species in a H$_2$-Ar low-temperature plasma. However, measurements have shown, that H$_3^+$ and ArH$^+$ are dominant16. H$_3^+$ and ArH$^+$ can only be produced by ion-molecule collisions in the plasma volume. For a better insight into the reaction chemistry in a H$_2$-Ar plasma we will discuss the total production rates using R_{iG}^{tot}. The losses will be discussed using the total loss frequency ν_{iL}^{tot}. R_{iG}^{tot} and ν_{iL}^{tot} are calculated from the model results by summing up all contributions k and \tilde{k} that contribute to gain or loss of the species i, respectively. To identify the dominant reactions, the individual production rates R_{ik}^{G} and loss frequencies ν_{ik}^{L} as well as R_{iG}^{tot} and ν_{iL}^{tot} for all investigated ions are presented in Fig. 3. The ion chemistry for ArH$^+$ will be discussed in some detail while for the other ions only the most important results are briefly mentioned.

1. ArH$^+$

To explain the dependence of the ArH$^+$ density on f_{Ar}, the ion density n_{ArH^+}, the production rates $R_{iG}^{\text{ArH}^+}$, and loss frequencies $\nu_{iL}^{\text{ArH}^+}$ are shown in Figs. 3(a) and 3(b), respectively. n_{ArH^+} has a maximum with a value of 1.5×10^{16}m$^{-3}$ for f_{Ar} between about 50 and 80 % and is 0 for pure H$_2$ and pure Ar. The total production rate R_{iG}^{tot} shows a maximum for f_{Ar} between about 30 and 50 %. The dominant contribution to R_{iG}^{tot} comes from reaction 2.6 (Ar$^+ + \text{H}_2 \rightarrow \text{ArH}^+ + \text{H}$) which accounts for at least 2/3 of the total production rate. As a consequence the ArH$^+$ ion density strongly depends on n_{Ar^+}. Reaction 2.3 (H$_3^+$ + Ar \rightarrow ArH$^+$ + H) and 2.5 (H$_3^+$ + Ar \rightarrow ArH$^+$ + H$_2$) provide minor contributions to
FIG. 3. Left column: production rates (left-hand scale) and ion densities (right-hand scale; dotted lines) for the ion species ArH⁺ (a), Ar⁺ (c), H⁺ (e), H₂⁺ (g), H⁺ (i), respectively. Right column: loss frequencies for the ion species ArH⁺ (b), Ar⁺ (d), H⁺ (f), H₂⁺ (h), H⁺ (j), respectively. Contributions lower than 5% are not shown.
The total loss frequency $\nu_{\text{tot}}^{\text{ArH}^+L}$ (see Fig. 3(b)) decreases linearly with increasing f_{Ar}. Therefore, the maximum of n_{ArH^+} is shifted to higher Ar fractions compared to the production rate. $\nu_{\text{tot}}^{\text{ArH}^+L}$ consists of the linearly decreasing $\nu_{2.2}$ due to reaction 2.2 and the constant wall loss frequency $\nu_{w\text{ArH}^+}$. For $f_{\text{Ar}} \lesssim 60 \%$ the dominant loss process is due to reaction 2.2 while for higher f_{Ar} the loss of ArH$^+$ to the wall dominates. $\nu_{w\text{ArH}^+}$ is roughly constant over the whole mixture range because it depends on the geometry of the plasma vessel and the square root of T_e (see Eqn. 8). T_e changes only slightly (see Sec. IV B). The dependence of n_{ArH^+} on f_{Ar} is similar to $R_{\text{tot}}^{\text{ArH}^+G}$.

2. Ar^+

For Ar^+ the ion density n_{Ar^+}, the production rates $R_{\text{tot}}^{\text{Ar}^+G}$, and loss frequencies $\nu_{\text{tot}}^{\text{Ar}^+L}$ are shown in Figs. 3(c) and 3(d), respectively. The total production rate $R_{\text{tot}}^{\text{Ar}^+G}$ increases for $0 \leq f_{\text{Ar}} \lesssim 30 \%$, then stays roughly constant, and slightly decreases for $f_{\text{Ar}} > 70 \%$. The production of Ar$^+$ is almost exclusively due to electron-induced ionization with rate $R_{1.5}$ ($e^- + \text{Ar} \rightarrow \text{Ar}^+ + 2e^-$). The total loss frequency $\nu_{\text{tot}}^{\text{Ar}^+L}$ decreases linearly by a factor of 5 with increasing f_{Ar}. Again, the wall loss is roughly constant over the whole mixture range, while the loss due to reaction 2.6 ($\text{Ar}^+ + \text{H}_2 \rightarrow \text{ArH}^+ + \text{H}$) decreases linearly with increasing Ar fraction. The contribution of reaction 2.7 ($\text{Ar}^+ + \text{H}_2 \rightarrow \text{Ar} + \text{H}_3^+$) to the loss of Ar$^+$ can be neglected. n_{Ar^+} increases roughly linearly from 0 for pure H_2 to $3.1 \times 10^{16} \text{m}^{-3}$ for pure Ar. For $5 < f_{\text{Ar}} < 30 \%$ this is attributed to the increase in $R_{\text{tot}}^{\text{Ar}^+G}$ which is mainly due to the increase in f_{Ar}. For $f_{\text{Ar}} > 30 \%$ the increase of n_{Ar^+} is mostly due to the decreasing loss rate.

3. H_3^+

The density and rates for H_3^+ are shown in Figs. 3(e) and 3(f). The total production rate $R_{\text{tot}}^{\text{H}_3^+G}$ and the density $n_{\text{H}_3^+}$ show a maximum at $f_{\text{Ar}} = 12.6 \%$. For the production of H$_3^+$ two reactions are important: First, reaction 2.1 ($\text{H}_3^+ + \text{H}_2 \rightarrow \text{H}_3^+ + \text{H}$, see Tab. I) with rate $R_{2.1}$ which is the dominant process up to $f_{\text{Ar}} \approx 25 \%$. Second, reaction 2.2 with rate $R_{2.2}$ ($\text{ArH}^+ + \text{H}_2 \rightarrow \text{H}_3^+ + \text{Ar}$) which is the dominant channel for $f_{\text{Ar}} > 25 \%$. The total loss frequency $\nu_{\text{tot}}^{\text{H}_3^+L}$ stays roughly constant for all Ar fractions. The loss is mainly due to recombination on the wall.

4. H_2^+

The data for H_2^+ are presented in Figs. 3(g) and 3(h). The total production rate $R_{\text{tot}}^{\text{H}_2^+G}$ has a maximum at $f_{\text{Ar}} = 12.6 \%$. $n_{\text{H}_2^+}$ is $3.3 \times 10^{15} \text{m}^{-3}$ for pure H_2, has a maximum of $3.9 \times 10^{15} \text{m}^{-3}$ at $f_{\text{Ar}} \leq 12.6 \%$, and decreases monotonically to 0 for $12.6 \leq f_{\text{Ar}} \leq 100 \%$. $n_{\text{H}_2^+}$ shows essentially the identical behavior as $R_{\text{tot}}^{\text{H}_2^+G}$ on f_{Ar} because the total loss frequency $\nu_{\text{tot}}^{\text{H}_2^+L}$ stays constant for all Ar fractions. H_2^+ is almost exclusively produced by electron-
induced ionization from H\(_2\) with rate \(R_{1.3} (e^- + H_2 \rightarrow H_2^+ + 2e^-)\). The loss of H\(_2^+\) comprises three contributions. First, reaction 2.1 (H\(_2^+ + H_2 \rightarrow H_3^+ + H\)) with loss frequency \(\nu_{2.1}\). Second, reaction 2.3 with loss frequency \(\nu_{2.3} (H_2^+ + Ar \rightarrow ArH^+ + H)\). Third, the loss to the wall with loss frequency \(\nu_{wH_2^+}\).

In the following two peculiarities of the studied H\(_2\)-Ar plasma will be discussed and explained. The first peculiarity is the fact that the densities of \(n_{H_2^+}\) and \(n_{ArH^+}\) are considerably lower than those of \(n_{ArH^+}\) and \(n_{Ar^+}\). While the production rates \(R_{tot}^G\) for \(n_{H_2^+}\) and \(n_{ArH^+}\) are comparable to the production rates for ArH\(^+\) and Ar\(^+\), the absolute loss rates for H\(_2^+\) and H\(_3^+\) are considerably higher than those for ArH\(^+\) and Ar\(^+\) due to the high wall loss. The wall loss frequency \(\nu_{wi} = K_{wi} \propto 1/\sqrt{M_i}\) (see Eqn. 8) for H\(_2^+\) and H\(_3^+\) is by a factor of about \(\sqrt{M_{Ar^+}/M_{H_2^+}} \approx 5\) (\(x=1,2,3\)) higher than the corresponding value for ArH\(^+\) and Ar\(^+\), and, as consequence the corresponding ion densities are lower. The second peculiarity is that \(n_{H_2^+}\) is considerably lower than \(n_{ArH^+}\) although the total production rates have roughly the same value. But in contrast to H\(_2^+\) and ArH\(^+\), \(\nu_{tot}^{H_2^+L}\) is much higher than the total loss frequencies of all other considered ion species. The loss of H\(_2^+\) is not only determined by the loss to the wall, such as the loss of H\(_2^+\) (see Fig. 3(e)), but also by the conversion to H\(_3^+\) for low \(f_{Ar}\) (reaction 2.1) and ArH\(^+\) for high \(f_{Ar}\) (reaction 2.3). In fact, the rate coefficients for these two reactions are those with the highest values in Tab. II.

5. \(H^+\)

Finally, the data for H\(^+\) are plotted in Figs. 3(i) and 3(j). \(n_{H^+}\) is 1.0\(\times\)10\(^{14}\)m\(^{-3}\) for pure H\(_2\), has a maximum at \(f_{Ar} \leq 12.6\) %, and decreases monotonically to 0 for 12.6 \(\leq f_{Ar} \leq 100\) %. The total production rate \(R_{tot}^{H^+G}\) is about a factor of 50 lower than the total production rate of H\(_2^+\) but the dependence on \(f_{Ar}\) is very similar to that of H\(_2^+\). For the production of H\(^+\) three reactions are important: First, direct ionization of atomic hydrogen (reaction 1.2, see Tab. I) with rate \(R_{1.2}\). Second, dissociative ionization of molecular hydrogen (reaction 1.4) with rate \(R_{1.4}\). Third, dissociation of H\(_2^+\) (reaction 1.6) with rate \(R_{1.6}\). The total loss frequency \(\nu_{tot}^{H^+L}\) decreases by 20 % with increasing \(f_{Ar}\). The only significant loss process for H\(^+\) is recombination on the wall. The dependence of \(n_{H^+}\) on \(f_{Ar}\) is accordingly fully determined by the total production rate \(R_{tot}^{H^+G}\).

\(n_{H^+}\) has a considerably lower density than \(n_{H_2^+}\) (\(n_{H^+}/n_{H_2^+} \approx 0.05\)). This is explained as follows. While H\(^+\) is produced by direct ionization of atomic hydrogen (reaction 1.2) and by dissociative ionization of molecular hydrogen (reaction 1.4), H\(_2^+\) is produced by direct ionization of molecular hydrogen (reaction 1.3: \(e^- + H_2 \rightarrow H_2^+ + 2e^-\)). The rate coefficients \(K_{1.2}\) and \(K_{1.3}\) for the two direct ionization processes have similar values. The main difference with respect to the corresponding production rates originates from the different densities of atomic and molecular hydrogen. The dissociation degree \(n_{H}/n_{H_2}\) is low (\(\approx 2\) %, see Sec. IV C) and, therefore the ratio of the production rates is of the same order of magnitude. Furthermore, reactions 1.4 and 1.3 are both proportional to the molecular hydrogen density, but the rate coefficients \(K_{1.4}\) and \(K_{1.3}\) are considerably different (\(K_{1.4}/K_{1.3} < 0.01\)). Therefore, the production rate of H\(^+\) according to reaction 1.4 is comparable to \(R_{1.2}\).
FIG. 4. Measured (closed symbols) and modeled (open symbols) electron temperatures as a function of f_{Ar} for a total pressure of 1.0 Pa. The results of this work are compared with the results (dotted line) of a global model calculated by Hjartarson et al.18 for a H\textsubscript{2}-Ar plasma with the following input parameters: $p = 0.91$ Pa, $l = 0.076$ m, $r = 0.152$ m and $T_g = 500$ K.

B. Electron temperature

As described in Sec. III D in our model T_e is fitted to fulfill the quasi-neutrality condition. The measured (Ref.16) and fitted electron temperatures are plotted in Fig. 4 as a function of f_{Ar}. The measured T_e of the pure hydrogen plasma is 5.2 eV. In the H\textsubscript{2}-Ar plasma the measured T_e decreases monotonically reaching 2.9 eV for the pure Ar plasma. The modeled T_e shows the same behavior as the measured T_e but yields systematically higher values. This deviation ranges between 0.3 and 0.8 eV. All in all, the rate equation model describes T_e quite well. We interpret the good agreement of fitted and measured T_e as an indication that the electron temperature is mostly determined by the rate equations or, more precisely, by the particle balance and not by the power balance. A similar conclusion has been drawn earlier by Tao et al.26 The electron density is, on the other hand, determined by the power balance26.

The decrease of T_e with increasing f_{Ar} was discussed in our previous work16. The observed decrease of T_e was attributed to the increasing effective ion mass with increasing f_{Ar}. The effective ion mass increases monotonically from 2.7 amu for a pure H\textsubscript{2} plasma to 40 amu for a pure Ar plasma.

We compare our results for T_e with those of the global model by Hjartarson et al.18 which are shown as dashed lines in Fig. 4. The input parameters of Hjartarson et al. are comparable to the input parameters of the present work. They used the following input parameters: pressure $p = 0.91$ Pa, gas temperature $T_g = 500$ K, and dimensions $l = 0.076$ m, $r = 0.152$ m. Their calculated T_e for the pure hydrogen plasma is 6.0 eV. In the H\textsubscript{2}-Ar plasma it decreases monotonically reaching 3.3 eV for the pure Ar plasma. The T_e of Hjartarson et al. is qualitatively similar to our data but shifted to slightly higher values (see Fig. 4). The
minimum and maximum difference are 0.2 and 0.7 eV. This difference can, however, not be attributed to the slightly different plasma parameters. Their pressure and gas temperature are about 10 % lower than our values. But because the determining parameter is the gas density these two changes cancel out and result in the same density. The geometry is slightly different. Their l is about 25 % larger than our value. However, inserting their geometry in our model results in a slightly lower calculated T_e, thus increasing the difference between Hjartarsons and our values. Therefore, the change in geometry cannot explain the difference. We assume that the difference of the calculated T_e values is due to the used reaction set and rate constants. Summarizing, the T_e of our model is in reasonable agreement with the literature on the one hand and with our measured values on the other hand.

C. Dissociation degree and surface loss probability of H

The measured (Ref. 16) and fitted hydrogen dissociation degrees n_H/n_{H_2} are shown in Fig. 5. The measured dissociation degree stays nearly constant over the considered Ar fraction range with a mean value of $(1.7 \pm 0.4) \%$. n_H°/n_{H_2} starts at 0.8 % for the pure H_2 plasma case and increases up to 1.6 % for $f_{Ar} = 12.6 \%$. In the range $12.6 \leq f_{Ar} \leq 72.3 \%$, n_H°/n_{H_2} stays roughly constant with values between 1.5 and 2.0 % in accordance with the measured data. As described in Sec. III F 2 in our model the calculated dissociation degree n_H°/n_{H_2} is fitted to the measured values n_H^{m}/n_{H_2} by minimizing χ^2 through a variation of β_H.

To illustrate the most important reactions for atomic hydrogen the relative reaction rates for the production of H are shown in Fig. 6. The dominant contribution to the total production rate of H R_{tot}^{HG} comes from the dissociation of H_2 by electron collisions (reaction 1.1). The contribution is high for low Ar fractions and decreases to a value of $R_{1,1}^{HG}/R_{tot}^{HG} = 0.46$ for $f_{Ar} = 95 \%$. Ion recombination on the wall and reaction 2.6 ($Ar^+ + H_2 \rightarrow ArH^+ + H$)
FIG. 6. Relative production rates R_{HG}^{HG}/R_{tot}^{HG} as a function of the argon fraction f_{Ar} for atomic hydrogen. Contributions to R_{tot}^{HG} of lower than 5% are combined in "else".

contribute only little to R_{tot}^{HG}. For high Ar fractions ($f_{Ar} \geq 72.3\%$) another gain process besides the dissociation by electron collision comes into play, namely the dissociation of H_2 by the metastable Ar_m (reaction 4.3 with $R_{4,3}$). The fraction $R_{4,3}^{HG}/R_{tot}^{HG}$ for the production of H is 0.17 for $f_{Ar} = 72.3\%$ and 0.29 for $f_{Ar} = 95\%$. For comparison, for $f_{Ar} \leq 48\%$ this contribution is lower than 0.1. The Ar_m density is about 0.001-0.002 of the Ar density and is constant with f_{Ar}. We would like to note that the reaction set for the excited Ar species was included in the model to study whether there is an influence of the metastable argon Ar_m on the dissociation of hydrogen or not. To conclude, Ar_m has a noticeable influence and increases monotonically with increasing f_{Ar} but only for high Ar fractions $f_{Ar} \geq 72.3\%$ metastable Ar influences the atomic hydrogen density markedly. In the global model of Hjartarson et al.18 the metastable Ar was included but unfortunately no dissociation of H_2 with Ar_m was reported.

The only significant loss process for atomic hydrogen is recombination on the wall. The appropriate rate coefficient is K_{WH}. For our conditions, i.e., low pressure of the background gas, K_{WH} can be approximated with K_s (see Sec. III F 2) where the loss probability β_H at the surrounding chamber wall is the determining parameter17,18,40. The higher β_H the higher is the wall loss.

In the following we try to illustrate why n_H/n_{H_2} is independent on f_{Ar} in our case. With a simplified description of the dissociation degree its dependence on f_{Ar} is illustrated. We restrict ourselves to the two dominant processes. The production process is the dissociation of H_2 by electron collision (reaction 1.1) with the corresponding second order rate coefficient $K_{1,1}$. The loss process is the loss of hydrogen atoms to the wall with the appropriate first order rate coefficient K_s. In steady state, the dissociation degree yields:

$$\frac{n_H}{n_{H_2}} \approx \frac{2n_e \times K_{1,1}(T_e)}{K_s(\beta_H)} = 2n_e \times 8.4 \times 10^{-14}T_e^{-0.45}e^{-11.18/T_e}\frac{2(2 - \beta_H)l_{el}}{\beta_H} \sqrt{\frac{\pi M_H}{8k_BT_H}}. \quad (17)$$
The dissociation degree is proportional to the electron density and the rate coefficient for electron-impact dissociation. This rate coefficient is very sensitive to the electron temperature which decreases with increasing Ar fraction (see Fig. 4). It decreases from \(K_{\text{1,1}}(T_e^c = 4.3 \text{ eV}) = 3.3 \times 10^{-15} \text{ m}^3\text{s}^{-1} \) for \(f_{\text{Ar}} = 12.6 \% \) to \(K_{\text{1,1}}(T_e^c = 3.3 \text{ eV}) = 1.7 \times 10^{-15} \text{ m}^3\text{s}^{-1} \) for \(f_{\text{Ar}} = 72.3 \% \). On the other hand, \(n_e \) increases from \(2.3 \times 10^{16} \text{ m}^{-3} \) for \(f_{\text{Ar}} = 12.6 \% \) to \(3.7 \times 10^{16} \text{ m}^{-3} \) for \(f_{\text{Ar}} = 72.3 \% \) (see Fig. 2). \(K_s \) depends strongly on the surface loss probability \(\beta_{\text{H}} \), the surface to volume ratio \(A_{\text{H}}/V = 1/l_{\text{el}} \) and the mean velocity of the hydrogen atoms \(v_{\text{H}} \): \(K_s = \beta_{\text{H}}/(2 \times (2 - \beta_{\text{H}})) \times A_{\text{H}}/V \times v_{\text{H}} \). All these parameters determining \(K_s \) are independent of \(n_e, T_e \) and gas density. As a consequence the decrease of \(K_{\text{1,1}} \) due to the decreasing \(T_e \) is to a large extent compensated by the increase of \(n_e \) such that the dissociation degree remains roughly constant.

The calculated values of \(n_{\text{H}}^c/n_{\text{H}_2} \) in Fig. 5 were achieved by varying \(\beta_{\text{H}} \) to minimize \(\chi^2 \) considering all measured values of \(n_{\text{H}}^c/n_{\text{H}_2} \) (4 mixed plasma cases). The \(\beta_{\text{H}} \) resulting from this fit is 0.24. We would like to emphasize that this value for \(\beta_{\text{H}} \) is obtained from the full model with consideration of all possible gain and loss processes of \(\text{H} \) outlined in Sect. III and not from the simplified description leading to Eqn. 17. We further note that \(\beta_{\text{H}} \) sensitively depends on the assumptions about \(A_{\text{H}}/V \) and \(\sqrt{T_{\text{H}}} \) (see Sect. III F 2). In this work \(T_{\text{H}} = 6000 \text{ K} \) is assumed. If \(T_{\text{H}} \) would be set to 10,000 K (2,000 K) the resulting \(\beta_{\text{H}} \) would be 0.18 (0.40).

The error was determined from the probability distribution of \(\beta_{\text{H}} \). Based on the measurements of \(n_{\text{H}}^c/n_{\text{H}_2} \), the probability distribution of \(\beta_{\text{H}} \) can be derived using the simplified description of the dissociation degree, i.e., Eqn. 17. It does not include the error associated with \(T_{\text{H}} \). Since in Eqn. 17 \(\beta_{\text{H}} \) enters in the denominator the probability distribution function of \(\beta_{\text{H}} \) is asymmetric around the mode, for that reason the uncertainties of the parameter are also asymmetric. For the 68 % interval (1-\(\sigma \)-level) we get a relative error of +15 % and -7 % for \(\beta_{\text{H}} \). Summarizing, \(\beta_{\text{H}} \) ranges from 0.22 to 0.28 with the most probable value \(\beta_{\text{H}} = 0.24 \) for the investigated H\(_2\)-Ar plasma at 1.0 Pa.

The here determined value for \(\beta_{\text{H}} = 0.24 \) for a stainless steel surface is in the range of the values published by Jolly and Booth\(^{44} \) and Kae-Nune et al.\(^{45} \). In these works \(\beta_{\text{H}} \) was determined experimentally from time-resolved \(\text{H} \) density measurements in the afterglow. The experimentally obtained values for \(\beta_{\text{H}} \) range between 0.13 ± 0.02 (\(p = 67 \text{ Pa} \), Ref.\(^{44} \)) and 0.20 ± 0.05 (\(p = 40 \text{ Pa} \), Ref.\(^{45} \)). However, our \(\beta_{\text{H}} \) differs significantly from the values used in the global models by Kimura and Kasugai\(^{17} \) and Hjartarson et al.\(^{18} \) where a value for \(\beta_{\text{H}} \) of 0.02 was used.

D. Model sensitivity

The sensitivity of the model result on the five input parameters was studied and is summarized in Tab. V. In each line of Tab. V one model input parameter is varied while the other parameters are kept constant. Each of these five parameters is increased or decreased by a factor of 2 and the corresponding influence on the listed model results is shown relative to the normalized values from line three of the table. The varied input parameters and their variations are listed in column 1 of Tab. V. The influence of these variations on the
TABLE V. The sensitivity of the model with respect to variation of the input parameters. Considered is the H$_2$-Ar plasma with a total pressure of 1.0 Pa and an Ar fraction of $f_{\text{Ar}} = 48\%$. The input parameters with their original values and the corresponding output values are shown in the third line. In the following lines are the relative changes of the values shown in line three for the variation of one input parameter as indicated in column 1.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>n_{H^+}/n_e</th>
<th>n_{Ar^+}/n_e</th>
<th>$n_{\text{H}_2}^+/n_e$</th>
<th>n_{H_2}/n_e</th>
<th>$n_{\text{H}}/n_{\text{H}_2}$</th>
<th>T_e^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_H = 0.24$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n_e = 3.1 \times 10^{16}$ m$^{-3}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_e = 3.85$ eV</td>
<td></td>
<td>0.42</td>
<td>0.36</td>
<td>0.17</td>
<td>0.040</td>
<td>0.0018</td>
<td>0.017</td>
</tr>
<tr>
<td>$l_{\text{el}} = 0.06$ m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_g = 540$ K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

relative values	$2 \times \beta_H$	1.00	1.00	1.00	0.53	0.47	1.00	
	$0.5 \times \beta_H$	1.00	1.00	1.00	1.00	1.94	2.07	1.00
	$2 \times n_e$	1.00	1.00	1.00	1.00	1.90	2.00	1.00
	$0.5 \times n_e$	1.00	1.00	1.00	1.00	0.55	0.50	1.00
	$2 \times T_e$	0.94	1.18	0.72	1.07	3.03	4.88	-
	$0.5 \times T_e$	1.03	0.83	1.32	0.88	0.12	0.05	-
	$2 \times l_{\text{el}}$	1.03	0.57	1.93	0.58	1.82	1.41	0.86
	$0.5 \times l_{\text{el}}$	0.80	1.47	0.41	1.44	0.62	0.69	1.19
	$2 \times T_g$	0.78	1.50	0.39	1.46	0.82	0.99	1.20
	$0.5 \times T_g$	1.02	0.51	2.08	0.53	1.28	0.93	0.84

First we investigate the influence of β_H on the model results. The numbers in the body of Tab. V are the relative changes of the values shown in line three. A relative value of 1.00 means that the values are not changed. We can see that only n_{H^+}/n_e and $n_{\text{H}}/n_{\text{H}_2}$ are strongly influenced by β_H. This is due to the fact that the density of H is nearly inversely proportional to β_H and n_{H^+} is to a large extend produced by direct ionization of atomic hydrogen. As a consequence, the neutral and ionic hydrogen atom densities are strongly correlated. Because the contribution of the H$^+$ ion density to the total ion density is negligible and the other ion densities are unchanged the plasma density does not change and correspondingly a variation of β_H has no influence on T_e in our model.

A variation of n_e has a comparable effect on the model output results as the variation of β_H. As shown in Eqn. 17 the dissociation degree is proportional to n_e and as a consequence $n_{\text{H}}/n_{\text{H}_2}$ and, therefore, also n_{H^+}/n_e are strongly influenced.

A variation in T_e by a factor of 2, which is a rather dramatic change for a low-temperature
plasma, causes a relatively moderate change of the normalized ion densities of \(\text{ArH}^+ \), \(\text{Ar}^+ \), \(\text{H}_3^+ \), and \(\text{H}_2^+ \). The largest deviations occur for \(n_{\text{H}_3^+} \) which decreases to 0.72 if \(T_e \) is doubled and increases to 1.32 if \(T_e \) is divided by two. Although the normalized ion densities do not change significantly the absolute ion densities change by approximately a factor of 10 if \(T_e \) is varied by a factor of 2. It has to be further noted here that a change in \(T_e \) violates the quasi-neutrality condition, i.e., the total ion density is not equal to the electron density for this specific condition. The dissociation degree \(n_{\text{H}}/n_{\text{H}_2} \) shows a strong dependence on \(T_e \). As shown in Eqn. 17 the dissociation degree is proportional to \(K_{1.1}(T_e) \) and as a consequence \(n_{\text{H}}/n_{\text{H}_2} \) and, therefore, also \(n_{\text{H}_3^+}/n_e \) are strongly influenced. \(K_{1.1} \) is proportional to \(e^{-E_{1.1}/T_e} \) and is, therefore, very sensitive to a change in \(T_e \). In fact, the relative changes of \(n_{\text{H}}/n_{\text{H}_2} \) and \(n_{\text{H}_3^+}/n_e \) are the largest changes occurring in this sensitivity study.

A variation in the cylinder height \(l_{\text{el}} \), which corresponds to a change of the surface to volume ratio of the plasma, influences the normalized ion densities considerably. For example, if \(l_{\text{el}} \) is doubled the density of the primary ion species (\(\text{Ar}^+ \) and \(\text{H}_2^+ \)) decreases to about one half of the initial value. On the other hand, the density of the secondary ion species \(\text{ArH}^+ \) and \(\text{H}_3^+ \), which can only be produced by ion-molecule collisions in the plasma volume, is higher than the original value. This is due to the fact that the mean distance for the primary ions to the wall increases and, therefore, more primary ions are converted to secondary ions by ion-molecule reactions. This results in a higher density of \(\text{ArH}^+ \) and \(\text{H}_3^+ \). For the inverse case, if \(l_{\text{el}} \) is divided by two, the relative contribution of the primary ions increases and that of the secondary ions decreases. The variation in \(l_{\text{el}} \) has also a substantial impact on the electron temperature. For the investigated cases \(T_e \) varies by about 20% which is a significant change in a low-temperature plasma. The dissociation degree \(n_{\text{H}}/n_{\text{H}_2} \) increases by a factor of 1.41 if \(l_{\text{el}} \) increases by a factor of 2. As shown in Eqn. 17 \(n_{\text{H}}/n_{\text{H}_2} \) is proportional to \(1/K_s \propto l_{\text{el}} \). However, in the model this proportionality to \(l_{\text{el}} \) is partially compensated by the change in \(T_e \).

A decrease in \(T_g \) by a factor of 2 has a comparable effect on the ion densities as an increase in \(l_{\text{el}} \) by a factor of 2. This is due to the fact that a lower \(T_g \) increases the density of the background gas \(n = p/(k_B T_g) \) and, hence, increases the rate of ion-molecule reactions of the primary ions resulting in a higher density of \(\text{ArH}^+ \) and \(\text{H}_3^+ \).

V. DISCUSSION

The novel feature of the present work is that all relevant ion densities were determined experimentally (see Ref.16) such that a quantitative comparison to model results is possible. Accordingly, a model was developed for this experimentally investigated discharge. The differences between the here applied model and a global model which is often used (see, e.g., Ref.17,18) are: First, the electron density is provided as input parameter because the power balance is disregarded. Second, only axial losses to the upper electrode or lower quartz dome are assumed because there is no radial side wall between the upper and lower electrode at \(r_{\text{el}} \) and because of an aspect ratio \(l_{\text{el}}/r_{\text{el}} \lesssim 1 \). Third, \(\beta_\text{H} \) is determined by a fit procedure (see Sec. III F 2) because published \(\beta_\text{H} \) values show a significant scatter.

Kimura and Kasugai17 and Hjartarson et al.18 theoretically studied inductively coupled
H$_2$-Ar plasmas applying a global model to derive ion densities. For the variation of ion densities with changing argon fraction both publications show in principle rather similar trends. Hjartarson et al.18 study the H$_2$-Ar plasma in a wider parameter range and provide more detail in the description of the ion chemistry. Therefore, we compare our calculations to their modeling results. Because they were aiming at the H$^-$ density they included vibrationally excited H$_2$ which is known as precursor for the production of H$^-$. For a pressure variation of a H$_2$-Ar plasma with $f_{\text{Ar}} = 50\%$ between 0.13 and 13 Pa they showed normalized reaction rates and the total production and loss rates for H$_3^+$ and ArH$^+$ which agree very well with our results. In our model the recombination of ArH$^+$ with H$^-$ was not considered. The results of Hjartarson et al. show that this process has only a minor contribution to $R_{\text{tot}}^{\text{ArH}^+}$. It can reach 20\% at $f_{\text{Ar}} = 50\%$. In Fig. 4 our results for T_e are compared with those of Hjartarson et al. also showing satisfactory agreement. Overall our model results regarding the ion chemistry and T_e agree well with those of Hjartarson et al. although they additionally considered vibrationally excited H$_2(v)$ and H$^-$. From this we conclude that H$^-$ and H$_2(v)$ are not crucial for the description of the positive ion densities.

Our model results for n_{H^+} as well as n_H are clearly lower than the values of Hjartarson et al.18 as well as those of Kimura and Kasugai17. This is attributed to the different values used for β_H (this work: $\beta_H = 0.24$, value of Hjartarson et al.18 and Kimura and Kasugai17: $\beta_H = 0.02$). The model shows that n_{H^+} is directly related to n_H. A low n_H results in a low n_{H^+} and vice versa. In the experiment used for comparison16 two completely independent diagnostic methods were used to measure n_H and n_{H^+}. n_H was measured by optical emission spectroscopy and the ratio of n_{H^+} to n_e was based on measurements with the plasma monitor. So it is fair to consider the data for n_H and n_{H^+} as independent measurements. In our model evaluation n_H is used to fit β_H. The good agreement between the measured and modeled values for n_{H^+} (see below) can be regarded as an independent confirmation of the derived value for β_H.

![FIG. 7. Comparison of measured (closed symbols) and modeled (open symbols) ion densities and electron density as a function of the Ar fraction f_{Ar} for a total pressure of 1.0 Pa.](image)
In Fig. 7 the modeled ion densities from Fig. 3 are compared with the measured values from Ref.16 which were also shown in Fig. 2. The calculated Ar+ density shows the same behavior as the measured values and is very close to the absolute values of the measured curve. The modeled ArH+ density shows a similar characteristic as the measured curve but is a factor of about 2 lower. For the pure hydrogen plasma the dominant ion species is the H\textsubscript{3}+ ion with a calculated density of 5.5 \times 1015 m-3. H\textsubscript{2}+ and H+ show a 1.6 times and 55 times lower calculated density than H\textsubscript{3}+, respectively. The modeled H\textsubscript{3}+ and H\textsubscript{2}+ densities fit the measured densities for the pure H\textsubscript{2} plasma reasonably well, but clearly overestimate the measured densities by a factor of about 5 for the mixed plasma case. The calculated H+ density behavior is similar to that of H\textsubscript{3}+ and H\textsubscript{2}+, but the absolute values are closer to the measured ones than for H\textsubscript{3}+ and H\textsubscript{2}+.

All in all, our model describes the experimental results of Ref.16 reasonably well. The main features, i.e., the qualitative abundance of the ion species, the ion density dependence on the Ar fraction, and the electron temperature as function of f\textsubscript{Ar}, are reproduced by the model. However, there are quantitative deviations between model and experiment. The two main deviations will be discussed in the following. First, the deviations of the calculated and measured H\textsubscript{3}+ and H\textsubscript{2}+ densities. The model overestimates the measurement by a factor of about 5 for the considered mixed H\textsubscript{2}-Ar plasma cases. Second, the deviation between the calculated and measured ArH+ and Ar+ densities. The experiment shows that n\textsubscript{ArH+} is clearly higher than n\textsubscript{Ar+}, i.e., by a factor of 4.2 for f\textsubscript{Ar} = 12.6 \% and by a factor of 1.8 for f\textsubscript{Ar} = 72.3 \%. In contrast, the model predicts roughly the same density for ArH+ and Ar+ in the considered Ar fraction range.

The experimentally determined model input parameters have the following influence on the model results: Variations in β\textsubscript{H}, n\textsubscript{e}, and T\textsubscript{e} have no or only a moderate influence on the normalized ion densities as shown in Sec. IV D. On the other hand, l\textsubscript{cl} and T\textsubscript{g} have a considerable influence on the normalized ion densities. It was shown that an increase of l\textsubscript{cl} or a decrease of T\textsubscript{g} lowers the calculated primary ion densities (n\textsubscript{Ar+} and n\textsubscript{H3+}) and increases the calculated secondary ion densities (n\textsubscript{ArH+} and n\textsubscript{H2+}). Such a change of these input parameters would slightly enhance the agreement between modeled and measured ion densities.

But the model results are also influenced by the rate coefficients. As mentioned in Sec. III E 2 the value of K\textsubscript{2,5} differs between our study and that of Hjartarson et al. (K\textsubscript{2,5}Hjartarson/K\textsubscript{2,5}this work = 0.027). However, as shown in Sec. IV A (see Figs. 3(a) and 3(f)) reaction 2.5 has only a small contribution to the total reaction rates of H\textsubscript{3}+ and ArH+. Therefore, a lower value for K\textsubscript{2,5} would only result in a slight modification in our modeled ion densities. Setting this rate coefficient to K\textsubscript{2,5}Hjartarson = 1.0 \times 10-17 m3s-1 would result in a slight increase of n\textsubscript{H3+} by a factor of about 1.3 and a slight decrease of n\textsubscript{ArH+} by a factor of about 1.2. K\textsubscript{2,7} also differs between our study and that of Hjartarson et al. (K\textsubscript{2,7}Hjartarson/K\textsubscript{2,7}this work = 12). As shown in Sec. IV A reaction 2.7 has a negligible contribution to the total reaction rates of H\textsubscript{2}+ and Ar+. An increase of K\textsubscript{2,7} by a factor of 12 would change the resulting ion densities only insignificantly except the H\textsubscript{2}+ density at high f\textsubscript{Ar} \approx 90 \% which would increase by a factor of about 2. That means that neither a decrease of K\textsubscript{2,5} nor an increase of K\textsubscript{2,7} would significantly improve the agreement between model
Further tests have shown that a variation of $K_{2.2}$ (reaction 2.2: $\text{ArH}^+ + \text{H}_2 \rightarrow \text{H}_3^+ + \text{Ar}$) can change the model result considerably. If $K_{2.2}$ is set to 0 the transformation of ArH^+ to H_3^+ is stopped. This results in a higher ArH^+ and a lower H_3^+ density. Because the wall loss coefficient of ArH^+ is lower than that of H_3^+ this leads to a better confinement and to a higher ArH^+ density. And as a consequence the plasma density increases. To compensate this increase in plasma density, T_e has to be lowered to fit the quasi-neutrality. Due to this decrease of T_e the ion densities of the primary ions would also change. With $K_{2.2} = 0$ the calculated n_{ArH^+} and n_{Ar^+} dependence on f_{Ar} would agree with the measured values shown in Fig. 7 within the error bars. The calculated $n_{\text{H}_3^+}$ and n_{H^+} densities would also be very close to the measured values. Only the calculated $n_{\text{H}_3^+}$ would remain a factor of about 5 above the measured values indicating the need for a more complex change of the used rate coefficients to fit the experimental ion densities well. Nevertheless, due to the found improvement of the agreement of 5 output values (n_{ArH^+}, n_{Ar^+}, $n_{\text{H}_3^+}$, n_{H^+}, and T_e) by only varying the rate coefficient $K_{2.2}$ the reliability of the used value for $K_{2.2}$ has to be questioned.

Up to this point we concentrated our considerations on the determination of the ion densities in the plasma center. But as mentioned in the introduction, such H$_2$-Ar plasmas are frequently used in surface engineering applications. From such an application-oriented perspective the fluxes arriving at the surface are much more relevant than the species densities. In the following we will, therefore, calculate the ion fluxes arriving at the surface for a selected plasma condition to highlight the difference between ion densities and ion fluxes.

The ion fluxes j_i for the ion species i are calculated by:

$$j_i = n_i(x_0) \times v_{B,i}$$

(18)

where $v_{B,i}$ is the Bohm velocity (see Sec. III F 1) and $n_i(x_0) = h_i \times n_i$ is the ion density at the sheath edge with h_i defined in Eqn. 10. In the following the ion densities are compared with the corresponding ion fluxes for the case of $f_{\text{Ar}} = 48 \%$. For this case the calculated ion densities of ArH^+ and Ar^+ are by a factor of about two higher than the H_3^+ density (see Fig. 7). Using Eqn. 18 with the calculated ion density values of Fig. 7 the corresponding ion fluxes are $j_{\text{H}_3^+} = 2.2 \times 10^{19} \text{ m}^{-2}\text{s}^{-1}$, $j_{\text{ArH}^+} = 1.4 \times 10^{19} \text{ m}^{-2}\text{s}^{-1}$, and $j_{\text{Ar}^+} = 1.3 \times 10^{19} \text{ m}^{-2}\text{s}^{-1}$. In contrast to the ion densities which are dominated by the Ar-carrying ions, the H_3^+ ion has the largest share of the ion flux. $j_{\text{H}_3^+}$ is by a factor of about 1.6 higher than the fluxes of ArH^+ and Ar^+. This change of the relative contribution of H_3^+ compared with ArH^+ and Ar^+, if ion fluxes to the surface are considered instead of ion densities in the bulk, is caused by the proportionality $j_i \propto M_i^{-0.5}$. This results in a much higher flux of ions with lower masses compared with the heavier ions. It is further interesting to note that for the considered plasma condition the flux of atomic H $j_\text{H} = n_\text{H} v_\text{H} / 4$ (Eqn. see Ref.24) to the electrode surface is $j_\text{H} = 3.4 \times 10^{21} \text{ m}^{-2}\text{s}^{-1}$. This is a factor of 62 higher than the total ion flux $j_{\text{tot}} = \sum_i j_i = 5.5 \times 10^{19} \text{ m}^{-2}\text{s}^{-1}$.

And experimental results.
VI. SUMMARY

We developed a rate equation model to describe our experimental results of Ref.16. The model calculates the ion densities n_i, the wall loss probability of atomic hydrogen β_H, and the electron temperature T_e in H\textsubscript{2}-Ar plasmas with different mixing ratios. Input parameters for the model are the required collision rate coefficients. The remaining input parameters are experimentally obtained quantities, namely the electron density n_e, the gas temperature T_g, the total pressure p, the radical density n_{H_2}, and the Ar fraction f_{Ar}.

The primary ions H\textsubscript{3}+ and Ar+ which are produced by ionization of the background gas by electron collisions are effectively converted into H\textsubscript{3}+ and ArH+. The Ar-containing ions (Ar+ and ArH+) constitute a much higher plasma density than the ions containing only H (H+, H\textsubscript{2}+, H\textsubscript{3}+). This is dominantly due to the much higher loss of H\textsubscript{3}+ ions to the walls due to their lower mass. The H+/H\textsubscript{2}+ density ratio is closely related to the H/H\textsubscript{2} density ratio. Because the latter is low, also the H+/H\textsubscript{2}+ density ratio is low.

Our model describes the measured ion densities of Ref.16 reasonably well. The main features, i.e. the qualitative abundance of the ion species, the ion density dependence on the Ar fraction, and the electron temperature as function of f_{Ar}, are well reproduced by the model. But some quantitative deviations between model and experiment remain. The two main deviations were discussed. First, the deviations of the calculated and measured H\textsubscript{3}+ and H\textsubscript{2}+ densities. Second, the deviation between the calculated and measured ArH+ and Ar+ densities. A variation in β_H, n_e, and T_e had no or only a moderate influence on the normalized ion densities. A change of L_d and T_g would slightly enhance the agreement between modeled and measured ion densities. The influence of the rate coefficients on the model results was also studied. Neither a decrease of $K_{2.5}$ (rate coefficient of the reaction H\textsubscript{3}+ + Ar \rightarrow ArH+ + H\textsubscript{2}) nor an increase of $K_{2.7}$ (rate coefficient of the reaction Ar+ + H\textsubscript{2} \rightarrow H\textsubscript{2}+ + Ar) would significantly improve the agreement between model and experimental results. Only a variation of the rate coefficient $K_{2.2}$ (rate coefficient of the reaction ArH+ + H\textsubscript{2} \rightarrow H\textsubscript{3}+ + Ar) improved the agreement in 5 output values (n_{ArH^+}, n_{Ar^+}, $n_{\text{H}_2^+}$, $n_{\text{H}_3^+}$ and T_e) which gives rise to question the reliability of the used value.

In our model T_e was fitted to fulfill the quasi-neutrality condition. The modeled T_e shows the same trend as the measured T_e but systematically overestimates the measured values. The calculated atomic hydrogen density n_{H_2} was fitted to the measured atomic hydrogen density $n_{\text{H}_2}^m$ through a variation of β_H. The such obtained surface loss probability of atomic hydrogen on stainless steel, β_H, is 0.24 for an assumed H atom temperature of 6000 K.

ACKNOWLEDGMENTS

We gratefully acknowledge help from U. von Toussaint who supported the authors in questions concerning KPP and the error determination of the surface loss probability.
REFERENCES

