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a b s t r a c t

Land-atmosphere interactions play an important role for hot temperature extremes in Europe. Dry soils
may amplify such extremes through feedbacks with evapotranspiration. While previous observational
studies generally focused on the relationship between precipitation deficits and the number of hot days,
we investigate here the influence of soil moisture (SM) on summer monthly maximum temperatures
(TXx) using water balance model-based SM estimates (driven with observations) and temperature
observations. Generalized extreme value distributions are fitted to TXx using SM as a covariate. We
identify a negative relationship between SM and TXx, whereby a 100 mm decrease in model-based SM is
associated with a 1.6 1C increase in TXx in Southern-Central and Southeastern Europe. Dry SM conditions
result in a 2–4 1C increase in the 20-year return value of TXx compared to wet conditions in these two
regions. In contrast with SM impacts on the number of hot days (NHD), where low and high surface-
moisture conditions lead to different variability, we find a mostly linear dependency of the 20-year
return value on surface-moisture conditions. We attribute this difference to the non-linear relationship
between TXx and NHD that stems from the threshold-based calculation of NHD. Furthermore the
employed SM data and the Standardized Precipitation Index (SPI) are only weakly correlated in the
investigated regions, highlighting the importance of evapotranspiration and runoff for resulting SM.
Finally, in a case study for the hot 2003 summer we illustrate that if 2003 spring conditions in Southern-
Central Europe had been as dry as in the more recent 2011 event, temperature extremes in summer
would have been higher by about 1 1C, further enhancing the already extreme conditions which
prevailed in that year.

& 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

It is well established that the state of the land surface influences
atmospheric conditions, including impacts on near-surface tempera-
tures, boundary layer development, and possibly rainfall generation.
Soil moisture is a key variable controlling several of these interactions
(Seneviratne et al., 2010). As such, the relationships between surface
moisture and temperature means and extremes have been studied
extensively using both observational and model derived products (e.g.,
Koster et al., 2006; Seneviratne et al., 2006; Fischer et al., 2007;
Mueller and Seneviratne 2012; Miralles et al., 2014). Most of the
inferred impacts of soil moisture on the climate system are mediated

by variations of evapotranspiration in soil moisture-limited regimes
(Koster et al., 2004, Seneviratne et al., 2010), and these feedbacks also
play an important role in the context of climate change, possibly
leading to a shift in the location of hot spots of soil moisture-
temperature coupling (Seneviratne et al., 2006).

Increases in climate extremes, due to changes in the mean,
variance or shape of the distributions, can have larger impacts on
ecosystems and society than changes in mean climate because it is
often more difficult to adapt to changes in rare but high impact
extreme events (e.g., IPCC, 2012; Reichstein et al., 2013). Several
studies have shown that changes in the extremes do not always scale
to changes in mean climate (see references in Seneviratne et al.,
2012a). For instance, an extreme value analysis of the Central England
daily mean temperature record has shown that hot summer extremes
have evolved differently than mean summer temperature (Brabson
and Palutikof, 2002). Furthermore, analyses of climate model projec-
tions also suggest that the warm tails of summer temperature
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distributions will warmmore than mean temperatures in mid-latitude
regions with substantial decreases in soil moisture content, in parti-
cular in Central Europe and the Mediterranean region (Orlowsky and
Seneviratne, 2012). Accordingly, investigating the relationship
between soil moisture anomalies and indices of temperature extremes
in Europe is of high interest. Indices that have been developed to
characterize temperature extremes (Zhang et al., 2011) include abso-
lute indices (e.g., the hottest day of the year, season or month) and
percentile indices that examine changes in the tails of the distribution
(e.g., the number of days with maximum temperatures above the 90th
percentile), among others. Many of these indices describe ‘moderate’
extremes with a re-occurrence time of one year (Seneviratne et al.,
2012a).

Many studies have investigated the influence of land-atmosphere
coupling on indices of extreme temperature. Antecedent surface
moisture deficits estimated from the Standardized Precipitation Index
(SPI) were related both to the number of hot days (i.e., the number of
days with maximum temperatures above the 90th percentile) and the
maximum heatwave duration (i.e., the maximum number of conse-
cutive days with daily maximum temperature above the 90th percen-
tile) in summer in Southeastern Europe (Hirschi et al., 2011). These
results were confirmed in other studies for Europe (Quesada et al.,
2012) and on the global scale (Mueller and Seneviratne, 2012), which
identified other hot spots with a strong correlation between the
number of hot days in the warm season and antecedent precipitation
deficits. In these various studies, the relationship between antecedent
moisture deficits and extreme temperature (assessed by the number
of hot days) amplified for summers with a higher occurrence of hot
days (Hirschi et al., 2011). On the other hand, the decreasing variability
of hot extremes towards wetter conditions implies a higher predict-
ability for the occurrence of hot days following wet rather than dry
conditions. Indeed, wet spells are strictly followed by low numbers of
hot days, but both high and low numbers of hot days can take place
following dry conditions (Quesada et al., 2012; Mueller and
Seneviratne, 2012). Hence, antecedent dry conditions were found to
be a necessary but not sufficient condition for the occurrence of hot
days. In addition, Quesada et al. (2012) considered the role of
prevailing weather types in combination with spring moisture deficits
in the occurrence of summer heat waves in Europe, identifying that
both controls are important for the occurrence of hot days. The global
analysis of Mueller and Seneviratne (2012) identified a relationship
between precipitation deficits and the subsequent occurrence of hot
extremes in a large fraction of the world, including many areas in
North and South America, Europe, Australia and parts of China. In
North America, these results are also consistent with previous findings
of Durre et al. (2000), suggesting that the distribution of daily
maximum temperature is shifted to higher values on days following
low soil moisture anomalies (using soil moisture estimates from a
water balance model), with the largest impacts at the warm end of the
distribution.

In general, most studies of extremes examine changes or
relationships in extreme indices (Vincent et al., 2005; Donat
et al., 2013; McGree et al., 2013; Whan et al, 2013). Recently,
however, more research uses extreme value theory to fit non-
stationary generalized extreme value (GEV) distributions to pre-
cipitation and temperature data, with covariates used to explore
relationships with large-scale climate drivers (e.g., Zhang et al.,
2010; Sillmann et al., 2011; Photiadou et al., 2014). For instance,
the relationship between hot spell duration, magnitude and
frequency, and atmospheric blocking has been demonstrated for
Europe using a non-stationary GEV model (Photiadou et al., 2014).
A GEV analysis has the advantage of moving away from moderate
extreme events and focusing on the far ends of the tails of the
distributions. Robust predictions can even be made about the
occurrence of rare events that have not (yet) been observed. To
answer questions only related to extremes, it is preferable to fit

distributions only to the tails using an extreme value analysis
rather than to model the whole distribution (Cooley, 2009).

One way of understanding the influence of soil moisture on
(subsequent) temperature extremes is to study temperature dif-
ferences on days with wet soil moisture compared with all days,
i.e., using composites. Using such a method, Brabson et al. (2005)
demonstrated that additional soil moisture is associated with
more moderate return values (RVs) for both summer maximum
and winter minimum temperatures in Britain. In addition, it was
shown that future hot spells are longer when the analysis is
restricted to low soil moisture days. That study fitted a stationary
GEV distribution to a subset of days (i.e., wet soil moisture days)
rather than using a non-stationary approach with an index of soil
moisture as a covariate. Also Mueller and Seneviratne (2012) used
composites to derive the distributions for the number of hot days
following dry or wet conditions in Texas in a non-GEV application.

Despite the large body of research about the influence of land-
atmosphere coupling on temperature, several questions remain.
For instance, it is difficult to obtain continental scale observed soil
moisture data sets (Koster et al., 2006; Seneviratne et al., 2010,
Dorigo et al., 2013). Therefore, many observational studies use
proxies for soil moisture (Hirschi et al., 2011; Mueller and
Seneviratne, 2012; Zscheischler et al., 2014a) as data basis, while
others used soil moisture derived from meteorological inputs to a
water balance or land surface model (Durre et al., 2000, Orth and
Seneviratne, 2014). A recent study alternatively used remote
sensing estimates of soil moisture retrieved from microwave
measurements, but also these data have some shortcomings,
mostly because they only measure moisture in the top few
centimetres of the soil (Hirschi et al., 2014). Hence, it is relevant
to investigate how inferred relationships between surface moist-
ure deficits and temperature extremes may depend on the use of
the SPI compared to model-based soil moisture. The relationship
between the number of hot days and the block maxima of
maximum temperature also requires further analysis, because a
direct translation from temperature extremes into the number of
hot days cannot be expected. Finally, no previous research has
examined the nature of soil moisture—extreme temperature
relationship within a GEV framework.

In order to answer the above questions, we focus on the relation-
ship between extreme temperature and a newly derived model-based
soil moisture data set using an extreme value theory methodology. We
concentrate on the summer months (June, July and August) and
domains in Southeastern and Southern-Central Europe (SEE and SCE,
respectively). These regions were chosen because SEE has been
identified as a hot spot of soil moisture-temperature coupling
(Hirschi et al., 2011; Mueller and Seneviratne, 2012) and because
SCE was the main region affected by the 2003 heatwave (e.g., Schär
et al., 2004; Fischer et al., 2007). The SCE domain is substantially diff-
erent from the Central European domain considered in Hirschi et al.
(2011), which only included Austria and the Czech Republic, while the
SCE domain in the present study covers most of Southern France and
Northern Italy (in addition to Austria and Southern Germany), and
thus a large fraction of its area is located in a Mediterranean climate
regime. The latter is expected to be associated with a soil moisture-
limited evapotranspiration regime (Teuling et al., 2009) and thus a
stronger impact of soil moisture availability on temperature on the
interannual time scale (Seneviratne et al., 2010).

2. Data and methods

2.1. Study area and data sets

We focus our analysis on Europe (�9.75 to 49.751E and 35.25
to 69.751N) and the period 1984–2013 to coincide with the extent
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of the gridded meteorological product (see description hereafter).
The two mentioned regions, SEE and SCE (see above), are then
selected for more detailed analysis (Fig. 1). The SEE domain (22.25
to 28.251E and 41.75 to 47.751E) was defined similarly to the
corresponding domain considered in Hirschi et al. (2011). The SCE
domain (1.25–13.751E and 43.25–49.751N) was selected focusing
on the region most strongly affected by the 2003 heat wave (Schär
et al., 2004).

The meteorological data is sourced from the E-OBS data set
(Haylock et al., 2008, http://www.ecad.eu/download/ensembles/
download.php [accessed 27.08.14]), over the period 1984–2013.
From this data set, several indices are calculated to characterize
extreme temperature and surface-moisture deficits. For the latter,
we use the Standardized Precipitation Index (SPI). The SPI is a
normalized index of monthly precipitation accumulated over the
previous i months, where i is typically 1, 3, 6, 12, 24 or 48 months
(McKee et al., 1993). While there is no standard definition of
drought, the SPI has been widely used to characterize surface
moisture deficits (e.g., Mishra and Singh, 2010; Hirschi et al., 2011),
as soil moisture is tightly connected to precipitation forcing.

Nonetheless, evapotranspiration and runoff anomalies can be
important for soil moisture evolution during drought events in
Europe (e.g., Seneviratne et al., 2012b; Teuling et al., 2013). Hence
it is relevant to consider the correspondence of SPI and soil
moisture estimates as discussed in Section 3. Here we show
results using SPI accumulated for i¼3 months. However, sensitiv-
ity testing suggests that results are similar for the SPI calculated
from the preceding 2, 3, 6-month periods, and weaker than
presented here for i¼1 month (not shown). Furthermore, the
number of hot days (NHD) is calculated for each month by taking a
count of days with the maximum temperature above the 90th
percentile of the respective day of the year, as computed from all
years (Hirschi et al., 2011; Mueller and Seneviratne, 2012).

Gridded soil moisture (SM) used in this study is inferred from
precipitation, temperature and net radiation using a simple water
balance model (see Orth et al., 2013 for a detailed description of the
model, and Orth and Seneviratne, 2015 for a description of the data
set). The model assumes power-law dependencies between soil
moisture and respectively (i) evapotranspiration (normalized with
net radiation) and (ii) runoff (normalized with precipitation). The
model parameters determine the shape of these functions. Orth and
Seneviratne (2015) optimized the model parameters using several
state-of-the-art land surface data sets. Using the obtained parameters,
which are constant across the entire continent, they introduced and
validated a novel European land surface data set, which we employ in
this study. Fig. 2 shows the resulting power-law functions, Q/P and ET/
Rnet as functions of soil moisture. Here Q is runoff, P is precipitation, ET
is evapotranspiration, and Rnet is net radiation. Additionally, empirical
probability distributions of daily summer (JJA) SM values over the two
focus regions SCE and SEE are shown. For comparison, we also use the
reanalysis-based soil moisture data set from ERA-interim/land
(Balsamo et al., 2013) to confirm our results over the period 1984–
2010. ERA-interim/land is a single run from a land-surface model
driven by ERA-interim (Dee et al., 2011) with rainfall corrected
according to the Global Precipitation Climate Project data set (v2.1,
Adler et al., 2003). The data set has been shown to compare reasonably
well with observations from numerous stations across the world
(Albergel et al., 2013).

2.2. Methods

The relationship between soil moisture at the first day of the
month (SM) and maximum monthly temperature (TXx) was assessed
using extreme value theory (e.g., Coles, 2001). The focus was on June,
July, and August as the impacts of extreme temperature events are
largest in summer and there is potential for interactions between
extreme temperatures with dry soils. GEV distributions were fitted to
the block maxima of daily maximum temperature (TXx) from each
individual summer month with and without an index of surface-
moisture availability as a covariate. Analysis is conducted in the R
Statistical Computing environment (R Core Team, 2014), using the
‘extRemes’ package (Gilleland and Katz, 2011). Firstly, the stationary
GEV model (MSTAT) was fitted to the block maxima of each summer
month with no covariates (Eq. (1)):

G xð Þ ¼ exp � 1þξ x�μð Þ
σ

� �� �
: ð1Þ

The GEV distribution is described by three parameters: the location
parameter (μ), which is similar to the mean of the distribution, the
scale parameter (σ), which is a measure of the variability and, the
shape parameter (ξ), that describes the type of distribution the data
fits (i.e., Gumbel: ξ¼0, Frechet: ξ40, Weibull: ξo0). Given that
temperature extremes can be assumed to be finite (because of a finite
amount of energy reaching the Earth's surface) their scale parameter
should be negative, i.e., they should follow a Weibull distribution. The
shape parameter in MSTAT is between �0.05 and �0.50, suggesting

Fig. 1. Considered domains and fit of the GEV in Europe. Pixels where the GEV is a
good fit for monthly summer TXx are colored blue, while locations that do not have
a good fit are gray. Stippling indicates regions where inclusion of soil moisture as a
covariate on the location parameter in MSM does not significantly improve the fit.
The Southern-Central European (SCE) and Southeastern European (SEE) domains
are highlighted. The mask used in subsequent figures combines the results of these
two tests and uses stippling where this map is gray or stippled.

Fig. 2. The ratio of runoff to precipitation (Q/P, red) and evapotranspiration to net
radiation (ET/Rnet, blue) used in the simple water balance model. Also shown are
the empirical probability density functions of soil moisture (SM) over all days for
the two regions, SEE (green) and SCE (orange). Soil moisture is bounded on the
lower end by 5 mm (instead of zero, to ensure numerical stability) and on the
higher end by 970.5 mm (field capacity). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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that maximum temperature followed a Weibull distribution. The
shape of the fitted distributions here are consistent with other studies
that reported extreme temperatures with bounded tails (Andrade et
al., 2012; Nogaj et al., 2006).

Secondly, non-stationary GEV models were fitted to TXx with
an index of surface-moisture availability included as a covariate at
each pixel. In this context, we used SM on the first day of each
summer month from the simple water balance model (MSM) and
ERA-land (MERA), and monthly SPI (MSPI), respectively, as a
covariate on the location parameter (Eq. (2)), such that the
location parameter is a linear function of the covariate, i.e.,

μ ðzÞ ¼ β0þβ1z; ð2Þ

with z denoting either SM or SPI and β0 and β1 denoting constants
fitted to each location.

Two tests assessed the performance of the GEV fitted at each
pixel. Firstly, a Kolmogorov–Smirnov goodness-of-fit test (K–S test,
po0.05) was carried out on the stationary model (MSTAT) to assess
whether the block maxima of each summer month follows a GEV
distribution (Zhang et al., 2010). Secondly, the likelihood-ratio-test
was conducted on the stationary (MSTAT) and non-stationary
models (MSM, MSPI, MERA) to determine if the inclusion of the
covariate resulted in a significant improvement of the model fit
(Zhang et al., 2010). Locations where maximum temperature does
not follow a GEV distribution are colored gray in Fig. 1, with most
pixels that failed the K–S test located in the Iberian Peninsula. This
latter feature is due to the negative skew of TXx, a lack of summer
variability and a significant autocorrelation between years in the
Iberian Peninsula (see Supplementary Information, Fig. S1 in the ).

In addition, locations where soil moisture is not a significant
covariate are stippled in Fig. 1. In later figures, these two masks
are combined so that figures are stippled in pixels where either
the GEV is not a good-fit or the covariate does not result in a
significant improvement. Use of the summer block maxima of
maximum temperature results in a better fit in the Iberian
Peninsula, and more generally over the study domain, but with
fewer pixels where the covariate (either SM or SPI) makes a
significant improvement to the model. As such, the model we
use was selected as a tradeoff between model fit and covariate
significance. Previous work has compared the use of seasonal and
monthly blocks in a GEV analysis. Decreasing block length, and
thus increasing sample size, resulted in a smaller location para-
meter and larger scale parameter but had little impact on the
magnitude of the return levels (Parey, 2008). In addition, the r-
largest method has been widely used (Zhang et al., 2004, Zhang et
al., 2010). This method fits the GEV to the r-largest values per
block, where rZ1. The choice of r is a variance—bias tradeoff, with
larger values of r likely violating the asymptotic support for the
extreme value distributions (Zhang et al., 2010).

The influence of soil moisture regime on extreme temperature
was quantified by comparison of return values when soil moisture
was dry (10th percentile) and wet (90th percentile) in the non-
stationary models (MSM, MSPI and MERA). As we use block maxima
from each of the three summer months, the return values
represent the values that are expected to occur once in T-
summer-months, rather than once in T-years. As such we calculate
the 60-summer-months return values as an approximation of the
20-year return value (RV20). Finally, the influence of soil moisture

Fig. 3. Standardized soil moisture anomalies on the 1st June in (a) 2003 and (b) 2011. Mean summer anomalies of (c) soil moisture and (d) maximum temperature in 2003.
The Southern-Central European (SCE) and Southeast European (SEE) regions are marked.
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regime on the variability of extreme temperature was evaluated by
comparing the spread of the confidence interval around the RV20
computed from temperature data during dry and wet soil moisture
states, respectively. Confidence intervals are estimated using
normal approximation (the delta method) in the ‘extRemes’
package (Coles, 2001; Gilleland and Katz, 2011; Gilleland, 2014).
Comparing the width of the confidence intervals around the RV20
when soil moisture is dry and wet gives an indication of the
uncertainty associated with each of the estimates. This informa-
tion is relevant, as in the case of the NHD, higher variability of
distributions (and thus higher uncertainty) was found after dry
compared to wet conditions (e.g., Hirschi et al., 2011).

Next, quantile regression was conducted on the block maxima
of monthly maximum temperature (TXx) and five-day mean soil
moisture centered around the first day of the months of June, July,
and August, within the time period 1984–2013 to assess their
relationship throughout distribution at the 5th, 25th, 50th, 75th
and 95th percentiles. Due to limitations in the availability of soil
moisture data (see Section 1), previous research has used the SPI
as a proxy for soil moisture. To evaluate this assumption, the
relationship between SPI and model-based SM is assessed. In
addition, previous work has found significant relationships
between surface moisture deficits and the NHD, as such the
relationship between the NHD and TXx is also discussed.

Finally, a case-study analysis was performed to assess the role
of antecedent soil moisture conditions in the 2003 heat wave
event, which was particularly extreme (e.g., Schär et al., 2004;
Fischer et al., 2007; García-Herrera et al., 2010). In 2003, average
May soil moisture conditions (�13 mm in SCE in the model-based
SM, Fig. 3) were followed by a substantial decrease during summer
due to dry and hot conditions in particular in the month of June
(Seneviratne et al., 2012b). Despite late spring conditions with
near-average soil moisture conditions, the 2003 summer was hot
and dry leading to large-scale soil moisture deficits (Fig. 3c) and
strong impacts on vegetation activity (e.g., Ciais et al., 2005).
Conversely, in 2011, below average soil moisture in May (�70 mm
in SCE in model-based SM, Fig. 3b) was followed by wetter
conditions in summer (see Fig. 9a). To evaluate the role of
antecedent soil moisture conditions on the 2003 heat wave, we
combined the 2011 spring soil moisture levels with the meteor-
ological forcing of summer 2003 and computed a soil moisture
reconstruction given 2011 spring conditions and 2003 summer
climate. We then evaluated the impact of the new (hypothetical)
soil moisture conditions on temperature extremes by computing
the corresponding change in the RV20 and the change in prob-
ability for reaching the RV20 of original 2003 under the new soil

moisture conditions. Daily soil moisture anomalies were standar-
dized by dividing by the daily standard deviation of soil moisture.

3. Results

3.1. Extreme value analysis of summer temperature extremes with
co-varying soil moisture

Summer maximum temperature extremes (TXx) follow an extreme
value distribution in most regions of Europe (Fig. 1). The Iberian
Peninsula and some areas in Southern Finland are an exception, there
the distribution of temperature extremes of the summer months is
narrow and negatively skewed, and thus does not follow an extreme
value distribution (see Section 2.2 and Fig. S1). In most areas of
Western Europe, Italy, Southeastern Europe and Eastern Europe, SM is
a significant covariate (Fig. 1), i.e., including SM in the GEV model
significantly improves the estimates of maximum temperature. This is
in line with the expectation that in regions with an intermediate SM
regime (not too dry and not too wet), SM significantly influences
temperature (Seneviratne et al., 2010).

In areas where SM is a significant covariate, it is negatively
related to temperature extremes, i.e., higher SM levels are asso-
ciated with lower extreme temperatures (Fig. 4). Most areas show
a decrease in monthly temperature maxima of about 1.5 1C for an
increase in SM of 100 mm, with area averages of 1.8 1C and 1.6 1C
in SCE and SEE, respectively. Corresponding with these results,
lower SM levels lead to higher RV of temperature. We find that dry
conditions (10th percentile of SM) lead to a 2–4 1C increase in 20-
year RVs of temperature of compared to wet conditions (90th
percentile of SM) in most regions (Fig. 5a). For SEE the difference in
the 20-year RV between wet and dry soil moisture regimes is
2.3 1C, while for SCE it is 2.2 1C (Fig. 5a). The largest differences in
20-year RVs are found in Central France, Slovenia, Croatia, Bosnia
and Herzegovina and Eastern Europe where hot extremes differ by
almost 4 1C depending on the soil moisture content. In SCE and
SEE there is no consistent change in the width of the confidence
intervals around the 20-year RV for difference soil moisture
regimes (Fig. 7).

To further investigate this relationship, we also compute quan-
tile regression analyses (see e.g., Hirschi et al., 2011) of TXx as a
function of SM for the two investigated regions (Fig. 6a and c). These
results are consistent with an overall negative correlation between
averaged TXx and SM levels for the two focus regions SCE and SEE,
with regression coefficients of �0.04 and �0.02, respectively (i.e., �4
and �2 1C/100 mm, Fig. 6a and c). However, the dependencies are

Fig. 4. The slope of the location parameter, β1, (1C/mm) in the non-stationary GEV model of extreme temperature with soil moisture as a covariate (MSM). Stippling indicates
regions where either the GEV is not a good fit for extreme temperature or soil moisture is not a significant covariate.
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qualitatively different from those for the relationship between NHD
and SPI (Hirschi et al., 2011; Quesada et al., 2012; Mueller and
Seneviratne, 2012), as can also be seen in Fig. 6b and d. Indeed the
dependency of TXx on soil moisture is found to be mostly linear with
similar coefficients for different quantiles (Fig. 6a and c), while the
dependency of NHD on SPI displays increasing slopes for higher
quantiles and correspondingly higher spread of NHD for the dry con-
ditions. Therefore, the confidence intervals for the GEV analysis do not
show a systematic difference for dry vs. wet conditions in most areas,
including SEE and SCE.

The differences in the results for the quantile regressions of TXx
with SM compared to NHD with SPI could be either due to differences
in SPI and SM, or TXx and NHD. Regressions of SPI on SM and NHD on
TXx (Fig. 8) suggest that both factors play a role. The other quantile

regression pairs (i.e., TXx on SPI and NHD on SM, see Supplementary
Information, Fig. S2) show that the different behavior of TXx and NHD
as a function of surface moisture (SM or SPI) deficits is linked to a
threshold effect. If temperature maxima are low, and therefore below
the threshold used to defined hot days, NHD is 0 (Fig. 8, left). This is
the case for many of the smaller values of TXx. Consequently, this
results in smaller variability of NHD for wetter conditions and cooler
temperatures, a feature not found for the dependency of TXx on soil
moisture. Moreover, the correlation between SM and SPI is not very
strong (Fig. 8, right). SPI has often been used as a proxy for SM in
previous studies (e.g., Hirschi et al., 2011; Mueller and Seneviratne,
2012; Zscheischler et al., 2014b). Yet, it is solely based on precipitation
and neglects impacts of evapotranspiration (and runoff) on soil water
content, which was shown to play an important role for drought

Fig. 5. ΔRV20 is the difference in the 20-year return value (RV20, 1C) between dry (10th percentile) and wet (90th percentile) regimes of the covariate. (a) ΔRV20 from MSM.
(b) ΔRV20 from MSPI. (c) The difference between ΔRV20SPI and ΔRV20SM. Stippling indicates regions where either the GEV is not a good fit for extreme temperature or in
(a) and (b) SM or the SPI is not a significant covariate or in (c) either the SPI or SM are not significant covariates. White areas indicate pixels where the GEV could not be fit
due to missing data.
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development in Central Europe (Seneviratne et al., 2012b; Teuling
et al., 2013).

We further analyze if the different behavior of SPI and SM
might impact the GEV analyses. To assess this, we fit a GEV
distribution to TXx with SPI as covariate for the location parameter
(MSPI). Comparing the RV20 for dry and wet conditions corre-
sponds well with the results for SM (Fig. 5b). Drier conditions in

the SPI lead to higher RV20 values. Compared to SM, using SPI as a
covariate leads to a larger separation between dry and wet
regimes in Eastern Europe (up to 2 1C) and a smaller difference
in Western Europe (between 1 and 2 1C, Fig. 5c). Moreover, for
large regions in Norway and Sweden, SPI is a significant covariate
while SM is not (Fig. 5b). These differences are possibly related
to the fact that SPI is a relative measure of moisture, which is

Fig. 6. The relationship between summer regionally averaged TXx with SM (a and c) and monthly NHD with monthly SPI-3 (i.e., accumulated over 3 months) (b and d). The
regression lines for the 5th, 25th 75th and 95th percentiles (dashed) and median (solid) are marked. The regions shown are Southern-Central Europe (SCE: a and b) and
Southeastern Europe (SEE: c and d).

Fig. 7. The difference in the width of the confidence intervals (1C) around the RV20 between dry (10th percentile) and wet (90th percentile) soil moisture regimes from MSM.
Stippling indicates regions where either the GEV is not a good fit for extreme temperature or soil moisture is not a significant covariate.

K. Whan et al. / Weather and Climate Extremes 9 (2015) 57–67 63



normally distributed for each location, whereas SM is an absolute
measure. Consequently, SM is often close to saturation in higher
latitudes and close to zero in dry areas.

To investigate the dependency of our results on the chosen SM
data set, we repeated the analysis fitting the GEV distribution to
TXx using soil moisture from ERA-land as a covariate (MERA, see
Supplementary Information, Fig. S3). Results were similar when fit
over the common period, although the influence of SM on TXx
using the ERA-land SM is smaller than for the simple-model SM,
with a 0.7 1C and 0.6 1C decrease per 100 mm of soil moisture in
SCS and SEE, respectively. Spatially the influence of soil moisture
regime on the RV20 is similar to MSM, showing that our findings
are robust independently of the employed soil moisture data set.

The use of a novel SM reconstruction and the consideration of
impacts on absolute extreme maximum temperatures rather than
the NHD enables us to re-examine the role of soil moisture-
temperature relationships compared to previous assessments.
The observational studies of Hirschi et al. (2011), Quesada et al.
(2012), and Mueller and Seneviratne (2012) focused on relation-
ships between precipitation deficits estimated with SPI and
impacts on NHD as an indicator for extreme temperatures. These
previous results indicated a strong impact of surface moisture
deficit on hot extremes, a finding also confirmed by our study. Our
results furthermore suggest, however, that contrary to the results
obtained with NHD data, the relationship is not markedly different
for dry vs. wet conditions. Indeed, results based on the NHD
displayed a higher variability after dry vs. wet conditions (e.g.,
Hirschi et al., 2011), a finding due in large part to a threshold

effect, i.e., the fact that NHD is 0 as long as a temperature thre-
shold is not exceeded and thus NHD generally shows much lower
variability when temperatures are low (a similar effect would also
be expected in the case of exceedance temperatures). Overall, our
findings imply a mostly linear impact of soil moisture on tem-
perature maxima in summer months (consistent with results from
climate models, e.g., Seneviratne et al., 2013).

3.2. The impact of spring SM conditions on the summer 2003 heat
wave

In 2003, Europe was struck by an unprecedented summer heat
wave and serious drought (Schär et al., 2004; Andersen et al.,
2005; Fischer et al., 2007). Around 40,000 deaths were registered
in Europe during the heat wave, which affected mostly elderly
people (García-Herrera et al., 2010). Nonetheless, recent results
have suggested that the spring of 2003 was not anomalously dry
(e.g., Seneviratne et al., 2012b; Wetter et al., 2014), with the
exception of the conditions in June. Two main heatwave periods
occurred, one in June and another one in August. The August
heatwave was particularly extreme (leading to a mortality rise of
60% in France, Fouillet et al., 2006; García-Herrera et al., 2010), and
was strongly exacerbated by dry conditions in that month (Fischer
et al., 2007). The meteorological conditions of the heatwave also
included an extremely persistent blocking and the intense nega-
tive soil moisture anomaly in central Europe and the resulting
feedback mechanism (García-Herrera et al., 2010). Conversely,
spring 2011 was dry but the meteorological conditions became

Fig. 8. The relationship between regionally averaged values of summer monthly NHD with TXx (left) and monthly SPI-3 (i.e., accumulated over 3 months) with SM (right).
The linear regression and r2 is indicated on each figure The regions shown are Southern-Central Europe (SCE, top) and Southeastern Europe (SEE, bottom).
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wetter in June, and the summer temperatures were not particu-
larly high. Using the derived GEV model, we assess here what
could have been the temperature conditions in the summer 2003
if the spring had been drier than in that year, i.e., like in 2011.

For this purpose we replace the SM at the beginning of the
summer 2003 with the much drier corresponding value of 2011
(Fig. 9a). Starting with SM of June 1st 2011, we use the summer
climate of 2003 to drive the SM reconstruction, and to compute
the (hypothetical) soil moisture evolution that would have
occurred with much drier initial soil moisture conditions. Note
that this experiment does not include any soil moisture—atmo-
sphere feedbacks (e.g., the influence of soil moisture on precipita-
tion or circulation is not taken into account), which could enhance
the impact of soil moisture on temperature in case of positive soil
moisture-precipitation feedbacks (e.g., Guillod et al., 2015). Sum-
mer temperature anomalies were largest in the SCE domain
(Fig. 3d); hence we focus our analysis on that region. The actual
SM anomaly in summer 2003 was �47 mm in SCE (this corre-
sponds to approximately 1.2 standard deviations (SD)). If the
summer of 2003 had started with the SM levels of 2011, the
summer SM anomaly would have been �95 mm (or 2.4 SD)
according to the employed model. In the case study year, SM
reaches the mean summer deficit in mid-June and changes little
throughout the summer, while in 2003 SM levels decrease until
the end of summer (Fig. 9a). Given our findings in the previous
sub-section this might have had severe impacts on hot tempera-
ture extremes. Indeed, the change in SM conditions leads to an
increase of the 20-year RV of summer temperature extremes by
about 1 1C, from 36.43 1C to 37.36 1C (Fig. 9b). Put in different
words, exchanging the initial SM conditions leads to a 4� increase
in probability of reaching 36.43 1C across the whole summer, from
1.7% to 7% (the probability of a 1-in-60-summer-months or 1-in-
20-years event is 0.017). The importance of soil-temperature
feedback for the emergence of mega-heatwaves was shown for
several European events, including the 2003 SCE heatwave and the
2010 Russian heatwave (Fischer et al., 2007; Miralles et al., 2014).
However, once the soil is dried out, a continued precipitation
deficit cannot further lower the soil moisture, and hence the soil
moisture-temperature feedback is not further amplified. This may
also explain the low inter-annual temperature variability across
the Iberian Peninsula (see Section 2.2).

4. Discussion and conclusions

In this study we applied for the first time extreme value theory
onto temperature extremes using soil moisture as a covariate. With
this approach we could quantify the impact of initial soil moisture on
extreme hot temperatures, which is particularly relevant in areas with
intermediate soil moisture regime. While it is known that hot
temperatures in summer are impacted by precipitation deficits in
spring in many areas (e.g., Mueller and Seneviratne, 2012), our study
extended this insight and provided an estimate of the degree to which
soil moisture influences the magnitude of the temperature extremes.
This was possible, because, in contrast to previous studies, we used
monthly temperature extremes instead of the number of hot days per
month as primary variable. Consistent with previous work, we found
high variability in the NHD at low SM and SPI values, with a narrowing
in the NHD distribution under wetter conditions. In contrast, the
distribution of TXx showed no such change for wet and dry SM and SPI
regimes. Furthermore, the differences in confidence intervals sur-
rounding the 20-year return value of TXx between dry and wet soil
moisture regimes were small in Southern-Central and southeast
Europe, underlining the limited impact of soil moisture on hot
temperature variability. It is important to understand how soil
moisture and other drivers of extreme heat are associated with
changes in both the intensity of extreme temperature and the duration
of events, as both can increase risk of mortality as well as common
health problems. For example, in North America, heat wave mortality
risk increased by 2.5 % for each 0.56 1C increase in heat wave intensity,
and by 0.4 % for each 1-day increase in length (Anderson and Bell,
2011). Increased understanding of the relationship between absolute
maximum temperature extremes and soil moisture could have value
in forecasting applications for heat extremes.

Another feature setting this study apart from previous work is the
use of soil moisture data derived from a simple water balance model
(Orth and Seneviratne, 2015). We showed a moderate positive
correlation between SM and the SPI (accumulated between 2 and
6 months), which, combined with the agreement between results
obtained from SPI- and SM-based analyses, indicates that SM can be
approximated by the SPI. A previous analysis in North Carolina found a
stronger correlation between normalized SM and the SPI on a shorter
biweekly timescale (Sims and Raman, 2002). The weaker relationship
we find may be associated with differences in evapotranspiration or

Fig. 9. (a) Standardized daily soil moisture anomalies from Southern-Central Europe for spring and summer in 2003 (black, solid), in the case study where dry soil moisture
conditions of 2011 are combined with the meteorological forcing from 2003 (red, solid) and 2011 (blue, dashed). The line of best fit over the summer period is marked for
2003 and the case study year. (b) Southern-Central European return values for 2003 (black) and the case study year (red) with 95% confidence intervals marked in dashed
lines. RV20 is marked and the 2003 RV20 is highlighted with gray solid lines. The return values are calculated from the non-stationary model with the mean summer soil
moisture of each year used as the covariate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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runoff between locations, or the shorter time scale of the previous
study. Many previous studies using the SPI as a proxy for soil moisture
have added valuable insights as to the nature of the relationship
between precipitation deficits and extreme temperature (e.g., Hirschi
et al., 2011; Mueller and Seneviratne, 2012). However, while precipita-
tion is the main driver of SM levels, we show that there is not a perfect
relationship between the SPI and employed SM dataset. It is preferable
to use SM directly, where possible, rather than relying on a proxy
measure that does not account for processes such as evapotranspira-
tion or runoff. This is even more important under changed future
climate conditions where precipitation, evapotranspiration and runoff
may change in different ways, further altering the relationship
between SM and the SPI. Nonetheless, we note that the used SM data
is a model-based product and could have some limitations as well,
although results with an alternative model-based data set (ERA-land)
were found to be similar.

In a case study we focused on the summer climate of 2003 with
different initial soil moisture conditions. We showed that the
temperatures of 2003 could have been much higher if spring soil
moisture levels had not been as close to climatology as they were.
This demonstrates the importance of antecedent soil moisture
conditions on summer heat wave events. Mean summer precipita-
tion is projected to decrease in Central Europe by the middle of the
21st century, while winter and spring rainfall is projected to
increase (Seneviratne et al., 2012a; Jacob et al., 2014). The GEV
analysis shows that a decrease in summer precipitation, and thus
surface moisture, could result in increases in the magnitude of
extreme heat events (consistent with obtained modeling results,
e.g., Seneviratne et al. 2006, 2013). The case study demonstrates
the influence of spring SM conditions on summer SM conditions
and hence on summer extreme temperatures, as lower SM levels
at the beginning and during the summer 2003 are associated with
a 1 1C increase in the 20-year RV. This result emphasizes the
importance of understanding seasonal changes in the hydrological
cycle in addition to annual changes.

This framework can be extended to other regions where there is a
relationship between SM and temperature, such as North America.
Regions where this method is appropriate can be determined by the
fit of the GEV and the significance of the covariate. However, fitting a
GEV distribution using all summer months may not be the most
appropriate approach in regions with low temperature variability
and high autocorrelation, such as on the Iberian Peninsula. Hence, for
such regions, if longer data sets are available (430 years), we
suggest fitting the GEV distribution to annual maxima. If the model
fit is significant (i.e., the fit passes the goodness-of-fit and likelihood-
ratio tests), this framework is able to answer outstanding questions
related to the size of the impact SM has on the magnitude of
temperature extremes. The availability of a global model-based SM
data set, albeit covering a short time frame, would increase the
transferability to this type of analysis. This would make this approach
applicable in other regions, in order to complement research using
the SPI and to better understand relationships between the land-
surface and temperature extremes
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