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The modelling of evolutionary game dynamics in finite populations requires microscopic processes
that determine how strategies spread. The exact details of these processes are often chosen without
much further consideration. Different types of microscopic models, including in particular fitness-
based selection rules and imitation-based dynamics, are often used as if they were interchangeable.
We challenge this view and investigate how robust these choices on the micro-level really are. Focus-
ing on a key macroscopic observable, the probability for a single mutant to take over a population
of wild-type individuals, we show that there is a unique pair of a fitness-based process and an
imitation process leading to identical outcomes for arbitrary games and for all intensities of selec-
tion. This highlights the perils of making arbitrary choices at the micro-level without regard of the
consequences at the macro-level.
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Evolutionary game theory is a powerful framework to
model social and biological evolution when the success
of an individual depends on the presence or absence of
other strategies [1–4]. In this context, the payoff from a
game between individuals is translated into reproductive
fitness. Methods from statistical physics have been ap-
plied extensively since the field moved from mostly de-
terministic models based on rate equations to stochas-
tic individual-based models [5–10]. These more sophisti-
cated models use a microscopic process as a starting point
to determine how successful strategies spread. Tools and
ideas from statistical physics are key to making the con-
nection between the assumptions on the micro-scale, and
effective descriptions on the macro-scale. Two classes
of microscopic processes have been used extensively: (i)
Fitness-based processes in which an individual chosen
proportional to fitness reproduces and the offspring re-
places a randomly chosen individual [11]; (ii) Imitation-
based processes in which a pair of individuals is chosen,
and where subsequently one of these individuals may
adopt the strategy of the other. This adaptation oc-
curs with a probability that depends on the payoff of
both individuals, such that better players are more likely
to be imitated than those who do worse [12, 13]. The
payoff-to-fitness mapping used in the context of fitness-
based processes can be interpreted as a transformation
between Malthusian fitness (the growth rate, which can
be negative) and Wrightian fitness (the average number
of offspring in the next generation, a non-negative quan-
tity) [14, 15].
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In types of processes, the relative influence of the game
is controlled by an external parameter, the so-called in-
tensity of selection β. This parameter has strong parallels
to the inverse temperature in statistical mechanics [16].
In populations of size N the dynamics is dominated by
the evolutionary game for strong selection, βN � 1, with
demographic noise only affecting the outcome weakly.
For weak selection, βN � 1, the dynamics is largely
stochastic, with only a small influence of the game on
the evolution of the system. The outcome of evolution-
ary game dynamics thus depends on the interplay be-
tween selection and noise, both changing with the relative
abundance of the types of individuals in the population.
In well-mixed populations and on some special networks
(e.g., on a ring)

the evolutionary dynamics between two types of strate-
gies, wild-type and mutant, can be described by simple
birth-death processes. In such processes the state of the
system is characterized by the number of mutants alone.
A quantity that is of particular interest in evolutionary
biology is the probability of fixation, which is the likeli-
hood that a mutant type takes over the entire population
[17, 18]. It is the basis of the definition of evolutionary
stability in finite populations [11]. It also features in the
leading-order term of a small-mutation expansion of the
stationary distribution which serves as a powerful analyt-
ical method when multiple strategies are present in the
population [19, 20].

The choice of a fitness-based processes versus an
imitation-based processes is typically not further justified
in the literature [21, 22]. Often the type of model em-
ployed is chosen arbitrarily. This is frequently no cause
for concern as many results do not seem to depend on
the particular choice of the microscopic process. In par-
ticular, a wide class of microscopic processes leads to
similar results under weak selection [23, 24]. However,
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this equivalence is only partial, and in some cases the
outcome on the macro-scale can crucially depend on the
specific choices made at the microscopic level [25]. Here,
we show the choice of an fitness-based versus a imitation-
based process is restricted to a unique pair if we require
that, for any arbitrary game, the two processes lead to
identical fixation probabilities for all intensities of selec-
tion β. This indicates that the choice of the microscopic
process can make a difference even in unstructured pop-
ulations. The outcome is independent of the underlying
microscopic process only for weak selection (i.e., in the
high-temperature regime) and for constant selection.

We consider well-mixed populations with fixed size N .
Each individual can be of one of two types, A and B.
The state of the population is thus characterized by the
number i of individuals of type A. The interaction be-
tween the two types of individuals is described by the
functions πiA and πiB . These indicate the expected payoff
for two types in a population in state i. The interaction
can be thought of as a two-player matrix game [26], but
we keep the formalism general to include games played
between an arbitrary number of players [27, 28].

A discrete-time birth-death process on the set of states
i = 0, . . . , N is characterized by the transition probabili-
ties T i± that the system moves to state i± 1 in the next
step, when it is currently in state i. With probability
1 − T i+ − T i−, the system remains in state i. We re-
strict ourselves to processes for which T i± > 0 for all
i = 1, . . . , N − 1, and in which the two states i = 0 and
i = N are absorbing, i.e. T 0+ = TN− = 0. The popula-
tion can never escape from homogenous states. In biol-
ogy this corresponds to the absence of mutation, where
extinct types cannot be re-introduced.

We will now characterize fitness-based processes and
imitation-based processes in more detail. For a given
game, i.e. for payoff functions πiA and πiB , a fitness-based
process assumes that at each time step an individual is
selected for reproduction with a probability proportional
to its fitness. This individual produces one identical off-
spring which replaces a randomly chosen individual in
the population. Consequently, the transition probabili-
ties are of the form

T i+F =
i

N

f iA
〈f〉i

N − i
N

, T i−F =
N − i
N

f iB
〈f〉i

i

N
. (1)

The subscript ‘F ’ indicates a fitness-based process. We
have assumed that the payoffs πiA and πiB translate into
reproductive fitness via a mapping f iA = f(βπiA) and
f iB = f(βπiB), where β > 0 is the intensity of selection
and where f ′(x) > 0 for all x, indicating that fitness
increases with payoff. The quantity 〈f〉i is the average
fitness of an individual in the population, i.e., 〈f〉i =(
if iA + (N − i)f iB

)
/N . The transition rates in Eq. (1)

are then fully specified by the underlying game and by
the payoff-to-fitness mapping f .

In an imitation process, one focal individual and a role
model are chosen at random at each time step. The pay-
off difference between the two individuals determines the

probability that the focal individual adopts the strategy
of the role model. Specifically, for a focal individual of
type A and a role model of type B, this probability is
g[β(πiB − πiA)], where β > 0 is again the intensity of
selection. If the focal individual is of type B and the
role model of type A this probability is g[β(πiA − πiB)].
The derivative g′(x) of the imitation function g(x) must
be positive to ensure it is more likely to adopt success-
ful strategies. For a given game and a given adaptation
function g this leads to a birth-death process with the
transition probabilities

T i±I =
i(N − i)
N2

g [±β(πA(i)− πB(i))] . (2)

The the subscript ‘I’ indicates an imitation process.
For both classes of processes, and for any game, the

dynamics will eventually reach one of the two absorbing
states: Either the mutant goes extinct (absorption at
i = 0), or it reaches fixation (i = N). The so-called
fixation probability, φ, measures how likely it is that a
single mutant takes over the entire population, i.e. it is
the probability for the system to end up in i = N , if
initialised at i = 1. For general birth-death processes
this probability is given by [11, 17, 18]

φ =

(
N−1∑
k=0

k∏
i=1

T i−

T i+

)−1
. (3)

Our arguments hold also for the case of fixation from
an arbitrary number of mutants, but we focus on the
biologically most relevant scenario of a single mutant.
The central result of our paper concerns the following
question: For what choices of the payoff-to-fitness map-
ping, f , and of the imitation function, g, do the result-
ing fitness-based and imitation-based processes have the
same fixation probability, φF = φI , for arbitrary games
and intensities of selection? In other words, if we re-
quire that the two processes are equivalent in fixation for
any game and any selection intensity, how do we need to
choose these two processes?

We note that T i−F /T i+F = f(βπiB)/f(βπiA) for

the fitness-based process, and T i−I /T i+I = g[β(πiB −
πiA]/g[(βπiA−πiB)] for the imitation process. If the func-
tions f and g fulfill

f(x)

f(y)
=
g(x− y)

g(y − x)
, (4)

for all x, y, we have T i−F /T i+F = T i−I /T i+I for all i. Us-
ing Eq. (3) this leads to equal fixation probabilities for
all games and any selection intensity. Thus, Eq. (4) is
sufficient.

We now show that Eq. (4) is also necessary. To this
end we note that the functions f and g must be such that
the equality of fixation probability holds for all games,
so in particular for games with constant πiA = πA and

πiB = πB . For such games the ratios γF = T i−F /T i+F and
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γI = T i−I /T i+I are independent of i. The equality of fix-
ation probabilities is then equivalent to p(γF ) = p(γI),

where p(γ) =
∑N−1
`=0 γ`, cf. Eq. (3). The polynomial p(γ)

is strictly increasing for positive arguments. Considering
that both γF and γI are positive, p(γF ) = p(γI) im-
plies γF = γI . The constants πA and πB can be chosen
arbitrarily, as the selection intensity β. The fact that
we require γF = γI leads to the conclusion that f and
g must fulfil Eq. (4). Eq. (4) is thus necessary if we re-
quire identity of fixation times for all possible games. We
stress that it may well be possible to construct a game
and a pair of functions f and g, which are not of the
above form, such that the fixation probabilities of the
two resulting processes coincide for this particular game.
However, unless f and g fulfil Eq. (4) the identity of fix-
ation probabilities will not hold for arbitrary games, as
our argument above shows.

Eq. (4) implies that the ratio f(x)/f(y) has to be a
function of the difference x−y alone. Setting y = x+∆x
in f(x)/f(y) = g(x − y)/g(y − x) and taking the limit
∆x→ 0 leads to the differential equation

f ′(x)

f(x)
= 2

g′(0)

g(0)
. (5)

We note that this differential equation must hold for all
x. It is a necessary condition for the equality of fixation
probabilities for arbitrary games and arbitrary strength
of selection, but it is not a sufficient condition by itself.
A necessary and sufficient condition is given by Eq. (4).

We observe that the condition of Eq. (5) can be re-
laxed if we limit the equality of fixation probabilities to
the weak-selection approximation. It corresponds to ex-
panding the fixation probabilities to linear order in the
selection intensity. If we require that f and g lead to iden-
tical fixation probabilities only in the linear-order term
in β (but not necessarily to higher order) for any payoff
functions πiA and πiB we obtain the condition

f ′(0)

f(0)
= 2

g′(0)

g(0)
. (6)

This condition is far less restrictive than Eq. (5), and
it is both necessary and sufficient to have identity of fixa-
tion times for all games up to linear order in β. This can
be seen from existing results for weak selection [29]. The
only solution of the more restrictive condition, Eq. (5),
is

f(x) = f(0) exp

[
2
g′(0)

g(0)
x

]
. (7)

This implies that in order for the fixation probabili-
ties of a fitness-based process to be identical to those of
an imitation based process (to any order in the selec-
tion intensity), it is necessary that the payoff-to-fitness
mapping f(βπ) is exponential in x, f(x) = f(0) exp(λx),
where λ is an arbitrary positive constant. The imitation
function g is at this point largely unconstrained, although

one finds g(x)/g(−x) = eλx by setting y = 0 in Eq. (4).
With the additional assumption g(x)+g(−x) = 1, only a
single possible imitation functions remains, the so-called
Fermi function g(x) = [1 + e−λx]−1.

We have thus shown that the assumption of equal
fixation probabilities for all games together with the
mild assumption g(x) + g(−x) = 1 fully restricts the
payoff-to-fitness mapping and the imitation function to
f(x) = f(0)eλx and g(x) = 1/(1 + e−λx). The only re-
maining free parameters are f(0) and the constant λ.
However, the choice of f(0) is immaterial as f(0) drops
out in Eq. (1). The constant λ on the other hand can ef-
fectively be absorbed in the selection strength, β, so that,
to all intents and purposes, our constraints fully specify
the payoff-to-fitness mapping and the imitation function.
Thus, this pair of processes is unique and, if chosen oth-
erwise, the precise details of the microscopic model will
affect the outcome of the model on the macroscopic level.
For example, the popular linear payoff-to-fitness mapping
f = 1+βπ has no corresponding imitation function which
depends on payoff differences only and which leads to the
same fixation probability for arbitrary games. This is il-
lustrated in Fig. 1.

The allowed set of imitation functions becomes broader
if we relax the constraint and allow functions g with
g(x) + g(−x) 6= 1. We find that any imitation function
of the form g(x) = h(x)/(1 + e−λx) is permissible so long
as the resulting g(x) is increasing, takes values between 0
and 1 (such that it is a probability), and h(x) is even (to
ensure f(x)/f(y) = g(x−y)/g(y−x)). To show that such
functions h(x) exist we mention two arbitrary examples,

h(x) = exp[− 1
2e
−x2

] and h(x) = 2
3 ±

1
3 cosh[x] .

We now consider more general imitation processes in
which the imitation probability does not depend on pay-
off differences alone. Specifically, we allow imitation
probabilities with which a focal individual with payoff
πfoc imitates the strategy of a role model with payoff πrm
of the form Q(βπfoc, βπrm), i.e. Q may depend on the
payoffs of both individuals explicitly. The previous case
is recovered as Q(x, y) = g(y−x). To guarantee that the
resulting imitation functionQ(x, y) is a probability, it has
to take values between 0 and 1. In addition, we require
∂xQ(x, y) < 0, such that focal individuals with high pay-
off are less likely to adopt the strategies of others, and
∂yQ(x, y) > 0, such that role models with higher pay-
off are more likely to be imitated than those with a low
payoff. In this more general case, a fitness-based process
with payoff-to-fitness mapping f has the same fixation
probability of a single mutant as an imitation process if
f(x)/f(y) = Q(y, x)/Q(x, y) in analogy to Eq. (4). Set-
ting y = x + ∆x and taking the limit ∆x → 0 leads to
the necessary condition

f ′(x) = Γ(x)f(x), (8)

where Γ(x) = Q(x, x)−1 [(∂y − ∂x)Q(x, y)]|y=x. From
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FIG. 1. Graphical representation of Eq. (4). The contour
plot depicts the ratio f(βπA)/f(βπB). Panel A: For the
exponential payoff-to-fitness mapping f(x) = exp(x), the
ratio f(βπA)/f(βπB) obviously depends on the difference
πA − πB only, such that the contour lines are diagonal in
the πA − πB plane. An identical picture is obtained for
g[β(πA − πB)]/g[β(πB − πA)] with g(x) = [1 + exp(−x)]−1.
Panel B: For the affine linear payoff-to-fitness mapping f(x) =
1 + x, the ratio f(βπA)/f(βπB) depends on πA and πB ex-
plicitly, not only on their difference. The contour lines are no
longer parallel to each other. It is not possible to reconstruct
an imitation function g leading to equivalent fixation times
for all games, and which depends on payoff difference only.
For simplicity we have used β = 1 in the figure.

this, one obtains

f(x) = f(0) exp

[∫ x

0

Γ(z)dz

]
. (9)

Again this condition is necessary, but not sufficient by it-
self to guarantee equal fixation probabilities under both
processes for arbitrary games. Condition (9) admits
payoff-to-fitness mappings f(x) that are not exponen-
tial. The constraint that f(x) must be exponential in
x derived under the more restrictive assumptions above
is a specific consequence of the requirement that the im-
itation probability depends on payoff differences only.

For any given payoff-to-fitness mapping f(x) which
is increasing and positive, the function Q(x, y) =
f(y)/(f(x)+f(y)) proposed in [11] is decreasing in x and
increasing in y and takes values between 0 and 1. In other
words, it fulfills the constraints of an imitation function.
Thus, for any payoff-to-fitness mapping, f(x), there is an
imitation kernel Q(x, y) leading to equal fixation proba-
bilities for all games. Restricting the set of permissible
kernels to those of the form Q(x, y) = g[ψ(y) − ψ(x)]
with g(x) + g(−x) = 1 and where ψ(x) is an increas-
ing function fully specifies the imitation kernel. A short
calculation shows that the imitation function Q(x, y) =
f(y)/[f(x) + f(y)] is then the only possible imitation
choice leading to identical fixation probabilities for all
games for a given payoff-to-fitness mapping. For the ex-
ponential mapping, f(x) = f(0)eλx, this is the Fermi
function Q(x, y) = eλx/(eλx + eλy) = 1/[1 + e−λ(x−y)].

In addition to the fixation probability, the so-called

gradient of selection is often used to investigate stochas-
tic evolutionary game dynamics [30]. It is given by
T i+−T i− and represents the drift term of the correspond-
ing Fokker-Planck equation in the diffusion approxima-
tion [31, 32]. The qualitative features of the deterministic
flow of a given game will generally not depend upon the
choice of a fitness-based Moran process versus a pairwise
comparison process. However, going beyond this qualita-
tive level immediately reveals that a fitness-based process
and an imitation-based process cannot have identical gra-
dient of selection for all i and all x and y. In order for
this to be the case we require

f(βπiA)− f(βπiB)

〈f〉i
= g[β(πiA−πiB)]−g[β(πiB−πiA)]. (10)

However, the left-hand side explicitly depends on the
state i, whereas the right-hand side depends on i only
via the payoffs πiA and πiB . These can be chosen not to
depend on i, so Eq. (10) cannot be valid for arbitrary
games. In particular, such an equivalence is not found
for the pair of processes that leads to identical fixation
probabilities discussed above. Under weak selection, such
an identity in the gradient of selection is often found.
However the requirements for an equivalence of selection
gradient in the weak selection approximation are gen-
erally quite different from those needed to result in an
equivalence of fixation probabilities in the same limit.

In summary we have challenged some of the key as-
sumptions frequently made in modelling evolutionary dy-
namics. Fitness-based and imitation-based processes are
often used as if these approaches were entirely exchange-
able. This is appropriate – to a certain extent – when
fitness is a positive constant as it is the case in many
models of classical population genetics. The choice of
the microscopic details of the process does however make
a difference for the macroscopic outcome of frequency-
dependent selection outside the regime of weak selection.
As we have shown there are then strong restrictions on
the choice of the imitation function and the payoff-to-
fitness mapping if one requires that the fixation proba-
bilities in the two classes of processes are identical for
any intensity of selection. Additionally we find that it
is impossible to construct two such processes that lead
to the same gradient of selection and to identical fixa-
tion probabilities. These challenges are largely absent
in population genetics, where selection is constant, and
only arise in evolutionary game theory, where selection is
frequency dependent. In evolutionary games on graphs a
dependence on the microscopic details has been pointed
out repeatedly [2–4]. It is noteworthy that these difficul-
ties are already present in non-spatial well-mixed systems
of the type that we have discussed. The complexity of
a networked structure is therefore not a necessary com-
ponent. Indeed, we would expect it to be much more
challenging to construct two processes with identical out-
comes on such more complicated geometries.
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