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Abstract. We study a σ-model with target space the flag manifold Up3q
Up1q3 . A pecu-

liarity of the model is that the complex structure on the target space enters explicitly
in the action. We describe the classical solutions of the model for the case when the
worldsheet is a sphere CP1.

In this paper we will solve the equations of motion (e.o.m.) of the σ-model pro-
posed in [1] (reviewed in Sec. 2) for the case when the worldsheet M is a sphere
CP1. The target space of the model is the manifold of full flags in C3, which we will
denote by F3. It can be viewed as the space of ordered triples of orthogonal lines in
C3 passing through the origin, and is also representable as a quotient space:

F3 “
Up3q

Up1q3
. (1)

From the structure of the quotient (1) it is clear that there are three natural forgetful
maps: tπi : F3 Ñ CP2, i “ 1, 2, 3u. For this reason the properties of the flag manifold
are tightly related to the properties of the underlying CP2’s. As we shall see, solutions
to the flag σ-model e.o.m. are to a large extent expressible through the solutions of
the CP2 model. Due to this, and to introduce the notations, we begin by defining the
σ-model with target space CP2.

1. The CP2 σ-model

We will be thinking of CP2 as the quotient CP2 “ pC3´t0uq{C˚.A map v : M Ñ CP2

from a Riemann surface M can be described by a vector-valued function vpz, z̄q P C3,
where z, z̄ are coordinates on the worldsheet M . We may assume that the vector v is
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in fact normalized, that is v P S5 Ă C3:
3
ř

i“1

|vi|
2 :“ v̄ ˝ v “ 1, and henceforth we will

use this normalization. This is a partial gauge for the gauge group C˚, which breaks
it down to Up1q.

Introduce the covariant derivative

D
pvq
i w :“ Biw ´ qw ¨ pv̄ ˝ Bivqw , i “ tz, z̄u (2)

where qw is the Up1q-charge of w, normalized so that qv “ 1. In most of the appli-
cations of (2) below w is a vector obtained by applying covariant derivatives to the

basic map v or its conjugate v̄. For example, w “ tv,D
pvq
z v,D

pvq
z̄ v,D

pvq
z D

pvq
z̄ v, . . .u, in

which case qw “ 1, or w “ tv̄, D
pvq
z v̄, D

pvq
z̄ v̄, D

pvq
z D

pvq
z̄ v̄, . . .u, in which case qw “ ´1.

When this does not lead to confusion, we will sometimes simply write Dz in place of

D
pvq
z , Dz̄ for D

pvq
z̄ .

The covariant derivative has the Leibniz property: D
pvq
i pa ¨ bq “ D

pvq
i paq ¨ b `

a ¨ D
pvq
i pbq . The commutator of covariant derivatives produces the pull-back of the

Fubini-Study form:

rDpvqz , D
pvq
z̄ s “ D

pvq
z̄ v̄ ˝Dpvqz v ´Dpvqz v̄ ˝D

pvq
z̄ v . (3)

The action of the CP2 σ-model (with zero θ-term) is:

S “
ˆ

M

i

2
dz ^ dz̄

`

}Dzv}
2 ` }Dz̄v}

2
˘

(4)

The equation of motion following from this action reads

D
pvq
z̄ Dpvqz v “ α v, (5)

where α is a scalar function. Multiplying this equation by v̄ and using the Leibniz

property of the covariant derivative together with the identity v̄ ˝D
pvq
z v “ 0 (which

follows from the definition (2)), we find that α “ ´}Dzv}
2. Since, according to (3),

rDz, Dz̄s is a scalar function, the equation (5) can be equivalently rewritten as

Dpvqz D
pvq
z̄ v “ α̃ v (6)

A map v satisfying (5)-(6) is called harmonic. For a review of the theory of harmonic
maps we refer the reader to [3].

2. The flag manifold σ-model

As mentioned earlier, we wish to consider in detail the σ-model introduced in [1],
which we will recall momentarily. In that case the target space is the flag manifold

F3 “
Up3q
Up1q3 , parametrized by the orthonormalized vectors ui (ui ˝ ūj “ δij), modulo

phase rotations uk Ñ eiαk uk. Introduce the currents

Jmn :“ um ˝ dūn , m, n “ 1, 2, 3. (7)
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The off-diagonal currents tJmn, m ‰ nu comprise the vielbein (and are defined up to
phase factors). Note that Jnm “ ´J̄mn. One can define an almost complex structure
on F3 by picking any three mutually non-conjugate forms, Jm1n1 , Jm2n2 , Jm3n3 , and
declaring them holomorphic. The other three, being conjugate to these, are therefore
antiholomorphic. In order to decide, which of these complex structures are integrable,
a diagrammatic representation is useful. Draw three nodes and directed arrows from
node m1 to n1, m2 to n2 and m3 to n3. Integrability of the so-defined complex
structure is equivalent to the condition that the graph is acyclic (i.e. does not have
a directed closed loop). Let us prove this. First of all, let em, m “ 1, 2, 3 be the
standard unit vectors with components pemqn “ δmn. To the holomorphic one-forms
one can associate a subspace m` of the Lie algebra psup3qqC “ slp3q as follows:

m` “ SpanpEm1n1
, Em2n2

, Em3n3
q, where Emn “ em b en (8)

Integrability of the complex structure is equivalent to the requirement that m` is
a subalgebra: rm`,m`s Ă m`. On the other hand, the matrices Emn have the
commutation relations

rEmn, Epqs “ δnpEmq ´ δmqEpn (9)

Remembering that Emn is represented by an arrow from m to n, one sees that the
closedness of m` under commutation is equivalent to the following statement:

For any two consecutive arrows mÑ n and nÑ p (10)

their ‘shortcut’ segment pm, pq has the arrow mÑ p

For the diagram with three vertices, i.e. for the sup3q case under consideration, it is
clear that the cyclic quivers are the only ones that are ruled out.

In the general case, corresponding to the flag manifold UpNq
Up1qN

, suppose we have

N pairwise-connected vertices, and the graph is acyclic. Then the requirement (10)
is satisfied, since otherwise there would be a cycle with three vertices. Reversely,
suppose the graph has a cycle. Then, using (10), one can ‘cut corners’ to reduce
again to the cycle with three vertices, which is prohibited (see Fig. 1).

We now return to the sup3q case. Once we are given an acyclic quiver Q, the
action proposed in [1] is

SQ “

ˆ

M

i

2
dz ^ dz̄

¨

˚

˝

ÿ

Arrows
mÑn

ˇ

ˇpJmnqz̄
ˇ

ˇ

2

˛

‹

‚

(11)

It was also shown that the actions corresponding to three different integrable complex
structures, whose associated quivers are shown in Fig. 2 in blue, differ only by
topological terms:

SQ1
´ SQ2

“ const. etc., (12)

Therefore they produce the same e.o.m. In particular, it follows from (11)-(12) that a
curve, holomorphic in a complex structure corresponding to one of the three quivers
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Figure 1: The procedure showing that a cycle p1, 2, 3, 4, 5q in a graph leads to the
violation of condition (10). Using (10), we replace the pair of segments p1, 2q, p2, 3q
by p1, 3q, i.e. cut a corner. Then we replace p1, 3q, p3, 4q by p1, 4q, arriving at the
cyclic red triangle, which violates (10).

Q1,Q2,Q3 in Fig. 2, is a solution to the e.o.m. What is more surprising, however,
is that a curve holomorphic in any of the two non-integrable complex structures is a
solution to the e.o.m. as well. To see this, one needs to write out the e.o.m. explicitly:

DzpJ12qz̄ “ 0, DzpJ31qz̄ “ 0, DzpJ23qz̄ “ 0 and c.c. ones (13)

Here D is the Up1q3-covariant derivative, acting as follows: DJmn :“ dJmn`pJmm´
Jnnq ^ Jmn. One sees that pJ12qz̄ “ pJ31qz̄ “ pJ23qz̄ “ 0 is a solution to (13), and
this is precisely the defining equation of a curve, holomorphic in the almost complex
structure that corresponds to the cyclic quiver QI in Fig. 2. As regards the opposite
non-integrable complex structure ´I, one can rewrite the equations (13) alternatively
as

Dz̄pJ12qz „ pJ13^J32qzz̄, Dz̄pJ31qz „ pJ32^J21qzz̄, Dz̄pJ23qz „ pJ21^J13qzz̄ (14)

In the complex structure ´I the l.h.s. vanishes, and all of the one-forms in the r.h.s.
are of type p1, 0q (i.e. proportional to dz), hence their wedge products vanish as well.
Note, however, that the e.o.m. written with reference to the complex structures I
(13) and ´I (14) are of rather different form (despite being equivalent), which is the
reason that we present the corresponding quivers in Fig. (2) in different color.

Remark. In order to understand the integrable complex structures on F3, it is
most useful to recall the following definition of the flag manifold (see, for example, [2]):

F3 “ tw0v0 ` w1v1 ` w2v2 “ 0, pw, vq P CP2 ˆ CP2u (15)

Such an embedding into CP2 ˆ CP2 defines a complex structure on F3. In order to
make contact with our previous definitions in terms of the one-forms Jmn, consider
for instance the complex structure corresponding to the quiver Q1, and a curve C
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J13

J12 J32
J31

J21 J23
J31

1
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QI Q-I

Figure 2: The triangles indicate the complex structures, whose associated holomorphic
curves are solutions of the σ-model. The three top triangles correspond to integrable
complex structures, whereas the two lower ones correspond to the non-integrable ones.

holomorphic in this complex structure. The following facts are easily derived:

ū2 ˝ Bz̄u1 “ 0, ū3 ˝ Bz̄u1 “ 0 ñ D
pu1q
z̄ u1 “ 0 (16)

u1 ˝ Bz̄ū3 “ 0, u2 ˝ Bz̄ū3 “ 0 ñ Dpu3q
z u3 “ 0 (17)

This means that the projections of C to the CP2’s with coordinates u1, ū3 are holo-
morphic curves. Moreover, u1 ˝ ū3 “ 0. Comparing with (15), one realizes that
pw, vq in (15) may be identified with pu1, ū3q. All other integrable complex structures
on F3 are obtained by replacing pw, vq with the various pairs pui, ūjq and using the
embedding (15).

3. Critical maps CP1 Ñ F3

We call a map M Ñ F3 critical if it is a solution of the e.o.m. (13). Henceforth in
this paper we will be concerned with the case M “ CP1.

From the equations (13) one deduces the following conservation equation:

Bz ppJ12qz̄pJ23qz̄pJ31qz̄q “ 0 (18)

Note that the expression in brackets is a section of the cube of the canonical bundle
K of CP1, and the conservation law states that it has to be anti-holomorphic, i.e.
pJ12qz̄pJ23qz̄pJ31qz̄ P H

0pK3,CP1q. However, as H0pK3,CP1q “ 0, the only such
section is zero. Hence

pJ12qz̄pJ23qz̄pJ31qz̄ “ 0 (19)

Suppose
pJ31qz̄ “ 0, (20)
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then the remaining equations (13) assume the form

ū1 ˝Dz̄Dzu2 “ 0, ū3 ˝Dz̄Dzu2 ñ Dz̄Dzu2 “ αu2, (21)

where α is an arbitrary (scalar) function. Hence u2pz, z̄q is harmonic (see (5)).

§ 3.1. Harmonic maps CP1 Ñ CP2

In this section we review the construction of the harmonic maps CP1 Ñ CP2, which
was carried out long ago [4] (using a method developed in [5] for the description of
minimal maps S2 Ñ Sn). The key property of such maps, which lies at the heart of
the construction, is called ‘complex isotropy’:

Dn
z v̄ ˝D

m
z v “ 0 for m` n ą 0 (22)

Note that this property does not hold, in general, for harmonic maps Cg Ñ CP2,
where Cg is a curve of positive genus g ą 0.

Proof of (22).
First of all, by definition of covariant derivative,

v̄ ˝Dzv “ 0 “ Dz v̄ ˝ v (23)

Suppose we have proven (22) for m` n ď N . Then it follows that Dn`1
z v̄ ˝Dm

z v for
m` n “ N is a tensor under complex-analytic changes of variables. Indeed, under a
coordinate change z “ zpwq one has

Dn`1
z v̄ ˝Dm

z v Ñ

ˆ

Bw

Bz

˙n`m`1

Dn`1
w v̄ ˝Dm

w v `
ÿ

m`năN

gm,nD
n`1
w v̄ ˝Dm

w v, (24)

and the sum vanishes by our assumption. Therefore Dn`1
z v̄˝Dm

z v P ΓpKm`n`1,CP1q.
Consider

Bz̄pD
n`1
z v̄ ˝Dm

z vq “ pDz̄D
n`1
z v̄q ˝Dm

z v `D
n`1
z v̄ ˝ pDz̄D

m
z vq (25)

for m` n “ N . Using the commutation relation (3) for covariant derivatives and the
harmonicity of v, we find that Dz̄D

m
z v “

ř

kăm

fkD
k
zv, and we have already proven

that Dn`1
z v̄ ˝Dk

zv “ 0 for n` k ă N .
Therefore Bz̄pD

n`1
z v̄˝Dm

z vq “ 0, so that DN´m`1
z v̄˝Dm

z v is a holomorphic section
of the line bundle KN`1 over CP1. The key property (which we already used above
for the case m “ 3) is that

H0pKm,CP1q “ 0 for m ą 0, (26)

hence such a section is necessarily zero, leading to (22). �

Once (22) is established, consider the following sequence of maps:

. . .Ñ D2
z̄v Ñ Dz̄v Ñ v Ñ Dzv Ñ D2

zv Ñ . . . (27)
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The sequence can be continued to the left and right, however for CP2 it is sufficient
to consider the terms shown in (27). Assume that v is neither holomorphic nor
antiholomorphic. According to (22), pv,Dzv,Dz̄vq and pv,D2

zv,Dz̄vq are two triples
of mutually orthogonal vectors. Since the ambient space is three-dimensional, we
have:

D2
zv “ βDzv (28)

for some scalar function β. Upon the introduction of a unit vector w “ Dzv
}Dzv}

, a direct

calculation shows that this equality may be rewritten as follows:

Dpwqz w “ 0 (29)

which implies that w “ Dzv
}Dzv}

is antiholomorphic. Analogously Dz̄v
}Dz̄v}

is holomorphic.

Since (anti)-holomorphic maps are harmonic, both of these maps constitute solu-
tions of (5) as well. In the general case of CPN an analogous statement is a conse-
quence of a remarkable fact, namely the existence of a general Bäcklund transforma-
tion, producing new solutions of the e.o.m. out of a given one.

§§ 3.1.1. The Bäcklund transformation

A remarkable fact about the equation (5) is that, given a solution vpz, z̄q, one can
generate another solution wpz, z̄q via [6]

w “ B ˝ v “
Dzv

}Dzv}
(30)

To see this, note the following fact. If v is a solution of (5), then

Dpvqz “ f´1 ¨Dpwqz ¨ f, D
pvq
z̄ “ f ¨D

pwq
z̄ ¨ f´1, f “ }Dzv} (31)

Therefore (5) implies D
pwq
z̄ w “ ´f v. Acting by D

pwq
z and using (31), one obtains

Dpwqz D
pwq
z̄ w “ ´f2 w, (32)

which means that w is harmonic. (Here we use the second form (6) of the σ-model
e.o.m.)

Analogously to (30), one can construct a second Bäcklund transform:

w̃ “ B̃ ˝ v “ ´
Dz̄v

}Dz̄v}
(33)

It is, in fact, inverse to B, when acting on non-(anti)-holomorphic maps:

B̃ ˝B “ 1 on non-anti-holom. pB ˝ v ‰ 0q (34)

B ˝ B̃ “ 1 on non-holom. pB̃ ˝ v ‰ 0q (35)

To prove (34)-(35), one should use (31) and the analogous relations

Dpvqz “ f̃ ¨Dpw̃qz ¨ f̃´1, D
pvq
z̄ “ f̃´1 ¨D

pw̃q
z̄ ¨ f̃ , f̃ “ }Dz̄v} (36)
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Combining the results of the discussion above, we arrive at the conclusion that
harmonic maps CP1 Ñ CP2 are generically in 3 : 1 correspondence with holomorphic
maps CP1 Ñ CP2. Namely, for every holomorphic map v we can construct two
additional harmonic descendants: w1 “ B ˝ v and w2 “ B ˝ B ˝ v, the second one
being anti-holomorphic, so that B ˝ w2 “ 0. In the special case when v is not a full
map, i.e. when it is a map to a proper linear subspace C2 Ă C3, it turns out that
w2 ” 0, so that there is a single descendant w1, which in this case is anti-holomorphic.
The extreme case w1 ” 0 corresponds to a constant map v.

§ 3.2. Lift to the flag manifold

In order to convert a harmonic map

v “ u2 : CP1 Ñ CP2 (37)

into a critical map to F3, we wish to show that we can lift the former to the flag
manifold, satisfying the remaining equation (20): pJ31qz̄ “ u3 ˝ Bz̄ū1 “ 0, where u1

and u3 are orthogonal to each other and to u2.

I. Dzu2 ı 0, Dz̄u2 ı 0. Both of these vectors are orthogonal to u2 (by defini-
tion) and to each other (by the isotropy property). Therefore u1 and u3 are linear
combinations of these two vectors:

u1 “ aDzu2 ` bDz̄u2, (38)

u3 “ cDzu2 ` dDz̄u2 (39)

Acting on u3 with D
pu2q
z̄ , we obtain (α is the scalar function from (21)):

D
pu2q
z̄ u3 “ Bz̄cDzu2 ` c α u2 ` pBz̄ d` τ dqDz̄u2, (40)

where τ is the proportionality constant from the equality pD
pu2q
z̄ q2u2 “ τDz̄u2 (which

is derived analogously to (28)). A simple calculation shows that

τ “ Bz̄plog }Dz̄u2}
2q . (41)

The equation u3 ˝ Bz̄ū1 “ 0 then requires

Bz̄c ā }Dzu2}
2 ` b̄ pBz̄ d` τ dq }Dz̄u2}

2 “ 0 (42)

Together with the orthogonality condition ū1 ˝ u3 “ 0, expressed as

c ā }Dzu2}
2 ` b̄ d }Dz̄u2}

2 “ 0, (43)

this leads to
Bz̄c d´ pBz̄d` τ dq c “ 0, (44)
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hence
ˆ

c
d

˙

“ λpz, z̄q

ˆ

fpzq ¨ }Dz̄u2}
2

gpzq

˙

, (45)

with two holomorphic functions pfpzq : gpzqq P CP1. It is easy to see that the remain-
ing unknowns, such as λ, a, b can be now found from the normalization conditions
ū1 ˝ u1 “ ū3 ˝ u3 “ 1. Therefore what defines the lift to the flag manifold is a
holomorphic map

pCP1qz Ñ pCP1qpf :gq . (46)

One can also think of this map as a rational function fpzq
gpzq .

Note that the critical map CP1 Ñ F3 constructed in this fashion is not holomor-

phic in either of the almost complex structures on F3, unless the matrix

ˆ

a b
c d

˙

has some zero elements. This is so, since Dzu2, Dz̄u2 are not orthogonal to either
u1 or u3, hence violating the holomorphicity conditions for all complex structures.
Due to (43), the only possibilities for the above matrix to have zero elements are as
follows:

Ia. a “ d “ 0, i.e. u1 „ Dz̄u2, u3 „ Dzu2. Then ū1 ˝Dzu2 “ 0 “ ū3 ˝Dz̄u2. It is
also easy to check that ū3 ˝Dzu1 “ 0, as well as ū3 ˝Dz̄u1 “ 0. This means that the
lift is a horizontal curve (with respect to the twistor fibration), which is holomorphic
in complex structures Q1 and QI .

Ib. b “ c “ 0, i.e. u3 „ Dz̄u2, u1 „ Dzu2. This is essentially a u1 Ø u3 reversal
of the case Ia. Therefore the lift in this case is a horizontal curve, holomorphic in
Q´1 and Q´I . Note that this is an exceptional case when the curve is holomorphic
in the complex structure Q´1, not shown in Fig. 2. Such holomorphicity is possible
due to the horizontality of the map, i.e. J13 ” 0.

II. Dz̄u2 “ 0. In this case u2 is a holomorphic map. The condition is equivalent
to the following two:

pJ21qz̄ “ 0, pJ23qz̄ “ 0 (47)

The remaining e.o.m, (20), states that

pJ31qz̄ “ 0 . (48)

Together the above equations (47)-(48) imply that we are dealing with a curve M Ñ F3,
holomorphic in the complex structure, defined by the graph Q3.

III. Dzu2 “ 0. Hence u2 is an anti-holomorphic map. In this case

pJ12qz̄ “ 0, pJ32qz̄ “ 0, pJ31qz̄ “ 0 (49)

which corresponds to a curve, holomorphic in the complex structure Q2.
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The situation when Dz̄u2 “ Dzu2 “ 0, i.e. when u2 is a map to a point, is at
the intersection of cases II and III. In this case, due to the condition pJ31qz̄ “ 0,
pu1, u3q specify a holomorphic map to a CP1, orthogonal to the fixed vector u2. In
other words, it is a map to the fiber of the fibration F3 Ñ pCP2qu2

, and this map
is holomorphic in two complex structures, Q2 and Q3. This property was already
observed in [1].

Analysis of the cases, when in place of (20) one has pJ12qz̄ “ 0 or pJ23qz̄ “ 0, goes
along the same lines, with obvious permutations of u1, u2, u3.

4. Summary

In this paper we have solved the e.o.m. (13), which follow from the action (11),
introduced in [1]. The solutions that we obtained correspond to the case when the
worldsheet is the sphere CP1, and they exhaust all solutions in this case. We have
shown, that, apart from various holomorphic curves, there exists a subclass of solu-
tions that are not holomorphic in any (almost) complex structure on F3. The data
for such solutions consist of a full holomorphic curve CP1 Ñ CP2 – the ‘Bäcklund
primitive’ of (37) – and a holomorphic map CP1 Ñ CP1 (46).

The key property which allowed us to solve the equations is that, due to the
fact that CP1 does not have holomorphic differentials, the problem reduced to the
one of finding harmonic curves in CP2 (see (19)-(21)), and the latter problem was
solved long ago [4]. This approach is not directly generalizable to other worldsheets.
However, in [1] it was shown that the e.o.m. (13) can be written in terms of a one-
parametric family of flat connections. For σ-models with symmetric target spaces
such representation provides a method for the construction of solutions, which was
developed in [7] and rigorously justified in [8]. It would be very interesting to explore,
whether a suitable modification of the method would allow to obtain all solutions
of the equations (13) in the case when the worldsheet is not a sphere but rather a
higher-genus Riemann surface, or a cylinder.
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