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Figure 4. The threshold pHi for alkaline-evoked Ca2+ influx is controlled by Vm.

A Depolarization-evoked Ca2+ signals in sperm mixed with ASW containing high KCl concentrations.
B Ca2+ signals evoked by mixing of sperm with 80 mM KCl and the CatSper inhibitor MDL12330A.
C Ca2+ signals evoked by mixing of sperm with 160 mM KCl and MDL12330A.
D Dose–response relation for the Ca2+ signals shown in (B, C) at t = 1–2 s.
E Threshold pHi for Ca

2+ signals evoked by pHi-clamp solutions in sperm bathed in ASW containing low (3 mM), high (191 mM), and normal (9 mM) KCl (mean � SD;
n ≥ 3); data for 9 mM KCl are from Fig 3F.

F Resting pHi and resting Vm in sperm bathed in ASW containing low (3 mM), high (191 mM), and normal (9 mM) KCl (black) (mean � SD; n ≥ 3). Mean threshold pHi

for CatSper activation at different membrane potentials (red); mean threshold pHi was derived from data shown in (E).
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Figure 5. CatSper inhibitors abolish chemoattractant- and cGMP-induced Ca2+ influx.

A Ca2+ signals in sperm evoked by photorelease (at t = 0) of resact from caged resact in the presence of the CatSper inhibitor MDL12330A.
B Ca2+ signals evoked by intracellular photorelease (at t = 0) of cGMP in sperm loaded with caged cGMP in the presence of the CatSper inhibitor MDL12330A.
C Normalized dose–response relation for inhibition of the resact- and cGMP-induced Ca2+ signals shown in (A, B) (Ki = 6.2 and 4.3 lM, respectively).
D Normalized dose–response relation for inhibition of the resact- and cGMP-induced Ca2+ signals shown in Supplementary Fig S4 by the CatSper inhibitor mibefradil

(Ki = 7.7 and 20.9 lM, respectively).
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was as follows: first sperm hyperpolarized, then the cytosol

alkalized, and finally, Ca2+ commenced to rise (Fig 6B and C,

Supplementary Fig S6). Furthermore, the pHi increase evoked by

intracellular photorelease of cGMP also preceded the onset of the

Ca2+ signal (Fig 6D) (Darszon et al, 2008). These results are consis-

tent with the notion that the resact-induced alkalization enables

activation of CatSper channels upon depolarization.

From the latency of the Ca2+ signal at different resact concentra-

tions, we identified pairs of voltage threshold (Vthr) and pHthr at

which the Ca2+ influx commenced (Fig 6E–G). For example, using

1 nM resact, Ca2+ influx commenced at Vthr of �71 � 3 mV and at

pHthr of 7.36 � 0.004 (Fig 6E–G, n = 3). For resact concentrations

from 10 pM to 25 nM, the respective Vthr versus pHthr pairs

displayed an inverse, linear relationship (Fig 6G), i.e. with

increasing resact concentrations, the Ca2+ influx commenced at

more negative Vthr and at more alkaline pHthr (Supplementary Fig

S7). The slope of the straight line fitted to the data yielded a DVthr/

DpH ratio of 75 mV. This result underscores the intimate relation-

ship between pHi and Vm for CatSper activation, which requires

that changes in pHi and Vm proceed in precise chronology. In

mouse sperm, a change of pHi from 6 to 7 shifts the voltage depen-

dence of CatSper activation by about �70 mV (Kirichok et al,

2006), indicating that the pHi sensitivity of mammalian and sea

urchin CatSper is similar. In summary, our experiments indicate

that the resact-induced alkalization is key to the Ca2+ influx via

CatSper.
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Figure 6. The chemoattractant-induced Ca2+ influx is orchestrated by changes in pHi and Vm.

A Calibrated Vm (left) and pHi (right) changes and Ca2+ signals (middle) evoked by resact.
B Normalized Vm, pHi, and Ca2+ signals evoked by 10 pM resact; the first 600 ms after mixing are shown. The hyperpolarization precedes the pHi increase, whereas the

pHi increase precedes the Ca2+ increase.
C Latency of the Vm, the pHi, and the Ca2+ signals evoked by various resact concentrations (mean � SD; n = 3).
D Normalized pHi and Ca2+ signals evoked by photorelease of cGMP in sperm loaded with caged cGMP.
E Calibrated Vm and Ca2+ signals evoked by 1 nM resact; the threshold voltage (Vthr) for the Ca2+ influx was deduced from the latency of the Ca2+ signal.
F Calibrated pHi and Ca2+ signals evoked by 1 nM resact; the threshold pHi (pHthr) at which the Ca2+ influx commences was deduced from the latency of the
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G Linear relationship between pHthr and Vthr for activation of Ca2+ influx by various resact concentrations (data derived from Supplementary Fig S6; mean � SD; n ≥ 3).
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We attempted to prevent the resact-induced alkalization by incu-

bating sperm with the membrane-permeant pH buffer imidazole.

Imidazole ≤ 20 mM attenuated the resact-induced alkalization in a

dose-dependent fashion; at 30 mM imidazole, the alkalization was

abolished (Supplementary Fig S8A). Concomitantly, the Ca2+

response was abolished as well (Supplementary Fig S8B), suggesting

that the alkalization is required for CatSper activation. However, we

observed that imidazole also strongly reduced the initial hyperpolar-

ization (Supplementary Fig S8D and E), demonstrating that the drug

is not suited to study signaling in sea urchin sperm. We wondered

whether incubation with a physiological pH buffer like bicarbonate

(HCO�
3 ) prevents the pHi responses—assuming that HCO�

3 enters

the sperm. However, the resact-induced alkalization was similar in

the absence and presence of 10 and 30 mM HCO�
3 (Supplementary

Fig S8F).

CatSper controls chemotaxis of sperm

Finally, we tested whether CatSper controls chemotactic steering of

sperm. In a shallow observation chamber under a dark-field micro-

scope, sperm were bathed in caged resact (Kaupp et al, 2003;

Böhmer et al, 2005; Alvarez et al, 2012). A resact gradient was

established by photolysis of caged resact in the center of the record-

ing chamber (Fig 7A). After the flash, sperm accumulated in the

irradiated area, indicated by a decrease in sperm dispersion in the

field of view, whereas the surrounding area became depleted of

sperm (Fig 7, Supplementary Movies S1 and S2; control); MDL and

mibefradil abolished the resact-induced accumulation of sperm

(Fig 7, MDL12330A; Supplementary Movies S1 and S2). We

conclude that the chemoattractant-induced Ca2+ influx via CatSper

controls navigation of sperm in a resact gradient.

Discussion

Although CatSper has been discovered more than a decade ago and

CatSper genes are present in many phyla, knowledge about CatSper

channels originates exclusively from studies of human and mouse

sperm. We show that CatSper constitutes the long-sought Ca2+

channel that controls chemotaxis in sea urchin sperm. Moreover,

we unravel in quantitative terms the interplay between pHi and Vm

to control Ca2+ influx via CatSper in intact sperm.

At rest, Vthr of CatSper activation is slightly more positive than

Vrest and the channel is closed. The chemoattractant-induced

hyperpolarization (Fig 8B, black arrow) evokes a rapid intracellu-

lar alkalization via the sNHE exchanger that harbors a classic

voltage-sensor motif, which probably mediates the voltage depen-

dence (Wang et al, 2003; Nomura & Vacquier, 2006). The alkaliza-

tion shifts the voltage dependence of CatSper by as much as 30 mV

to more negative values (Fig 8B, blue arrow) and, thereby, enables

CatSper to open during the subsequent depolarization brought about

by hyperpolarization-activated and cyclic nucleotide-gated (HCN)

channels (Fig 8B, red arrow) (Gauss et al, 1998; Galindo et al,

2005). The high cooperativity of the allosteric pH control serves as a

sensitive mechanism that allows gating of CatSper within the opera-

tional voltage range set by Vrest (about �50 mV) and the reversal

potential of the CNGK channel (about �95 mV).

In a chemical gradient, sperm are periodically stimulated with

the angular frequency of circular swimming of ~1 Hz (Böhmer et al,

2005). The periodic stimulation can be emulated by repetitive

(1 Hz) photorelease of cGMP; each cGMP pulse evokes a Vm and

Ca2+ response of similar amplitude (Kashikar et al, 2012). We

gained further insight into the interplay between pHi and Ca2+

responses by studying pHi signals evoked by repetitive photorelease

of cGMP. Whereas the first flash produced a large increase of pHi,

subsequent flashes evoked only a small or no further alkalization

(Fig 8C). Thus, once alkalization shifted the voltage dependence of

CatSper to the permissive voltage range, channel gating is controlled

by voltage only. This indicates that DpHi is the mechanism that

enables sperm to transduce periodic Vm changes into periodic Ca2+

changes during sperm navigation on periodic paths in a chemo-

attractant gradient (Kashikar et al, 2012).

Here, we reveal intriguing commonalities and differences

between signaling pathways in sperm from mammals and marine

invertebrates. Although distinct in many respects, signaling path-

ways share both CatSper and the sNHE exchanger (Fig 8A), suggest-

ing that a voltage-induced change in pHi and a pH-induced

activation of CatSper are evolutionary conserved signaling events. A

mechanism reminiscent of that controlling CatSper in sea urchins

has recently been proposed for mouse sperm (Chavez et al, 2014).

Hyperpolarization by Slo3, the principal K+ channel in mouse (Santi

et al, 2010; Zeng et al, 2011, 2013) and human sperm (Brenker

et al, 2014), is required for CatSper to open upon depolarization.

The hyperpolarization might involve alkalization, probably medi-

ated by sNHE (Chavez et al, 2014). These events seem to control

sperm capacitation, a maturation process inside the female genital

tract. At first sight, these capacitation events are reminiscent of the

hyperpolarization-induced events during chemotaxis in sea urchin

sperm. However, the time scales are entirely different: Mammalian

sperm capacitation proceeds in minutes to hours, whereas

chemotactic signaling happens within subseconds. Finally, the
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Figure 7. CatSper inhibitors abolish chemotaxis of sperm in an
chemoattractant gradient.

A Dark-field microscopy images of a sperm suspension before (top) and after
(bottom) photorelease of a resact gradient (middle) in the absence (control;
left) or presence of the CatSper inhibitor MDL12330A (10 lM; right).
MDL12330A abolishes resact-induced sperm accumulation.

B Relative change of the sperm dispersion in the field of view evoked by
photorelease of resact (t = 0, flash) in the absence (control; blue) or
presence of MDL12330A (red); a decrease in dispersion indicates sperm
accumulation in the irradiated area (mean � SD; n = 4).
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physiological trigger for Slo3 activation and the precise interplay

between Vm and pHi to control mammalian CatSper are unknown.

In conclusion, the allosteric mechanism of CatSper activation by pHi

and Vm in sea urchins provides a blueprint for studies in mamma-

lian sperm.

On a final note, a difference between chemosensation in sea

urchin and human sperm might concern the interplay of CatSper

and K+ channels (Fig 8A). In sea urchin, the opening of CNGK first

activates sNHE and eventually CatSper. Thus, CNGK is located

upstream of CatSper on the excitatory limb of the signaling pathway

(Fig 8A). By contrast, in human sperm, Slo3 is activated by Ca2+

(Brenker et al, 2014), and a Ca2+-induced hyperpolarization might

curtail the progesterone-induced Ca2+ influx via CatSper. Thus, Slo3

is placed downstream of CatSper on the recovery limb of signaling

(Fig 8A). This variation of signaling motifs might reflect a

phylogenetic adaptation to the direct activation of human CatSper

by extracellular ligands such as progesterone.

In conclusion, CatSper constitutes a crucial component of Ca2+

entry employed by diverse signaling pathways. In general, CatSper

might serve as a versatile polymodal sensor that integrates multiple

stimuli such as pHi, female factors, and membrane voltage. Depend-

ing on the species, CatSper employs either intracellular alkalization

or ligand binding to allosterically shift its voltage dependence to

the permissive range of membrane potentials. We envisage that

variations or combinations of these two mechanisms control

CatSper in other species.

Materials and Methods

Arbacia punctulata sperm

Collection of dry sperm and composition of artificial seawater (ASW)

was as described previously (Kaupp et al, 2003; Strünker et al, 2006;

Kashikar et al, 2012). In brief, about 0.5 ml of 0.5 M KCl was

injected into the body cavity to evoke spawning. Spawned sperm

(dry sperm) were collected using a Pasteur pipette and stored on ice.

Cloning of ApCatSper subunits

For cloning of ApCatSper 2 and ApCatSper 3, fragments of partial

clones from orthologous Strongylocentrotus purpuratus SpCatSper 2

and 3 (kindly provided by D. Ren, University of Pennsylvania, Phila-

delphia, USA) were amplified. For cloning of ApCatSper 1 and

ApCatSper 4, we compared the sequences of mammalian CatSper 1

and 4 subunits with predicted messenger RNA (mRNA) sequences

from the S. purpuratus genome project, and we designed primers to

amplify fragments of SpCatSper 1 and SpCatSper 4 from a cDNA
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library of S. purpuratus testis. The SpCatSper 1–4 fragments were

used as probes to screen random-primed cDNA libraries of A. punc-

tulata testis under low-stringency conditions. Overlapping ApCat-

Sper partial clones were combined to yield full-length clones;

missing sequence information at the 50- and 30-end was completed

by RACE-PCR (Frohman et al, 1988). PCRs, the construction and

screening of cDNA libraries, subcloning, and sequencing of cDNA

were performed according to standard protocols. The ApCatSper 2

and 3 clones were fused with the coding sequence for a C-terminal

hemagglutinin tag (HA-tag) and cloned into the mammalian expres-

sion vector pcDNA3.1+ (Invitrogen).

Antibodies

The antibodies directed against the GC (GCN3D12) and the CNGK

(AP47C9) were described previously (Bönigk et al, 2009; Pichlo

et al, 2014). A monoclonal antibody from rat (RKKE4F6) was

directed against the C-terminus (amino acids 297–317) of ApCatSper

3. Another monoclonal antibody from rat (APCS28G4) was directed

against the N-terminus of ApCatSper 2 (amino acids 42–58). The rat

anti-HA antibody was from Roche Applied Science. Secondary anti-

bodies were used as follows: goat anti-rat-HRP antibody (Dianova);

goat anti-rat-IRDye800cw antibody (LI-COR); donkey anti-rat-Cy3

(Dianova) and goat anti-rat-Alexa488 (Life Technologies).

Immunocytochemistry

Sperm were immobilized on SuperFrost Plus microscope slides

(Menzel) and fixed for 5 min with 4% paraformaldehyde. After

preincubation with 0.5% Triton X-100 and 5% chemiblocker (Milli-

pore) in 0.1 M phosphate buffer (pH 7.4), sperm were incubated for

1 h with antibodies RKKE4F6 or AP47C9 (undiluted in the presence

of 0.5% Triton X-100), or GCN3D12 (1:100 diluted in the presence

of 0.5% Triton X-100) and visualized with the donkey anti-rat-Cy3

(RKKE4F6, GCN3D12) or goat anti-rat-Alexa488 (AP47C9)

antibodies.

Western blotting

CHO cells transiently transfected with ApCatSper 2 or ApCatSper 3

were resuspended in phosphate-buffered saline (PBS) containing (in

mM) 137 NaCl, 2.7 KCl, 6.5 Na2HPO4, 1.5 KH2PO4, pH 7.4, and the

protease inhibitor Complete (Roche). Total protein content was

determined by using the BCA Assay kit (Pierce). Ten lg of total

protein was used in the Western blot analysis. Membrane proteins

from A. punctulata sperm were prepared as previously described

(Mengerink & Vacquier, 2004). Ten lg of membrane proteins was

used in the Western blot analysis. Proteins were separated by 10%

SDS–polyacrylamide gel electrophoresis (SDS–PAGE) and blotted,

and the membranes were probed with RKKE4F6 (undiluted),

APCS28G4 (dilution 1:100), or rat anti-HA (dilution 1:1,000). The

goat anti-rat-HRP antibody (dilution 1:5,000) was used to visualize

protein bands by a chemoluminescence detection kit; chemolumi-

nescence was detected via a CCD-imaging system (LAS-3000; Fuji)

(CHO proteins) or by hyperfilms (GE Healthcare) (sperm proteins).

The goat anti-rat-IRDye800cw antibody (1:20,000) was used to

visualize sperm protein bands via the Odyssey Imaging System

(LI-COR).

Mass spectrometry of proteins from A. punctulata flagella

Sperm flagella and heads were separated as described (Mengerink &

Vacquier, 2004; Strünker et al, 2006) with some modifications: Dry

sperm was diluted (1:25) in ASW pH 7.8 and centrifuged (200 g,

7 min) to sediment coelomocytes. The supernatant was centrifuged

(3,000 g, 15 min) to sediment sperm. The sperm pellet was diluted

in ASW pH 7.8 with protease inhibitor Complete (Roche) (1:10 dilu-

tion). The sperm suspension was sheared ~20 times with a 24-G

needle and centrifuged (800 g, 10 min) to sediment intact sperm

and sperm heads. The purity of flagella preparations was checked

by phase-contrast microscopy. Shearing and subsequent centrifuga-

tion was repeated several times until pure flagella samples were

obtained. All steps were performed on ice. Flagella were lysed by

several “freeze/thaw” cycles and sonification steps in buffer

containing (in mM): 25 HEPES pH 7.5, 10 NaCl, 2 EGTA, and prote-

ase inhibitor cocktails (Roche Applied Science and Sigma).

Membranes were sedimented by ultracentrifugation (100,000 g,

30 min, 4°C) and washed twice with 0.1 M (NH4)2CO3. After

another ultracentrifugation step, membrane pellets were resus-

pended, sonicated, and processed by tryptic in-solution digestion

(sequencing grade modified trypsin, Promega) in a methanol and

NH4HCO3 buffer (Fischer et al, 2006). After removal of membranes

by ultracentrifugation, samples were desalted using Spec PT C18 AR

tips (Varian). Both MudPIT (2D) with seven salt steps and one-

dimensional (1D) analysis were performed on an LTQ Orbitrap

Velos (Thermo Fisher Scientific) according to Fränzel et al (2010)

and Trötschel et al (2012). All database searches were performed

using SEQUEST algorithm, embedded in Proteome DiscovererTM

(Rev. 1.2.0.208 or Rev. 1.4.0.288, Thermo Fischer Scientific).

Searches were done by using both an A. punctulata protein data-

base derived from testis transcriptome and sperm genome sequenc-

ing (to be published) and an NCBI protein database for

S. purpuratus proteins, in which the S. purpuratus protein

sequences for the CatSper subunits 1, 2, 3, 4, GC, and CNGK were

replaced by the respective A. punctulata sequences. Tryptic

peptides with ≤ 2 missed cleavages were accepted. Oxidation of

methionine was permitted as variable modification. The mass

tolerance for precursor ions was set to 6 ppm; the mass tolerance

for fragment ions was set to 0.8 amu. For search result filtering, a

false discovery rate (FDR) of < 1% was applied, and ≥ 2 peptides

per protein as well as peptides with search result rank 1 were

required.

Co-immunoprecipitation

The monoclonal rat anti-ApCatSper 2 and anti-ApCatSper 3 antibod-

ies APCS28G4 and RKKE4F6, respectively, were immobilized on

Protein G Sepharose 4 Fast Flow (GE Healthcare). Arbacia punctulata

dry sperm were suspended in lysis buffer containing in mM:

140 NaCl, 1 EDTA, 1% n-dodecyl-b-D-maltopyranoside (DDM,

Anatrace), 10 Tris–HCl (pH 7.6), and protease inhibitor cocktail

(Sigma). The suspension (total lysate) was centrifuged for 10 min at

10,000 × g, and the total protein content of the supernatant,

containing cytosolic and solubilized membrane proteins, was deter-

mined by a BCA Assay kit (Pierce). For co-immunoprecipitation,

proteins (input) were pre-incubated with fresh Protein G resin end-

over-end for 30 min at 4°C. The suspension was briefly centrifuged
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(0.5 min, 200 × g, 4°C), and the supernatant was added to the

respective antibody-coupled resin, incubated end-over-end over-

night at 4°C, and centrifuged to remove the supernatant (flow

through). The resin was subsequently washed five times with lysis

buffer; finally, co-immunoprecipitated proteins were eluted with 1×

SDS–PAGE sample buffer (2% [w/v] SDS, 50 mM Tris, 12.5% glyc-

erin, 1% 2-mercaptoethanol, 0.01% bromphenol blue). For Western

blot analysis, proteins were separated by 10% SDS–PAGE and blot-

ted, and membranes were probed with either the anti-ApCatSper 2

or anti-ApCatSper 3 (both undiluted) antibody and visualized, using

the Odyssey Imaging System (LI-COR).

For mass spectrometry analysis, (co-)immunoprecipitated

proteins were separated by 10% SDS–PAGE. Gels were stained with

colloidal Coomassie, containing 0.08% (w/v) Coomassie G-250,

1.6% (v/v) phosphoric acid, 8% (w/v) ammonium sulfate, and

20% (v/v) methanol, destained with 1% (v/v) acetic acid, and cut

into 10 slices. Proteins in the slices were processed by tryptic in-gel

digestion and analyzed by protein mass spectrometry.

Measurement of changes in intracellular Ca2+ concentration, pH,
and membrane voltage

We measured changes in [Ca2+]i, pHi, and Vm in a rapid-mixing

device (SFM-400; BioLogic) in the stopped-flow mode. The changes

in [Ca2+]i, pHi, and Vm were measured with the Ca2+ indicator

Fluo-4-AM, the pH indicator BCECF-AM, and the voltage-sensitive

indicator di-8-ANEPPS (Molecular Probes), respectively (Solzin

et al, 2004; Strünker et al, 2006; Bönigk et al, 2009; Kashikar et al,

2012). Dry sperm were suspended 1:6 (vol/vol) in loading buffer

containing ASW and the indicator in the absence (BCECF-AM) or

presence (Fluo-4-AM, di-8-ANEPPS) of 0.5% Pluronic F127 (Sigma-

Aldrich or Molecular Probes). After incubation (for 45–120 min with

Fluo-4-AM, 10–15 min for BCECF-AM, or 5 min for di-8-ANEPPS) at

17°C, the sample was diluted 1:20 to 1:200 with ASW. Sperm were

allowed to equilibrate in the new medium for 5 min. In the stopped-

flow device, the sperm suspension was rapidly mixed 1:1 (vol/vol)

with the respective stimulus. Concentrations of inhibitors or ligands

are given as final concentrations after mixing. Fluorescence was

excited by a 150-W Xe lamp (LSB521; LOT Oriel) or a SpectraX Light

Engine (Lumencor). Emission was recorded by photomultiplier

modules (H9656-20; Hamamatsu Photonics). The signal was ampli-

fied and filtered through a voltage amplifier (DLPVA-100-B-S; Femto

Messtechnik). Data acquisition was performed with a data acquisi-

tion pad (PCI-6221; National Instruments) and Bio-Kine software

(BioLogic). For Ca2+ and Vm recordings, the excitation light was

passed through either an ET490/20 nm (Chroma Technology) (Xe

lamp) or a BrightLine 475/28-nm filter (Semrock) (SpectraX Light

Engine). For pHi measurements, the excitation light was passed

through a BrightLine 452/45-nm filter (Semrock). For Ca2+measure-

ments, the emitted light was passed through a BrightLine 536/40

filter (Semrock). Ca2+ signals represent the average of at least two

recordings and are depicted as the percent change in fluorescence

(DF) with respect to the mean of the first 5–10 data points before

the onset of the signal (F0). The control (ASW) DF/F0 signal was

subtracted from the NH4Cl-, pHi-clamp-, resact-, or cGMP-induced

signals. The Vm signals were recorded in the ratiometric dual-

emission mode. The filters in front of the two photomultipliers were

BrightLine 536/40 nm and BrightLine 628/40 (Semrock). The

BioLogic software was used to record fluorescence in the dual-

emission mode. The Vm signals represent the ratio F536/628 (R).

The control (ASW) R signal was subtracted from the resact- or

cGMP-induced signals. The mean R of the first 5–10 data points

before the onset of the changes in fluorescence was set to 0, yielding

DR. The Vm signals represent the average of at least three recordings

and were digitally smoothed with five-point average smoothing. The

changes in di-8-ANEPPS fluorescence were calibrated to yield Vm

values (mV) by mixing sperm with both resact (2 nM) and various

[K+]o (Strünker et al, 2006). With increasing [K+]o, the amplitude

of the resact-induced hyperpolarization decreases and, eventually,

sperm depolarized. Plotting the resact-evoked DR versus [K+]o
allows interpolation of the [K+]o at which resact does not change

Vm. At this [K
+]o null-point, the Nernst potential of K+ equaled Vrest

before stimulation. We calculated the respective Nernst potential,

assuming an intracellular K+ concentration of 423 mM. Moreover,

DR is linearly related to [K+]o, which allows to determine DR/mV.

Determination of Vrest and calibration of DR into mV was performed

for each set of experiments. BCECF fluorescence was recorded in a

dual-emission mode using BrightLine 494/20-nm and BrightLine

540/10-nm filters (Semrock). The pHi signals represent the ratio of

F494/540, represent the average of at least two recordings, and are

depicted as the percent of the relative change in ratio (DR/R) with

respect to the mean of the first 5–10 data points before the onset of

the signal. The control (ASW) signal was subtracted from the

NH4Cl-, pHi-clamp-, resact-, or cGMP-induced signals.

The calibration procedure for BCECF fluorescence to yield pHi by

the pHi-null-point method is described in the result section and

below; pHi calibration was performed for each set of experiments.

The pHi-null-point solutions were prepared according to the follow-

ing equation: pHi-null = pHo – 0.5 log ([TMA]/[BA]); pHo = extra-

cellular pH (7.8) (Eisner et al, 1989), wherein [TMA] indicates the

concentration of trimethylamine and [BA] that of butyric acid.

According to this equation, each [TMA]/[BA] ratio defines a new

pHi or pHi-null-point. When a cell with a resting pHi (pHrest) is

placed in a pHi-null-point solution, it will not change its pHi when

the pHi-null-point solution matches pHrest. If the null-point is more

alkaline than pHrest, the cell will alkalize; if the null-point is more

acidic, then the cell will acidify. Monitoring the changes in pHi after

mixing sperm with various null-point solutions allows interpolating

pHrest. When the pHi-null-point does not match pHrest, the absolute

concentrations of acid and base determine to what extent the pHi of

a cell will change (Chow et al, 1996): The higher the concentrations

of the acid/base mixture, the more the pHi will be shifted toward

the pHi-null-point. At saturation, the newly established pHi matches

the pHi-null-point; thus, the cell is clamped to a new pHi. Therefore,

we refer to this saturating pHi-null-point solution as pHi-clamp solu-

tion. Finally, the time course of pHi determines the time window for

which this pHi-clamp concept holds. To ensure that in A. punctulata

sperm, the pHi was indeed clamped to the pHi-null-point for several

tens of seconds, we determined for each pHi-null-point solution, i.e.

for each TMA/BA ratio, the molar concentrations of TMA and BA

required to produce saturating changes in pHi (Supplementary Fig

S9). The pHi-clamp solutions that clamped pHi in A. punctulata

sperm to pHi-null all contained 60 mM BA, whereas the TMA

concentration was varied to yield the respective pHi-null; for exam-

ple, for the pHi-null 7.0 solution, we used 1.5071 mM TMA/60 mM

BA, for the pHi-null 7.2 solution, 3.7857 mM TMA/60 mM BA, etc.
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Addition of TMA and BA increased the osmolarity of the ASW by

< 13%.

Caged compounds and flash photolysis

DEACM-caged cGMP and DMNB-caged resact were obtained from

V. Hagen (Leibniz-Institut für Molekulare Pharmakologie, Berlin)

(Hagen et al, 2003; Kaupp et al, 2003). For Ca2+ recordings, sperm

were diluted 1:6 in loading buffer (ASW) containing Fluo-4-AM and

30 lM DEACM-caged cGMP for ≥ 45 min (Kaupp et al, 2003). For

pHi recordings, sperm were incubated first with 30 lM DEACM-

caged cGMP for ≥ 40 min followed by incubation for another

10–15 min with BCECF-AM. After loading, sperm were diluted 1:20

to 1:200 for stopped-flow experiments. For experiments with

DMNB-caged resact, sperm were first loaded with Fluo-4-AM; after

loading, the sample was diluted 1:20 to 1:200 with ASW containing

1 lM DMNB-caged resact. Sperm were allowed to equilibrate in the

new medium for 5 min. In the stopped-flow device, the sperm

suspension was rapidly mixed 1:1 (vol/vol) with ASW (control) or

the respective inhibitors. About 2–5 s after mixing, caged cGMP and

caged resact were photolyzed by a UV flash (� 1 ms) from a Xenon

flash lamp (JML-C2; Rapp OptoElectronic). The UV flash was passed

through a bandpass 295- to 395-nm interference filter (Rapp Opto-

Electronic) and delivered by a liquid light guide to the cuvette

(FC-15; BioLogic) of the stopped-flow device.

Sperm chemotaxis

Sperm accumulation in a resact gradient was studied as described

with some modifications (Alvarez et al, 2012; Hirohashi et al,

2013). In brief, sperm swimming in a recording chamber (150 lm
depth) were imaged using a microscope (IX71; Olympus) equipped

with a 10× objective (UPlanSApo; NA 0.4; Olympus). Stroboscopic

dark-field illumination (2 ms pulses) was achieved using a white

LED (K2 star; Luxeon), a custom-made housing, and a pulse genera-

tor. Images were bandpass-filtered (HQ520/40; Chroma) and

acquired at 20 Hz, using an electron-multiplying charge-coupled

device camera (DU-897D; Andor). Sperm were suspended at about

108 cells/ml in ASW containing caged resact (50 nM; control) or

caged resact and MDL 12330A (10 lM) or mibefradil (60 lM).

Resact was released by 400-ms UV flashes (LED M365L2-C1; Thor-

labs) with a Gaussian profile of r = 178 lm width, coupled to the

microscope using a beam splitter (495 nm cutoff, BrightLine;

Semrock). The light power delivered to the sample was 1.7 mW.

The sperm distribution around the center of the illuminated area

was quantified by the relative changes of the weighted standard

distance (Alvarez et al, 2012; Hirohashi et al, 2013). Only points

within a distance ≤ 2r to the center of the UV flash were

considered. The uncaging gradient was quantified by imaging

fluorescein (10 lM) with the same UV light source and optical

components.

Data analysis

The data obtained from the stopped-flow recordings were analyzed

using Prism 5 (GraphPad Software) and OriginPro 8.1G SR3

(OriginLab Corporation). All data are given as mean � standard

deviation.

Supplementary information for this article is available online:

http://emboj.embopress.org
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