PUBLISHED FOR SISSA BY €} SPRINGER

RECEIVED: August 3, 2015
AcCCEPTED: October 3, 2015
PUBLISHED: October 26, 2015

Consistent 4-form fluxes for maximal supergravity

Hadi Godazgar,” Mahdi Godazgar,* Olaf Kriiger’ and Hermann Nicolai®
“*DAMTP, Centre for Mathematical Sciences, University of Cambridge,
Wilberforce Road, Cambridge, CB3 0WA, U.K.
b Max-Planck-Institut fiir Gravitationsphysik, Albert-Einstein-Institut,
Am Mdiihlenberg 1, D-14476 Potsdam, Germany
E-mail: H.M.Godazgar@damtp.cam.ac.uk, M.M.Godazgar@damtp.cam.ac.uk,
Olaf.Krueger@Qaei.mpg.de, Hermann.Nicolai®@aei.mpg.de

ABSTRACT: We derive new ansétze for the 4-form field strength of D = 11 supergravity
corresponding to uplifts of four-dimensional maximal gauged supergravity. In particular,
the ansédtze directly yield the components of the 4-form field strength in terms of the
scalars and vectors of the four-dimensional maximal gauged supergravity — in this way
they provide an explicit uplift of all four-dimensional consistent truncations of D = 11
supergravity. The new ansétze provide a substantially simpler method for uplifting d = 4
flows compared to the previously available method using the 3-form and 6-form potential
ansatze. The ansatz for the Freund-Rubin term allows us to conjecture a ‘master formula’
for the latter in terms of the scalar potential of d = 4 gauged supergravity and its first
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1 Introduction

Establishing a formal, consistent relation between a higher-dimensional theory and a lower

dimensional one is, in general, a challenging problem due to the highly non-linear nature

of reductions. Given some (super-)gravity model in D dimensions, consider a ground state

solution

Mp = My x Mp_4

(1.1)

corresponding to a compactification from D to four dimensions. The fields of the theory

are then expanded linearly around this ground state according to

O(z,y) = Do(z,y) + > _ 2" (@)Y (y),

(1.2)



where we collectively denote the value of the fields (metric and form fields) at the ground
state by ®o(x,y). Here, 2 and y™, respectively, are four-dimensional ‘external’ and (D—4)-
dimensional ‘internal’ coordinates on My and Mp_s. The Y™ () are the eigenmodes
of certain differential operators on the internal space giving rise to an infinite tower of
Kaluza-Klein modes. Restricting to the zero-mass eigenmodes gives the low energy physics.
The linearised expansion (1.2) is sufficient to determine the mass spectrum of the theory.
However, it cannot provide complete information about the interactions of the low energy
theory, and must be modified by non-linear terms away from an infinitesimal neighborhood
of the ground state. This modification must ensure that any solution of the low energy
theory corresponds to a solution of the higher-dimensional theory. This is the problem
of Kaluza-Klein consistency: given any solution of the full non-linear field equations in
four dimensions one must seek a corresponding expression for ®(z,y) that solves the full
higher-dimensional field equations also away from ®(z,y), thereby arriving at a consistent
embedding of this solution into the higher-dimensional theory.

In fact, there are very few examples where such a program has been successfully com-
pleted. Beyond the task of establishing the consistency of the truncation, it is a major chal-
lenge to present explicit non-linear ansitze! for uplifting solutions of the lower-dimensional
theory to solutions of the higher-dimensional one. Among the known examples the most
intricate and technically demanding concerns the maximally supersymmetric D = 11 super-
gravity and reductions thereof to maximal gauged supergravity theories in four dimensions,

corresponding to the ground state
My = AdSy x M7. (1.3)

For this theory the complete non-linear ansétze have recently been identified in refs. [1, 2],
building on the results of refs. [3-5] and using the formalism developed in ref. [6]. The
basic tool that facilitates this result is the reformulation of the D = 11 supergravity
theory [7] such that essential features of maximal gauged supergravity theories, classified
by the covariant embedding formalism [8-12], in four dimensions become manifest. At
its heart lies the E(7)/SU(8) duality symmetry [13, 14], which is obtained in the toroidal
reduction from D = 11 supergravity to four-dimensional ungauged maximal supergravity.
An important aspect of the formalism developed in ref. [1] is the role of the 6-form potential,
which is dual to the 3-form potential of D = 11 supergravity. Ref. [2] (see also refs. [4, 5, 15])
derives full, explicit uplift ansitze for SO(8) gauged maximal supergravity [16],2 which is
a consistent truncation [3, 21] of D = 11 supergravity on a seven-sphere [22, 23].

The non-linear anséitze for the internal metric and internal components of the form
fields were obtained by an analysis of the supersymmetry variations of D = 11 supergravity.
In particular, the supersymmetry transformation of those components of the fields that
we identify with the vectors in a reduction take the same form as the supersymmetry
transformation of the vectors in four dimensions, viz. both are given by components of a

'Here, we use the word “ansatz” in the sense of an approach or prescription rather than a guess.

It is known that the recently discovered family of SO(8) gauged supergravity theories [17, 18] cannot
be obtained from a consistent reduction of D = 11 supergravity [2, 19, 20] (see also ref. [5]). Therefore,
they fall outside the scope of this paper.



56-bein multiplied by a particular combination of fermions. Hence given a linear ansatz for
the vectors, one can relate the 56-bein in eleven dimensions to the four-dimensional one.
Since these 56-beine are parametrised by the d = 4 scalars and the internal components
of the D = 11 fields respectively, one finally obtains a non-linear ansatz that relates the
internal components of the D = 11 fields to the d = 4 scalars.

By contrast, the approach in this paper is based on an analysis of the generalised
vielbein postulates (GVPs). These are analogues of the familiar vielbein postulate in dif-
ferential geometry for the 56-bein. As in the simpler case of the vielbein postulate, the
GVPs express the derivative of the 56-bein in terms of objects that transform as connec-
tions with respect to SU(8) transformations or Er(7) generalised diffeomorphisms [24]. The
GVPs, used in this paper, are found [1] by expressing the 56-bein in a GL(7) decomposi-
tion (in terms of the components of the D = 11 fields) and by packaging its derivative in
terms of generalised connections. This alternative method for finding non-linear ansétze
(see ref. [3]), centres on the fact that the generalised connections are parametrised by, in
particular, components of the 4-form field strength. Therefore, by projecting onto various
components of the GVPs using the 56-bein we are able to extract non-linear ansétze for
components of the 4-form field strength.

One main result of this paper is the embedding formula for the Freund-Rubin parameter
fm(x,y) in terms of four-dimensional fields. The latter is generally and independently of
the equations of motion defined by [22]

F,ul/pa(q% y) = ZfFR(-T’ y) 79/#1/,00’ (14)

where 7,50 is the volume form in four dimensions. The choice of terminology reflects
the fact that fm is a constant for Freund-Rubin compactifications characterised by (1.3).
On the basis of its observed structure for several examples (worked out in section 4 and
appendices B and C) we conjecture the following master formula

2

(o) = =725 (V) = (@M@ Sutn) + e ) (1.5
where my is the inverse radius of the round S7. Here, V is the full scalar potential of
gauged maximal N = 8 supergravity with gauge coupling constant g. Q¥ (x) is the first
derivative of the potential in an SU(8) covariant ‘frame’ on the E(7)/SU(8) coset manifold
(see ref. [25] and section 6.1 for details), and ¥;jp; is the z- and y-dependent complex
selfdual tensor defined in eq. (6.7) in section 6.1. Stationary points of the potential are
therefore characterised by the requirement that Q“* be complex anti-selfdual; at such
points the y-dependence drops out. We perform several very non-trivial checks of the
formula (1.5), but leave a general proof for later work.

The master formula (1.5) provides a concrete example of how a higher-dimensional
field ®(z,y) is consistently deformed away from the ground state solution ®g(z,y). At
the same time it illustrates very explicitly that the consistency of the truncation can only
be achieved on-shell, that is, when the equations of motion are obeyed. Away from the
solution of the equations of motion, the Freund-Rubin term exhibits an irremovable and



manifest y-dependence.®> The same holds true for other components of the D = 11 fields,
as well as for more complicated solutions of the full S truncation with x-dependence. As
we already pointed out in our previous work, this is in marked contrast to the AdS; x S*
compactification of D = 11 supergravity [26, 27] where there exist consistent non-linear
ansatze that also hold off-shell. The reason is that in the latter case the scalar field content
is directly obtained without the need to dualise form fields.

Finally, our non-linear ansatz for the internal components Fj,,,, of the 4-form field
strength settles an issue that had been left unresolved in ref. [3], which also tried to exploit
the idea of projecting out the 4-form field strengths from the generalised non-metricity. The
construction could not be completed there because only part of the generalised vielbein
was known; furthermore, as shown much later in ref. [21], the ansatz as given in ref. [3]
yields a tensor that is not totally antisymmetric. We also use the fermion supersymmetry
transformations to find an ansatz for the F),,,,, component of the 4-form field strength.
With these new ansétze, the uplift of flows (z-dependent solutions) to D = 11 becomes
technically relatively straighforward.

2 Preliminaries

A (bosonic) solution of four-dimensional maximal gauged supergravity is specified by the
following bosonic field content:

a vierbein : e (x),
28 vector fields : A (@),
A (% 1J €T) U5 €T
70 scalars : V)= " (=) .J.U( ) ; (2.1)
vt IJ((E) uz]IJ(x)

where the bivector indices I.J denote the 28 of SL(8, R). The 28 ‘electric’ vector fields
AMU should really be thought of as belonging to a 56 of E;(), denoted by AMM. In
the ungauged theory, the other 28 ‘magnetic’ vectors A, ;; are obtained by dualising the

17 and pseudoscalars v;j 1J parametrise a coset

original 28 vectors A,/ 7. The scalars U
element V(z) € E7¢7y/SU(8).
On the other hand, a solution of D = 11 supergravity is given by the following bosonic

field content:

an elfbein : Ex(z,y),
a 3-form potential : Aypnp(z,y) (2.2)
(or 4-form field strength : Funpg(z,y) =24 8[MANPQ}),

where y™ now are seven-dimensional coordinates.

3Nevertheless, in the general S7 truncation, a residual y-dependence of the Freund-Rubin term for non-
stationary solutions can be consistent if other components of the 4-form field strength also contribute. Con-
sistency is then achieved because on-shell the y-dependence of the latter cancels the residual y-dependence
of fm in such a way that all these terms combine to sum up to a y-independent right-hand side for the
d = 4 Ricci tensor.



An uplift of a four-dimensional solution (2.1) to D = 11 supergravity is a solution of
the D = 11 equations of motion, specified by (2.2) that is determined purely by the four-
dimensional field content (2.1) and the internal geometry of M7 relevant to the reduction;
in the case of SO(8) gauged supergravity this is the seven-sphere S7. Decomposing the
D = 11 fields in a 4+7 split and interpreting them as four-dimensional fields based on their
index structure gives:

a vierbein : en™(x,y),
28 vector fields : B, (x,y), Apmn(z,y), (2.3)
70 scalars : en(2,y),  Amnp(r,y),  Apm(z,y)  (0or Apyme(2,9)).

Modulo a Weyl rescaling the eleven-dimensional “vierbein” (the appropriate 4 x4 submatrix
of the elfbein) is simply identified with the four-dimensional one. The 28 vector fields can
be augmented by another set of 21 vectors A, . .ms(2,y) originating from the 6-form
dual field App ... The final seven vectors required to form a full 56 of Ey 7y correspond
to the seven ‘dual graviphotons’ that have no satisfactory interpretation within D = 11
supergravity. Nevertheless, for convenience, we can add seven extra auxiliary vectors (see
e.g. ref. [1] and references therein). In this way we collectively define a set of vectors BHM,
where indices M, N, ... label the 56 representation of E7(7). These vectors are related to
the analogous set AHM in four dimensions by

B M(z,y) = RMw(y) AN (@) = RM ()AL (@) + R () Aurs(a) . (24)

Here, AHI 7 and A, 17, respectively, are the 28 electric vectors and the 28 magnetic vectors of
N = 8 supergravity. In the case of the S” reduction, RM s is constructed from the Killing
spinors 7! on S7 and the 6-form volume potential on the round S7, CO my...mg; the explicit
expressions are given in ref. [2]. Similarly, the eleven-dimensional “scalars,” which collec-
tively define an Er7)/SU(8) coset element VMg [1] are related to the four-dimensional
scalars via

VMup(,y) = RMn(y) s () ms (y) VYo (). (2.5)

Here, 77f4 denote the eight Killing spinors defined on the internal geometry and RM s is
the same matrix as in eq. (2.4).

In the case of the S7 reduction and the associated SO(8) gauged supergravity, the
above expressions translate to an uplift ansatz for the internal metric gy, [4], the internal
3-form potential A,,np [2, 5, 15] and the internal 6-form potential Ay, mq [2]. Furthermore,
dualisation of the 6-form potential gives components of the 3-form potential. All these
fields obtained in this way represent a full constructive solution of the D = 11 equations of
motion. The two-form fields A,,,, can be obtained by integration from the other ansatze.
It is in principle also possible to deduce a non-linear ansatz directly for A,,, by also
comparing the four and eleven-dimensional supersymmetry transformations. Except that
in this case the supersymmetry transformation of A, will correspond in four dimensions
to the supersymmetry transformation of the 133 two-form fields, A,,q, in the tensor
hierarchy (see ref. [12]).



It must be emphasised that the uplift ansétze have been derived from the D = 11 the-
ory, with the supersymmetry transformations playing a significant role in the derivation.
As such they are robust and need no further substantiation. However, given the non-trivial
nature of the reduction on the one hand and the remarkably simple form of the ansitze on
the other, they have been explicitly verified for a number of stationary points of the four-
dimensional scalar potential including the SO(7)*, G and SU(4)~ invariant solutions [2, 4,
15, 21]. Furthermore, the metric ansatz has been used extensively in the literature, in par-
ticular in applications to holography (see for example [28, 29]). The full uplift ansétze have
allowed for a study of more complicated upliftings; including an uplift of the SO(3)xSO(3)
invariant solution [30] and for the first time a full uplift of a flow to eleven dimensions [31].

In this paper, we explore the possibility of expressing some of the uplift ansétze in
even simpler terms, with particular focus on the Freund-Rubin term (1.4) that plays a
central role in compactifications of D = 11 supergravity. To illustrate the simplicity of
our final formula (1.5) recall the duality relation in eleven dimensions between the 4-form
field strength and its 7-form dual, which implies that the Freund-Rubin term can also be
expressed (in form language) as

fr = *(7) (d(r) A6 — Az A Fy), (2.6)

where all fields above take components along the internal directions. Hence, a direct
derivation of the Freund-Rubin term from the uplift ansétze of ref. [2] would require the
associated expressions for A,y and Ap,, me. Although eq. (2.6) and the uplift ansétze
for Aymp and Ay, me are relatively simple,? in practice the calculations become rather
unwieldy for more non-trivial solutions of the four-dimensional theory, at least analytically.
More precisely, the large number of operations required (such as inverting the metric to
find Aynp and Ay, g, taking exterior derivatives and dualising a 7-form) to find what is
ultimately a scalar makes it a rather inconvenient calculation.

Observing that the Freund-Rubin term, as well as other components of the 4-form
field strength, also appear in the generalised vielbein postulates (GVPs) [1, 6], and more
specifically, in the generalised SU(8) connection coefficients Q,,%p and the generalised
non-metricity P, aApcp, we obtain (in our view the rather elegant) formula (1.5) for fum
that is sextic in the matrix elements of f/, see eq. (3.40), by a particular projection of the
internal GVP using components of the 56-bein.

Another projection of the internal GVP gives an ansatz for the internal components of
the field strength. When projecting out F;,,,,q from the generalised non-metricity P, acp,
components of the generalised Christoffel connection I‘ﬁl - contribute, see eq. (5.2). In fact
these terms, which correspond to ambiguities in the language of ref. [21], remove all terms
in Frnpg that are not fully antisymmetric so that Finpg = Flmnpg), as required by its
compatibility with (2.2). Note that, when projecting out the Freund-Rubin term f from

4In fact, the ansatz for Am,..mg given in ref. [2] can be greatly simplified:

_ 1 \/§°pq°

T mr 16519 Tmemer

Dy(logA) = 3V2 {ny g (2.7)

Aml..xmg



the generalised vielbein postulate, components of the generalised Christoffel connection
drop out. In this way we are finally able to resolve an issue that was left unfinished in
ref. [3]: it is also observed there that one can project out the 4-form field strength. However,
the resulting SU(8) invariant expression, apart from the ambiguities pointed out in [21],
turns out to be unmanageably complicated due to the fact that only part of the generalised
vielbein was known. Nevertheless we can now confirm that this strategy is correct, and
does yield non-linear ansétze for the field strengths of the form fields. In particular, these
new ansitze can be more suitable than using the ones for the form fields themselves.
Furthermore, in section 5, we use the external GVP and the fermion supersymmetry
transformations to find anséitze for the remaining components of the field strength. In
particular, we find new direct and simple ansétze for the F),,,, and Fj,.m,, components,
egs. (5.15) and (5.22), respectively. We verify the ansatz for Fj,,,, for the SO(7)" sector.

3 Non-linear ansatz for the Freund-Rubin term

3.1 The 56-bein VY

The internal components of the D = 11 fields are packaged into a single coset element of
E7(7y/SU(8), a 56-bein (Vg Varap). Here, the E7() index M decomposes under GL(7)
as

Vit = (Vinss Vinn, VP,V (3.1)
with GL(7) indices m,n,---=1,...,7. The components of V in terms of the D = 11 fields
are [1],

m \/i — m
Vg = —5 A VAT, (3:2)
2
an AB — _fA_l/Q (an AB + GﬁAmonZB> ’ (3'3)

anAB _ \/i 1 ﬁmnpl---p5Afl/2

] 5l Dprops AB + 60\/§Ap1p2193 Upips AB

V2
- 6!\/5 (qur"ps - Tqu1p2Ap3p4p5 1_‘qAB ’ (3'4)

2 1. . _
VmSABZ—i'*npl P A—1/2

g 7l (Fp1-~~p7rm)AB + 126\/§Amp1pzrp3'--p7 AB

V2
+ 3\/5' 7! (Amm-"ps + TAmmeAmmps Ppﬁp? AB

9! V2
+ 5 (Ampr"ps + 12Amz91p2AP3p4p5> APsp?QPqAB] : (3'5)

Here, D% 0n = Tla1 | Tan] gre seven-dimensional 8 x 8 D-matrices and T are their
curved versions, e.g. I'™ =€, I'. Ay, and Ay, ...;m are 3-form and 6-form fields, respec-
tively. The V given above is an E7(7) matrix because it corresponds to the exponentiation
of E7(7) Lie algebra elements [32].



The index M that denotes the 56 of E7 (7 is raised and lowered with the symplectic
metric QMY and its inverse, namely

VM = MV
The non-vanishing components of QMY are

1
anpq - _ qumn — 5;';”) Qm8p8 - _ Qp8m8 — 5;7188 = 55;” (36)

and its inverse is defined by
OMPQpp = 3t

(VAmAB Vaap) is an Sp(56,R) matrix and hence

VMABY yop =isdp,  vMAPYLOP =o. (3.7)
‘Curved’ SU(8) indices A, B, ... are raised and lowered by complex conjugation,

while the position of the E7(7) index on V is not affected.
The D = 11 56-bein is related via the linear ansatz (2.5) [1] to the E;(7) matrix that
encodes the scalars of N = 8 supergravity

1J
o (uit i
o (1) -
1J
The 70 scalars and pseudoscalars parametrise u;;!7(x) and v r7(z). In the form above,

the 56-bein is given in an SU(8) basis. However, it turns out to be more convenient to have
the 56-bein such that its E7(7) index is decomposed in an SL(8) basis:®

. 1 UijIJ*UijU N N 1 Wiz~ " — VigIJ
V" = — - ) . Vmig = (W) = — . (3.10)
\/§ —’i(UZJ[J -+ U”I‘]) \/E i(uij” —+ Uij[])
In relating the d = 4 56-bein to the eleven-dimensional one given above, one must
in principle take into account a compensating SU(8) rotation depending on all eleven
coordinates, as explained in ref. [6]. However, in the remainder we will deal only with

quantities where the SU(8) indices are fully contracted, and this SU(8) rotation drops out.
Keeping this in mind, the explicit dependence of the components on the d = 4 fields is [2]

V2i

V() = TKW L7 (y) (wi™ + vij 1) (2), (3.11)
V2
Vinn i5(%,y) = —men”(y) (uig"” = vij 1) (), (3.12)
V20 iy

V(@ y) = (Kp1-~p5” = 66! Cpyopsg K ”) () (uig" + vij 1) (@),

(3.13)

8- 5!

®See, for example, ref. [33] for more explanation.



Vg ij(®,y) =

| S

(B 4+ 687Gy Ko™ ) () (i = i 1) (@), (3.14)

where K!7(y) are the Killing vectors on the round seven-sphere,

1 -
K" =ig'Tn?, K,/ = ——D,KY =7l .n’, (3.15)
mr
. 1,
Kml...ﬂ’L51J = ”7[Fm1---m577j = 7577m1"'m7Km6m7 IJ’ (316)

The derivative operator lo)m is the covariant derivative with respect to the Christoffel
connection on the round sphere and 7! are the eight Killing spinors on S7. Additionally,
Cmy--mg 18 implicitly defined by

ﬂf)[mlémgmmﬂ = mz 7O7m1-~-m7' (3'17)

Furthermore the normalisations in (3.11)—(3.14) have been chosen so that this vielbein
is indeed normalised according to eq. (3.7). These expressions are sufficient to derive all
non-linear ansatze.

3.2 Generalised vielbein postulate

The generalised vielbein postulates are differential constraints on the 56-bein in terms
of generalised connections including an SU(8) connection, a generalised E7(7) connection
and a generalised non-metricity. Using the GL(7) decomposition of the 56-bein, (3.5), its
derivative can be grouped into objects that satisfy the correct transformation properties,
namely the generalised connections in refs. [1, 6]. The crucial feature of the generalised
connections that we utilise in order to derive our ansitze is that they are parametrised
by components of the 4-form field strength. This is a somewhat different approach to the
deductive approach of ref. [24]. There, the generalised connections are found by requiring
a torsion-free compatible connection (in contrast to usual differential geometry, this does
not uniquely specify the connections [24]). The generalised connections in ref. [24] are
nevertheless related [34] to the generalised connections in ref. [1]; as are the connections in
exceptional field theory [34], where the emphasis is on connections that are expressed in
terms of the 56-bein of exceptional field theory [35].

A distinctive feature of the generalised connections that we use is that they are valued
along the first seven directions in a GL(7) decomposition, as is clear from eq. (3.18). Note
that this is not a consequence of the derivative index running over seven directions, but
rather a consequence of working with a generalised non-metricity rather than torsion-free
compatible connections [34], which are valued in the 56 even when the base space is not
extended as in ref. [24]. However, for us it is precisely the SU(8) covariant generalised
non-metricity that yields the new non-linear ansatze.

The 56-bein V) satisfies, in particular, the internal GVP [1, 36]

OmVN a8 — CounTVpap + QC aVnNBlC = P apcpVnr, (3.18)



where Q4 o is the generalised SU(8) connection. The SU(8) tensor Py, apcp is the ‘gen-
eralised non-metricity’, which ‘measures’ the failure of the metric

Gun = VuBVv as + VPV an

to be covariantly constant under the generalised covariant derivative.® T',,x” is the Ez7)
generalised Christoffel connection with components

(D) =~ (T) = T b (T (D)™ = —(C) g =270 571 S, o

(Fm)pSTS:_( m) p8—3\[0T5t1 t5:m|pt1 5

1
(Fm)pqrs ( m)Tgpq 3f_m‘pqw (I‘m)pq”s _ pqrst1t2t3:m|t1t2t3 (3‘19)

VoL

Here,
1
ann(ma y) = igpq (8mgnq + angmq - 8qgmn)

denotes the usual Christoffel connection defined with respect to the metric g, (z,y). The
quantities Z,,|pqr (7, y) and Zp,pp,,.ps (2, y) are [36]

— 1

Emlpgr = DmApgr — IFmpqh (3.20)
_ V2
=m|p1-ps DmApl“'PG + TSFm[plpzpsAm%%]

V2 1 .
9 (DmA[p1p2p3 - 4!Fm[P1p2p3> Ap4pdp6] 7 Fmp1 e (3.21)

where D,,, denotes the covariant derivative with respect to the Christoffel connection I's,,.
From the definitions above it is clear that

=0.

=[mlnpq] = =[m|p1-ps]

We also note that under generalised diffeomorphisms (including the two- and five-form
gauge transformations) all connection coefficients transform with second derivatives, just
like the standard Christoffel connection.

In a non-trivial background (such as the compactification on S7), all E77 ) Christoffel
connections decompose into a background connection | N ma- and a variation | A AV

Con” = Toa? + Lon”. (3.22)

For the S7 compactification we will see, egs. (3.30)—(3.32), that the background connection
is not only given by the standard covariantisation with respect to I'h,,, but that it also
requires a non-vanishing component Z,,,, .-

5As explained in ref. [34] the non-metricity can be absorbed into the connections, at the price of intro-
ducing components Q4 p and ', along directions M # m.

,10,



The generalised spin connection Q;‘l p and non-metricity P, apcp are expressed in
terms of the D = 11 fields as follows [6]:

1 V2. V2
oA L = _iwmabrgﬁg + ﬁm%mrm AB — EFr,mmr’j{g, (3.23)
V2. V2
7DmABCD = %1A2fmrmn[ABFTCL’D} + EFm"PqF&BFgID]’ (3'24)

where wy, 4p is the SO(7) spin-connection. The internal GVP, (3.18), provides a non-linear
ansatz for fz, given that P, depends on fu;. From eq. (3.18), we find

P apep = —iVNopDnVias = —iVNop0mVy ag + L™ VNepVp ap  (3.25)

and project out the Freund-Rubin term using the D = 11 vielbein components,

8V2i .,
fm = —TV SEEYPS o bV APV CPP apep. (3.26)

Note that in eq. (3.25), we defined the full covariant derivative D,,, with respect to the full
E7(7) Christoffel connection. We denote the covariant derivative associated with the full
background connection I‘Z A D,,..

Substituting the expression for P, from eq. (3.25), this projection has the following
convenient property: as a result of contracting out all SU(8) indices all the generalised
connection components (3.19) drop out in fg. For this reason we can use any connection;
we choose to work with the background connection for convenience. Note that this is not
true for other projections, in particular the 4-form field strength Fi,pe. In section 7, we
give a new ansatz for Fj,,,,, that takes these “ambiguities” into account. Thus,

8v/2 .
fm = —Tvmg EFVngFquABVqS CDVNCDDmV/\/ AB- (3.27)

3.3 The Freund-Rubin term in terms of d = 4 fields

We convert curved SU(8) indices A, B, ... into flat SU(8) indices i, j,... (cf. eq. (2.5)) by
means of the orthonormal Killing spinors on the round sphere 17%,

P ikl = —1 VNklﬁmVN ij + if‘mNPVNleP 55 (328)
8 2 .. o
Fm = —}fva VL Vo TVE RV D V. (3.29)

Here, we used the split (3.22) for the S7 background, with the only non-vanishing Christoffel
connection components

. , 1. 1.
(Con)ps™ = —=(Cm)®ps = ST, + a0}, (3.30)

- rs - rSs DI 1 AN TS
(Pm)pq = _(Fm) pq — 2F£n[p5q% - §an5pq (3-31)

and
(Ton)ps™ = —(Tn)"%ps = 3V20" B8, s, (3.32)
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with
ém|nl~--n6 = bmfinr“ne - lo)[m/inlng] - 3\@ (D[anlng] - lo)ménl'“ne) : (333)

Thus, the evaluation of the Freund-Rubin term requires an evaluation of the Maurer-
Cartan form of the 56-bein. This can simply be calculated using eqgs. (3.11)—(3.14),

. 3
VN DV ij = 2*8Zm7Kmn[UK”KL] (UijIJuleL — Vij LJVKKL)

4
. IJ MI MJ
+ ?Wme (vij o™ — wig™ v vp)

— 12 fymn <Dan1,__n6 _D[anl...nGD (Vpgijvnﬁ)kl+Vp8klvn7pij) , (3.34)

where lo?m is the usual S7 covariant derivative. The last term on the right-hand side of
the above expression exactly cancels the contribution of the generalised connection term
coming from émlplmpe evaluated in VNV kllo)mVN ij- Namely, at the background value of
the fields, where IA‘ZN = 0, Pmijiz given by eq. (3.28) is equal to the first two terms in
eq. (3.34), reproducing the solution given in equation (3.19) of ref. [3].7 Otherwise, away
from the SO(8) invariant vacuum, the solution is modified by the generalised connection
terms IA‘ZZ - These are the “ambiguities” that leave the supersymmetry transformations
unchanged [21]. Therefore, the solution proposed in ref. [3] is consistent with the super-
symmetry transformations but does not reproduce the field strength components Fpq-
In generalised geometry, this is manifested in the lack of a unique torsion-free, metric-
compatible generalised connection [24]; see also ref. [34] where this relation was explored.

In fact, equation (3.34) points to the necessity of using a background connection that
accounts for the fact that the Freund-Rubin parameter is non-zero at the background. This
background connection includes generalised connection components such that

. 3
VN D,V G = %lﬂmen[uK"KL] (wij ™ u ™ — vij ryvr k1)
4.
+ ?2m7KmIJ (vij mgwe™" — wip™ v ar) - (3.35)

However, since our identities, e.g. (3.15), are written in terms of the usual S” covariant
derivative lo)m, we use this connection for convenience.

From egs. (3.28) and (3.35), we can now see exactly how the solution given in equation
(3.19) of ref. [3] for P, i;i is modified by the generalised connection coeflicients. It is clear
from eq. (3.28) that the role of the generalised connection term is to fully antisymmetrise
lo)mAnpq and 5m1Am2_,,m7 terms coming from lo)mVM. This gives the field strength com-
ponents Fiunupg and Fy, o, i Pp, i, — without the generalised vielbein postulate this
task would be an unwieldy problem.

7In ref. [3], Pm ijkl is denoted by Am ijkl-
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We now make use of eq. (3.34), remembering that the contributions from the gen-
eralised connections vanish, and insert the explicit formulae for the vielbein compo-
nents, (3.11)—(3.14), into the expression for the Freund-Rubin term, (3.29). Defining

X M (z,y) = K5 () (ups™ + vrs 1) (Uij[JKUleM} — TR H LM]) (z),  (3.36)
Y, M (2, y) = K KEKED (y) (s + vps 1) (UinMUkl LM ypid KMy LM) (z), (3.37)
where K1/KL(y) = Kl (y) K™ K (y), we find that
V2my

VYN DV iy = — 5% (3X" 4kt — 2Y % 45ka) (3.38)
IRV SRCAVILEL ‘6/45 (2Xmij’“ + YTSUM) . (3.39)

Thus, the Freund-Rubin term is
Fm(.9) = 5 67;7/5 (3% — 2070 ) (2,7 + Y9 ) (a,y). (3.40)

4 Examples

In the following, we evaluate the Freund-Rubin term (3.40) for the Gy invariant sec-
tor [37, 38]. We refer the reader to appendices B and C for the Freund-Rubin term for
the SO(3)xSO(3) and SU(4)~ invariant sectors. At stationary points, fu is proportional
to the scalar potential. This has already been noted in ref. [21]. Eq. (3.40) now gives a
general expression for f; away from stationary points. In the following examples, we will
see that this expression always consists of two parts: the first part is proportional to the
scalar potential V' — this has been verified for many stationary points [21]. The second
part is proportional to a variation of the potential and depends on internal coordinates.
Thus, the Freund-Rubin term is only constant at stationary points. In uplifts of flows the
Freund-Rubin term will, in general, be both x and y-dependent.

4.1 Freund-Rubin term in the Gs invariant sector
In a ‘unitary gauge,” the 56-bein takes the special form
KL
ury Y UL KL 0 kL
V= = exp . 4.1
(v” KL u[JKL> <¢IJKL 0 (4.1)

For the Go invariant sector
A .
Sk = S A) = (cosa CLEE + isina C17KE) (4.2)

with the SO(7)" and SO(7)” invariant 4-form tensors CI/XL and CI7KL | respectively.

The common invariance group is Go = SO(7)"N SO(7)
The scalar potential for the Gy invariant sector, calculated from eq. (6.3), reads

V(e \) = 2¢° [(71}4 — 702 +3)3st + (40? — TPs + Ps% 4 TvdPsd — 303]
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= 2(c+wvs)? (71)333 + 40°8° — 14cv?s? — 8cvts + 14c%vs
+5c203s3 — 762 4 5c3v%s? — 8ctus + 465) . (4.3)
Here, g is the gauge coupling constant and
¢ = cosh 2\, s = sinh 2\, v = COoS Q. (4.4)

Taking the derivative of the potential with respect to o and A yields

dv
o= —14vs*sina(c + vs) (5v°s* + 4vtst — Bevs — dev®s? 4+ 2¢2 — 2o?s? + 5cPus — 204) ,
a
(4.5)
dv
ET =28 - (c + vs)(2v%s% 4 Tots? + 40°5% — Bevs — 10cv3s® — 4evs® + 52
+ Pv?s? — 3¢2vts? + 9c3vs + 1030353 — 9¢t — 3c¢tu?s? — 4cdvs + 4c). (4.6)

We write the w and v tensors in the following basis of Go invariants [4]

1JKL 1JKL
5KL’ C+ 5 C_ 5 Di

L \[JMN AMNKL IJMN ~MNKL

3 (e el + CIMNCHNEL) T (47)
Here, C’JIFJ KL g selfdual and CL/KL is anti-selfdual. Having chosen a symmetric gauge for
the d = 4 56-bein, we do not distinguish between SU(8) and SO(8) indices. We find [4, 15]

1 1 1
5\ a) = pPoEL + —pg® cos aC’UKL —pg? sin? aCT/ KL gipq2 sin 2a DT/ KL

2 2
(4.8)
vy (A, @) = ¢*(cos® o — isin a)6 + 1p qcosaC”KL + %inq sin aCT/ KL
- %q?’ sin 2a(sin a — i cos ) DKL (4.9)
The x-dependence is kept in A = A(z) through
p = cosh A, q = sinh \. (4.10)
u!’ i1, and v!/EL are obtained from the above equations by complex conjugation.

Plugging the explicit form of the u and v tensors into the expression of the Freund-
Rubin term and identifying

g(y) _ 1601JKLK IJKmKL (411)

we find the Freund-Rubin term in the Gy invariant sector:
m = —V2mz(c+ vs)? (71}353 + 40°8° — 14cv?s? — 8cvts + 14c%vs

+520%8% — 72 + 5302s? — 8ctus + 405)

— 14 —



2
+ \3[ mz € (¢ +vs)?evs (3vs + 20%s* — 3¢ — cv?s? — Fus + 2¢%) . (4.12)

While the first two lines are y-independent, all the y-dependence here is contained in the
factor £(y) in the last line. Using eqs. (4.3), (4.5) and (4.6), the above expression can be

my & scosadV . dV
— —V + = - — — . 4.13
T = < RbTR < 2 dA csmada)) (4.13)

This result is exactly of the expected form. The term proportional to the scalar

rewritten as

potential is coordinate invariant. All other terms are proportional to the derivatives of
V' with respect to a and A and thus vanish at the stationary points, that is, when the
equations of motion are obeyed. Off-shell, there is a linear dependence on &(y) so the extra
terms do depend on internal coordinates. Furthermore, fz is z-dependent via s,c and a.
Note that the G invariant sector also includes as special cases the SO(7)* invariant sectors
for appropriate values of a:

mr (v 4 LY SO(7)"
2 42 dA _
f = Vg ( ) v=t K (4.14)
—\/”%;2 o SO(7)

(recall that dV/da vanishes for v = 0).

We repeat this calculation in appendices B and C for the SO(3)xSO(3) and SU(4)~
invariant sectors and find expressions similar to eqgs. (4.13) and (4.14). Motivated by these
results we state a general conjecture for the Freund-Rubin term in section 6.

5 Ansatze for other components of the 4-form field strength

Given the new ansatz for the Freund-Rubin term, a natural question that arises is whether
similar ansétze for the other components of the 4-form field strength can also be teased out
of the generalised vielbein postulates. The generalised spin connection and non-metricity
from egs. (3.23) and (3.24) in the internal GVP depend on Fi,,p;q as well as fm. Therefore,
one can also project onto the component giving Fi,,pe. Indeed this is done in refs. [3, 6]
using only the original generalised vielbein e’}z. However, we use the full 56-bein and its
various components and take account of the generalised connection term. We can project
onto the F,,,, term by performing the following contraction of P, 4pcp with components
of the 56-bein:

1 1
Py ABCD <Vr8 ABquCD + EeABCDEFGH1}7"8EFqu GH> — EA lgrnanpq' (51)

Therefore, from eq. (3.25), we find that the uplift ansatz for Fj,,,, is given by
AT Frnpg = =168 (VN 3300 Vn 1 — TP VNV iV ) VR IV, M 4 he... (5.2)

The ansatz above is not as direct as the formula for the Freund-Rubin term (3.27).
Firstly, as with the non-linear flux ansatz [5] one needs to invert the metric to obtain
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anpq.s Moreover, the contributions from the generalised connection components do not
vanish. It is these terms that antisymmetrise the 9 A terms in 0V to give the field strength.
Hence without these terms the field strength components would not be fully antisymmetric
— a point that was noted in ref. [21]. We therefore conclude that differentiating Ay,
obtained from the non-linear uplift flux ansatz is a simpler way of finding the internal
components of Fy,, than the ansatz derived from the internal GVP, see eq. (5.2).

While the generalised spin connection and non-metricity are parametrised by Finpg
and f=x, the connections of the external GVP [1] are given in terms of the F),, m and Fmnp
components of the 4-form field strength. In E7(7) covariant form, the external GVP is [36]

VM AB + QﬁBHVM AB + QS[AVM BlC = P apcpVmP, (5.3)
where £ is the E7(7) generalised Lie derivative [24, 39)°
LaXp = A0 X + 1206 AN (ta) P2 0,AT X s (5.4)

and the connection coefficients are of the form

1 m n a \/i «a abc a
Q;?B - _5 |:e aDmBM Enb — (epapuep b):| FAbB — ﬁeu (FaachAbB — naﬁ,ytsFB’ﬂs FaAB) s
(5.5)
3 V2
Puasep = 7 [e’”aDmBN”enb — (e?aDyep b)}r([IABF%D] - fe#aFabcaF([lABF[gD]
\/5 o a
- Eeu al] ﬁm;Faﬁ'y(st[ABFCbD]a (56)
where

D, =0, — B," Dy (5.7)

We recall that D,, is the covariant derivative with respective to the connection I'h,, and
e, is the vierbein.

Given a particular reduction ansatz, the external GVP (5.3) reduces to the Cartan
equation of the scalars of the four-dimensional maximal gauge theory [12]:

0. Vmis — 9AT Xpa Vi + QX iVt ik = PV, (5.8)

where V is given in eq. (3.10) and Xy are generators of the gauge algebra and are related
to the embedding tensor © ¢ as follows

X =0 %a. (5.9)

8In fact, contracting P,, apcp with other components of the 56-bein would directly give an ansatz for
Frnpg without need to invert the metric. However, this leads to a more complicated expression involving
Amnp and Ap,,...mg contributions on the right-hand side.

9The generalised Lie derivative encodes the diffeomorphisms and gauge transformations of the D = 11
fields [24, 36]. In approaches where the base space is also enlarged, e.g. ref. [35, 39], the partial derivatives
also carry Er(7) indices.
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The embedding tensor projects out at most 28 of the 56 vectors A#73 [12]. The QLJ- are re-
lated to Qﬁ‘ B by an inhomogeneous relation, while P,;;; are covariantly related to Pyapcp
via the eight Killing spinors of the vacuum solution of the maximal gauged supergravity.

Let us consider the term proportional to Fj,,pm in P, apcp. This term can be projected
out as follows:

V2
Py ABCDVHB ABanCD — ?e‘u énaﬁ'yéFmaﬁ’y- (510)

Thus, we obtain the uplift ansatz

F, 2v2

uvpm = ?Z’nul/pa (f}MijaaVM Kl — gAO',PX'PMNf)MijVNkl> yisay, kL (5.11)

This provides a non-linear ansatz for Fj,,,, for any truncation of D = 11 supergravity to
four dimensions. Note that the ansitze for V"8 and V,,, will be linear and follow directly
from the linear ansatze for the vectors.

In the S7 truncation, the connections in eq. (5.3) and (5.8) are related via the eight
Killing spinors 1’ on the S7 [3]

. . V2i .
i =nan’ (QZ‘B - ™ ASERMEEE oD Ap |, (5.12)
Puijie = ni 0 1, m° Pu aen (5.13)

where AMK L are the 28 vectors of the d = 4 theory that are gauged. The generators of the
gauge algebra are given by [16]
RK ¢LIR

Xpyr™Y = X5 yny =26
XMNp:{ IJKL I1J7 "MN 1J OMN (5.14)

0 otherwise

and the reduction ansatz for the relevant components of the 56-bein are given in egs. (3.11)
and (3.12). With these substitutions, eq. (5.11) reduces to

V2

Frvpm = _47877“11[)0[@ Wy KL (uij]J 4 Uz’jIJ) (UleL _ UleL) (5.15)
X <1>Mijaaf}/\/l K — 2V2my AGMNVME YN p gy — 2\/§m7AaMN1>MPkﬂ>NPij) :

This is the non-linear uplift ansatz for £, ,,, for the S” reduction of D = 11 supergravity.
We note, as a check, that in the SO(7)" sector the above expression reproduces the correct

Vi,
F/“,pm == ?Z T]/“,p 30)\ amf (516)

The above ansatz for Fj,,m, (5.11), provides a considerable simplification over

result, viz.

computing the Hodge dual of F,,, .. .m¢ calculated using the ansatz for the metric, 3-form
and 6-form. This is clear even in the relatively simple case of the SO(7)" sector. The
advantage of the ansétze (5.11) for F,,,m (and its specialisation to the S7 reduction (5.15))
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and (3.40) for the Freund-Rubin term is that they do not require differentiation or the
metric to be inverted.

The connection P, spcp also depends on the F),p,,, components of the field strength.
However, as is the case with the ansatz for F,,pq, (5.2), we do not obtain a direct ansatz.
Therefore, for the Fj,,,, and Fp,,,, components the GVPs do not provide more efficient
ansétze. However, these components are easily calculated using the 3-form ansatz [5]. We
are fortunate that the GVPs give direct ansitze for the components of the field strength
that are otherwise difficult to calculate.

The only remaining component of the field strength that we have not thus far discussed
is the F},,mn, components, which does not feature in the GVPs. However, this component
does enter the fermion supersymmetry transformations via

1. y V2.
GapAB = _§ZA 1/2€[a“65] D,B,"TnaB + 3721A 1/2Fa5mn B (5.17)

Comparing the fermion supersymmetry transformations in four [12, 16] and eleven dimen-
sions [6], we make the following identification

Hapij = 4V20i'n7 Gapan, (5.18)
where Hop3i; is related to the covariantised field strength G, ™ [12]
Hapij = Vimij Gas™ - (5.19)
Contracting eq. (5.17) with Vy,, AP gives an imaginary expression
AB Lo 1 3. -1 v
Vi~ GapaB = —§ZA Fopmn + QZA Apinp (¢"10€” 5 DuBP — gPet 1,04e,.) - (5.20)

Using egs. (5.18), (5.19) and the above equation, we obtain the non-linear uplift ansatz for

F,ymn for any reduction
o 3
Fﬂumn = ﬂlvng]VM ijngM T §Amnp (D[HBV]p + gpqe[ﬂaaqel’]a) : (5'21)

Specialising to the S7 reduction gives

V2

F;u/mn = ? (KmnIJgquJ - 12A71AmnprIJ/HuVIJ) ) (522)
where [12]
IHHVIJ
gp,uIJ

Hence, F},ymn is only non-trivial for four-dimensional solutions with non-zero vector expec-
tation values.
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6 General form of the Freund-Rubin term

6.1 The conjecture

We observed in section 4 and appendices B and C that for various examples the Freund-
Rubin term is proportional to the potential, with the constant of proportionality given
by —mz7/(v/2¢%) [21], and a y-dependent part that contains variations of the potential.
Furthermore, the y-dependence only enters linearly via the invariant scalars (£ in G and
(&,¢) in SO(3)xSO(3), see appendix B). In particular, if the sector under consideration
does not contain an invariant scalar (such as SO(7)~ or SU(4)™), then f.5 is y-independent
and proportional to the potential. In the following, we will state a general conjecture for
the Freund-Rubin term that respects all these observations.

First, we state the general expressions for the potential V" and its variation §V in terms
of the tensors uijU and v;; r7. We define the T-tensor [16]

Tz‘jkl - (uklu + oM U) (“imJKUjmKI — Vim JV"™" KI) (6.1)
and its components
g 4 , 4 1
Al — ﬁTka], Ay M = _gTi[Jkl]_ (6.2)

In terms of the above tensors the potential is given by [16]

1

V=9

. . 3 »
9> Ao i]klAQljkl — 1921411]/11@']' . (6.3)

In order to determine the variation of the potential, we consider an infinitesimal E(7
variation of the 56-bein of the form [25]

NG L
V=7 S 0 v, (6.4)

where ¥ is complex selfdual. Given the variation of the 56-bein given above, to first order,
the potential varies as [25]

V2

oV = G?QUM S + hec., (6.5)
where the Q)-tensor is
QUkl — %AQ nlij g, Km g mli g k] (6.6)

Since, the expression on the right-hand side of eq. (6.5) gives the variation of the potential
to first order, it must vanish at the stationary points. In particular, since ¥;jx; is an
arbitrary complex selfdual tensor, Q¥ is complex anti-selfdual at stationary points.

We define a complex selfdual combination of u and v tensors

Sim(z,y) = (ui" (@)™ (@) — vij 15 ()ow k1 (2)) K7TEE(y), (6.7)
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where we have written out the coordinate dependence explicitly so as to make the depen-
dence of ¥ on all eleven coordinates clear. Making use of the Q)-tensor, we are now able to
formulate a conjecture for the Freund-Rubin term:

2 A
T \/”%;2 (V _ 374 (Qijklzijkl + h.c.)) . (6.8)

The second term on the right-hand side is inevitably y-dependent, and it vanishes when
QYF is complex anti-selfdual, which is precisely the minimisation condition for the
potential.

To prove this formula, one has to manipulate eq. (3.40) using E7(7) identities for the u
and v tensors [3, 16]. However, the proof will also probably require identities derived from
the quartic invariant (see, e.g. ref. [14]). We leave this proof (which is probably even more
complicated than the one given in ref. [3] for the y-independence of the A; and As tensors
coming from the S” truncation) for future work. In the remainder of this section, we will
prove the conjecture up to quadratic order and verify it for the Go invariant sector.

6.2 Proof of the conjecture up to quadratic order

In this section, we prove the equality of egs. (3.40) and (6.8) for a perturbative expansion
of the u and v tensors. As in eq. (4.1) we use the unitary gauge,

0  9rkL
V = exp <¢UKL 0 ) ; (6.9)

where we do not need to distinguish between SU(8) and SO(8) indices. Thus,

up B = (coshgb)[JKL, vk = (sinh @) rykr. (6.10)
Here, we denote

()t =6 (D" = draune™ N (6.11)

Complex conjugation is realised by raising and lowering indices. Furthermore, the potential
is complex selfdual,

1
Sty = ¢TI = ﬂﬁIJKLMNPQ¢MNPQ- (6.12)
Up to quadratic order, we obtain
1
ur 5 = oKL + §¢UMN¢MNKL + 0(¢") vrkL = kL + O(¢%).  (6.13)

Substituting the expansions for the u and v tensors in the expressions for X,.,* and
Y,s“*  (3.36) and (3.37), we find up to terms O(¢?),

Xps MK 0 = 168 + 19 " K@i, — droxrdrike

1 2
+3KYEL 215k + 30" MY gpnicr) + 21 (K" 5 gr5k1)”, (6.14)
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X5 IRy 0 = —6 T 5 Gk — 6 ryrrdrike
1 2
+2K"EE 4ok + 36" M N dynir) + 1 (K% ¢rikL)”,  (6.15)
Yo TN i = 327 5 gy, + 24 KRR N g e (6.16)

where now all the y-dependence is contained in K//%L(y). In deriving the above expres-
sions, we make use of the following identities

KIJKPKL]WNP = 6(5{;]]\/1;1\; + 9(5[[£KJK]MN]7 (617)
KUIKL c MINPQ _ %GIJKLMNPQ + 12K K 5T oM (6.18)

KmIJgn KL MN _ 86[1[K6J][M6N]L] n 46[JV[[IKN] — 46[K[MKL]N]IJ B 45[I[KKJ] AN
(6.19)

It is now straightforward to show that, up to quadratic order, the Freund-Rubin
term, (3.40), is

1 1
fm = V2myg <3 + E¢IJKLKIJKL + 6<I51JKL¢”KL> +0(¢%). (6.20)
We also find that
1 .. ~
V/g* = —6— §¢UKL¢”KL +0(¢*), QM = 201 kL KL + O(¢7).  (6.21)

Thus it is easy to verify that the conjectured expression, (6.8), reproduces the expression
for the Freund-Rubin term up to quadratic order in the scalar expectation values.

6.3 Testing the conjecture in the G2 invariant sector

At the stationary points, it has already been established that the conjecture (6.8) holds for
the Gg invariant sector [21], see eqs. (4.13) and (4.14). Therefore, it just remains to prove
that the y-dependent parts of eq. (4.12) and eq. (6.8) coincide, viz.

<Qijklﬁ3ijkl + h.c.) = 16&(c + vs)?cus (3us + 20%s% — 3¢ — cv?s? — s + 203) ,  (6.22)

where again all the y-dependence is contained in the factor £(y).

Equation (6.6) provides an expression for the Q-tensor in terms of the u and v tensors
with four free SU(8) indices. Thus, we can use egs. (4.8) and (4.9) to write the Q-tensor
in terms of contracted Gg invariant tensors, (4.7), with four free SO(8) indices

Qi _y QUKL (6.23)

In this case, unlike in section 4.1, the u, v tensors are not necessarily contracted over index
pairs. However, the resulting expression for Q7% must be Gy invariant. Hence, we should
be able to write it in the basis given in eq. (4.7). In particular, it is totally antisymmetric,
so we must find

QUKL — e+ (A, a)C;’rJKL + c_ (A, a)CﬁJKL (6.24)

for some functions c4.
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An efficient way to work out the contractions of SO(8) indices in Q7KL is to use the

SO(7) decomposition of the G invariants (4.7). An SO(8) index decomposes as I = (i, 8),
where i is an SO(7) index that runs from 1 to 7. The decomposition of C{/51 is [25]

Cz]kS Cz]k CUkl :F677/ Z]k;lmnpcf (625)

with an arbitrary phase 7’. This phase will drop out in our calculations. The SO(7) tensor
C™"P satisfies [25]

Clmnpodlrs — —%anman[Ttqu]t“, O Ol = 2 5;an _ én/ emnpqrstcrst. (6.26)
Moreover, the D_-tensor decomposes as follows:
DM — piks — o puks — _pMii _ycik o pUTRH (6.27)
For DI/KL we find the convenient SO(8) property
DY kr, = gDTUM[K(S‘”L], = DplEH (6.28)
so we only need
D+ My = —607, D+ Mg = 42. (6.29)

Using all these SO(7) decompositions together with the identities for the C-tensor in
eq. (6.26), we find exactly the anticipated form, eq. (6.24) with

1 3 1
cr(\a) = 503115 (5¢ — 4c® + 25 sin® ) — 262’()254 sin? a — 50211353(1 —¢)(3+47c)sin’a  (6.30)
1 3
+ 51)454 (s*(5—3c) sin® a—c—4c®) +20°5° (c—1) sin® a+§ivs2 (P +uvs®—c?) sin’ a

3 1
c-(Na) = —532 (v*c® + %% + & sin” o) sin® v + 51’645 sina (4s” — 1)

1 1
+ 21621]283(3 +2¢ — 7c*) sin® a + izcv s (54 7s*sin® a — 3¢) sin o
- 3,43 5. 5.6 7.6 :
—ic’vts” sina + iv’s sina + 2iv's%(c — 1) sin a. (6.31)
At the Gy invariant stationary point,

2 2v/3 -2 —
? = \/§5+ 3, §% = \/i , V= ’ 4\/3, (6.32)

the Q-tensor is indeed, complex anti-selfdual because c; becomes purely imaginary and c_

purely real.
We compute 37 s LCLEL using the above SO(7) decomposition. Identifying,

CiJKLKIJKL _ —165, CiJKLKIJKL _ O, (6.33)
we find
SO EL = —16¢(esin® a +cos?a),  NpyrpCl7EL = 8igsin2a(c —1).  (6.34)

As expected, these expressions are linear in the invariant scalar . Eq. (6.22) then follows
immediately from egs. (6.24), (6.30), (6.31) and eq. (6.34).
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7 Outlook

In this paper, we derive an explicit formula for the Freund-Rubin term, (3.27), for any
consistent truncation of D = 11 supergravity to four dimensions by means of the internal
generalised vielbein postulate [1]. In the case of the ST reduction this reduces to (3.40).
Previously, the Freund-Rubin term could be computed using the uplift ansétze for the 6-
form and 3-form, which involves inverting the metric and differentiating. The new formulae
are much simpler. Moreover, for the S” truncation, we conjecture that the Freund-Rubin
term is given by the potential for the scalars of the truncated d = 4 supergravity and a
variation of the potential. While the corresponding on-shell conjecture has already been
in the literature [21], we propose a formula, (6.8), that bears this conjecture out more
concretely (off-shell). A corollary of our conjecture is that for sectors that are purely
characterised by pseudoscalar expectation values, the Freund-Rubin term is y-independent
and is completely given by the scalar potential. We prove the conjecture up to quadratic
order in the scalar expectation value and verify it for the Go invariant sector. In the future,
we hope to provide a proof of this conjecture.

The GVPs and fermion supersymmetry transformations provide a new vista on the
form of the D = 11 field strength that arises from uplifting d = 4 solutions. Given the
striking simplicity of the conjectured Freund-Rubin term, a natural question that we can
now investigate, arises: do the other components of the field strength take a similarly simple
form that depend on very general data of the reduced theory, such as the scalar potential or
its derivatives. Another aspect that we would like to investigate is whether the conjectured
form of the Freund-Rubin term holds in general for all truncations of any theory. A setting
in which the analogous question can be addressed using similar methods (analysis of GVPs
and fermion supersymmetry variations) is the reduction of type IIB supergravity to five
dimensions, where the necessary framework exists [40] — nonlinear ansétze, which arise
from an analysis of the supersymmetry transformations of the vectors [40], have been
proposed [41] and presented explicitly [42] in this case. In this case, the analysis of the
supersymmetry transformations of the vectors has already been used by Pilch and Warner
(appendix A of ref. [43]) to derive uplift formulae for the metric and the dilaton.

Our study of reductions of D = 11 supergravity to four dimensions shows that consis-
tent truncations seem to have simple, generic features that are obscured by the complexity
of particular examples. With duality symmetry as a guide [1, 6], we are able to tease out
these features and it is hoped that in the future we will learn something very general and
conceptually deep about all reductions.
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A Contractions of Gs invariants with Killing forms

The Gg invariant tensors can be used to define the following tensors on the round S” [4]

1 1
R L T vy L
o 1
Srnp = EOE]KLK[{?{anL. (A.1)

We write terms like e.g. DEJKLK#JKTIL;L in terms of the S” tensors in (A.1). These
fulfill the identities

Emn = (9= &) gmn — 6(3 — E)&mn, En€™ = (2146 (B -9), (A2)
Smn'rSqu _ 25;7;71 + %ﬁmnpqrstsrst’ S[mnpsq]Ts _ %ﬁmnpq[v‘tuss]tu’ Sm[npsqr]s _ %ﬁﬂpq'r(mtuss)tu.
(A.3)

Together with the inverse relations of eq. (A.1),

1 3 1 1
IJKL _ 1J KL I1J1-KL IJ KL _ IJKL g -1J 7-KL]
C+ _ 6§K7[n Km ] _ 5é-mnl(y[n Kn ] 4 Engv[nnKn ]’ Smnp = Ec_ K[mnKp] s
(A.4)
we obtain
ST KEY — 85T, SRLKILKP S =0, KT KA — 16ay,
16
OLRERH KEE = 166, ORI K750 = Mg 50
IJKL y-mn I1J ;KL __ 32 mn [m  ¢n]
¥ K Kpy" = ?551%1 — 64¢ [p6 al»
CURLKIKES =0, ORI I =168 OIS = =SS
16 4 o T8
Di]KLKiLJKfL = 0, D{FJKLK&@K;{L = —48£q[msnp]q + ?ésmnp + §nmnpq'r5t€qs ta
I1JKL y-1J KL_32 o r gstu 8, st
D+ K’mnqu - gg[msnpq] - 877'mnpq7'st§u S + §£777nnpq7'st5 )
DITKL oI (o KL _ 165 p
— m n - ? mnp£ )
IJKL ;-1 3-KL _ q q 16 4, qarst
DZ KmnKp - _325 [mSn]pq + 16Smnq€ p+ ?é'smnp - 5 mnpqrst§ S 3
IJKL 317 KL _ 16 16 16 , rogstu | 16, r o astu
DZ KyinKpq ™ = gg[msnlpq + ?Smn{pgq] - Enmn[p\mtug ad "t 3 (mlpgrstu§ n]S . (A.5)
B Freund-Rubin term in the SO(3) xSO(3) invariant sector
The SO(3)xSO(3) invariant sector is given by
A I1JKL -y IJKL : IJKL - 7l JKL
OIIKL = 5 [cosa (Y+ +iY: ) —sina (ZJr — izt )} , (B.1)

where Y1 and Z4 are SO(3)xSO(3) invariant tensors.
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The scalar potential reads
g2
V(\) = 5(54 —85% - 12). (B.2)

Here, § = sinh v/2) and ¢ = cosh v/2\. Note that V does not depend on « [44].
In ref. [30], the u and v tensors are given in terms of SO(3)xSO(3) invariants

VIIKL 7KL gelfdual, — YIIEL ZDJKL . anti — selfdual, (B.3)
1
HIJKL _ g (Y_{JMN + ’iY_IJMN) (Y_*J_\/[NKL o iY_]\/[NKL) (B'4)

from which we define the following y-dependent scalars

1

16

1

£(y) = T

YI—SKLKTIVLJKmKLa g(y) - Z;_JKLKTInJKmKL. (B5)
Using the results in ref. [30] for the u and v tensors and identities stated in that paper,

we find

fm = % <6 + 452 — 524) + %(Csina — £cosa)(45¢ — 53¢)
= \/Tg; (—V()\) — % ({sina — £ cos ) i‘;) . (B.6)

Again the y-dependence is contained in £ and (.

C Freund-Rubin term in SU(4)~ invariant sector

The SU(4)™ invariant sector is parametrised by a single pseudoscalar expectation value,
1.
LKL = 5 DYGELES (C.1)

In this case, we find that
fom = —V2mzc? (c* —4) (C.2)

for ¢ = cosh 2)\. We note that, since this sector only contains a pseudoscalar, i.e. there are
no selfdual tensors, the Freund-Rubin term is indeed y-independent even away from the
stationary point.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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