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1 Introduction

Establishing a formal, consistent relation between a higher-dimensional theory and a lower

dimensional one is, in general, a challenging problem due to the highly non-linear nature

of reductions. Given some (super-)gravity model in D dimensions, consider a ground state

solution

MD = M4 ×MD−4 (1.1)

corresponding to a compactification from D to four dimensions. The fields of the theory

are then expanded linearly around this ground state according to

Φ(x, y) = Φ0(x, y) +
∑

n

Φ(n)(x)Y (n)(y), (1.2)
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where we collectively denote the value of the fields (metric and form fields) at the ground

state by Φ0(x, y). Here, x
µ and ym, respectively, are four-dimensional ‘external’ and (D−4)-

dimensional ‘internal’ coordinates on M4 and MD−4. The Y (n)(y) are the eigenmodes

of certain differential operators on the internal space giving rise to an infinite tower of

Kaluza-Klein modes. Restricting to the zero-mass eigenmodes gives the low energy physics.

The linearised expansion (1.2) is sufficient to determine the mass spectrum of the theory.

However, it cannot provide complete information about the interactions of the low energy

theory, and must be modified by non-linear terms away from an infinitesimal neighborhood

of the ground state. This modification must ensure that any solution of the low energy

theory corresponds to a solution of the higher-dimensional theory. This is the problem

of Kaluza-Klein consistency : given any solution of the full non-linear field equations in

four dimensions one must seek a corresponding expression for Φ(x, y) that solves the full

higher-dimensional field equations also away from Φ0(x, y), thereby arriving at a consistent

embedding of this solution into the higher-dimensional theory.

In fact, there are very few examples where such a program has been successfully com-

pleted. Beyond the task of establishing the consistency of the truncation, it is a major chal-

lenge to present explicit non-linear ansätze1 for uplifting solutions of the lower-dimensional

theory to solutions of the higher-dimensional one. Among the known examples the most

intricate and technically demanding concerns the maximally supersymmetricD = 11 super-

gravity and reductions thereof to maximal gauged supergravity theories in four dimensions,

corresponding to the ground state

M11 = AdS4 ×M7. (1.3)

For this theory the complete non-linear ansätze have recently been identified in refs. [1, 2],

building on the results of refs. [3–5] and using the formalism developed in ref. [6]. The

basic tool that facilitates this result is the reformulation of the D = 11 supergravity

theory [7] such that essential features of maximal gauged supergravity theories, classified

by the covariant embedding formalism [8–12], in four dimensions become manifest. At

its heart lies the E7(7)/SU(8) duality symmetry [13, 14], which is obtained in the toroidal

reduction from D = 11 supergravity to four-dimensional ungauged maximal supergravity.

An important aspect of the formalism developed in ref. [1] is the role of the 6-form potential,

which is dual to the 3-form potential ofD = 11 supergravity. Ref. [2] (see also refs. [4, 5, 15])

derives full, explicit uplift ansätze for SO(8) gauged maximal supergravity [16],2 which is

a consistent truncation [3, 21] of D = 11 supergravity on a seven-sphere [22, 23].

The non-linear ansätze for the internal metric and internal components of the form

fields were obtained by an analysis of the supersymmetry variations of D = 11 supergravity.

In particular, the supersymmetry transformation of those components of the fields that

we identify with the vectors in a reduction take the same form as the supersymmetry

transformation of the vectors in four dimensions, viz. both are given by components of a

1Here, we use the word “ansatz” in the sense of an approach or prescription rather than a guess.
2It is known that the recently discovered family of SO(8) gauged supergravity theories [17, 18] cannot

be obtained from a consistent reduction of D = 11 supergravity [2, 19, 20] (see also ref. [5]). Therefore,

they fall outside the scope of this paper.
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56-bein multiplied by a particular combination of fermions. Hence given a linear ansatz for

the vectors, one can relate the 56-bein in eleven dimensions to the four-dimensional one.

Since these 56-beine are parametrised by the d = 4 scalars and the internal components

of the D = 11 fields respectively, one finally obtains a non-linear ansatz that relates the

internal components of the D = 11 fields to the d = 4 scalars.

By contrast, the approach in this paper is based on an analysis of the generalised

vielbein postulates (GVPs). These are analogues of the familiar vielbein postulate in dif-

ferential geometry for the 56-bein. As in the simpler case of the vielbein postulate, the

GVPs express the derivative of the 56-bein in terms of objects that transform as connec-

tions with respect to SU(8) transformations or E7(7) generalised diffeomorphisms [24]. The

GVPs, used in this paper, are found [1] by expressing the 56-bein in a GL(7) decomposi-

tion (in terms of the components of the D = 11 fields) and by packaging its derivative in

terms of generalised connections. This alternative method for finding non-linear ansätze

(see ref. [3]), centres on the fact that the generalised connections are parametrised by, in

particular, components of the 4-form field strength. Therefore, by projecting onto various

components of the GVPs using the 56-bein we are able to extract non-linear ansätze for

components of the 4-form field strength.

One main result of this paper is the embedding formula for the Freund-Rubin parameter

fFR(x, y) in terms of four-dimensional fields. The latter is generally and independently of

the equations of motion defined by [22]

Fµνρσ(x, y) = i fFR(x, y)
◦
ηµνρσ, (1.4)

where
◦
ηµνρσ is the volume form in four dimensions. The choice of terminology reflects

the fact that fFR is a constant for Freund-Rubin compactifications characterised by (1.3).

On the basis of its observed structure for several examples (worked out in section 4 and

appendices B and C) we conjecture the following master formula

fFR(x, y) = − m7√
2g2

(

V (x)− g2

24

(

Qijkl(x)Σ̂ijkl(x, y) + h.c.
)

)

, (1.5)

where m7 is the inverse radius of the round S7. Here, V is the full scalar potential of

gauged maximal N = 8 supergravity with gauge coupling constant g. Qijkl(x) is the first

derivative of the potential in an SU(8) covariant ‘frame’ on the E7(7)/SU(8) coset manifold

(see ref. [25] and section 6.1 for details), and Σ̂ijkl is the x- and y-dependent complex

selfdual tensor defined in eq. (6.7) in section 6.1. Stationary points of the potential are

therefore characterised by the requirement that Qijkl be complex anti -selfdual; at such

points the y-dependence drops out. We perform several very non-trivial checks of the

formula (1.5), but leave a general proof for later work.

The master formula (1.5) provides a concrete example of how a higher-dimensional

field Φ(x, y) is consistently deformed away from the ground state solution Φ0(x, y). At

the same time it illustrates very explicitly that the consistency of the truncation can only

be achieved on-shell, that is, when the equations of motion are obeyed. Away from the

solution of the equations of motion, the Freund-Rubin term exhibits an irremovable and
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manifest y-dependence.3 The same holds true for other components of the D = 11 fields,

as well as for more complicated solutions of the full S7 truncation with x-dependence. As

we already pointed out in our previous work, this is in marked contrast to the AdS7 × S4

compactification of D = 11 supergravity [26, 27] where there exist consistent non-linear

ansätze that also hold off-shell. The reason is that in the latter case the scalar field content

is directly obtained without the need to dualise form fields.

Finally, our non-linear ansatz for the internal components Fmnpq of the 4-form field

strength settles an issue that had been left unresolved in ref. [3], which also tried to exploit

the idea of projecting out the 4-form field strengths from the generalised non-metricity. The

construction could not be completed there because only part of the generalised vielbein

was known; furthermore, as shown much later in ref. [21], the ansatz as given in ref. [3]

yields a tensor that is not totally antisymmetric. We also use the fermion supersymmetry

transformations to find an ansatz for the Fµνmn component of the 4-form field strength.

With these new ansätze, the uplift of flows (x-dependent solutions) to D = 11 becomes

technically relatively straighforward.

2 Preliminaries

A (bosonic) solution of four-dimensional maximal gauged supergravity is specified by the

following bosonic field content:

a vierbein : eµ
α(x),

28 vector fields : Aµ
IJ(x),

70 scalars : V̂(x) =
(

uij
IJ(x) vij IJ(x)

vij IJ(x) uijIJ(x)

)

, (2.1)

where the bivector indices IJ denote the 28 of SL(8, R). The 28 ‘electric’ vector fields

Aµ
IJ should really be thought of as belonging to a 56 of E7(7), denoted by Aµ

M. In

the ungauged theory, the other 28 ‘magnetic’ vectors Aµ IJ are obtained by dualising the

original 28 vectors Aµ
IJ . The scalars uij

IJ and pseudoscalars vij IJ parametrise a coset

element V̂(x) ∈ E7(7)/SU(8).

On the other hand, a solution of D = 11 supergravity is given by the following bosonic

field content:

an elfbein : EM
A(x, y),

a 3-form potential : AMNP (x, y) (2.2)

(

or 4-form field strength : FMNPQ(x, y) = 24 ∂[MANPQ]

)

,

where ym now are seven-dimensional coordinates.

3Nevertheless, in the general S7 truncation, a residual y-dependence of the Freund-Rubin term for non-

stationary solutions can be consistent if other components of the 4-form field strength also contribute. Con-

sistency is then achieved because on-shell the y-dependence of the latter cancels the residual y-dependence

of fFR in such a way that all these terms combine to sum up to a y-independent right-hand side for the

d = 4 Ricci tensor.
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An uplift of a four-dimensional solution (2.1) to D = 11 supergravity is a solution of

the D = 11 equations of motion, specified by (2.2) that is determined purely by the four-

dimensional field content (2.1) and the internal geometry of M7 relevant to the reduction;

in the case of SO(8) gauged supergravity this is the seven-sphere S7. Decomposing the

D = 11 fields in a 4+7 split and interpreting them as four-dimensional fields based on their

index structure gives:

a vierbein : eµ
α(x, y),

28 vector fields : Bµ
m(x, y), Aµmn(x, y), (2.3)

70 scalars : em
a(x, y), Amnp(x, y), Aµνm(x, y) (or Am1...m6(x, y)).

Modulo a Weyl rescaling the eleven-dimensional “vierbein” (the appropriate 4×4 submatrix

of the elfbein) is simply identified with the four-dimensional one. The 28 vector fields can

be augmented by another set of 21 vectors Aµm1...m5(x, y) originating from the 6-form

dual field AM1···M6 . The final seven vectors required to form a full 56 of E7(7) correspond

to the seven ‘dual graviphotons’ that have no satisfactory interpretation within D = 11

supergravity. Nevertheless, for convenience, we can add seven extra auxiliary vectors (see

e.g. ref. [1] and references therein). In this way we collectively define a set of vectors Bµ
M,

where indices M,N , . . . label the 56 representation of E7(7). These vectors are related to

the analogous set Aµ
M in four dimensions by

Bµ
M(x, y) = RMN (y)Aµ

N (x) ≡ RM
IJ(y)Aµ

IJ(x) + RM IJ(y)Aµ IJ(x) . (2.4)

Here, Aµ
IJ and Aµ IJ , respectively, are the 28 electric vectors and the 28 magnetic vectors of

N = 8 supergravity. In the case of the S7 reduction, RMN is constructed from the Killing

spinors ηI on S7 and the 6-form volume potential on the round S7,
◦

ζm1...m6 ; the explicit

expressions are given in ref. [2]. Similarly, the eleven-dimensional “scalars,” which collec-

tively define an E7(7)/SU(8) coset element VM
AB [1] are related to the four-dimensional

scalars via

VM
AB(x, y) = RMN (y) ηiA(y) η

j
B(y) V̂N

ij(x). (2.5)

Here, ηiA denote the eight Killing spinors defined on the internal geometry and RMN is

the same matrix as in eq. (2.4).

In the case of the S7 reduction and the associated SO(8) gauged supergravity, the

above expressions translate to an uplift ansatz for the internal metric gmn, [4], the internal

3-form potential Amnp [2, 5, 15] and the internal 6-form potential Am1...m6 [2]. Furthermore,

dualisation of the 6-form potential gives components of the 3-form potential. All these

fields obtained in this way represent a full constructive solution of the D = 11 equations of

motion. The two-form fields Aµνm can be obtained by integration from the other ansätze.

It is in principle also possible to deduce a non-linear ansatz directly for Aµνm by also

comparing the four and eleven-dimensional supersymmetry transformations. Except that

in this case the supersymmetry transformation of Aµνm will correspond in four dimensions

to the supersymmetry transformation of the 133 two-form fields, Aµνα, in the tensor

hierarchy (see ref. [12]).

– 5 –
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It must be emphasised that the uplift ansätze have been derived from the D = 11 the-

ory, with the supersymmetry transformations playing a significant role in the derivation.

As such they are robust and need no further substantiation. However, given the non-trivial

nature of the reduction on the one hand and the remarkably simple form of the ansätze on

the other, they have been explicitly verified for a number of stationary points of the four-

dimensional scalar potential including the SO(7)±, G2 and SU(4)− invariant solutions [2, 4,

15, 21]. Furthermore, the metric ansatz has been used extensively in the literature, in par-

ticular in applications to holography (see for example [28, 29]). The full uplift ansätze have

allowed for a study of more complicated upliftings; including an uplift of the SO(3)×SO(3)

invariant solution [30] and for the first time a full uplift of a flow to eleven dimensions [31].

In this paper, we explore the possibility of expressing some of the uplift ansätze in

even simpler terms, with particular focus on the Freund-Rubin term (1.4) that plays a

central role in compactifications of D = 11 supergravity. To illustrate the simplicity of

our final formula (1.5) recall the duality relation in eleven dimensions between the 4-form

field strength and its 7-form dual, which implies that the Freund-Rubin term can also be

expressed (in form language) as

fFR = ⋆(7)
(

d(7)A6 −A3 ∧ F4

)

, (2.6)

where all fields above take components along the internal directions. Hence, a direct

derivation of the Freund-Rubin term from the uplift ansätze of ref. [2] would require the

associated expressions for Amnp and Am1...m6 . Although eq. (2.6) and the uplift ansätze

for Amnp and Am1...m6 are relatively simple,4 in practice the calculations become rather

unwieldy for more non-trivial solutions of the four-dimensional theory, at least analytically.

More precisely, the large number of operations required (such as inverting the metric to

find Amnp and Am1...m6 , taking exterior derivatives and dualising a 7-form) to find what is

ultimately a scalar makes it a rather inconvenient calculation.

Observing that the Freund-Rubin term, as well as other components of the 4-form

field strength, also appear in the generalised vielbein postulates (GVPs) [1, 6], and more

specifically, in the generalised SU(8) connection coefficients Qm
A
B and the generalised

non-metricity Pm ABCD, we obtain (in our view the rather elegant) formula (1.5) for fFR

that is sextic in the matrix elements of V̂, see eq. (3.40), by a particular projection of the

internal GVP using components of the 56-bein.

Another projection of the internal GVP gives an ansatz for the internal components of

the field strength. When projecting out Fmnpq from the generalised non-metricity PmABCD,

components of the generalised Christoffel connection ΓP
mN contribute, see eq. (5.2). In fact

these terms, which correspond to ambiguities in the language of ref. [21], remove all terms

in Fmnpq that are not fully antisymmetric so that Fmnpq = F[mnpq], as required by its

compatibility with (2.2). Note that, when projecting out the Freund-Rubin term fFR from

4In fact, the ansatz for Am1...m6
given in ref. [2] can be greatly simplified:

Am1...m6
=

1

m7

√
2

16 · 5!
◦

g
pq ◦

ηm1...m6p

◦

Dq(log∆)− 3
√
2

◦

ζm1...m6
. (2.7)

– 6 –
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the generalised vielbein postulate, components of the generalised Christoffel connection

drop out. In this way we are finally able to resolve an issue that was left unfinished in

ref. [3]: it is also observed there that one can project out the 4-form field strength. However,

the resulting SU(8) invariant expression, apart from the ambiguities pointed out in [21],

turns out to be unmanageably complicated due to the fact that only part of the generalised

vielbein was known. Nevertheless we can now confirm that this strategy is correct, and

does yield non-linear ansätze for the field strengths of the form fields. In particular, these

new ansätze can be more suitable than using the ones for the form fields themselves.

Furthermore, in section 5, we use the external GVP and the fermion supersymmetry

transformations to find ansätze for the remaining components of the field strength. In

particular, we find new direct and simple ansätze for the Fµνρm and Fµνmn components,

eqs. (5.15) and (5.22), respectively. We verify the ansatz for Fµνρm for the SO(7)+ sector.

3 Non-linear ansatz for the Freund-Rubin term

3.1 The 56-bein V

The internal components of the D = 11 fields are packaged into a single coset element of

E7(7)/SU(8), a 56-bein (VMAB,VMAB). Here, the E7(7) index M decomposes under GL(7)

as

VM =
(

Vm8,Vmn,Vmn,Vm8
)

, (3.1)

with GL(7) indices m,n, · · · = 1, . . . , 7. The components of V in terms of the D = 11 fields

are [1],

Vm8
AB = −

√
2

8
∆−1/2Γm

AB, (3.2)

Vmn AB = −
√
2

8
∆−1/2

(

Γmn AB + 6
√
2AmnpΓ

p
AB

)

, (3.3)

Vmn
AB = −

√
2

8
· 1
5!
η̊mnp1···p5∆−1/2

[

Γp1···p5 AB + 60
√
2Ap1p2p3Γp4p5 AB

− 6!
√
2

(

Aqp1···p5 −
√
2

4
Aqp1p2Ap3p4p5

)

Γq
AB

]

, (3.4)

Vm8 AB = −
√
2

8
· 1
7!
η̊p1···p7∆−1/2

[

(Γp1···p7Γm)AB + 126
√
2Amp1p2Γp3···p7 AB

+ 3
√
2 · 7!

(

Amp1···p5 +

√
2

4
Amp1p2Ap3p4p5

)

Γp6p7 AB

+
9!

2

(

Amp1···p5 +

√
2

12
Amp1p2Ap3p4p5

)

Ap6p7qΓ
q
AB

]

. (3.5)

Here, Γa1···an = Γ[a1 . . .Γan] are seven-dimensional 8× 8 Γ-matrices and Γm1···mn are their

curved versions, e.g. Γm = emaΓ
a. Apqr and Am1···m6 are 3-form and 6-form fields, respec-

tively. The V given above is an E7(7) matrix because it corresponds to the exponentiation

of E7(7) Lie algebra elements [32].
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The index M that denotes the 56 of E7(7) is raised and lowered with the symplectic

metric ΩMN and its inverse, namely

VM = ΩMNVN .

The non-vanishing components of ΩMN are

Ωmn
pq = −Ωpq

mn = δmn
pq , Ωm8

p8 = −Ωp8
m8 = δm8

p 8 =
1

2
δmp (3.6)

and its inverse is defined by

ΩMPΩNP = δMN .

(VMAB VMAB) is an Sp(56,R) matrix and hence

VM ABVMCD = i δAB
CD, VM ABVMCD = 0. (3.7)

‘Curved’ SU(8) indices A,B, . . . are raised and lowered by complex conjugation,

VMAB = (VM AB)
∗, VM AB =

(

VM
AB

)∗
, (3.8)

while the position of the E7(7) index on V is not affected.

The D = 11 56-bein is related via the linear ansatz (2.5) [1] to the E7(7) matrix that

encodes the scalars of N = 8 supergravity

V̂ =

(

uij
IJ vij IJ

vij IJ uijIJ

)

. (3.9)

The 70 scalars and pseudoscalars parametrise uij
IJ(x) and vij IJ(x). In the form above,

the 56-bein is given in an SU(8) basis. However, it turns out to be more convenient to have

the 56-bein such that its E7(7) index is decomposed in an SL(8) basis:5

V̂Mij =
1√
2

(

uijIJ − vijIJ

−i(uijIJ + vijIJ)

)

, V̂M ij ≡
(

V̂Mij
)∗

=
1√
2

(

uij
IJ − vijIJ

i(uij
IJ + vijIJ)

)

. (3.10)

In relating the d = 4 56-bein to the eleven-dimensional one given above, one must

in principle take into account a compensating SU(8) rotation depending on all eleven

coordinates, as explained in ref. [6]. However, in the remainder we will deal only with

quantities where the SU(8) indices are fully contracted, and this SU(8) rotation drops out.

Keeping this in mind, the explicit dependence of the components on the d = 4 fields is [2]

Vm8
ij(x, y) =

√
2i

8
Km IJ(y)

(

uij
IJ + vij IJ

)

(x), (3.11)

Vmn ij(x, y) = −
√
2

8
Kmn

IJ(y)
(

uij
IJ − vij IJ

)

(x), (3.12)

Vmn
ij(x, y) =

√
2i

8 · 5! η̊
mnp1···p5

(

Kp1···p5
IJ − 6 · 6! ζ̊p1···p5qKq IJ

)

(y)
(

uij
IJ + vij IJ

)

(x),

(3.13)

5See, for example, ref. [33] for more explanation.
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Vm8 ij(x, y) =

√
2

8

(

Km
IJ + 6η̊p1···p7 ζ̊p1···p6Kp7m

IJ
)

(y)
(

uij
IJ − vij IJ

)

(x), (3.14)

where KIJ
m (y) are the Killing vectors on the round seven-sphere,

Km
IJ = iη̄IΓmηJ , Kn

IJ = − 1

m7
D̊mKIJ

n = η̄IΓmnη
J , (3.15)

Km1...m5
IJ = iη̄IΓm1···m5η

J = −1

2
η̊m1···m7K

m6m7 IJ . (3.16)

The derivative operator
◦

Dm is the covariant derivative with respect to the Christoffel

connection on the round sphere and ηI are the eight Killing spinors on S7. Additionally,

ζ̊m1···m6 is implicitly defined by

7!D̊[m1
ζ̊m2···m7] = m7 η̊m1···m7 . (3.17)

Furthermore the normalisations in (3.11)–(3.14) have been chosen so that this vielbein

is indeed normalised according to eq. (3.7). These expressions are sufficient to derive all

non-linear ansätze.

3.2 Generalised vielbein postulate

The generalised vielbein postulates are differential constraints on the 56-bein in terms

of generalised connections including an SU(8) connection, a generalised E7(7) connection

and a generalised non-metricity. Using the GL(7) decomposition of the 56-bein, (3.5), its

derivative can be grouped into objects that satisfy the correct transformation properties,

namely the generalised connections in refs. [1, 6]. The crucial feature of the generalised

connections that we utilise in order to derive our ansätze is that they are parametrised

by components of the 4-form field strength. This is a somewhat different approach to the

deductive approach of ref. [24]. There, the generalised connections are found by requiring

a torsion-free compatible connection (in contrast to usual differential geometry, this does

not uniquely specify the connections [24]). The generalised connections in ref. [24] are

nevertheless related [34] to the generalised connections in ref. [1]; as are the connections in

exceptional field theory [34], where the emphasis is on connections that are expressed in

terms of the 56-bein of exceptional field theory [35].

A distinctive feature of the generalised connections that we use is that they are valued

along the first seven directions in a GL(7) decomposition, as is clear from eq. (3.18). Note

that this is not a consequence of the derivative index running over seven directions, but

rather a consequence of working with a generalised non-metricity rather than torsion-free

compatible connections [34], which are valued in the 56 even when the base space is not

extended as in ref. [24]. However, for us it is precisely the SU(8) covariant generalised

non-metricity that yields the new non-linear ansätze.

The 56-bein VM satisfies, in particular, the internal GVP [1, 36]

∂mVN AB − ΓmNPVP AB +QC
m [AVN B]C = PmABCDVNCD, (3.18)
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where QA
mB is the generalised SU(8) connection. The SU(8) tensor PmABCD is the ‘gen-

eralised non-metricity’, which ‘measures’ the failure of the metric

GMN ≡ VMABVN AB + VNABVMAB

to be covariantly constant under the generalised covariant derivative.6 ΓmNP is the E7(7)

generalised Christoffel connection with components

(Γm)p8
q8=−(Γm)q8p8=

1

2
Γq
mp+

1

4
Γn
mnδ

q
p, (Γm)pq

rs=−(Γm)rspq=2Γ
[r
m[pδ

s]
q]−

1

2
Γn
mnδ

rs
pq,

(Γm)p8
rs=−(Γm)rsp8 = 3

√
2η̊rst1···t5Ξm|pt1···t5 ,

(Γm)pqr8=(Γm)r8pq = 3
√
2Ξm|pqr, (Γm)pqrs =

1√
2
η̊pqrst1t2t3Ξm|t1t2t3 . (3.19)

Here,

Γp
mn(x, y) ≡

1

2
gpq(∂mgnq + ∂ngmq − ∂qgmn)

denotes the usual Christoffel connection defined with respect to the metric gmn(x, y). The

quantities Ξm|pqr(x, y) and Ξm|p1···p6(x, y) are [36]

Ξm|pqr = DmApqr −
1

4!
Fmpqr, (3.20)

Ξm|p1···p6 = DmAp1···p6 +

√
2

48
Fm[p1p2p3Ap4p5p6]

−
√
2

2

(

DmA[p1p2p3 −
1

4!
Fm[p1p2p3

)

Ap4p5p6] −
1

7!
Fmp1···p6 , (3.21)

where Dm denotes the covariant derivative with respect to the Christoffel connection Γp
mn.

From the definitions above it is clear that

Ξ[m|npq] = Ξ[m|p1···p6] = 0.

We also note that under generalised diffeomorphisms (including the two- and five-form

gauge transformations) all connection coefficients transform with second derivatives, just

like the standard Christoffel connection.

In a non-trivial background (such as the compactification on S7), all E7(7) Christoffel

connections decompose into a background connection Γ̊P
mN and a variation Γ̂P

mN ,

ΓmNP = Γ̊mNP + Γ̂mNP . (3.22)

For the S7 compactification we will see, eqs. (3.30)–(3.32), that the background connection

is not only given by the standard covariantisation with respect to Γ̊p
mn, but that it also

requires a non-vanishing component Ξ̊m|p1···p6 .

6As explained in ref. [34] the non-metricity can be absorbed into the connections, at the price of intro-

ducing components QA
MB and Γ

P
MN along directions M 6= m.

– 10 –



J
H
E
P
1
0
(
2
0
1
5
)
1
6
9

The generalised spin connection QA
mB and non-metricity Pm ABCD are expressed in

terms of the D = 11 fields as follows [6]:

QA
mB = −1

2
ωmabΓ

ab
AB +

√
2

14
i∆2fFRΓm AB −

√
2

48
FmnpqΓ

npq
AB , (3.23)

PmABCD =

√
2

56
i∆2fFRΓmn[ABΓ

n
CD] +

√
2

32
FmnpqΓ

n
[ABΓ

pq
CD], (3.24)

where ωm ab is the SO(7) spin-connection. The internal GVP, (3.18), provides a non-linear

ansatz for fFR, given that Pm depends on fFR. From eq. (3.18), we find

Pm ABCD = −iVN
CDDmVN AB ≡ −iVN

CD∂mVN AB + iΓmNPVN
CDVP AB (3.25)

and project out the Freund-Rubin term using the D = 11 vielbein components,

fFR = −8
√
2i

3
Vm8 EFVp8

EFVpq
ABVq8 CDPmABCD. (3.26)

Note that in eq. (3.25), we defined the full covariant derivative Dm with respect to the full

E7(7) Christoffel connection. We denote the covariant derivative associated with the full

background connection Γ̊P
mN , D̊m.

Substituting the expression for Pm from eq. (3.25), this projection has the following

convenient property: as a result of contracting out all SU(8) indices all the generalised

connection components (3.19) drop out in fFR. For this reason we can use any connection;

we choose to work with the background connection for convenience. Note that this is not

true for other projections, in particular the 4-form field strength Fmnpq. In section 7, we

give a new ansatz for Fmnpq that takes these “ambiguities” into account. Thus,

fFR = −8
√
2

3
Vm8 EFVp8

EFVpq
ABVq8 CDVN

CDD̊mVN AB. (3.27)

3.3 The Freund-Rubin term in terms of d = 4 fields

We convert curved SU(8) indices A,B, . . . into flat SU(8) indices i, j, . . . (cf. eq. (2.5)) by

means of the orthonormal Killing spinors on the round sphere ηiA,

Pm ijkl = −iVN
klD̊mVN ij + i Γ̂mNPVN

klVP ij , (3.28)

fFR = −8
√
2

3
Vm8 rsVp8

rsVpq
ijVq8 klVN

klD̊mVN ij . (3.29)

Here, we used the split (3.22) for the S7 background, with the only non-vanishing Christoffel

connection components

(Γ̊m)p8
q8 = −(Γ̊m)q8p8 =

1

2
Γ̊q
mp +

1

4
Γ̊n
mnδ

q
p, (3.30)

(Γ̊m)pq
rs = −(Γ̊m)rspq = 2Γ̊

[r
m[pδ

s]
q] −

1

2
Γ̊n
mnδ

rs
pq (3.31)

and

(̊Γm)p8
rs = −(̊Γm)rsp8 = 3

√
2ηrst1···t5Ξ̊m|pt1···t5 , (3.32)
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with

Ξ̊m|n1···n6
≡ D̊mÅn1···n6 − D̊[mÅn1···n6] = 3

√
2
(

◦

D[m

◦

ζn1···n6] − D̊mζ̊n1···n6

)

. (3.33)

Thus, the evaluation of the Freund-Rubin term requires an evaluation of the Maurer-

Cartan form of the 56-bein. This can simply be calculated using eqs. (3.11)–(3.14),

VN
klD̊mVN ij =

3

28
im7Kmn

[IJKnKL]
(

uij
IJukl

KL − vij IJvklKL

)

+
4

7
im7Km

IJ
(

vij MJukl
MI − uij

MJvklMI

)

− 12
◦
ηn1...n7

(

◦

Dm

◦

ζn1...n6−
◦

D[m

◦

ζn1...n6]

)

(

Vp8
ijVn7p kl+Vp8

klVn7p ij

)

, (3.34)

where
◦

Dm is the usual S7 covariant derivative. The last term on the right-hand side of

the above expression exactly cancels the contribution of the generalised connection term

coming from Ξ̊m|p1···p6 evaluated in VN
klD̊mVN ij . Namely, at the background value of

the fields, where Γ̂P
mN = 0, Pm ijkl given by eq. (3.28) is equal to the first two terms in

eq. (3.34), reproducing the solution given in equation (3.19) of ref. [3].7 Otherwise, away

from the SO(8) invariant vacuum, the solution is modified by the generalised connection

terms Γ̂P
mN . These are the “ambiguities” that leave the supersymmetry transformations

unchanged [21]. Therefore, the solution proposed in ref. [3] is consistent with the super-

symmetry transformations but does not reproduce the field strength components Fmnpq.

In generalised geometry, this is manifested in the lack of a unique torsion-free, metric-

compatible generalised connection [24]; see also ref. [34] where this relation was explored.

In fact, equation (3.34) points to the necessity of using a background connection that

accounts for the fact that the Freund-Rubin parameter is non-zero at the background. This

background connection includes generalised connection components such that

VN
klD̊mVN ij =

3

28
im7Kmn

[IJKnKL]
(

uij
IJukl

KL − vij IJvklKL

)

+
4

7
im7Km

IJ
(

vij MJukl
MI − uij

MJvklMI

)

. (3.35)

However, since our identities, e.g. (3.15), are written in terms of the usual S7 covariant

derivative D̊m, we use this connection for convenience.

From eqs. (3.28) and (3.35), we can now see exactly how the solution given in equation

(3.19) of ref. [3] for Pm ijkl is modified by the generalised connection coefficients. It is clear

from eq. (3.28) that the role of the generalised connection term is to fully antisymmetrise
◦

DmAnpq and
◦

Dm1Am2...m7 terms coming from
◦

DmVM. This gives the field strength com-

ponents Fmnpq and Fm1...m7 in Pm ijkl — without the generalised vielbein postulate this

task would be an unwieldy problem.

7In ref. [3], Pm ijkl is denoted by Am ijkl.
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We now make use of eq. (3.34), remembering that the contributions from the gen-

eralised connections vanish, and insert the explicit formulae for the vielbein compo-

nents, (3.11)–(3.14), into the expression for the Freund-Rubin term, (3.29). Defining

Xrs
ijkl(x, y) = KIJKL(y)

(

urs
IM + vrs IM

)

(

uij [JKuklLM ] − vij[JKvkl LM ]
)

(x), (3.36)

Yrs
ijkl(x, y) = Km

KLKKL
m (y)

(

urs
IJ + vrs IJ

)

(

uijKMvkl LM − vij KMuklLM

)

(x), (3.37)

where KIJKL(y) = Km
[IJ(y)Km KL](y), we find that

Vm8 rsVN
klD̊mVN ij = −

√
2m7

28
(3Xrs

ijkl − 2Yrs
ijkl) , (3.38)

Vp8
rsVpq

[ijVq8 kl] =

√
2

64

(

2Xrs
ijkl +Yrs

ijkl
)

. (3.39)

Thus, the Freund-Rubin term is

fFR(x, y) =
m7

168
√
2

(

3Xrs
ijkl − 2Yrs

ijkl

)(

2Xrs
ijkl +Yrs

ijkl
)

(x, y). (3.40)

4 Examples

In the following, we evaluate the Freund-Rubin term (3.40) for the G2 invariant sec-

tor [37, 38]. We refer the reader to appendices B and C for the Freund-Rubin term for

the SO(3)×SO(3) and SU(4)− invariant sectors. At stationary points, fFR is proportional

to the scalar potential. This has already been noted in ref. [21]. Eq. (3.40) now gives a

general expression for fFR away from stationary points. In the following examples, we will

see that this expression always consists of two parts: the first part is proportional to the

scalar potential V — this has been verified for many stationary points [21]. The second

part is proportional to a variation of the potential and depends on internal coordinates.

Thus, the Freund-Rubin term is only constant at stationary points. In uplifts of flows the

Freund-Rubin term will, in general, be both x and y-dependent.

4.1 Freund-Rubin term in the G2 invariant sector

In a ‘unitary gauge,’ the 56-bein takes the special form

V =

(

uIJ
KL vIJ KL

vIJ KL uIJKL

)

= exp

(

0 φIJKL

φIJKL 0

)

. (4.1)

For the G2 invariant sector

φIJKL ≡ φIJKL(α, λ) =
λ

2

(

cosαCIJKL
+ + i sinαCIJKL

−
)

(4.2)

with the SO(7)+ and SO(7)− invariant 4-form tensors CIJKL
+ and CIJKL

− , respectively.

The common invariance group is G2 = SO(7)+∩ SO(7)−.
The scalar potential for the G2 invariant sector, calculated from eq. (6.3), reads

V (α, λ) = 2g2
[

(7v4 − 7v2 + 3)c3s4 + (4v2 − 7)v5s7 + c5s2 + 7v3c2s5 − 3c3
]
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= 2(c+ vs)2
(

7v3s3 + 4v5s5 − 14cv2s2 − 8cv4s4 + 14c2vs

+5c2v3s3 − 7c3 + 5c3v2s2 − 8c4vs+ 4c5
)

. (4.3)

Here, g is the gauge coupling constant and

c = cosh 2λ, s = sinh 2λ, v = cosα. (4.4)

Taking the derivative of the potential with respect to α and λ yields

dV

dα
= −14vs2 sinα(c+ vs)

(

5v2s2 + 4v4s4 − 5cvs− 4cv3s3 + 2c2 − c2v2s2 + 5c3vs− 2c4
)

,

(4.5)

dV

dλ
= 28

c

s
(c+ vs)(2v2s2 + 7v4s4 + 4v6s6 − 5cvs− 10cv3s3 − 4cv5s5 + 5c2

+ c2v2s2 − 3c2v4s4 + 9c3vs+ 10c3v3s3 − 9c4 − 3c4v2s2 − 4c5vs+ 4c6). (4.6)

We write the u and v tensors in the following basis of G2 invariants [4]

δIJKL, CIJKL
+ , CIJKL

− , D± =
1

2

(

CIJMN
+ CMNKL

− ± CIJMN
− CMNKL

+

)

. (4.7)

Here, CIJKL
+ is selfdual and CIJKL

− is anti-selfdual. Having chosen a symmetric gauge for

the d = 4 56-bein, we do not distinguish between SU(8) and SO(8) indices. We find [4, 15]

uIJ
KL(λ, α) = p3δKL

IJ +
1

2
pq2 cos2 αCIJKL

+ − 1

2
pq2 sin2 αCIJKL

− − 1

8
ipq2 sin 2αDIJKL

− ,

(4.8)

vIJKL(λ, α) = q3(cos3 α− i sin3 α)δIJKL +
1

2
p2q cosαCIJKL

+ +
1

2
ip2q sinαCIJKL

−

− 1

8
q3 sin 2α(sinα− i cosα)DIJKL

+ . (4.9)

The x-dependence is kept in λ = λ(x) through

p = coshλ, q = sinhλ. (4.10)

uIJKL and vIJKL are obtained from the above equations by complex conjugation.

Plugging the explicit form of the u and v tensors into the expression of the Freund-

Rubin term and identifying

ξ(y) = − 1

16
CIJKL
+ Km

IJKmKL, (4.11)

we find the Freund-Rubin term in the G2 invariant sector:

fFR = −
√
2m7(c+ vs)2

(

7v3s3 + 4v5s5 − 14cv2s2 − 8cv4s4 + 14c2vs

+5c2v3s3 − 7c3 + 5c3v2s2 − 8c4vs+ 4c5
)
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+

√
2

3
m7 ξ (c+ vs)2cvs

(

3vs+ 2v3s3 − 3c− cv2s2 − c2vs+ 2c3
)

. (4.12)

While the first two lines are y-independent, all the y-dependence here is contained in the

factor ξ(y) in the last line. Using eqs. (4.3), (4.5) and (4.6), the above expression can be

rewritten as

fFR =
m7√
2g2

(

−V +
ξ

21s

(

s cosα

2

dV

dλ
− c sinα

dV

dα

))

. (4.13)

This result is exactly of the expected form. The term proportional to the scalar

potential is coordinate invariant. All other terms are proportional to the derivatives of

V with respect to α and λ and thus vanish at the stationary points, that is, when the

equations of motion are obeyed. Off-shell, there is a linear dependence on ξ(y) so the extra

terms do depend on internal coordinates. Furthermore, fFR is x-dependent via s, c and α.

Note that the G2 invariant sector also includes as special cases the SO(7)± invariant sectors

for appropriate values of α:

fFR =











m7√
2g2

(

−V + ξ
42

dV
dλ

) ∣

∣

∣

v=1
SO(7)+

− m7√
2g2

V
∣

∣

∣

v=0
SO(7)−

. (4.14)

(recall that dV/dα vanishes for v = 0).

We repeat this calculation in appendices B and C for the SO(3)×SO(3) and SU(4)−

invariant sectors and find expressions similar to eqs. (4.13) and (4.14). Motivated by these

results we state a general conjecture for the Freund-Rubin term in section 6.

5 Ansätze for other components of the 4-form field strength

Given the new ansatz for the Freund-Rubin term, a natural question that arises is whether

similar ansätze for the other components of the 4-form field strength can also be teased out

of the generalised vielbein postulates. The generalised spin connection and non-metricity

from eqs. (3.23) and (3.24) in the internal GVP depend on Fmnpq as well as fFR. Therefore,

one can also project onto the component giving Fmnpq. Indeed this is done in refs. [3, 6]

using only the original generalised vielbein emAB. However, we use the full 56-bein and its

various components and take account of the generalised connection term. We can project

onto the Fmnpq term by performing the following contraction of PmABCD with components

of the 56-bein:

PmABCD

(

Vr8 ABVpq
CD +

1

4!
ǫABCDEFGHVr8

EFVpq GH

)

=
1

16
∆−1grnFmnpq. (5.1)

Therefore, from eq. (3.25), we find that the uplift ansatz for Fmnpq is given by

∆−1gnrFmnpq = −16i
(

VN
ij∂mVN kl − ΓmNPVN

ijVP kl

)

Vr8 ijVpq
kl + h.c . . . (5.2)

The ansatz above is not as direct as the formula for the Freund-Rubin term (3.27).

Firstly, as with the non-linear flux ansatz [5] one needs to invert the metric to obtain
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Fmnpq.
8 Moreover, the contributions from the generalised connection components do not

vanish. It is these terms that antisymmetrise the ∂A terms in ∂V to give the field strength.

Hence without these terms the field strength components would not be fully antisymmetric

— a point that was noted in ref. [21]. We therefore conclude that differentiating Amnp

obtained from the non-linear uplift flux ansatz is a simpler way of finding the internal

components of Fmnpq than the ansatz derived from the internal GVP, see eq. (5.2).

While the generalised spin connection and non-metricity are parametrised by Fmnpq

and fFR, the connections of the external GVP [1] are given in terms of the Fµνρm and Fµmnp

components of the 4-form field strength. In E7(7) covariant form, the external GVP is [36]

∂µVMAB + 2L̂BµVMAB +QC
µ [AVMB]C = PµABCDVMCD, (5.3)

where L̂ is the E7(7) generalised Lie derivative [24, 39]9

L̂ΛXM = Λm∂mXM + 12(tα)MN (tα)P q8∂qΛ
PXN (5.4)

and the connection coefficients are of the form

QA
µB = −1

2

[

emaDmBµ
nenb − (epaDµep b)

]

Γab
AB −

√
2

12
eµ

α
(

FαabcΓ
abc
AB − ηαβγδF

βγδaΓaAB

)

,

(5.5)

PµABCD =
3

4

[

emaDmBµ
nenb − (epaDµep b)

]

Γa
[ABΓ

b
CD] −

√
2

8
eµ

αFabcαΓ
a
[ABΓ

bc
CD]

−
√
2

48
eµαη

αβγδFaβγδΓb[ABΓ
ab
CD], (5.6)

where

Dµ ≡ ∂µ −Bµ
mDm. (5.7)

We recall that Dm is the covariant derivative with respective to the connection Γp
mn and

eµ
α is the vierbein.

Given a particular reduction ansatz, the external GVP (5.3) reduces to the Cartan

equation of the scalars of the four-dimensional maximal gauge theory [12]:

∂µV̂M ij − gAµ
PXPMN V̂N ij +Qk

µ[iV̂M j]k = Pµ ijklV̂Mkl, (5.8)

where V̂ is given in eq. (3.10) and XM are generators of the gauge algebra and are related

to the embedding tensor ΘMα as follows

XM = ΘMαtα. (5.9)

8In fact, contracting PmABCD with other components of the 56-bein would directly give an ansatz for

Fmnpq without need to invert the metric. However, this leads to a more complicated expression involving

Amnp and Am1...m6
contributions on the right-hand side.

9The generalised Lie derivative encodes the diffeomorphisms and gauge transformations of the D = 11

fields [24, 36]. In approaches where the base space is also enlarged, e.g. ref. [35, 39], the partial derivatives

also carry E7(7) indices.
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The embedding tensor projects out at most 28 of the 56 vectors Aµ
P [12]. The Qi

µj are re-

lated to QA
µB by an inhomogeneous relation, while Pµijkl are covariantly related to PµABCD

via the eight Killing spinors of the vacuum solution of the maximal gauged supergravity.

Let us consider the term proportional to Fµνρm in PµABCD. This term can be projected

out as follows:

PµABCDVn8 ABVmn
CD =

√
2

8
eµ δη

αβγδFmαβγ . (5.10)

Thus, we obtain the uplift ansatz

Fµνρm =
2
√
2

3
i ηµνρ

σ
(

V̂M
ij∂σV̂M kl − gAσ

PXPMN V̂M
ijV̂N kl

)

Vn8 ijVmn
kl. (5.11)

This provides a non-linear ansatz for Fµνρm for any truncation of D = 11 supergravity to

four dimensions. Note that the ansätze for Vn8 and Vmn will be linear and follow directly

from the linear ansätze for the vectors.

In the S7 truncation, the connections in eq. (5.3) and (5.8) are related via the eight

Killing spinors ηi on the S7 [3]

Qi
µj = ηiA ηBj

(

QA
µB −

√
2i

4
m7Aµ

KLKnKL ◦
en

aΓa
A
B

)

, (5.12)

Pµ ijkl = ηAi ηBj ηCk ηDl PµABCD, (5.13)

where Aµ
KL are the 28 vectors of the d = 4 theory that are gauged. The generators of the

gauge algebra are given by [16]

XMNP =

{

XIJ KL
MN = XIJ

KL
MN = 2δ

R[K
IJ δ

L]R
MN

0 otherwise
(5.14)

and the reduction ansatz for the relevant components of the 56-bein are given in eqs. (3.11)

and (3.12). With these substitutions, eq. (5.11) reduces to

Fµνρm = −
√
2

48
ηµνρ

σKn IJKmn
KL

(

uijIJ + vijIJ
)

(

uklKL − vklKL
)

(5.15)

×
(

V̂M
ij∂σV̂M kl − 2

√
2m7Aσ

MN V̂MP
ijV̂NP kl − 2

√
2m7Aσ

MN V̂MP
klV̂NP ij

)

.

This is the non-linear uplift ansatz for Fµνρm for the S7 reduction of D = 11 supergravity.

We note, as a check, that in the SO(7)+ sector the above expression reproduces the correct

result, viz.

Fµνρm =

√
2

6
i ηµνρ

σ∂σλ∂mξ. (5.16)

The above ansatz for Fµνρm, (5.11), provides a considerable simplification over

computing the Hodge dual of Fµm1...m6 calculated using the ansatz for the metric, 3-form

and 6-form. This is clear even in the relatively simple case of the SO(7)+ sector. The

advantage of the ansätze (5.11) for Fµνρm (and its specialisation to the S7 reduction (5.15))
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and (3.40) for the Freund-Rubin term is that they do not require differentiation or the

metric to be inverted.

The connection PµABCD also depends on the Fµmnp components of the field strength.

However, as is the case with the ansatz for Fmnpq, (5.2), we do not obtain a direct ansatz.

Therefore, for the Fµmnp and Fmnpq components the GVPs do not provide more efficient

ansätze. However, these components are easily calculated using the 3-form ansatz [5]. We

are fortunate that the GVPs give direct ansätze for the components of the field strength

that are otherwise difficult to calculate.

The only remaining component of the field strength that we have not thus far discussed

is the Fµνmn components, which does not feature in the GVPs. However, this component

does enter the fermion supersymmetry transformations via

GαβAB ≡ −1

8
i∆−1/2e[α

µeβ]
νDµBν

nΓnAB +

√
2

32
i∆−1/2FαβmnΓ

mn
AB. (5.17)

Comparing the fermion supersymmetry transformations in four [12, 16] and eleven dimen-

sions [6], we make the following identification

Hαβ ij = 4
√
2 ηAi η

B
j GαβAB, (5.18)

where Hαβ ij is related to the covariantised field strength Gαβ
M [12]

Hαβ ij = V̂M ij Gαβ
M. (5.19)

Contracting eq. (5.17) with Vmn
AB gives an imaginary expression

Vmn
ABGαβAB = −1

8
i∆−1Fαβmn +

3

2
i∆−1Amnp

(

eµ[αe
ν
β]DµBν

p − gpqeµ[α∂qeµβ]

)

. (5.20)

Using eqs. (5.18), (5.19) and the above equation, we obtain the non-linear uplift ansatz for

Fµνmn for any reduction

Fµνmn =
√
2iVmn

ijV̂M ijGµν
M +

3

2
Amnp

(

D[µBν]
p + gpqe[µ

α∂qeν]α
)

. (5.21)

Specialising to the S7 reduction gives

Fµνmn =

√
2

8

(

Kmn
IJGµν IJ − 12∆−1AmnpK

p
IJHµν

IJ
)

, (5.22)

where [12]

Gµν
M =

(

Hµν
IJ

Gµν IJ

)

. (5.23)

Hence, Fµνmn is only non-trivial for four-dimensional solutions with non-zero vector expec-

tation values.
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6 General form of the Freund-Rubin term

6.1 The conjecture

We observed in section 4 and appendices B and C that for various examples the Freund-

Rubin term is proportional to the potential, with the constant of proportionality given

by −m7/(
√
2g2) [21], and a y-dependent part that contains variations of the potential.

Furthermore, the y-dependence only enters linearly via the invariant scalars (ξ in G2 and

(ξ, ζ) in SO(3)×SO(3), see appendix B). In particular, if the sector under consideration

does not contain an invariant scalar (such as SO(7)− or SU(4)−), then fFR is y-independent

and proportional to the potential. In the following, we will state a general conjecture for

the Freund-Rubin term that respects all these observations.

First, we state the general expressions for the potential V and its variation δV in terms

of the tensors uij
IJ and vij IJ . We define the T -tensor [16]

Ti
jkl =

(

uklIJ + vkl IJ
)

(

uim
JKujmKI − vim JKvjm KI

)

(6.1)

and its components

Aij
1 =

4

21
Tk

ikj , A2 i
jkl = −4

3
Ti

[jkl]. (6.2)

In terms of the above tensors the potential is given by [16]

V =
1

24
g2A2 i

jklA2
i
jkl −

3

4
g2Aij

1 A1 ij . (6.3)

In order to determine the variation of the potential, we consider an infinitesimal E7(7)

variation of the 56-bein of the form [25]

δV = −
√
2

4

(

0 Σijkl

Σijkl 0

)

V , (6.4)

where Σ is complex selfdual. Given the variation of the 56-bein given above, to first order,

the potential varies as [25]

δV =

√
2

24
g2QijklΣijkl + h.c., (6.5)

where the Q-tensor is

Qijkl =
3

4
A2 m

n[ijA2 n
kl]m −A1

m[iA2 m
jkl]. (6.6)

Since, the expression on the right-hand side of eq. (6.5) gives the variation of the potential

to first order, it must vanish at the stationary points. In particular, since Σijkl is an

arbitrary complex selfdual tensor, Qijkl is complex anti-selfdual at stationary points.

We define a complex selfdual combination of u and v tensors

Σ̂ijkl(x, y) ≡
(

uij
IJ(x)ukl

KL(x)− vij IJ(x)vkl KL(x)
)

KIJKL(y), (6.7)
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where we have written out the coordinate dependence explicitly so as to make the depen-

dence of Σ̂ on all eleven coordinates clear. Making use of the Q-tensor, we are now able to

formulate a conjecture for the Freund-Rubin term:

fFR = − m7√
2g2

(

V − g2

24

(

QijklΣ̂ijkl + h.c.
)

)

. (6.8)

The second term on the right-hand side is inevitably y-dependent, and it vanishes when

Qijkl is complex anti -selfdual, which is precisely the minimisation condition for the

potential.

To prove this formula, one has to manipulate eq. (3.40) using E7(7) identities for the u

and v tensors [3, 16]. However, the proof will also probably require identities derived from

the quartic invariant (see, e.g. ref. [14]). We leave this proof (which is probably even more

complicated than the one given in ref. [3] for the y-independence of the A1 and A2 tensors

coming from the S7 truncation) for future work. In the remainder of this section, we will

prove the conjecture up to quadratic order and verify it for the G2 invariant sector.

6.2 Proof of the conjecture up to quadratic order

In this section, we prove the equality of eqs. (3.40) and (6.8) for a perturbative expansion

of the u and v tensors. As in eq. (4.1) we use the unitary gauge,

V = exp

(

0 φIJKL

φIJKL 0

)

, (6.9)

where we do not need to distinguish between SU(8) and SO(8) indices. Thus,

uIJ
KL = (coshφ)IJ

KL, vIJKL = (sinhφ)IJKL. (6.10)

Here, we denote

(φ0)IJ
KL = δIJ

KL, (φ2)IJ
KL = φIJMNφMNKL. (6.11)

Complex conjugation is realised by raising and lowering indices. Furthermore, the potential

is complex selfdual,

φ∗
IJKL = φIJKL =

1

24
ǫIJKLMNPQφMNPQ. (6.12)

Up to quadratic order, we obtain

uIJ
KL = δKL

IJ +
1

2
φIJMNφMNKL + O(φ4) , vIJKL = φIJKL + O(φ3) . (6.13)

Substituting the expansions for the u and v tensors in the expressions for Xrs
ijkl and

Yrs
ijkl, (3.36) and (3.37), we find up to terms O(φ2),

Xrs
ijklXrs

ijkl = 168 + 19φIJKLφIJKL − φIJKLφIJKL

+ 3KIJKL
(

2φIJKL + 3φIJMNφMNKL

)

+
1

24

(

KIJKLφIJKL

)2
, (6.14)
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Xrs
ijklYrs

ijkl = −6φIJKLφIJKL − 6φIJKLφIJKL

+ 2KIJKL
(

4φIJKL + 3φIJMNφMNKL

)

+
1

4

(

KIJKLφIJKL

)2
, (6.15)

Yrs
ijklYrs

ijkl = 32φIJKLφIJKL + 24KIJKLφIJMNφMNKL, (6.16)

where now all the y-dependence is contained in KIJKL(y). In deriving the above expres-

sions, we make use of the following identities

KIJKPKLMNP = 6δIJKLMN + 9δ
[I
[LK

JK]
MN ], (6.17)

K [IJKLKM ]NPQ =
1

5
ǫIJKLMNPQ + 12K [IJK

[NδLP δ
M ]

Q], (6.18)

KmIJKnKLKmn
MN = 8δ[I [KδJ][MδN ]

L] + 4δ[M [IK
N ]

J]KL + 4δ[K [MKL]
N ]IJ − 4δ[I [KKJ]

L]MN .

(6.19)

It is now straightforward to show that, up to quadratic order, the Freund-Rubin

term, (3.40), is

fFR =
√
2m7

(

3 +
1

12
φIJKLK

IJKL +
1

6
φIJKLφ

IJKL

)

+O(φ3). (6.20)

We also find that

V/g2 = −6− 1

3
φIJKLφ

IJKL +O(φ3), QijklΣ̂ijkl = 2φIJKLK
IJKL +O(φ3). (6.21)

Thus it is easy to verify that the conjectured expression, (6.8), reproduces the expression

for the Freund-Rubin term up to quadratic order in the scalar expectation values.

6.3 Testing the conjecture in the G2 invariant sector

At the stationary points, it has already been established that the conjecture (6.8) holds for

the G2 invariant sector [21], see eqs. (4.13) and (4.14). Therefore, it just remains to prove

that the y-dependent parts of eq. (4.12) and eq. (6.8) coincide, viz.

(

QijklΣ̂ijkl + h.c.
)

= 16ξ(c+ vs)2cvs
(

3vs+ 2v3s3 − 3c− cv2s2 − c2vs+ 2c3
)

, (6.22)

where again all the y-dependence is contained in the factor ξ(y).

Equation (6.6) provides an expression for the Q-tensor in terms of the u and v tensors

with four free SU(8) indices. Thus, we can use eqs. (4.8) and (4.9) to write the Q-tensor

in terms of contracted G2 invariant tensors, (4.7), with four free SO(8) indices

Qijkl → QIJKL. (6.23)

In this case, unlike in section 4.1, the u, v tensors are not necessarily contracted over index

pairs. However, the resulting expression for QIJKL must be G2 invariant. Hence, we should

be able to write it in the basis given in eq. (4.7). In particular, it is totally antisymmetric,

so we must find

QIJKL = c+(λ, α)C
IJKL
+ + c−(λ, α)CIJKL

− (6.24)

for some functions c±.
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An efficient way to work out the contractions of SO(8) indices in QIJKL is to use the

SO(7) decomposition of the G2 invariants (4.7). An SO(8) index decomposes as I = (i, 8),

where i is an SO(7) index that runs from 1 to 7. The decomposition of CIJKL
± is [25]

Cijk8
± = Cijk, Cijkl

± = ∓1

6
η′ǫijklmnpCmnp, (6.25)

with an arbitrary phase η′. This phase will drop out in our calculations. The SO(7) tensor

Cmnp satisfies [25]

C [mnpCq]rs = −1

4
η′ǫmnpq[r

tuC
s]tu, CmnrCpqr = 2δmn

pq − 1

6
η′ǫmn

pqrstC
rst. (6.26)

Moreover, the D−-tensor decomposes as follows:

Dijkl
− = Di8k8

− = 0, Dijk8
− = −Dk8ij

− = 4Cijk ⇒ D
[IJ KL]
− = 0. (6.27)

For DIJKL
+ , we find the convenient SO(8) property

DIJ
+ KL =

2

3
D

M [I
+ M [KδJ ]L], ⇒ D

[IJ KL]
+ = 0 (6.28)

so we only need

DMi
+ Mj = −6 δij , DM8

+ M8 = 42. (6.29)

Using all these SO(7) decompositions together with the identities for the C-tensor in

eq. (6.26), we find exactly the anticipated form, eq. (6.24) with

c+(λ, α) =
1

2
c3vs

(

5c− 4c3 + 2s2 sin2 α
)

− 3

2
c2v2s4 sin2 α− 1

2
c2v3s3(1− c)(3 + 7c) sin2 α (6.30)

+
1

2
v4s4

(

s2(5−3c) sin2 α−c−4c3
)

+2v6s6(c−1) sin2 α+
3

2
ivs2

(

c3+vs3−c2
)

sin3 α

c
−
(λ, α) = −3

2
s2

(

v2c3 + v3s3 + c2 sin2 α
)

sin2 α+
1

2
ic4s sinα

(

4s2 − 1
)

+
1

2
ic2v2s3(3 + 2c− 7c2) sin3 α+

1

2
icv3s4

(

5 + 7s2 sin2 α− 3c
)

sinα

− ic3v4s3 sinα+
5

2
iv5s6 sinα+ 2iv7s6(c− 1) sinα. (6.31)

At the G2 invariant stationary point,

c2 =
2
√
3 + 3

5
, s2 =

2
√
3− 2

5
, v2 =

3−
√
3

4
, (6.32)

the Q-tensor is indeed, complex anti-selfdual because c+ becomes purely imaginary and c−
purely real.

We compute Σ̂IJKLC
IJKL
± using the above SO(7) decomposition. Identifying,

CIJKL
+ KIJKL = −16ξ, CIJKL

− KIJKL = 0, (6.33)

we find

Σ̂IJKLC
IJKL
+ = −16ξ(c sin2 α+ cos2 α), Σ̂IJKLC

IJKL
− = 8iξ sin 2α(c− 1). (6.34)

As expected, these expressions are linear in the invariant scalar ξ. Eq. (6.22) then follows

immediately from eqs. (6.24), (6.30), (6.31) and eq. (6.34).
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7 Outlook

In this paper, we derive an explicit formula for the Freund-Rubin term, (3.27), for any

consistent truncation of D = 11 supergravity to four dimensions by means of the internal

generalised vielbein postulate [1]. In the case of the S7 reduction this reduces to (3.40).

Previously, the Freund-Rubin term could be computed using the uplift ansätze for the 6-

form and 3-form, which involves inverting the metric and differentiating. The new formulae

are much simpler. Moreover, for the S7 truncation, we conjecture that the Freund-Rubin

term is given by the potential for the scalars of the truncated d = 4 supergravity and a

variation of the potential. While the corresponding on-shell conjecture has already been

in the literature [21], we propose a formula, (6.8), that bears this conjecture out more

concretely (off-shell). A corollary of our conjecture is that for sectors that are purely

characterised by pseudoscalar expectation values, the Freund-Rubin term is y-independent

and is completely given by the scalar potential. We prove the conjecture up to quadratic

order in the scalar expectation value and verify it for the G2 invariant sector. In the future,

we hope to provide a proof of this conjecture.

The GVPs and fermion supersymmetry transformations provide a new vista on the

form of the D = 11 field strength that arises from uplifting d = 4 solutions. Given the

striking simplicity of the conjectured Freund-Rubin term, a natural question that we can

now investigate, arises: do the other components of the field strength take a similarly simple

form that depend on very general data of the reduced theory, such as the scalar potential or

its derivatives. Another aspect that we would like to investigate is whether the conjectured

form of the Freund-Rubin term holds in general for all truncations of any theory. A setting

in which the analogous question can be addressed using similar methods (analysis of GVPs

and fermion supersymmetry variations) is the reduction of type IIB supergravity to five

dimensions, where the necessary framework exists [40] — nonlinear ansätze, which arise

from an analysis of the supersymmetry transformations of the vectors [40], have been

proposed [41] and presented explicitly [42] in this case. In this case, the analysis of the

supersymmetry transformations of the vectors has already been used by Pilch and Warner

(appendix A of ref. [43]) to derive uplift formulae for the metric and the dilaton.

Our study of reductions of D = 11 supergravity to four dimensions shows that consis-

tent truncations seem to have simple, generic features that are obscured by the complexity

of particular examples. With duality symmetry as a guide [1, 6], we are able to tease out

these features and it is hoped that in the future we will learn something very general and

conceptually deep about all reductions.
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A Contractions of G2 invariants with Killing forms

The G2 invariant tensors can be used to define the following tensors on the round S7 [4]

ξm =
1

16
CIJKL
+ KIJ

mnK
nKL, ξmn = − 1

16
CIJKL
+ KIJ

m KKL
n , ξ = g̊mnξmn,

S̊mnp =
1

16
CIJKL
− KIJ

[mnK
KL
p] . (A.1)

We write terms like e.g. DIJKL
− KIJ

m KKL
np in terms of the S7 tensors in (A.1). These

fulfill the identities

ξmξn = (9− ξ
2)̊gmn − 6(3− ξ)ξmn, ξmξ

m = (21 + ξ)(3− ξ), (A.2)

S
mnr

Spqr = 2δmn
pq +

1

6
η̊
mn

pqrstS
rst

, S
[mnp

S
q]rs =

1

4
η̊
mnpq[r

tuS
s]tu

, S
m[np

S
qr]s =

1

6
η̊
npqr(m

tuS
s)tu

.

(A.3)

Together with the inverse relations of eq. (A.1),

CIJKL
+ =

1

6
ξK [IJ

m KmKL] − 3

2
ξmnK [IJ

m KKL]
n +

1

12
ξmK [IJ

mnK
nKL], Smnp =

1

16
CIJKL

−

K
[IJ
[mn

K
KL]
p] ,

(A.4)

we obtain

δ
IJ
KLK

m IJ
K

KL
n = 8δmn , δ

IJ
KLK

IJ
mnK

p KL = 0, δ
IJ
KLK

mn IJ
K

KL
pq = 16δmn

pq ,

C
IJKL
+ K

IJ
m K

KL
n = −16ξmn, C

IJKL
+ K

IJ
mnK

p KL =
16

3
ξ[mδn]

p
,

C
IJKL
+ K

mn IJ
K

KL
pq =

32

3
ξδ

mn
pq − 64ξ[m[pδ

n]
q],

C
IJKL
− K

IJ
m K

KL
n = 0, C

IJKL
− K

IJ
mnK

KL
p = 16Smnp, C

IJKL
− K

IJ
mnK

KL
pq = −8

3
η̊mnpqrstS

rst
,

D
IJKL
+ K

IJ
m K

KL
n = 0, D

IJKL
+ K

IJ
mnK

KL
p = −48ξq [mSnp]q +

16

3
ξSmnp +

4

9
η̊mnpqrstξ

q
S

rst
,

D
IJKL
+ K

IJ
mnK

KL
pq =

32

3
ξ[mSnpq] − 8η̊mnpqrstξu

r
S

stu +
8

9
ξη̊mnpqrstS

rst
,

D
IJKL
− K

IJ
m K

KL
n =

16

3
Smnpξ

p
,

D
IJKL
− K

IJ
mnK

KL
p = −32ξq [mSn]pq + 16Smnqξ

q
p +

16

3
ξSmnp − 4

9
η̊mnpqrstξ

q
S

rst
,

D
IJKL
− K

IJ
mnK

KL
pq =

16

3
ξ[mSn]pq +

16

3
Smn[pξq] −

16

3
η̊mn[p|rstuξ

r
q]S

stu +
16

3
η̊[m|pqrstuξ

r
n]S

stu
. (A.5)

B Freund-Rubin term in the SO(3)×SO(3) invariant sector

The SO(3)×SO(3) invariant sector is given by

φIJKL =
λ

2

[

cosα
(

Y IJKL
+ + i Y IJKL

−
)

− sinα
(

ZIJKL
+ − i ZIJKL

−
)]

, (B.1)

where Y± and Z± are SO(3)×SO(3) invariant tensors.
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The scalar potential reads

V (λ) =
g2

2
(s̃4 − 8s̃2 − 12). (B.2)

Here, s̃ = sinh
√
2λ and c̃ = cosh

√
2λ. Note that V does not depend on α [44].

In ref. [30], the u and v tensors are given in terms of SO(3)×SO(3) invariants

Y IJKL
+ , ZIJKL

+ : selfdual, Y IJKL
− , ZIJKL

− : anti− selfdual, (B.3)

ΠIJKL =
1

8

(

Y IJMN
+ + iY IJMN

−
) (

Y MNKL
+ − iY MNKL

−
)

(B.4)

from which we define the following y-dependent scalars

ξ(y) = − 1

16
Y +
IJKLK

IJ
m KmKL, ζ(y) = − 1

16
Z+
IJKLK

IJ
m KmKL. (B.5)

Using the results in ref. [30] for the u and v tensors and identities stated in that paper,

we find

fFR =
m7√
2

(

6 + 4s̃2 − s̃4

2

)

+
m7

6
(ζ sinα− ξ cosα)(4s̃c̃− s̃3c̃)

=
m7√
2g2

(

−V (λ)− 1

12
(ζ sinα− ξ cosα)

dV

dλ

)

. (B.6)

Again the y-dependence is contained in ξ and ζ.

C Freund-Rubin term in SU(4)− invariant sector

The SU(4)− invariant sector is parametrised by a single pseudoscalar expectation value,

φIJKL =
1

2
iλY IJKL

− . (C.1)

In this case, we find that

fFR = −
√
2m7c

2
(

c2 − 4
)

(C.2)

for c = cosh 2λ. We note that, since this sector only contains a pseudoscalar, i.e. there are

no selfdual tensors, the Freund-Rubin term is indeed y-independent even away from the

stationary point.
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