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1. INTRODUCTION

The simulation of fluids within a large network of pipes poses
several mathematical challenges. Typically after spatial dis-
cretization the resulting mathematical system is a nonlinear dif-
ferential algebraic system. Standard techniques are often slow
due to the stiffness of the equation. We will show a several step
process on how to improve on the timing. A first and major
step in order to achieve stable and fast simulators for these
problems is what we call the decoupling step. In that step we
are able to model the system as a discrete index 1 DAE. This
step is only possible due to the choosen discretization we use.
Next we use a combination of Model Order Reduction (MOR)
methods in order to create a smaller scale index 1 Differential
Algebraic Equation. And last but not least we use an implicit-
explicit (IMEX) integration method to reduce the time-step for
the stiff nonlinear differential equation. We will only present
a simplified network here which includes pipes, reservoirs and
so called demand nodes. This system will actually result in an
ODE which simplifies the discussion.

2. MODELING

It is common to define a connected and directed simple graph
G = G(V,E) representing the pipe network. This allows a more
compact representation of the model equations. The set V are
the nodes and E are the edges and we will describe the different
node and edge elements in the following.

2.1 Node Elements

Reservoirs are water sources with unlimited capacity. Thus, we
assume that they have a constant pressure ps. Furthermore no
balance equation holds at a reservoir, since an arbitrary amount
of water may leave or enter the reservoir.

p = ps

In contrast to reservoirs, tanks have limited capacity. Never the
less, pressure can in- or decrease even though the tank is full or
empty respectively. We will not talk about tanks in more details
here.

A demand node has a given demand qs : I −→ R+. Thus, the
difference between the amount of water flowing towards a node,
and the amount of water flowing away from the node has to be
q

∑
i∈Iin

qi
in− ∑

i∈Iout

qi
out = qs(t)

with qi
in and qi

out being the incoming and outgoing flow of edges
connected to the demand node, respectively. It is possible that
qs(t) = 0 for all t ∈ I.

2.2 Edge Elements

First we will discuss the pipe model. The behavior of a pipe
is described by a continuity equation and an equation describ-
ing the movement inside a pipe. We consider circular pipes
with diameter D, cross-section A = π

4 D2 and length �. The
independent variables are space x ∈ [0, �] := Ω ⊂ R and time
t ∈ [t0,T ] := I ⊂ R. The time dependent variables are the mass
flow m : Ω × I −→ R and the pressure p : Ω × I −→ R. The
parameters a,ρ and c depend on material properties of the pipe
and the gas. α is the angle of the pipe and g is the gravitational
constant. With this, we get the following partial differential
equation, which describes the behavior in pipes

∂ p
∂ t

(x, t)+
a2

A
∂m
∂x

(x, t) = 0

∂m
∂ t

(x, t)+A
∂ p
∂x

(x, t)+ρAgsinα + c|m(x, t)|m(x, t) = 0
(1)

pipe: Hyperbolic PDE

Further edge elements are valves and pumps, which we also
omit in this extended abstract.

2.3 Network Model

From now on we consider a network with np many pipes and
nd many demand nodes and nrs many reservoirs. For each pipe
i, we get a flow mi : Ωi× I −→R, Ωi = [xLi ,xRi ]⊂R, I = [t0,T ]
and a pressure pi : Ωi×I −→R both depending on space x∈Ωi
and time t ∈ I. The node variables are pd : I −→ Rnd and
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difference between the amount of water flowing towards a node,
and the amount of water flowing away from the node has to be
q

∑
i∈Iin

qi
in− ∑

i∈Iout

qi
out = qs(t)

with qi
in and qi

out being the incoming and outgoing flow of edges
connected to the demand node, respectively. It is possible that
qs(t) = 0 for all t ∈ I.

2.2 Edge Elements

First we will discuss the pipe model. The behavior of a pipe
is described by a continuity equation and an equation describ-
ing the movement inside a pipe. We consider circular pipes
with diameter D, cross-section A = π

4 D2 and length �. The
independent variables are space x ∈ [0, �] := Ω ⊂ R and time
t ∈ [t0,T ] := I ⊂ R. The time dependent variables are the mass
flow m : Ω × I −→ R and the pressure p : Ω × I −→ R. The
parameters a,ρ and c depend on material properties of the pipe
and the gas. α is the angle of the pipe and g is the gravitational
constant. With this, we get the following partial differential
equation, which describes the behavior in pipes

∂ p
∂ t

(x, t)+
a2

A
∂m
∂x

(x, t) = 0

∂m
∂ t

(x, t)+A
∂ p
∂x

(x, t)+ρAgsinα + c|m(x, t)|m(x, t) = 0
(1)

pipe: Hyperbolic PDE

Further edge elements are valves and pumps, which we also
omit in this extended abstract.

2.3 Network Model

From now on we consider a network with np many pipes and
nd many demand nodes and nrs many reservoirs. For each pipe
i, we get a flow mi : Ωi× I −→R, Ωi = [xLi ,xRi ]⊂R, I = [t0,T ]
and a pressure pi : Ωi×I −→R both depending on space x∈Ωi
and time t ∈ I. The node variables are pd : I −→ Rnd and
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due to the stiffness of the equation. We will show a several step
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are able to model the system as a discrete index 1 DAE. This
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methods in order to create a smaller scale index 1 Differential
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a simplified network here which includes pipes, reservoirs and
so called demand nodes. This system will actually result in an
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In contrast to reservoirs, tanks have limited capacity. Never the
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is described by a continuity equation and an equation describ-
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parameters a,ρ and c depend on material properties of the pipe
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constant. With this, we get the following partial differential
equation, which describes the behavior in pipes
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pipe: Hyperbolic PDE

Further edge elements are valves and pumps, which we also
omit in this extended abstract.

2.3 Network Model

From now on we consider a network with np many pipes and
nd many demand nodes and nrs many reservoirs. For each pipe
i, we get a flow mi : Ωi× I −→R, Ωi = [xLi ,xRi ]⊂R, I = [t0,T ]
and a pressure pi : Ωi×I −→R both depending on space x∈Ωi
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prs : I −→ Rnrs , the pressures at demand nodes and reservoirs.
We define

mL(t) = (mi(xLi , t))i∈Api
,mR(t) = (mi(xRi , t))i∈Api

.

pL(t) = (pi(xLi , t))i∈Api
,pR(t) = (pi(xRi , t))i∈Api

.

mL being the vector with all pipe flows at their tail-node and
mR the flow vector at their head-nodes and similarly for pL and
pR. Note, that the node pressures coincide with the head- and
tail pressures of the pipes. We call the vector of demand and
reservoir pressures by p.

Last we define the following incidence matrices

Ars
R ∈ Rnp×nrs(Ars

R )i j =

{
1 if reservoir node j is head of pipe i
0 else

Ars
L ∈ Rnp×nrs(Ars

L )i j =

{−1 if reservoir node j is tail of pipe i
0 else

AR ∈ Rnp×nd ,(AR)i j =

{
1 if demand node j is head of pipe i
0 else

AL ∈ Rnp×nd ,(AL)i j =

{−1 if demand node j is tail of flow i
0 else

We can combine them all and get the full incidence matrix A

A := (Ars
R +Ars

L AR +AL) ∈ Rnp×+drs+nd

With the help of these matrices we can write the spatial dis-
cretized system of equations as

ṗR +Dα(mL −mR) = 0 (2)

ṁL +Dβ AT p+ γ +G(mL)mL = 0 (3)
ARmR +ALmL = qset (4)

AR pd = pR (5)
AL pd = pL (6)

Ars
R prs = pR (7)

Ars
L prs = pL (8)

prs = pset (9)
To obtain these equation it is crucial to chose a suitable spatial
discretization. In particular the time derivative of the pressure
is evaluated at the right end of the pipe and the time derivative
of the flux at the left end. The size of the first two equation
is the number of pipes, equation (4) the number of junction,
(5,6,7,8) number of pipes and the last equation number of
tanks. Dα is a diagonal matrix containing αi = a2

i /Ai/�i on
the diagonal and Dβ similar with βi = Ai/�i. γ is a vector with
γi = ρiAigsinαi and G(mL) is a diagonal matrix function such
that G(mL)i = cimi

L. The matrix A is the incidence matrix as
described above. The vector qset has an entry for every demand
node showing the given demand at that particular node given by
qs(t) and similar is pset the vector of the given pressures ps at
the reservoirs. In the modeling of the graph it is crucial to pick
the direction of the edges such that every demand node has a
right end of a pipe. This is possible for any topology as long
as one of the nodes in the graph is not a demand node which
means in our case it has to be a reservoir. We furthermore want
all pipes the end in a reservoir to end in a left node there.

3. DECOUPLING

By selecting a matrix Aselect which picks one pipe for each node
that has a right end in that given node we can rewrite the system
of equation in the variables pd and mL.

ṗd +AselectDα(−Cqset +CAmL) = 0

ṁL +Dβ AT
(

pd
pset

)
+ γ +G(mL)mL = 0

We will explain in detail how we create the matrix C which is
the crucial part in this decoupling process. This resulting ODE
is of size nd +np and has the general structure

ẋ = T x+g(x, t) = f (x, t), (10)

where the matrix T is given by

T =

(
0 AselectDal phaCA

Dβ (AR +AL)
T 0

)
,

and the vector x is combined by pd and mL.

4. IMEX

In order to solve this stiff and nonlinear ODE we make use of
implicit-explicit (IMEX) integration methods. This allow us to
deal with the stiffness in an efficient way while not having to
solve large-scale nonlinear problems. First order methods are
of the flavor

xn+1 − xn

h
= (1− γ)T xn + γT xn+1 +g(xn, t) (11)

for γ ∈ [0,1] and time setp h, which leads to the iteration

xn+1 = (1−hγT )−1(xn +(1− γ)T xn +hg(xn).

We study convergence properties of that by analyzing the
matrix T and the function g as well as the differences for several
values of γ . If γ = 0 we get explicit Euler and if γ = 1 we get
a combination of implicit Euler for the linear part an explicit
Euler for the nonlinear part. We will also show the differences
within this class of methods as well as the difference to second
order methods following Ascher et al. (1995).

5. MODEL ORDER REDUCTION

On the resulting ODE (10) we use the Model Order Reduc-
tion techniques Proper Orthogonal Decomposition (POD) to-
gether with Discrete Empirical Interpolation (DEIM) by Chat-
urantabut and Sorensen (2010). POD is a projection-based
method where we find a projection matrix W such that the
solution of (10) x ≈ Wx̂ for x̂ in a lower dimensional space.
The resulting low-dimensional ODE is then given by

˙̂x =W T TWx̂+W T g(Wx̂, t).
DEIM is then used to create a truely low-dimensional function
approximating W T g(Wx̂, t).

6. CONCLUSIONS

The combination of POD-DEIM with the IMEX integration
results in a significant speedup of simulation time.
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