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Abstract
Neural stem cells (NSCs) and imprinted genes play 
an important role in brain development. On historical 
grounds, these two determinants have been largely 
studied independently of each other. Recent evidence 
suggests, however, that NSCs can reset select genomic 
imprints to prevent precocious depletion of the stem 
cell reservoir. Moreover, imprinted genes like the 
transcriptional regulator Zac1  can fine tune neuronal 
vs  astroglial differentiation of NSCs. Zac1 binds in 
a sequence-specific manner to pro-neuronal and 
imprinted genes to confer transcriptional regulation and 
furthermore coregulates members of the p53-family 
in NSCs. At the genome scale, Zac1  is a central hub of 
an imprinted gene network comprising genes with an 

important role for NSC quiescence, proliferation and 
differentiation. Overall, transcriptional, epigenomic, and 
genomic mechanisms seem to coordinate the functional 
relationships of NSCs and imprinted genes from 
development to maturation, and possibly aging.    
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Core tip: Both neural stem cells (NSCs) and imprinted 
genes participate in the same developmental processes. 
Here, we will explore the possibility that these two 
processes actually interact with each other. We will 
exemplarily consider the role of single imprinted genes 
in NSC biology based on their functional relationship 
to the imprinted gene Zac1 , which is itself at the focus 
of this review due to its role in directing neuronal vs  
astroglial differentiation of NSCs and as a central hub of 
an imprinted gene network comprising genes important 
to NSC biology. 

Daniel G, Schmidt-Edelkraut U, Spengler D, Hoffmann A. 
Imprinted Zac1 in neural stem cells. World J Stem Cells 2015; 
7(2): 300-314  Available from: URL: http://www.wjgnet.
com/1948-0210/full/v7/i2/300.htm  DOI: http://dx.doi.org/10.4252/
wjsc.v7.i2.300

INTRODUCTION 
Neural stem cells (NSC), also known as neural precursor 
cells (NPC), are the common source of all neuronal and 
glial cells, including astrocytes and oligodendrocytes, 
in the developing and adult CNS. They arise from 
the neuroepithelial layers which line the spinal canal 
and forebrain ventricles at early embryonic stages 
and reside in circumscribed regions in the postnatal 
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brain to produce in a spatio-temporal controlled 
manner a variety of cell-types. Following a series of 
symmetric proliferative divisions, NSCs progress to 
asymmetric neurogenic divisions. Hereby, the parent 
cell maintains the progenitor state while the daughter 
cell migrates to its final destination, exits from the cell 
cycle, differentiates and participates in the formation of 
complex neural networks[1]. Although the last decade 
has witnessed major progress on the pathways and 
genes coordinating NSC behavior, a potential role 
of imprinted genes has been largely ignored. In this 
review, we will consider current evidences for the 
general impact of imprinted genes in NSC cell fate 
decisions and differentiation with a particular focus on 
their relationship with the imprinted gene Zac1, as well 
as the role of Zac1 itself, which encodes a versatile 
transcriptional regulator.

GeNOmIC ImpRINTING 
Although equivalent complements of paternally and 
maternally expressed autosomes are transmitted 
from parent to offspring, select autosomal regions 
can be lastingly silenced as a result of their parental 
origin. This process takes place in the respective 
parental germ cells and is known as genomic 
imprinting. Germline-derived imprints are preserved 
during fertilization and somatic development with 
few remarkable exceptions (see below). Some 120 
genes with a verified imprinting status have been 
identified in mouse, which are largely conserved 
in human and correspond to less than 1% of the 
genome[2]. A considerably larger number of genes 
with a strong bias in allele-specific expression has 
been recently detected in mice brains although an 
authentic imprinting status has still to be proven[3,4]. 
In this respect we note that the reported number of 
genes showing allele-specific expression differences 
in mice actually matches general estimates on tissue-
specific and allele-specific differences in human gene 
expression (approximately 10%) based on common 
genetic variations (i.e., single nucleotide and copy 
number polymorphisms)[5]. This observation speaks 
against the hypothesis that most of these allelic 
differences originate from genomic imprinting.    

Multiple molecular mechanisms govern imprinted 
gene expression, they include CpG methylation 
of specific DNA sequences, ncRNAs, alterations in 
chromatin structure, and posttranslational histone 
modifications (e.g., lysine acetylation, lysine and 
arginine methylation, serine phosphorylation, and 
covalent binding of the small peptide ubiquitin)[6,7]. 
Above all, DNA methylation is at the center of the 
imprinting process and is thought to catalyze the 
establishment and life-long maintenance of genomic 
imprints. Differentially methylated regions (DMR), 
which harbor CpG-rich regulatory sequences, play 
a critical role in determining parental allele-specific 
expression. With few exceptions (i.e., Zac1) imprinted 

genes cluster in huge, conserved chromosomal 
domains throughout the genome, and their well-
balanced expression enables regular development 
from fetus to early postnatal life[8,9].  

GeNOmIC ImpRINTING aND The bRaIN
Dysregulation of imprinted gene expression can elicit 
complex neurodevelopmental syndromes in humans, 
frequently associated with mental retardation [i.e., 
Angelman syndrome (OMIM 105830) and Prader-Willi 
syndrome (OMIM 176270)[10]]. Moreover, psychotic 
and autistic spectrum disorders possibly result from 
more subtle deregulation of imprinted genes. Indeed, 
mice harboring altered dosage of single or multiple 
imprinted genes showed various defects in higher 
brain functions ranging from learning[11] and memory 
formation[12] to social and nurturing behaviors[13-15]. 

a ROle Of ImpRINTeD GeNes IN NsCs?
On a historical ground, both NSCs and imprinted 
genes have been studied in the context of brain 
development. While our insight into the role of NSCs 
in brain development has largely expanded over 
the last decade[1], the molecular targets and cellular 
pathways by which imprinted genes participate in 
brain development remain poorly defined. Importantly, 
the roles of NSCs and imprinted genes have been 
commonly investigated independently of each other 
although they apparently participate in the same 
developmental processes. Thus, new studies should 
explore possible reciprocal interactions between 
imprinted genes and NSCs during neurodevelopment. 
Here, we highlight recent evidences in the scientific 
literature on the critical role of imprinted genes in 
NSCs and major cellular processes they control.

INsUlIN-lIke GROwTh faCTOR 2
Insulin-like growth factor (Igf2) was the first mammalian 
gene shown to be maternally imprinted as a result of a 
differentially methylated imprinting control region (ICR) 
located nearby and upstream of H19, which is imprinted 
in the opposite direction (see below)[16]. 

The product of Igf2 is a potent growth factor 
promoting cell survival, proliferation, and differentiation 
by binding with high affinity to the insulin-like receptors 
Igf1r or Igf2r, but less efficiently to the insulin receptor 
(Insr). Hereby, Igf2r has no signaling function and 
is encoded by the paternally imprinted Igf2r gene. 
This antagonistic functional relationship together with 
the opposite imprinting of Igf2 and Igf2r originally 
stimulated the genetic conflict hypothesis for genomic 
imprinting[17].

During CNS development, Igf2 is for the most 
part synthesized by the choroid plexus, and released 
into the cerebrospinal fluid (CSF), which contacts the 
primary cilia and apical surfaces of cortical progenitors. 
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There, CSF-borne Igf2 binding to the Igf1r stimulates 
neural precursors proliferation[18].

Neurogenesis is maintained at a low level in the 
adult brain in so-called neurogenic niches, which 
comprise the subventricular zone (SVZ) of the 
lateral ventricles and the subgranular zone (SGZ) of 
the dentate gyrus (DG) of the hippocampus. Adult 
neurogenesis resembles in many aspects embryonic 
neurogenesis and raises the possibility of an additional 
role of Igf2 in stemness maintenance in the mature 
brain. In support of this hypothesis, transcriptome 
analysis of the SGZ evidenced substantially higher 
expression of Igf2 in stem cells than in immature 
neurons[19]. Igf2 expression localized to radial-glial like 
NSCs (Nestin+, Sox2+, and Gfap+) and to a significant 
fraction of dividing cells (Ki67+). Interestingly, Igf2 
enhances in vivo and in vitro the proliferation of NSCs 
isolated from the DG, but not from the SGZ, indicative 
of a site-specific effect. Finally, the secretion of Igf2 by 
Nestin+ progenitors in the external granule cell layer 
(EGL) potently stimulates neuronal cell proliferation 
whereas overexpression of Igf2 in granule neurons 
facilitates tumor formation in rodents[20]. 

In sum, these reports show that Igf2 enhances in a 
tissue- and age-dependent manner NSC proliferation 
and maintenance.

H19 ncRNA
The maternally imprinted H19 locus localizes in tandem 
with the oppositely imprinted Igf2 gene[16] and encodes 
high levels of a 2.5 kb long RNA polymerase II-derived 
transcript. This large intergenic non-coding RNA 
(lincRNA) is not involved in the imprinting process[21,22] 
but inhibits in vitro and in vivo tumor growth possibly 
due to its participation in and regulation of an 
imprinted gene network (IGN, see below).   

Additionally, the first exon of H19 encodes a micro 
RNA-containing hairpin that serves as a template 
for the miRNA 675, which reduces Igf1r expression 
and Igf2-signalling in the placenta[23]. These self-
restraining activities of the tandem Igf2-H19 locus 
are necessary for normal embryogenesis and protect 
against parthenogenetic development in mammals[24]. 

Erasure of imprinting at the Igf2-H19 DMR is found 
in primordial germ cells (PGS) and associates with 
overexpression of H19 RNAs at the expense of Igf2. 
This epigenetic switch-off is thought to safeguard PGS 
quiescence and prevent from teratoma formation[25]. 

A similar strategy seems to be used by very small 
embryonic-like stem cells (VSELs), a population 
of very rare early-development cells with broad 
differentiation potential[26]. VSELs can give rise to 
neurons, oligodendrocytes, and microglia among other 
cell types and possibly fulfill a role in physiological tissue 
rejuvenation and regeneration following cell damage.

In VSELs, the paternally silenced allele of select 
imprinted genes (i.e., Igf2-H19 and Rasgrf1) is 
reactivated by demethylation and results in biallelic 
expression. Conversely, select maternally expressed 

alleles (i.e., Peg1, Igfr2, and p57Kip2) undergo 
deactivation and silencing by DNA methylation. Overall, 
this cell type-specific resetting of a limited number 
of genomic imprints supports growth-inhibition, 
cellular quiescence, and preservation of the stem cell 
population. On the other hand, methylation at the 
Igf2-H19 DMR slowly increases with aging and has been 
suggested to facilitate increased insulin signaling and 
age-related depletion of the VSELs reservoir[27].  

Taken together, integrate imprinting at the Igf2-H19 
tandem locus critically controls growth and cell 
proliferation in the early embryo as well as in VSELs. 

DelTa-lIke hOmOlOG 1 
The imprinted Dlk1-Dio3 domain harbors the delta-
like homolog 1 (Dlk1) and type III iodothyronine 
deiodinase (Dio3) genes which are expressed from 
the paternal derived chromosome. Similarly to the 
Igf2-H19 locus, Dlk1 and the close by Gtl2 (gene trap 
locus 2, alias maternally expressed gene 3, Meg3) 
are imprinted in an opposite manner and locate 80 
kb apart from each other. Three DMRs containing 
specific epigenetic signatures are hypermethylated on 
the paternal allele in somatic tissues[28]. Hereby, those 
DNA methylation marks which are deposited in the 
paternal germline are confined to the central DMR. 
This region contains tandem repeats and localizes in 
the intergenic region of the tail-to-head orientated 
Dlk1 and Gtl2 genes (Figure 1). 

Dlk1 encodes a transmembrane protein and 
closely resembles the Notch/Delta/Serrate type family 
of signaling molecules. Due to minor albeit important 
structural differences Dlk1 is thought to compete 
with canonical Delta-like (DLL) ligands at the Notch 
receptor and to inhibit downstream signaling[29]. 

Dlk1 is broadly expressed in developing mouse 
tissues and continues to be expressed in some adult 
neuronal tissues (i.e., ventral striatum, septum, and 
ventral tegmental area) including the SVZ[29,30]. Here, 
Dlk1 is detected in NSCs (Nestin+, Sox+, Gfap+) and 
astrocytes (Sox2-, Gfap+, S100b-) localized to the 
germinal niche but not in differentiated parenchymal 
astrocytes (Gfap+, S100b+) and neuroblasts (β
Ⅲ-tubulin+). NSCs mainly express the membrane-
bound form of Dlk1 that is poorly active on its own but 
necessary for the response to secreted Dlk1 produced 
by nearby astrocytes. 

Postnatal deletion of Dlk1 enhances NSC proliferation 
in the SVZ, causing the depletion of the quiescent 
NSC pool and reduced neurogenesis at later ages. 
Interestingly, this process takes place irrespectively of 
the parental origin of the deleted allele[30], suggesting 
that Dlk1 can be expressed from either parental 
allele. Indeed, both alleles of Dlk1 are expressed from 
postnatal day 7 onward in NSCs and niche astrocytes 
as a result of an increase in methylation at the germ 
line targeted ICR of the maternal allele (Figure 1). 
This postnatal epigenetic switch at the Dlk1 locus is 
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Paternal deletion of this chromosomal segment in 
human underlies the neurodevelopmental Prader-Willi 
syndrome, which manifests with feeding anomalies, 
gross obesity, and hypogonadism[10].

Necdin (Ndn) is broadly expressed in postmitotic 
neurons from early embryonic to adult ages with 
particular high expression in the developing hypo-
thalamus, medulla oblongata, pons, and midbrain. 
Knock out mice show variable neonatal lethality, 
reductions in oxytocin and luteinizing hormone-releasing 
hormone producing hypothalamic neurons, impairments 
in serotonergic and catecholaminergic projections, 
and decreased tangential migration of neocortical 
interneurons from the basal forebrain[31].  

Ndn was originally discovered in a screen for 

confined to the neurogenic areas, whereas all other 
tissues continue to express Dlk1 exclusively from the 
paternal allele from embryogenesis to adulthood.

These findings suggest that genomic imprints at 
select loci (i.e., Igf2-H19 and Dlk1) are dynamically 
regulated in NSCs during specific developmental 
time windows, possibly to match the need for cell 
stemness vs cell differentiation. 

NeCDIN
Human and mouse necdin genes are maternally 
imprinted and localize to chromosome 15 q11.2 and a 
syntenic segment on chromosome 7, respectively[10], 
within a cluster of paternally expressed genes. 
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Figure 1  Genomic imprinting at the delta-like homolog 1 locus is reset in the subventricular zone. A: Delta-like homolog 1 (Dlk1) is monoallelically expressed from 
the paternal allele during development. Silencing of the maternal allele takes place in non-neuronal and various neuronal tissues such as the subventricular zone (SVZ) 
of the lateral ventricle (SVZ) and the medial septum (MS). At the molecular level, maternal silencing results from the absence of DNA methylation at the intergenic, germ 
line-controlled differentially methylated regions (DMR) (unfilled hexagon), which resides between the Dlk1 and Gtl2 genes and their associated DMRs (unfilled lollipops). 
Conversely, methylation at the intergenic DMR (filled hexagon), the 3’ end Dlk1 DMR and the Gtl2 DMR (filled lollipops) associates with expression from the paternal allele. 
The same methylation patterns are present in the SVZ (left scheme) and MS (right scheme) at embryonic ages; B: Dlk1 shows biallelic expression from postnatal day 7 
onward towards adulthood in the SVZ, but not in the MS. Hereby, the maternal methylation pattern closely resembles the one on the paternal allele (i.e., methylation at the 3’
end Dlk1 DMR, the intergenic DMR, but not the Gtl2 DMR). At opposite, the methylation pattern in the MS is preserved and determines monoallelic Dlk1 expression.  
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genes induced in neurally differentiated embryonic 
carcinoma cells[32]. Functionally, Ndn potently inhibits 
proliferation in favor of differentiation by virtue of its 
interaction with various proteins critically involved in 
cell cycle progression and survival[33,34]. Similar to the 
retinoblastoma tumor suppressor gene, Ndn binds to 
the carboxyl-terminal transactivation domain of E2F1 
to repress its activity and consequently cell cycle 
progression[33]. On the other hand, Ndn interacts 
with the amino-terminal transactivation domain 
of p53 to abolish its proapoptotic function without 
interfering with p53-dependent cell cycle arrest[34]. 
Ndn also recruits the deacetylase sirtuin 1 to promote 
deacetylation of p53 leading to its inactivation and 
protection against DNA damage induced neuronal 
apoptosis[35]. 

Furthermore, Ndn interacts and promotes the 
degradation of the hypoxia inducible factor-1 alpha 
(HIF) under normoxia[36], whereas hypoxia enhances 
degradation of Ndn in primary NSCs through the HIF-
associated ubiquitin-proteasome system[37]. 

Interestingly, a growing number of reports (e.g.,[38-40]) 
suggest that NSC proliferation is increased under 
hypoxia. Accordingly, Ndn-deficient NSCs show 
increased proliferation and apoptosis under normoxia, 
but not under hypoxia, which triggers degradation of 
endogenous Ndn in wild-type NSCs. Moreover, Ndn 
null mice show higher rates of NSC proliferation and 
apoptosis [e.g., in the embryonic (E14.5) ganglion 
eminence], strengthening Ndn’s dual role in the 
suppression of proliferation and apoptosis[33-35].  

Ndn controls additionally the proliferation of NSCs 
in the ventricular zone of the embryonic cortex as 
evidenced by an upregulation of the stem cell marker 
Sox2, a downregulation of the cyclin-dependent 
kinase inhibitor p16Ink4, and significantly increased 
proliferation rates in Ndn null mice[41]. Interestingly, 
Ndn binds in vitro and in vivo to the polycomb protein 
Bmi1 and counteracts Bmi1-dependent inhibition of 
the p16Ink4 promoter and consequently promotes NPC 
proliferation. Conversely, overexpression of Bmi1 
prevents Ndn-mediated inhibition of E2F1-driven 
Cdk1 promoter activity[41].

Together, these findings suggest that Ndn controls 
NSC proliferation and apoptosis in an oxygen-
dependent manner through interaction with various 
proteins driving cell proliferation (E2F1, Bmi1) and 
apoptosis (p53, Sirt1). 

CYClIN-DepeNDeNT kINase INhIbITOR 
p57kIp2 
The catalytic activity of cyclin-dependent kinases 
(CDK) is regulated by the binding of cyclins which 
oscillate periodically during the cell cycle and drive 
the orderly progression through consecutive phases. 
Conversely, inhibition of these complexes by CKIs 
induces transient or permanent cell cycle arrest, 

differentiation, quiescence, senescence, or apoptosis. 
The formation of early progenitors from neuro-

epithelial cells and the transition from proliferative 
symmetric to neurogenic asymmetric division is 
accompanied by a lengthening of the cell cycle, 
preferentially in G1-phase, implicating an involvement 
of CKIs[42]. 

Paternally imprinted p57Kip2 gene encodes a cyclin-
dependent kinase inhibitor (CKI)[43] expressed in the VZ 
and SVZ, midbrain, thalamus, hypothalamus, cortical 
plate, septum, basal ganglia, cortex, and mantle zone 
of the hippocampus during development[44,45]. By 
means of controlling cortical progenitor cell cycle exit, 
p57Kip influences the migration and differentiation of 
neuronal precursors. Absence of p57Kip2(+/m-) during 
late embryogenesis and postnatal life gives rise to 
cortical hyperplasia. P57Kip2(+/m-) deficiency leads to an 
increased proliferation of radial glia cells (RGC) and 
intermediate precursors (IPC) and promotes re-entry 
into the cell cycle during corticogenesis[46]. Cell cycle 
analysis of RGCs and IPCs evidenced an abnormal 
short cell cycle length favoring precursor proliferation 
and aberrant migration into cortical layers.  

In mice adult hippocampus, p57Kip2 deficiency 
causes the severe depletion of the NSC reservoir by 
enhancing neuronal differentiation of NSCs at early 
stages of life[47]. Moreover, consistent with a role of 
p57Kip2 in restraining NSC proliferation, neurogenic 
stimuli such as extensive running elicit a stronger 
activation of NSCs in mid-aged p57Kip2(+/m-) animals 
indicating that p57Kip2 might also play a critical role in 
the life long plasticity of brain functions[47]. 

In addition to their canonical role in cell cycle control, 
CKIs have further functions including transcriptional 
regulation[48]. As an example, nuclear p57Kip2 expression 
rises transiently during early telencephalic progenitor 
proliferation [embryonic day (E) 12.5] without inducing 
cell cycle exit. Instead, p57Kip2 interacts with the pro-
neuronal basic helix-loop-helix (bHLH) factor Mash1 
and blocks its transcriptional activity. As a result, 
p57Kip2 delays neuronal differentiation of telencephalic 
progenitors by antagonizing Mash1.

Taken together, p57Kip2 through inhibition of cell 
cycle progression and unrelated transcriptional 
mechanisms regulates many key processes in NSCs, 
including proliferation, cell cycle exit, differentiation, 
cell fate decisions, and stem cell quiescence in a cell 
type- and age-specific manner. 

ZINC fINGeR pROTeIN ReGUlaTING 
apOpTOsIs aND Cell CYCle aRResT 
The Zac1 gene is maternally imprinted and maps on 
chromosome 10 in mice and chromosome 6q24 in 
human[49,50]. The presence of a canonical C2H2 zinc 
finger domain and the potent induction of apoptosis 
and cell-cycle arrest in transformed tumor cells 
inspired originally the naming “Zac1”[51]. 
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An increased dosage of ZAC1 due to chromosomal 
anomalies or imprinting defects at the DMR is the 
most frequent genetic defect underlying transient 
neonatal diabetes mellitus (TNDM)[52]. This disease 
manifests with intrauterine growth retardation (IUGR), 
dehydration, hypoinsulinemia, and early-onset 
hyperglycemia in term, newborn infants. Transgenic 
mice, which harbor an extra copy of the human 
ZAC1 locus, display key symptoms of the human 
condition and show at the cellular level an impaired 
proliferation and maturation of β-cell progenitors[53]. 
In naïve pancreata, Zac1 is preferentially expressed in 
insulin-positive progenitor cells and increases strongly 
perinatally with the onset of terminal differentiation. 
At the same time, Zac1 confers repression following 
binding to specific DNA elements (see below) at the 
proximal promoter of the paternally imprinted Rasgrf1 
gene, an important modulator of various growth factor 
pathways. As a result, stimulus-induced activation of 
mitogen-activated protein kinase and phosphoinositide 
3-kinase pathways and, ultimately, insulin secretion is 
impaired under conditions of increased Zac1 dosage[54]. 

Zac1 confers transcriptional regulation either by 
DNA-binding[50,55-57] or as coregulator of the nuclear 
receptor family, in particular of those members 
belonging to the subgroup of steroid receptors[58], and 
furthermore, by coactivation of members of the p53 
family[59,60]. Transcription factors typically comprise 
separable, modular DNA-binding and transcriptional 
domains; the latter confer gene activation and 
repression in a context-dependent manner[61]. Zac1 
matches well to these criteria, whereby its diverse 
transcriptional functions are tightly controlled by 
the interaction of single zinc fingers at the level of 
protein-protein and protein-DNA interactions[55,62].

The N-terminal zinc finger domain, containing 
seven canonical C2H2 zinc fingers, is highly conserved 
in mouse and human Zac1 proteins and across the 
Zac1 gene family[63]. Mouse and human proteins 
diverge, however, by a central region rich in proline 
residues and a C-terminal cluster of glutamic acid 
residues both of which exist exclusively in mice. 
The proline-rich region together with the adjacent 
upstream region, termed linker region, confers potent 
transactivation[64]. This function is further enhanced 
by the simultaneous recruitment of the general 
coactivators p300/CBP through the C-terminus. In 
contrast to the separable function of multiple domains 
in mice, transactivation and p300 recruitment 
map indistinguishably to the C-terminus of human 
ZAC1[62]. 

Zac1 can bind as a monomer to GC-rich palindromic 
DNA-elements or as a dimer to direct and reverse 
repeat elements to confer transactivation. Conversely, 
Zac1 binding to a half-site of a repeat element causes 
repression[55]. Mechanistically, the zinc fingers assist in 
the recruitment of p300 and regulate p300’s catalytic 
activities in a manner dependent on the nature of the 
bound DNA element[62]. Hereby, single zinc fingers can 

participate selectively in DNA binding and/or regulation 
of coactivator activities.  

Moreover, Zac1 can also act as a coregulator for 
unrelated transcription factors comprising nuclear 
steroid or thyroid hormone receptors or various 
members of the p53 family (including p53 itself, 
p63, and p73). All of these transcription factors bind 
to specific DNA elements at their target genes to 
critically control cell proliferation and differentiation in 
a cell type-specific manner[58,59]. For example, Zac1 is 
recruited jointly with the coactivators p300 and PCAF 
by the tumor suppressor p73 at the p21Cip1 promoter 
during early neuronal differentiation (see below). 
In addition to serving as a scaffold for coactivator 
assembly, Zac1 furthermore regulates PCAF’s catalytic 
functions similar to the ones of p300[65]. Overall, this 
close relationship between Zac1 DNA-binding and 
enzymatic regulation of transcription might contribute 
to the precise and efficient regulation of target genes. 

In brief, Zac1’s transcriptional activities are 
coordinated by sequence-specific DNA binding or the 
coregulation of unrelated transcription factors. 

Zac1 expression during neurodevelopment 
Zac1 is highly expressed in progenitor/stem cells of 
neuroectodermal and mesodermal tissues during 
early embryogenesis[66]. Zones of active cellular 
proliferation, comprising the telencephalic vesicles 
and the infundibular recess of the third ventricle 
(the origin of the neurohypophysis) show robust 
Zac1 expression at E9.5 and E12.5. Moreover, Zac1 
is also detected in mitotically active regions of the 
developing nervous system including the neural tube 
at E9.5 and the neural retina at E10.5. At later stage 
of neurodevelopment, high levels of Zac1 expression 
appeared in the mitotically active cell layers lining 
the VZ of the 3rd and 4th ventricle, the EGL of the 
cerebellum, and different neuroepithelia (e.g., 
infundibulum, ventral hypothalamic sulcus)[67,68]. 

As noted before, Zac1 expression induced apoptosis 
and cell cycle arrest in transformed tumor cells[50,51,56] 
raising the question of its function in neural progenitor 
cells. In this respect, the analysis of Zac1 deficient 
mice (Zac1+/m-) provided interesting insight into 
the role of Zac1 in the brain[69]. Specifically, these 
animals revealed a high incidence of hydrocephalus, 
a significant decrease in brain size, and a substantial 
increase in the proliferation rate of progenitor cells in 
the germinative zones of the dentate gyrus, the RMS 
of the olfactory system, and the dentate gyrus[70]. 
At the same time, the number of Nestin+ cells was 
largely unaffected, compatible with the view that Zac1 
rather controls the proliferation of progenitor cells 
than of stem cells. Yet, a limitation to this work is the 
fact that Zac1 deficient mice develop IUGR, various 
skeletal anomalies, and postnatal lung failure pointing 
to additional defects at the level of single organs 
and whole systems that are likely to impact on brain 
development. As an alternative to the multilayered 
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phenotype of Zac1 knock out mice, we conducted 
genome wide expression profiling (see below) in order 
to identify Zac1 target genes and analyzed their roles 
in well-defined in vitro and in vivo systems to elucidate 
Zac1’s function at the cellular level. 

Zac1 target genes in NSCs
Pituitary adenylate cyclase activating poly
peptide receptor 1: The first Zac1 target gene to be 
identified was the G-protein coupled receptor for the 
neuropeptide pituitary adenylate cyclase activating 
polypeptide (PACAP)[51,57,71], which controls various 
neuroendocrine functions in addition to its role as 
potent neurotrophic factor[72-74]. Mechanistically, 
Zac1 binds to an imperfect palindromic DNA element 
localized in the proximal polypeptide receptor 1 (Pac1) 
promoter to confer transactivation in a cell-type 
specific manner and to compete at the same time 
with the estrogen receptor dependent activation of 
PAC1[75]. 

PACAP and PAC1 are broadly expressed in the 
fetal brain and reduce the proliferation rate of certain 
neural precursor populations. At E13 in rat, PACAP 
can be detected hippocampus, hypothalamus, cortex, 
amygdala, dorsal root ganglia, and spinal cord, whereas 
PAC1 is expressed in the neural plate, the neuroepithelia 
of the mesencephalon and rhombencephalon at E9, 
and in the neuroepithelia of the cortex, hippocampal 
formation, and cerebellum at E11, and in the basal 
telencephalon and olfactory bulk from E13 and E16 
forward, respectively[76]. PACAP induces a sharp 
increase in p57Kip2 expression in embryonic cortical 
precursors resulting in decreased CDK2 kinase activity, 
S-phase entry, and DNA synthesis. Furthermore, PACAP 
promotes the association of p57Kip2 with the kinase 
complex supporting its anti-mitogenic activity in neural 
progenitors. In accord with the specific role of p57Kip2 in 
cortical neurogenesis (see above), the expression levels 
of CDK2, cyclin E, or of the CKIs p21Cip2 and p27Kip1 
remain unaffected by PACAP.    

Coregulation of p53 and p73 target genes: As 
noted before, Zac1 can serve as a coregulator for 
p53 and p73 due to its scaffolding function and 
regulation of coactivator activities[59,65]. The p53 
family consisting of p53 itself, p63, and p73 encodes 
transcription factors with a key role in proliferation, 
differentiation, apoptosis, stem cell renewal and cell 
fate commitment[77]. 

Zac1 coregulation of p53 has been originally 
discovered in a cervical carcinoma cell line[59] and led 
us to investigate its potential role in NSCs. Consistent 
with previous studies[78,79], we observed high levels 
of p53 in the undifferentiated state in ESCs which 
reside primarily in the cytoplasm[80] and decline upon 
differentiation[65]. At the same time, p53 binds to 
the promoter of the pluripotency genes Nanog and 
Oct-4[81,82], represses their transcription, and triggers 
the transition from self-renewal to differentiation. 

Although Zac1 has been reported to co-repress 
nuclear receptors in a cell-type specific manner, 
no evidence exists for a comparable role towards 
members of the p53 family[58,59]. 

In the developing brain, p53 is expressed in 
progenitor cells of the SVZ[83] where it induces cell-
cycle arrest, DNA repair and cell death following 
genotoxic stress[84]. P53-deficient mice show higher 
cell proliferation in the SVZ and enhanced neurosphere 
formation in vitro[83,85] consistent with a role of p53 
as negative regulator of NSC self-renewal. Moreover, 
p53 seems to be involved in different aspects of NSC 
differentiation including repression of self-renewal and 
promotion of gliogenesis[86,87]. 

Mounting experimental evidence indicates that 
endogenous reactive oxygen species (ROS) play a 
critical role in cell signaling and NSC physiology including 
appropriate timing of neurogenesis. In this respect, 
the pattern of ROS generation matches the one of p53 
immunoreactivity in the developing telencephalon. 
Similarly to Zac1, nuclear p53 is detected in Nestin+ 
NSCs in E11 and E13 proliferative germinal zones, and 
its expression decreases towards the cortical plate[88]. 
Loss of p53 function causes enhanced ROS production 
and premature neurogenesis, which is partly reversed 
by reinstatement of p53 or antioxidant treatment[88].   

Despite these interesting findings, a role of Zac1 
in any of these p53-dependent processes is presently 
unknown and future studies are needed to address 
this topic. 

P73 has been recognized for its critical role in brain 
development as evidenced by the highly penetrant 
phenotype in p73 null mice which display cortical hypopl-
asia, hydrocephalus, and hippocampal dysgenesis[89,90]. 
The hippocampal anomaly corresponds with either 
a complete absence or truncation of the lower blade 
of the neurogenic DG and an abnormal gyration of 
the Ammon’s horn. Isoform-specific p73 knock-out 
mice showed that this phenotype results in major 
part from the absence of the activation-proficient 
p73 protein (TAp73) as opposed to the activation-
deficient p73 protein (ΔNp73). The latter isoform lacks 
Zac1 coactivation[65] and is thought to act as a potent 
prosurvival protein in neurons by counteracting the 
proapoptotic function of p53[91,92]. Therefore, it would 
be of interest to investigate the possibility of Zac1-
dependent coregulation of TAp73 in NSC in greater 
depth.

Withdrawal of leukemia inhibitory factor (Lif1) 
potently induces neuronal differentiation of ESCs 
and strongly upregulates Zac1 and p73 expression 
concomitantly to a rapid decline in p53 mRNA and 
protein[65]. At the same time, p73 isoforms switch 
from activation-deficient DNp73, prevailing under 
the undifferentiated state, to activation-proficient 
TAp73 and caused a strong up-regulation of the 
p21Cip1 and p57Kip2 genes, two well-known direct p73 
target genes[93]. As referred to above, DNA bound 
p73 recruits Zac1 to select target genes, where it 
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serves as a scaffold for coactivator assembly and 
enhancement of catalytic functions. As a result, Zac1 
enhances p73 transcriptional activities in a site-
specific manner[65]. These findings suggest a joint role 
for Zac1 and p73 in inducing cell cycle exit of ESCs 
and in differentiation towards neural cells. 

In vivo studies evidenced a reduced proliferation 
of neurogenic cells isolated from the E16 and E18 
VZ/SVZ and a smaller size of the perinatal SVZ in 
p73 deficient mice when compared to controls. As 
a result, p73(-/-) mice suffer from a depletion of the 
stem cell compartment at birth pointing to a role of 
p73 in NSC self-renewal and maintenance[94]. This 
function of p73 extends also to the adult neurogenesis 
in the DG. At the molecular level, p73 deficiency 
elicits perturbations in the canonical Sox2 and Notch 
signaling pathways driving NSC proliferation[95]. 
Additionally, a reduced transcription of Hey2, a 
negative regulator of activator bHLH proteins, impairs 
the long-term maintenance of neural precursors in 
the absence of p73[95].       

Because Zac1 is expressed in embryonic and 
adult neural stem cells it could potentially interact 
with and coregulate TAp73 functions. Presently, the 
actual evidence remains limited to Zac1 coactivation 
of TAp73 during neuronal differentiation of ECSs. 
However, further studies should address the role of 
Zac1 coregulation for NSC self-renewal, maintenance 
and differentiation at different developmental stages 
though. 

Suppressor of cytokine signaling 3: Genome-
wide expression profiling in a cerebellar neural stem 
cell line (C17.2) using a Tet-off system led to the 
identification of suppressor of cytokine signaling 3 
(Socs3), a negative regulator of Jak/Stat3 signaling, 
as potential Zac1 target gene[96]. 

The transition from neuronal cell types to glial 
subtype-specific precursors is critically controlled by 
preset developmental programs and extracellular 
signals like the cytokine driven Jak/Stat3 pathway, 
which is largely inactive at early, neurogenic stages and 
takes on at later gliogenic stages, when the expression 
of neurogenic factors progressively declines[97].   

Zac1 recognizes a cluster of GC-rich DNA elements 
in the proximal promoter and intronic region of the 
mice and human Socs3 genes to confer transcriptional 
activation[96]. 

Two radial glial-like NSC lines, derived from 
E15 or the adult SVZ of mice, showed a transient 
upregulation of Zac1 mRNA and protein upon neuronal 
or astroglial differentiation, whereby transactivation 
of Socs3 occurred solely under the latter condition 
indicative of a role of Socs3 as a lineage-specific 
target gene. Consistent with this finding, DNA 
methylation at the Socs3 gene decreased during 
astroglial differentiation but remained unaltered 
during neuronal differentiation. Zac1 and Socs3 are 
expressed simultaneously exclusively during the early 

stage of astroglial differentiation and associated with 
a strong decline in receptor activation-dependent 
tyrosine phosphorylation of Stat3. In agreement with 
these results, Zac1 and Socs3 are highly expressed 
in the neocortical ventricular zone at E18, which 
corresponds to the onset of astrogliogenesis[96].

Astroglial differentiation is triggered by various 
cytokines namely cardiotrophin-1, ciliary neurotrophic 
factor, or leukemia inhibitory factor, which activate 
Jak/Stat3 signaling[97-100]. Conversely, genetic deletions 
in this pathway (i.e., gp130, LIF and Stat3) reduce 
astroglial differentiation[97,101,102]. Importantly, over-
expression of Socs3 inhibits Stat3 signaling and 
impairs astrogliogenesis[103], whereas conditional 
deletion of Socs3 leads to enhanced astrogliogenesis 
in neonatal mouse brain and primary neuroepithelial 
cells[100]. These findings led us to investigate whether 
Zac1-dependent induction of Socs3 could provide a 
negative feedback loop to inhibit Jak/Stat3 signaling 
during early astroglial differentiation of NSCs.

In accord with an inhibitory role in Jak/Stat3 
signaling, Zac1 overexpression delayed astroglial 
differentiation, independent of a simultaneous increase 
in the number of cells in transition into G1 arrest[96]. 
Conversely, knock-down of Zac1 in NSCs facilitated 
astroglial differentiation and postponed cell cycle 
arrest. Although lengthening of the G1 phase has been 
suggested to initiate differentiation, this mechanism 
seems not to apply to Zac1’s cell cycle arrest function 
in NSCs and supports the self-sufficient role of Socs3 in 
the control of astroglial differentiation. Compatible with 
this view, knock-down of Socs3 in Zac1 overexpressing 
cells reinstated timely astroglial differentiation. 
Similar results were obtained in primary E18 NSCs 
strengthening the role of Zac1-dependent regulation of 
Socs3 in early astroglial differentiation of NSCs[96]. 

Overall, this study provides detailed insight into the 
molecular mechanisms by which an imprinted gene 
can fine tune cell-fate decisions and differentiation 
in NSCs and assigns to Zac1 a critical role in the 
prevention of precocious astroglial differentiation 
(Figure 2).

Transcription factor 4: Zac1 expression robustly 
increased under astroglial as well as neuronal 
differentiation, which led us to question Zac1’s 
function during the latter condition[96]. The family 
of bHLH proteins plays a prominent role in cell fate 
decisions and differentiation. These proteins share the 
eponymic bHLH domain which is necessary for homo- 
or heterodimerization and for binding to a specific 
DNA sequence named E-box motif[104]. bHLH proteins 
expressed in the brain can be classified into two 
groups; the so-called specification factors (i.e., Math, 
Mash, neurogenin, and NeuroD), which are expressed 
in a spatiotemporally controlled manner, and their 
ubiquitously expressed dimerization partners, 
the E proteins[105,106]. Under the undifferentiated, 
proliferative state proneural factors are weakly 
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expressed, prior to a rapid increase in concert with 
the E-proteins at the initiation of neurogenesis. 
E-protein family members comprise two splice 
variants of E2A (E12 and E47), HEB, and transcription 
factor 4 (Tcf4) (alias E2-2, SEF2, or ITF2), which 
upon heterodimerization with a specification factor, 
bind to the promoter of their target genes, in order 
to promote neurogenesis, and inhibit astrogliogenesis 
and NSC proliferation[107,108].

Expression profiling in a NSC line (C17.2) based 
on inducible Zac1 expression showed a robust 
upregulation of Tcf4 mRNA and protein[109]. Thereby, 
Zac1 bound simultaneously to the proximal promoter 
and first intron of Tcf4 and binding at either site was 
necessary to confer synergistic transactivation. 

Neuronal differentiation of ESCs caused a strong 
Zac1 and Tcf4 upregulation and associated with Zac1 
binding at the Tcf4 gene. As noted before, Zac1 
upregulation following differentiation of embryonic 
and adult NSC lines occurred under either astroglial 

or neuronal differentiation, whereby induction of Socs3 
was confined to the astroglial lineage. Oppositely, 
Zac1-dependent upregulation of Tcf4 was specific to 
neuronal differentiation, associated with an overall 
increase in active chromatin marks but no change 
in DNA methylation, at the Tcf4 locus[109]. Zac1-
dependent Tcf4 regulation was also confined to 
neuronal differentiation of primary NSCs; moreover, 
Zac1 binding to and transactivation of the Tcf4 locus 
occurred exclusively during periods of neuronal 
differentiation in the neocortical ventricular zone[109]. 

Among known Tcf4 target genes, p57Kip2 is of 
particular interest as it is co-regulated with Zac1 
in the framework of an imprinted gene network 
(see below), it critically controls differentiation and 
migration of radial glia cells, and shares with Zac1 
and Tcf4 a cell cycle arrest function (see above). 

Zac1 and Tcf4 are broadly expressed in neuronal 
progenitor cell populations during early (E11) and 
midneurogenesis (E15) such as in the caudal brain 
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Figure 2  Imprinted Zac1 favors neuronal differentiation of neural stem cells. The Zac1 gene is maternally imprinted and encodes a versatile transcriptional regulator. 
Zac1 expression is strongly induced during neuronal and astroglial differentiation of embryonic and adult neural stem cells (NSCs). During neuronal differentiation (left 
scheme), Zac1 binds to GC-rich DNA binding sites at the Tcf4 promoter and first intron to confer synergistic transactivation. As a result, enhanced Tcf4 expression promotes 
binding to and transactivation of the cyclin kinase inhibitor p57Kip2, which induces G1 arrest. Moreover, Zac1 binds to GC-rich DNA elements at the Socs3 promoter during 
astroglial differentiation (right scheme). Socs3 encodes a potent inhibitor of prodifferentiative Jak/Stat3 signaling and prevents precocious astroglial differentiation. The 
tataa-elements are boxed in light grey and the transcriptional start sites are symbolized by arrows. The first exon in the Tcf4 locus is depicted as a green box (labeled E) 
and coding exons of Tcf4 and Socs3 as green and red boxes, respectively. Tcf4 binds to various E-box motifs (light grey circles) localizing to the p57Kip2 regulatory region.  
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regions, the pallium, and the prethalamic eminence[109]. 
P57Kip2 expression is more localized and mapped 

strongly to the subpallium and peduncular hypothalamus 
where all three factors were detected. 

Functionally, Zac1 enhances G1-cell cycle arrest 
in NSC lines and primary NSCs (E15) during neuronal 
differentiation, by inducing p57Kip2 expression through 
Tcf4[109].

Taken together, these results suggest a role to Zac1 
in the prevention of precocious astroglial differentiation 
through Socs3 induction and in advancing at the same 
time neuronal differentiation through Tcf4 induction 
and Tcf4-mediated upregulation of p57Kip2 (Figure 2).  

ZaC1 ImpRINTeD GeNe NeTwORk
Recent evidence indicates that many imprinted genes 
might work in an integrated network of imprinted 
genes. In this respect, Arima et al[110] noted that Zac1 
and p57Kip2 show a conspicuously similar expression 
pattern in mesenchymal and neuroepithelial tissues, 
suggesting a functional interaction between these genes. 
Interestingly, the Beckwith-Wiedemann syndrome (loss 
of p57Kip2 imprinting) and TNDM (loss of ZAC1 imprinting) 
represent with partly opposite phenotypes including 
gigantism vs IUGR or hypoglycemia vs hyperglycemia. 

At the molecular level, ZAC1 binds in a methylation-
sensitive manner within the promoter CpG island 
of LIT1 (KCNQ1OT1), which encodes a paternally 
expressed, anti-sense RNA thought to repress p57Kip2 

in cis[16]. ZAC1 confers transactivation to LIT1 
promoter constructs suggesting that ZAC1 might down-
regulate p57Kip2 via LIT1 anti-sense[110]. Oppositely, we 
demonstrated that Zac1 upregulates p57Kip2 via Tcf4 in 
NSCs[109]. 

Some aspects of the Zac1 knock-out phenotype, such 
as growth retardation, perinatal death, and incomplete 
bone formation appear difficult to reconcile with Zac1’s 
antiproliferative activities[69]. A possible explanation to this 
puzzle is provided by a meta-analysis of microarray data, 
which indicates that Zac1 coordinates a network of genes 
that consists of a remarkable huge number of imprinted 
genes. These include Igf2, H19, Dlk1, Ndn, and p57Kip2, 
which share an important role in NSC maintenance and 
differentiation, among others (Grb10, Gnas, Meg3, Mest, 
and Sgce). Moreover, Zac1-deficient liver tissue and 
Zac1 overexpression experiments in neuroblastoma cells 
showed an opposite regulation of Igf2, H19, Dlk1, and 
p57Kip2. Interestingly, Zac1 bound to the downstream 
H19 enhancer and conferred transactivation to both the 
H19 and Igf2 promoters (Figure 3). 

More recently, Lui et al[111] showed that IGNs are 
possibly involved in mammalian somatic growth 
control. Early postnatal life is a period of fast somatic 
growth, which slows down with maturation and finally 
arrests in adulthood. A group of 11 imprinted genes 
involved in cell proliferation (including Zac1, Igf2, 
H19, Dlk1, Ndn, and p57Kip2) and part of the Zac1-
IGN is expressed in multiple tissues at levels that 

correlate with trajectories of overall somatic growth 
and decrease coordinately with age. Although this 
study does not explicitly address the role of IGNs in 
NSCs, it importantly suggests that the function of 
IGNs is not reserved to embryonic life but potentially 
extends across lifespan.   

Another recent study focused on gene expression 
profiling in murine long-term hematopoietic stem 
cells (LT-HSC) vs their differentiated progeny. These 
experiments showed that imprinted genes (including 
Zac1, Igf2, H19, Dlk1, Ndn, and p57Kip2) were more 
uniformly expressed in progenitors when compared 
to the differentiated counterparts[112]. Moreover, 
stem/progenitor cells from adult skeletal muscle and 
epidermis show a higher expression of these genes 
when compared to their differentiated derivatives. 

Taken together, the Zac1-associated IGN network 
comprises, among others, imprinted genes that play 
a critical role in NSC maintenance and differentiation. 
Some of them, like Igf2 and H19 seem to be under 
the direct transcriptional control of Zac1 while 
others like Dlk1 might be regulated more indirectly 
as exemplified by Zac1-dependent upregulation of 
p57Kip2 via Tcf4 (Figure 3). 

CONClUsION
A wide range of genes acts in a concerted manner 
during brain development to regulate NSC proliferation, 
migration, and differentiation. Among these, imprinted 
genes have gained increasing apprehension in NSC 
biology due to their critical roles in quiescence, 
stemness, and cellular differentiation. 

The molecular processes controlling both NSC 
fate and imprinted gene expression are manifold and 
include transcriptional regulation, epigenetic, and 
genomic interactions. 

For instance, imprinted genes can regulate the 
expression or the transcriptional activities of proneural 
bHLH proteins in NSCs. Zac1 activates Tcf4 during 
neuronal differentiation of NSCs, while p57Kip2 inhibits 
the transcriptional activity of Mash1. Conversely, the 
proneuronal bHLH-protein neurogenin regulates the 
imprinted Dlk1-Gtl2 locus in the dorsal telencephalon[113] 
indicating bidirectional interactions between imprinted 
genes and proneuronal proteins. 

Genomic imprinting defects have been originally 
recognized for their role in early development of the 
embryo and placenta[9] and more recently for postnatal 
life[114]. New evidences suggest an additional role 
of variation in genomic imprinting in the mediation 
of environmental exposures, which is thought to 
associate with less severe consequences than those 
resulting from loss of genomic imprinting and might 
represent an important component of complex 
traits[115]. For example, newborn of obese parents show 
altered DNA methylation profiles of multiple imprinted 
genes, which may be carried onto the next generation 
and confer an increased risk for metabolic diseases 
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in adulthood[116]. Moreover, the degree of methylation 
of ZAC1 associates with pre- and postnatal growth in 
healthy infants as well as with maternal nutrition and 
lasts at least until the first year of life[117]. Similarly, 
individuals prenatally exposed to famine showed 6 
decades later less DNA methylation of IGF2 compared 
with their unexposed, same-sex siblings[118], although 
variation in DNA methylation at this locus is thought 
to increase as a result of the aging process itself[119]. 
Collectively, these findings indicate the need for 
further studies on genetic and epigenetic variation at 
imprinted loci in response to environmental exposures 
and across lifetime. 

Remarkably, in NSCs and other discrete stem cell 
populations, recent findings indicate that genomic 
imprinting can be epigenetically switched off at 
defined developmental time windows as shown for 
Igf2-H19 and Dlk1. Such temporary changes in allele-
specific transcription of imprinted genes alter gene 
dosage in a cell-type and tissue-specific manner and 
are required to prevent precocious depletion of the 
stem cell pool. The influence of various environmental 
exposures on epigenetic switches in NSCs is presently 
unknown and might contribute to brain function and 
aging in individuals at risk.   

Interestingly, recent literature suggests that 
imprinted genes do not operate in isolation, but as 
complex network of genes, whose expression is 
dynamically controlled by epigenetic mechanisms that 
extend from prenatal to postnatal development and 
possibly during aging. For instance, Zac1 is a central 
hub in an IGN comprising Igf2, H19, Dlk1, p57Kip2, 
and Ndn, which share a role in NSC maintenance and 
differentiation. 

Though, additionally studies are necessary to explore 
in more detail the role of IGNs in NSCs across lifespan 
as well as in response to environmental exposures 
and to elicit their molecular basis. Collectively, a better 
understanding of the complex interactions governing 
imprinted genes expression promises new insight into 
the biology of NSC and associated conditions ranging 
from imprinting disorders to age-related diseases.
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