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Neuregulin1 (NRG1), a gene on human chromosome 8p, encodes a family of widely 
expressed EGF-like growth factors that signal via ErbB receptors tyrosine kinases. The 
best understood function of murine NRG1 is the control of myelination in the peripheral 
nervous system (PNS). The identification of human NRG1 as a susceptibility gene for 
schizophrenia has renewed interest in the contribution of NRG1/ErbB signaling in brain 
development. Based on in vitro studies, multiple functions of NRG1 have been suggested 
for the CNS, including oligodendrocyte differentiation and myelination, neuronal 
migration and synaptic plasticity. However, functional in vivo data are lacking as NRG1 
mutant mice die embryonically. 

 As a first step to understand NRG1 function in vivo we generated a series of 
conditional mouse mutants that completely lack NRG1 expression beginning at different 
stages of neural development. Surprisingly, conditional null mutants with loss of NRG1 
expression in forebrain progenitor cells at E10 (Emx1-Cre) and in cortical and 
hippocampal projection neurons beginning at E12 (Nex-Cre) and P5 (CamKII-Cre), exhibit 
no obvious defect of cortical development, oligodendrocyte differentiation, and cortical 
and subcortical myelination. In the complete absence of neural NRG1 (Nestin-Cre) mutant 
mice die due to loss of PNS function but perinatal oligodendrocyte development is largely 
unaffected. These observations suggest that the CNS has evolved a NRG1 independent 
mechanism of myelination control. 

 The impact of the human NRG1 at risk polymorphism on schizophrenia is still 
controversial. Our forebrain specific conditional mutants are a valuable tool to address 
these questions. Mice with postnatal inactivation of NRG1 in projection neuron (CamKII-
Cre) displayed a reduction of sensory motor gating (prepulse inhibition) and impairments 
in memory and learning similar to findings in patients with schizophrenia. When these 
mice were injected with MK-801, a drug that induces psychosis like symptoms, they 
appeared to be "protected" from the drug effect. Mouse mutants lacking NRG1 from all 
forebrain neural cells except interneurons (Emx1-Cre) suffer from seizures and have 
defects in the sub-population of GABAergic interneurons. These results point towards a 
crucial role of NRG1 in fine-tuning of excitatory and/or inhibitory brain circuits.



Introduction 

2. Introduction

8 



Introduction 

2.1 Myelination-Origin and molecular players  

2.1.1 What is myelination and why investigate it? 

 Myelination is the process by which glial cells enwrap axons with several layers of 
membrane sheaths. Myelin sheaths are enormous membranous extensions made by glial 
cells, which include oligodendrocytes (OL) in the central nervous system (CNS) and 
Schwann cells (SC) in the peripheral nervous system (PNS). The sheaths insulate axons 
and thereby ensure the rapid propagation of electrical impulses with millisecond precision 
(reviewed in Waxman, 1997). The process of myelination is one of the most impressive 
and least understood examples of cellular interaction invented by nature.  

 The speed of an electrical impulse propagated by a myelinated axon is directly 
proportional to the diameter of the fiber. In contrast, impulse propagation speed by an 
unmyelinated axon is proportional to the square root of axonal diameter (Hursh, 1939; 
Rushton, 1951). This startling effect of myelination can be illustrated by the fact that an 
unmyelinated squid giant axon (diameter of ~500 µm) and a mammalian myelinated axon 
(outer diameter of ~4 µm) both propagate electrical impulses at a speed of about 20 m/sec 
(Ritchie, 1984; Tasaki, 1982). For a given length the squid axon occupies up to 15,000 
times more volume compared to myelinated mammalian axons. Moreover, the squid giant 
axon consumes 5,000 times more energy than a myelinated frog axon with a diameter of 12 
µm, although the latter conducts more rapidly (Morell and Norton, 1980; Ritchie, 1984). 
Thus, in addition to high conduction velocity, the evolution of the mammalian myelinated 
axon has resulted in a remarkable savings of space and energy. These observations suggest 
that for the CNS to evolve, with its colossal computation power and space constraints, 
myelination was a necessary and critical process. However, myelination involves a high 
level of developmental, structural, metabolic and electrophysiological complexity. This 
makes the whole process highly vulnerable to cellular and molecular disturbances that may 
result in severe neurological disorders. Currently, most of the patients affected by a 
myelin-related disorder cannot be effectively treated. Therefore, deciphering the 
mechanisms and key players involved in the formation and maintenance of the myelin 
sheath is critical to an improved understanding of the pathophysiology of myelin-related 
disorders. 
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Introduction 

2.1.2 Origin of neuroglia and myelin  

 Hildebrand et al., (1993) and Rosenbluth (1999) have meticulously reviewed the 
saga of the birth of myelin and its enticing history respectively. In the section that follows, 
I have presented some fascinating excerpts from both reviews and scores of interesting 
research articles. 

 Coelenterates and nematodes were the first animals to possess a simple nervous 
system in the animal kingdom. Their nervous system consists primarily of neurons (soma 
and processes) without any glial cells (Bullock and Horridge, 1965; Lentz and Barrnett, 
1965). During the course of evolution, the nervous system gained complexity that was 
accompanied by the emergence of glial cells. In higher invertebrates, such as annelids, 
arthropods and molluscs, the nervous system became cephalized, that is rostrally localized 
with a centralized collection of neurons and neuroglia (Lane, 1981). Even with the advent 
of neuroglia most primitive invertebrate axons lack glial ensheathments. In higher 
invertebrates, such as polychaetes and some insects, axons are either surrounded by a 
single row of elongated sheath cells or by multilayered glial lamellae wrapped in a loose 
spiral (Edwards et al., 1958). Generally, the number of glial lamellae tend to be 
proportional to the size of axons, i.e. the larger the axonal cross-section, the greater the 
number of lamellae. The number of lamellae varies considerably and can range from a few 
to several hundred. 

 At later evolutionary stages the formation of increasingly complex glial sheaths was 
accompanied by an axolemmal reorganization, with the electrogenic capability of the axon 
membrane localized to a few "hot spots" in unensheathed areas. Interestingly, axons in 
lower invertebrates such as median giant axon in the earthworm and the large axons of the 
prawn exhibit specialized electrically active nodes endowing them with a conduction 
velocity of 5-30 m/sec (Gunther, 1976; Hama, 1966; Heuser and Doggenweiler, 1966; 
Kusano and LaVail, 1971). These compacted lamellate sheaths and accompanying 
specialized nodes seem to have evolved as an excellent solution to the axonal conduction 
velocity problem (Bullock and Horridge, 1965; Levi et al., 1966). Although this 
specialized interaction between axons and glial cells has been identified in some 
invertebrates, it is a characteristic feature of vertebrates.  

 

 

 

 

10 



Introduction 

2.1.3 A brief history of myelin 

 The first description of myelinated nerve fibers came as early as 1717, from the 
microscopic analyses of animal tissues and nerves, by Leeuwenhoek (Clarke and O'Malley, 
1968). In 1791, Galvani stated, in De viribus electricitatis, '.... nerve performs the function 
of a conductor (of electricity)...'. According to Galvani, the inner 'tenuous lymph' of the 
nerve conducts electricity and the outer oily layer prevents dispersion of this electricity 
(reviewed in Clarke and O'Malley, 1968). For a long time this oily substance surrounding 
nerves was believed to be secreted within the nerve fiber and was thought to be analogous 
to the bone marrow ('Markstoff'). These nerve fibers containing 'Markstoff' were referred 
to as 'markhaltige Nervenfasern'. In 1858, based on this erroneous belief, Virchow 
hellenized 'Markstoff' to 'myeline' from the Greek myelos, marrow, and 'medullated' nerve 
fibers henceforth were christened as 'myelinated' nerve fibers. Remak and Ramon y Cajal 
were among the authoritative advocates of the concept that myelin was secreted by axons. 
This dogma held sway for almost a century until Penfield, in (1932), put forth his 
hypothesis that myelin is chiefly maintained by oligodendroglia.  

 In 1871 Ranvier reported that myelin sheaths were discontinuous and exhibited 
periodic interruptions, associated with axonal constrictions (Ranvier, 1871). He also 
reported that immediately adjacent to these 'nodes' one could observe transverse striations 
in the axon. Not long after Ranvier’s description of nodal striations, Schmidt (1874) and 
Lanterman (1877) described in detail these striations as "oblique slits" traversing the 
myelin sheath between nodes. Later, J. David Robertson (1958) demonstrated the detailed 
structure of the Schmidt-Lanterman incisures that he referred to as the 'shearing defect' in 
the myelin sheath. These clefts are truncated-cone-shaped regions in which the compact 
lamellae split to enclose a column of SC cytoplasm extending helically around the axon 
from the outermost to the innermost layer. Tasaki (1939) and later Huxley & Staempfli 
(1949) demonstrated nodes of Ranvier to be the "Hot spots" on myelinated axons where 
rapid exchange of ions takes place. The myelin sheath between these nodes serves as an 
insulator to increase the resistance and reduce the capacitance. This membrane 
specialization permits the electrical impulses to 'jump' from node to node very rapidly, 
resulting in a saltatory mode of conduction.  

 Electron microscopic and X-ray diffraction studies revealed that the myelin sheath 
has a regular layered structure (Schmidt, 1936; Schmitt, 1941). In order to solve the long-
standing mystery of myelin genesis, Betty Ben Geren (1954) used electron microscopy to 
evaluate various stages of myelin formation in the chick nerve. Her studies were the first to 
reveal that myelin forms by the elongation and spiral wrapping of SC membrane around 
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the axon. This landmark discovery provided the key to the understanding of myelin 
structure and development. The whole new concept by Geren completely changed the way 
myelin was looked at, since it was not mere an oily sheath secreted by the axon but was 
produced as a result of complex interactions between neurons and glial cells (Geren and 
Raskind, 1953; Geren and Schmitt, 1954). 

2.1.4 Differences between CNS and PNS myelination 

 Most of the initial studies on myelination were performed in peripheral nerves. But, 
shortly after the revolutionizing findings of Geren concerning the genesis and structure of 
peripheral myelin, Maturana (1960) and Peters (1960) reported that central myelin also 
consists of membrane spirals. Each segment of CNS myelin could be traced back to a 
single process of an OL and surprisingly each OL can give rise to multiple myelin 
segments belonging to different axons (Bunge et al., 1962; Bunge, 1968). This result was 
in contrast to the situation in the PNS, where SCs can form only single myelin segments 
and further implied that the damage of an OL would result in more extensive 
demyelination than that of a SC (Fig. 1). 

 While the basic ultrastructure of internodes, nodes and paranodes are comparable in 
the CNS and PNS, several differences in fine structure have been identified (Fig. 1A, B) 
(Peters et al., 1991). In the mammalian PNS all axons with a diameter of about 1 µm or 
more are myelinated. This observation laid the foundation for the "critical axon diameter" 
concept (Duncan, 1934). This idea was further supported by the observation that 
unmyelinated PNS axons become myelinated if their diameter is experimentally increased 
(Voyvodic, 1989). Originally, it was assumed that also in the CNS a "critical axon 
diameter" exists for axons to become myelinated (Fleischhauer and Wartenberg, 1967). 
However, in the CNS unmyelinated axons with diameters of up to 0.8 µm exist, while 
myelinated axons below 0.2 µm in diameter can also be found. In addition, the minimal 
diameter of myelinated CNS axons decreases with development (Fraher et al., 1988; 
Matthews and Duncan, 1971; Remahl and Hildebrand, 1982). Thus, in contrast to the PNS, 
the size spectrum of myelinated and unmyelinated axons overlap considerably in the CNS 
(Hildebrand and Waxman, 1984). To some extent, the overlapping diameter ranges of 
unmyelinated, ensheathed and myelinated CNS axons may be explained by longitudinal 
diameter variations of axons along their length (Greenberg et al., 1990; Seggie and Berry, 
1972). In short, it seems that there is a fundamental difference between CNS and PNS 
axons, with respect to the determinants of whether an axon will become ensheathed and 
myelinated.  
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Fig. 1. Structure of myelinated axons.  

(A) Oligodendrocytes (OL) in CNS and Schwann cells (SC) in the PNS form the myelin sheath by 
enwrapping axons with several layers of membrane sheaths. Myelin covers the axon at intervals (internodes), 
leaving bare gaps - the nodes of Ranvier. OL myelinate upto 40 axons and several internodes per axon, 
whereas SC myelinate a single internode in a single axon. (B) Schematic longitudinal cut through a 
myelinated fibre at a node of Ranvier (shown is only a heminode). The node, paranode, juxtaparanode (JXP) 
and internode are shown. The node is contacted by SC microvilli in the PNS and by processes from perinodal 
astrocytes in the CNS. Myelinated fibres in the PNS are covered by a basal lamina. The paranodal loops form 
a septate-like junction (SpJ) with the axon (modified from Poliak and Peles, 2003). 

 Both the radial and longitudinal dimensions of CNS myelin are coupled to the axon 
diameter. The number of myelin lamellae is related to axon diameter according to a 
curvilinear function and varies between species (Hildebrand and Hahn, 1978). The 
longitudinal extension of adult CNS internodes has been reported to increase from 100 µm 
to 1700 µm, as fiber diameter increases from 1 µm to 17 µm (Gledhill and McDonald, 
1977; Hess and Young, 1952; McDonald and Ohlrich, 1971; Murray and Blakemore, 
1980). Amazingly, both in the PNS and CNS, the nodal length is quite constant and ranges 
between 0.8-1.1 µm (Berthold, 1968a, b; Conradi, 1969; Hildebrand, 1971; Hildebrand and 
Waxman, 1984; Rydmark and Berthold, 1983). Moreover, large mature CNS myelin 
sheaths exhibit prominent incisures of Schmidt and Lanterman (Blakemore, 1969; Conradi 
and Skoglund, 1969; Hildebrand, 1971), but such clefts are rare in thin sheaths. This 
feature is in contrast to the PNS where most of the myelin sheaths contain Schmidt and 
Lanterman incisures. 

 In the PNS the lateral borders of the SC cytoplasm are tipped with microvilli. The 
tips of these microvilli contact the nodal axolemma and may act as 'ion-sinks' by 
accumulating K+ ions during axonal activity (Ichimura and Ellisman, 1991; Mi et al., 1996; 
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Raine, 1982). Interestingly, in the CNS astrocytes are recruited to myelin nodes (Fig. 1B). 
These "perinodal astrocytes" extend their processes to surround the node of myelinated 
axons (Black and Waxman, 1988). The nodal axon of large CNS fibers is completely 
shielded by a mantle of astrocytic cytoplasm while nodes of small CNS fibers are less well 
shielded (Hildebrand, 1971; Hildebrand and Waxman, 1984). Observations in the white 
matter of cats indicate that a single astrocyte may send processes to more than one node, 
and that a single node may receive processes from more than one astrocyte (Hildebrand, 
1971). Nodal shielding by astrocytic processes adds to yet another level of complexity in 
CNS myelination. 

2.1.5 Oligodendrocytes-the myelinating glia of CNS 

 The techniques of heavy metal impregnation developed by Ramon y Cajal (gold 
impregnation) and Rio Hortega (silver impregnation) have been instrumental in the 
characterization of glial cells. It was Rio Hortega who coined the term 'oligodendroglia' to 
define a glial cell population that exhibited few processes in his silver impregnated brain 
sections. Hortega divided 'oligodendroglia' into four categories (type I-IV) based on the 
number of processes (reviewed in Baumann and Pham-Dinh, 2001). Butt et al., have also 
distinguished four types of myelinating OL: small cells producing short internodes and thin 
myelin sheaths around 15-30 small diameter axons (type I, optic nerve of the rat), large 
cells forming long internodes and thicker myelin sheaths around 1-3 large diameter axons 
(type IV, spinal cord of the cat) as well as intermediate types (type II and III) (Butt et al., 
1995). When compared to other neural cells OL have very distinctive features, such as 
small soma size, glycogen-rich cytoplasm, a nucleus with dense chromatin and processes 
that contain microtubules (25 nm) but no intermediate filaments (Lunn et al., 1997).  

  OL originate from mitotic and migratory precursors and mature into post-mitotitc 
myelinating glia. Maturation and differentiation usually involve the loss of certain surface 
or intracellular antigens and the acquisition of new ones. This coordinated change in the 
expression of antigens can be monitored by antibodies and used to identify the 
developmental status of the OL lineage. The sequential steps of OL differentiation and 
maturation are a prerequisite for the initiation of myelination (Hardy and Reynolds, 1993; 
Pfeiffer et al., 1993). The number of mature OL is determined by the proliferative rate of 
their progenitors and by programmed cell death that occurs mainly during development 
(Barres et al., 1994). Signals derived from astrocytes and neurons (mainly axons) greatly 
influence differentiation and the precise numbers of OL that are necessary to myelinate the 
entire CNS (Barres and Raff, 1999; Hardy and Reynolds, 1993; Richardson et al., 2000). In 
vitro studies have shown that many growth factors regulate the proliferation, 
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differentiation, and maturation of the OL lineage (Barres et al., 1994; Canoll et al., 1999; 
Canoll et al., 1996; Hardy and Reynolds, 1991, 1993; McKinnon et al., 1990; McMorris 
and Dubois-Dalcq, 1988; Pfeiffer et al., 1993; Raff et al., 1988; Richardson et al., 1988; 
Yasuda et al., 1995) including Platelet-Derived Growth Factor (PDGF), Fibroblast Growth 
Factors (FGFs), Insulin-like Growth Factors (IGF), Neurotrophins, and Neuregulins 
(NRGs) (see below) (Bansal, 2002; Grinspan, 2002; Hempstead and Salzer, 2002). Also 
circulating cytokines, steroids, and thyroid hormone have been implicated in the control 
and timing of OL differentiation (Aloisi, 2003; Baulieu and Schumacher, 2000; Rodriguez-
Pena, 1999). These studies are difficult to extrapolate to the in vivo situation, as several 
growth factors act in an orchestrated way to achieve the fine regulation of OL development 
and myelination. Furthermore, each of these factors has multiple effects during the 
developmental process. Moreover, when combined these factors often produce effects that 
are significantly different from those seen with any single factor alone (McMorris and 
McKinnon, 1996).  

 

A major source of signals that regulates OL differentiation is the axon itself. During 
nervous system development, OL numbers need to be matched to the number of axons 
requiring myelination. Axonal signals and electrical activity regulate the proliferation and 
survival of OL, enhance myelin-gene expression, and induce terminal differentiation 
(Barres and Barde, 2000; Barres and Raff, 1999; Bozzali and Wrabetz, 2004). Negative 
axonal regulators include Jagged-1 and F3/contactin that signal to the oligodendroglial 
Notch receptor (Hu et al., 2003; Wang et al., 1998). Mice with reduced Notch1 gene 
dosage exhibit premature OL differentiation and myelination, suggesting that Notch1 may 
inhibit the differentiation of OL in the optic nerve and spinal cord during late 
developmental stages (Genoud et al., 2002; Givogri et al., 2002; Wang et al., 1998). 
Axonal expression of PSA-NCAM also inhibits myelination, and its disappearance during 
development coincidences with the initiation of myelination (Charles et al., 2000). 

 

OL not only receive signals from axons but also sense axonal signals and thereby 
contribute to axonal function and their long-term integrity (Edgar and Garbern, 2004; 
Poliak and Peles, 2003; Salzer, 2003). The dependency of axonal integrity on glial support 
is illustrated by the observation of a late-onset axonal pathology in mice lacking the myelin 
proteins proteolipid protein (PLP) and 2’3’-cyclic nucleotide 3’-phosphodiesterase (CNP) 
(Griffiths et al., 1998; Lappe-Siefke et al., 2003). The nature of these glial signals remains 
unclear, but they are likely to be relevant in axonal pathologies observed in demyelinating 
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diseases. An emerging concept in axon-glia communication is that adhesive interactions 
may be stage-specific modulators of the OL response to growth factors. For example, the 
binding of axonal laminin to glial integrin receptors has been proposed to "switch" 
NRG/ErbB signaling from promoting OL proliferation to OL survival and differentiation 
(Colognato et al., 2002). Thus, when presented in the right context, NRG1 may be a 
positive regulator of CNS myelination. 
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2.2 Neuregulin1-a gene with multiple functions 

2.2.1 Neuregulin1 signals to ErbB receptors 

 Neuregulins are a family of membrane-associated growth factors with an epidermal 
growth factor (EGF)-like signaling domain. Four genes (NRG1 to NRG4) have been 
identified in mammals, but only NRG1 has been studied in detail. Human NRG1, located 
on chromosome 8p22, is one of the largest genes known. Due to alternative promoter usage 
and mRNA splicing, at least 15 NRG1 isoforms are generated (Steinthorsdottir et al., 
2004). All NRG1 subtypes share an epidermal growth factor (EGF)-like signaling domain 
that is necessary and sufficient for activation of their receptors (Fig. 2). They can be 
classified into subgroups based upon their different amino-termini (Falls, 2003b). NRG1 
type I (heregulin, neu differentiation factor, or acetylcholine receptor-inducing activity 
[ARIA]) and NRG1 type II (glial growth factor [GGF]) have N-terminal Ig-like domains 
and a single transmembrane domain (Fig. 2A, B). 

Upon proteolytic cleavage by BACE (β-site APP-cleaving enzyme) and metalloproteinases 
(MP), such as TACE (tumor-necrosis factor-α-converting enzyme) (Horiuchi et al., 2005), 
both isoforms can be shed and released as soluble proteins from the neuronal cell surface 
and function as paracrine signaling molecules (Fig. 2B). NRG1 type III is characterized by 
a cysteine-rich domain (CRD) and 2 transmembrane domains. It is tightly associated with 
axonal membranes even after MP cleavage in the stalk region and most likely functions as 
a juxtacrine signal (Fig. 2B) (Esper et al., 2006; Nave and Salzer, 2006). Within the 
nervous system, types I and III are the most abundant NRG1 isoforms and have been 
detected in many projection neurons, most notably in spinal motor neurons and dorsal root 
ganglia (DRG) neurons, but has also been identified in OL and astrocytes (Adlkofer and 
Lai, 2000; Falls, 2003b). Many NRG1-expressing neurons also express transcripts for 
NRG2 and NRG3, two structurally related factors, whose function in the nervous system 
remains largely unknown (Adlkofer and Lai, 2000; Britto et al., 2004). 

 Binding of the EGF-like domain (present in all NRG1 isoforms) leads to the 
activation of ErbB receptor tyrosine kinases. The basic structure of all four members of the 
ErbB receptor family (ErbB1-4) includes two extracellular cysteine-rich ligand-binding 
domains, a transmembrane region, the tyrosine kinase domain (inactive in ErbB3), and a 
carboxyl-terminal domain. NRG1 directly binds to ErbB3 and ErbB4.  
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Fig. 2. NRG1 isoforms: membrane topology and signalling.  

(A) Domain structure of Nrg1 isoforms. Based on distinct N-terminal protein domains, Nrg1 isoforms are 
sub-grouped into types I (red N-terminus), II (green), and III (blue). Minor variants exist in the stalk region 
(between the EGF-like and transmembrane domain), within the EGF-like domain and in the cytoplasmic tail. 
For all types the most common form in the nervous system is the β1a variant. (adapted from Falls, 2003b)  
(B) Nrg1 types I and II are synthesized as single pass transmembrane proteins; type III has two 
transmembrane domains. With metalloproteinase (MP) cleavage, types I and II are shed as paracrine signals 
while type III remains tethered to the membrane due to its cysteine rich domain (CRD) and acts as a 
juxtacrine signal. The cytoplasmic domain might undergo further cleavage by γ-secretase (stimulated by 
binding of ErbB recept ors to NRG1), followed by translocation to the nucleus. (adapted from Nave and 
Salzer, 2006) 

ErbB2 appears to lack an activating ligand and is thought to be the preferred dimerization 
partner for ErbB3 and ErbB4. Ligand binding and receptor dimerization leads to tyrosine 
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autophosphorylation in trans, recruitment of SH2 and PTB domain-containing adapter 
proteins, and activation of multiple downstream signaling pathways (Buonanno and 
Fischbach, 2001; Yarden and Sliwkowski, 2001). 

Several observations suggest that NRG/ErbB signaling is bidirectional. When NRG1 binds 
to its receptor, the cytoplasmic C-terminal domain (ICD) is proteolytically cleaved (Bao et 
al., 2003).  After transport to the nucleus the ICD was shown to repress expression of 
several regulators of apoptosis, resulting in increased neuronal survival (Bao et al., 2003). 
A similar ''back signaling'' mechanism was observed in the murine cochlea, where synaptic 
activity leads to nuclear accumulation of the ICD, which interacts with a zinc-finger 
transcription factor to stimulate PSD-95 expression (Bao et al., 2004). Nuclear localization 
has also been observed for the cytoplasmic domain of ErbB4 (after NRG1 binding), 
suggesting that both, receptor and ligand, can function as regulators of gene expression (Ni 
et al., 2001; Sardi et al., 2006). 

2.2.2 Neuregulin1- the 'master regulator' of PNS myelination  

NRG/ErbB signaling is involved in many processes, including heart, skeletal muscle and 
nervous system development (reviewed in Falls, 2003b). A critical role for NRG1 in the 
PNS has been established through the analysis of mouse mutants. Mutant mice lacking all 
NRG1 isoforms (pan NRG) die around E10.5 as a result of abnormal cardiac development. 
In addition, many neural crest-derived cells, including peripheral neurons and SC 
precursors, are not properly formed (Meyer and Birchmeier, 1995). Likewise, ErbB2 mice 
die at E10.5 and lack SC precursors. Moreover ErbB3 null mutants die between E11.5 and 
P0 (Lee et al., 1995; Morris et al., 1999; Riethmacher et al., 1997). Importantly, mice with 
an isoform-specific NRG1 type I/II-mutation also die of heart failure at E10.5, but have 
normal numbers of SC precursors (Kramer et al., 1996; Meyer et al., 1997). In contrast, the 
absence of the NRG1 type III isoform causes a severe reduction of SC precursors without 
affecting heart development (Wolpowitz et al., 2000). Cre-mediated ablation of ErbB2 in 
SC causes severe dysmyelination (Garratt et al., 2000a). Taken together, these data point to 
a critical function of NRG1 type III/ErbB2 signaling in SC development.  

Two recent studies have highlighted the essential function of NRG1 type III as a central 
regulator of SC fate and PNS myelination (Fig. 3A, B) (reviewed by Nave and Salzer, 
2006). One of the studies exhibited the functional relationship between NRG1 signaling 
and PNS myelination in vivo, focusing on the role of individual NRG1 isoforms and on 
quantifiable glial parameters, such as myelin sheath thickness (Michailov et al., 2004). 
Through the analysis of multiple loss-of-function and gain-of-function mutants of NRG1 it 
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was proposed that myelin-forming SC may utilize axonal NRG1 signals as a biochemical 
measure of axon size (Michailov et al., 2004). Indeed, reduced NRG1 expression (but not 
ErbB2 expression) was associated with thinner myelin sheaths (increased g-ratios) and 
reduced nerve conduction velocity, without affecting axonal size or SC number. In 
contrast, neuronal overexpression of NRG1 type III (but not type I) induce a peripheral 
hypermyelination in transgenic mice (Fig. 3B) (Michailov et al., 2004).  

The essential role of NRG1 type III in PNS myelination was shown using dorsal root 
ganglia (DRG)/SC cocultures, in which myelination can be induced in vitro. Sensory 
neurons from NRG1 type III deficient mice completely fail to myelinate (Fig. 3B). 
Moreover, viral expression of NRG1 type III induces myelination of normally 
unmyelinated axons of sympathetic neurons (Taveggia et al., 2005). These results indicated 
that the levels of NRG1 type III, independent of axon diameter, provided a key instructive 
signal that determines the ensheathment fate of axon.  

The in vivo analysis of NRG1 function during CNS myelination has been hampered by the 
early embryonic death of NRG1 null mutant mice. However, indirect evidence suggests an 
important role of NRG1 also during OL development. First insights came from in vitro 
studies, in which soluble NRG1 type I or type II was shown to promote either proliferation 
(Canoll et al., 1996) or differentiation of oligodendroglial cells (Raabe et al., 1997b; 
Vartanian et al., 1994), depending on the culture conditions and the developmental stage. 
Several studies on OL support the concept that NRG1 serves a survival function, which is 
mediated through PI3-kinase (Canoll et al., 1996; Flores et al., 2000; Raabe et al., 1997a; 
Raabe et al., 1997b). NRG1 also promotes OL survival in the developing rat optic nerve in 
vivo (Fernandez et al., 2000). Importantly, in spinal cord explants prepared from NRG1 
null mutant embryos, immature OL (O4+) could not be detected. Inhibition of NRG1 
signaling in spinal cord cultures from wild-type mice has similar effects (Vartanian et al., 
1999). .  

The exact roles of ErbB receptors in OL development and myelination are not known. OL 
express at least three (ErbB2-4) receptors (Canoll et al., 1996; Raabe et al., 1997b). In 
spinal cord explants from ErbB2 null mutant mice, normal numbers of immature OL cells 
are present, but a severe reduction of differentiated OL (O1+) is observed at later times 
(Park et al., 2001). Similarly, transgenic overexpression of a dominant-negative ErbB2 
receptor in OL perturbes differentiation and causes hypomyelination (Kim et al., 2003). In 
contrast, spinal cord explants from ErbB4 null mutants contain an increased number of 
differentiated OL, suggesting that ErbB4 mediates suppression of OL maturation (Sussman 
et al., 2005). Surprisingly, and in contrast to SC, the absence of ErbB3 has no obvious 
effect on OL development or CNS myelination (Schmucker et al., 2003). These 
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observations clearly indicate an important function for NRG1/ErbB signaling during early 
stages of OL development and myelination. 

 

 

Fig. 3. Axonal NRG1 regulates successive steps of Schwann cell differentiation.  

(A) Schwann cells (SC, in blue) arise from neural crest precursor cells (in green) and interact with both large 
and small caliber axons of spinal motor and sensory neurons. During embryogenesis, neuronal NRG1 
regulates SC development by activating ErbB signaling cascades, thereby promoting SC differentiation and 
expansion. The amount of NRG1 type III on the axon detected by committed SC, which is a function of axon 
size and NRG1 levels, then drives them either into segregating single axons and myelination (top), or into a 
non-myelinating phenotype and formation of a Remak bundle (bottom). Above threshold levels, NRG1 type 
III signals axon size to SC to adjust myelin sheath thickness. (B) In mouse mutants lacking NRG1 (-/-), in 
heterozygous NRG1 (+/-) mice, and in transgenic NRG1 overexpressing mice, the amount of myelin made by 
SC varies directly as a function of axonal NRG1 type III levels (indicated by yellow dots) rather than as a 
function of axon diameter. (adapted from Nave and Salzer, 2006) 

2.2.3 Neuregulin1 in synaptic plasticity- a controversial issue  

 NRG1 is expressed in the adult brain of both man and mouse (Law et al., 2004; 
Woo et al., 2007). In humans, NRG1 mRNA and protein have been shown to be localized 
to prefrontal cortex (PFC), hippocampal formation, cerebellum, and substantia nigra (Law 
et al., 2004). In mice, NRG1 and ErbB receptors are expressed in most of the neural cells 
of the adult CNS (Cannella et al., 1999; Deadwyler et al., 2000; Esper et al., 2006). 
NRG1/ErbB signaling appears to be critical for the normal development, fate 
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determination and spatial distribution of many neural cells. In vitro NRG1 promotes the 
proliferation, migration, and survival of neural precursors (Lai and Feng, 2004; Rio et al., 
1997). Cortical interneurons depend on NRG1 for proper migration within the 
telencephalon and outward toward the cortex (Flames et al., 2004). NRG1 is involved in 
mediating axonal pathfinding by providing a chemoattractive corridor, both paracrine and 
juxtacrine, for the guidance of thalamocortical projections (Lopez-Bendito et al., 2006). 
Finally, cultured hippocampal neurons increase neurite outgrowth, area, length, and 
branching when exposed to NRG1 (Gerecke et al., 2004). Studies with NRG1 mutants 
have also demonstrated the importance of NRG1/ErbB signaling for the generation of 
radial glia and their transformation into astrocytes in the cerebral cortex explant cultures 
(Schmid et al., 2003). While developmental studies have been essential to understand 
many functions of NRG1 in the nervous system, much work is still needed to determine the 
precise role of NRG1 in the adult CNS.  

 NRG1 is expressed highly in hippocampal CA3 pyramidal neurons that project to 
CA1 and is processed and released at synapses in an activity dependent manner (Loeb et 
al., 2002; Okada and Corfas, 2004). In pyramidal neurons the ErbB4 receptor is enriched in 
the postsynaptic density (PSD) and associates with PSD95 (Huang et al., 2000). It has been 
shown that PSD95 forms a ternary complex with a pair of ErbB4 receptors, suggesting that 
PSD95 facilitates ErbB4 dimerization. Heterologous expression of PSD95 enhanced the 
NRG1-mediated activation of ErbB4 and MAP kinase (Huang et al., 2000). Conversely, 
inhibiting the expression of PSD95 in neurons attenuated NRG1 mediated activation of 
MAP kinase. These observations suggest NRG1/ErbB4 signaling is regulated by PSD95 
and may modulate synaptic functions (Garcia et al., 2000; Huang et al., 2000). 
Consistently, a number of in vitro models have suggested that NRG1/ErbB signaling 
modulates the expression and function of several neurotransmitter receptors in the CNS. 
For example, addition of recombinant NRG1 increased the mRNA levels of the NR2C 
subunit of the NMDA receptor (NMDAR) by over 100-fold in cerebellar slices (Ozaki et 
al., 1997). Another study demonstrated that bath perfusion of NRG1 significantly reduced 
whole-cell NMDA receptor currents in acutely isolated PFC and cultured pyramidal 
neurons (Gu et al., 2005). Furthermore, NRG1/ErbB4 signaling, through activation of Fyn 
and Pyk2 kinases, stimulates phosphorylation of a tyrosine residue (Y1472) on the NR2B 
subunit of NMDAR, a key regulatory site that modulates channel properties (Bjarnadottir 
et al., 2007). However, Kwon et al., have shown that NRG1 stimulates the internalization 
of surface GluR1 containing AMPA receptors and selectively reduces AMPA, but not 
NMDA, receptor EPSCs (Kwon et al., 2005). Moreover, Li et al. demonstrated that 
NRG/ErbB4 signaling is required for activity-dependent AMPA receptor synaptic 
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incorporation and stabilization as well as maintenance of spine structure (Li et al., 2007). 
Nevertheless, NRG1 suppressed induction of long-term potentiation in the hippocampal 
CA1 region without affecting basal synaptic transmission (Huang et al., 2000; Kwon et al., 
2005).  

 The significance of NRG1/ErbB signaling is beginning to be revealed not only at 
excitatory but also at inhibitory synapses.  Accordingly, NRG1 has been shown to reduce 
the expression of the GABAA receptor α subunit and to induce the expression of the 
GABAA β2 subunits in hippocampal slices and cultured rat cerebellar granule neurons 
(Rieff et al., 1999; Xie et al., 2004). Recently, Woo et al., have shown that NRG1 enhances 
GABA release from interneurons in the prefrontal cortex. They found that ErbB4 receptors 
are concentrated in GABAergic nerve terminals in brain slices prepared from the PFC. 
NRG1 induced an increased release from the readily releasable GABA vesicle pool. 
Interestingly, the effect of NRG1 on GABAergic nerve terminals was dependent on 
activity. There was no effect of NRG1 in unstimulated preparations or on spontaneous 
miniature IPSPs (Woo et al., 2007). In addition, long-term exposure to NRG1 increases the 
number of α7 subunit of nicotinic acetylcholine receptors (nACh) on GABAergic 
interneurons in hippocampal slices (Liu et al., 2001), but short-term exposure, on a scale of 
seconds to minutes, decreases α7 currents and EPSCs (Chang and Fischbach, 2006).  

 Although it seems that NRG1 plays multiple function at synapses, in vivo relevance 
of these studies remains controversial.  For instance, one of the isoform of NRG1 
(acetylcholine receptor inducing activity, ARIA) was discovered as a presynaptic 
membrane protein of motor neurons and was shown to be essential for inducing expression 
and localization of acetylcholine receptors (Ach) at the neuromuscular junction (NMJ) 
synapse (Buonanno and Fischbach, 2001; Falls et al., 1993; Sandrock et al., 1997; 
Sandrock et al., 1995; Schaeffer et al., 2001). In contrast, two recent in vivo studies, using 
conditional null mutants of ErbB2/ErbB4 receptors, have shown that NRG/ErbB signaling 
is completely dispensable for NMJ synapse formation (Escher et al., 2005; Jaworski and 
Burden, 2006). In addition, mice lacking ErbB4 (in the nervous system) are completely 
normal and exhibit very subtle phenotypes (Golub et al., 2004; Thuret et al., 2004), which 
was quite surprising based on the several in vitro observations. Moreover, due to the 
embryonic lethality of the NRG1 null mutants, to understand the adult function of NRG1 
several studies were carried in cell culture and on brain slices in the presence of highly 
potent EGF domain that might result in in vitro 'artifacts'. Furthermore, these in vitro data 
were extrapolated far beyond the possible physiological role of NRG1. In order to resolve 
some of the controversial issue and to shed some light on the physiological functions of 
NRG1, studies in cell-type and stage-specific conditional null mutant mice are necessary. 
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2.3 Schizophrenia and Neuregulin1  

2.3.1 Neuregulin1 at risk haplotype for Schizophrenia 

 Schizophrenia (SCH) remains one of the mysterious and elusive diseases of the 
nervous system. An estimated 0.5-1% of the world's population is afflicted with severe 
psychological and cognitive impairments that are grouped into positive (delusions, 
hallucinations) and negative symptoms (social withdrawal, cognitive deficits). Currently 
SCH is considered a syndrome with no clearly reproducible neuropathological hallmarks, 
causative agents, or precisely defined biological markers (reviewed in Harrison, 1999; 
Owen et al., 2003). Although the causes of SCH are unknown, twin studies have strongly 
suggested that SCH has a genetic component as evidenced by the ~50% concordance in 
monozygotic twins. Twin studies have also shown that SCH has a heritability of ~80% 
(Gottesman, 1991; Owen et al., 2003). Several theories have been put forward to describe 
the biological components of the disease. Some studies portray SCH as a 
neurodegenerative disorder, while most established data suggest SCH to be a late onset 
neurodevelopmental disorder affecting (directly or indirectly) glutamatergic, dopaminergic 
and GABAergic cortical microcircuits, grey and white matter (Harrison and Weinberger, 
2005; Owen et al., 2005a). 

 A relationship between NRG1 and SCH is not so obvious, however, the recent 
linkage to NRG1 in a number of schizophrenic families has led to an increased interest in 
NRG1 as a susceptibility factor for this psychiatric disorder (Harrison and Owen, 2003; 
Stefansson et al., 2002). In 2002, NRG1 was identified as a SCH susceptibility gene in a 
genome wide scan for SCH in families of Icelandic origin (Stefansson et al., 2002). Fine 
mapping of the identified locus on chromosome 8p22 and a haplotype association analysis 
revealed a ''core at-risk'' region in the 5' region of the gene. This "Icelandic haplotype" 
surrounds the exon that encodes the NRG1 type II-specific domain. Several (but not all) 
subsequent studies have replicated, at least partially, the association of NRG1 and SCH in 
different populations (Harrison and Weinberger, 2005). However, none of the identified at-
risk haplotypes maps to the coding region of the NRG1 gene, suggesting that changes in 
NRG1 expression levels, rather than altered protein function, contribute to disease 
susceptibility. It is important to note that overall only up to 15% of schizophrenic patients 
carry the at-risk haplotype (as compared to 5-7% in healthy controls), clearly 
demonstrating that additional genetic and environmental risk factors must contribute to the 
onset of the disorder. Moreover, such association studies only demonstrate that a given 
genetic locus is associated with SCH, and do not necessarily implicate a direct causal 
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effect of the gene or its protein products. In order to dissect the genetic component of the 
disease mechanism one simple approach is to study genes identified by genome wide scans 
that have biological roles overlapping with current ideas of SCH etiology (Fig. 4). 

 How might variations in the NRG1 gene impact on an increased susceptibility for 
schizophrenia? Intriguingly, the spectrum of CNS functions assigned to NRG1 (based 
mostly on in vitro observations) implies that NRG1 acts as a regulator of several 
developmental processes (e. g. neuronal migration, synaptogenesis, myelination and 
synaptic plasticity), which might be altered in SCH (Fig. 4) (see reviews by Corfas et al., 
2004; Owen et al., 2005b; Stefansson et al., 2004; Weinberger, 2005). 

2.3.2 Schizophrenia and white matter- does Neuregulin1 matter? 

Although patients suffering from SCH don’t have clear white matter pathology, there are 
several evidences that support possible damages in the white matter of certain brain areas. 
In the human brain myelination continues well into adulthood, most evidently in frontal 
and temporal lobes (Bartzokis, 2002). Several recent studies have suggested white matter 
changes in SCH, including a reduction in OL number and myelin content and damage in 
myelin sheath lamellae in the neocortex (Corfas et al., 2004; Stewart and Davis, 2004). In 
the PFC of SCH patients, light and electron microscopic studies have revealed a significant 
decrease in the density of OL mitochondria, as well as signs of apoptosis and necrosis of 
OL (Uranova et al., 2001). A recent stereologic analysis of OL in cortical layer 3 and gyral 
white matter of area 9 showed 30% fewer OL in SCH patients compared to healthy 
controls (Hof et al., 2002; Hof et al., 2003). Furthermore, OL exhibited a less clustered 
arrangement and were reduced by 25% in cortical layer 6 of schizophrenic patients (Hof et 
al., 2003). Magnetic resonance imaging and diffusion tensor magnetic resonance (an 
imaging technique to quantify anisotropic diffusion in white matter) have also revealed 
alterations in white matter integrity as well as a reduction of myelin content in the temporal 
and frontal lobes (Bartzokis et al., 2003; Flynn et al., 2003; Foong et al., 2002). In addition 
to structural alterations in white matter, microarray analysis has revealed a down-
regulation of oligodendrocyte-related mRNA species within the dorsolateral prefrontal 
cortex of SCH patients (Hakak et al., 2001). Genes involved in the compaction of myelin 
and axon-glia interactions showed reduced expression in affected individuals, further 
supporting a role for OL in SCH (Pongrac et al., 2002; Tkachev et al., 2003). There is 
some in vitro evidence that support NRG1/ErbB signaling plays a role in OL development 
and CNS myelination (Calaora et al., 2001; Canoll et al., 1996; Raabe et al., 1997b; 
Sussman et al., 2005). Thus defective NRG1/ErbB signaling might result in alterations of 
OL development and abnormal myelination, possibly contributing to the some of the 
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pathophysiological features of SCH.  

2.3.3 Possible role of NRG1 in schizophrenia 

 The observed effects of NRG1 on the regulation of neurotransmitter receptors 
makes it an attractive candidate gene to further examine its role in SCH. Parallels exist 
between the effects of NRG1 on the expression of NMDA receptors and reduced levels of 
NMDA receptor subunits in several regions of brain tissue from those with SCH (Akbarian 
et al., 1996; Carlsson and Carlsson, 1990). In addition, behavioral studies on mice support 
a potential role of NRG1 in the susceptibility to SCH. Mutant mice heterozygous for either 
NRG1 or ErbB4 showed a behavioral phenotype that overlapped with pharmacologically 
induced "mouse models" of SCH (Boucher et al., 2007; Karl et al., 2007; O'Tuathaigh et 
al., 2007a; O'Tuathaigh et al., 2007b; O'Tuathaigh et al., 2008; Stefansson et al., 2002). 
This includes hyperactivity and deficiencies in prepulse inhibition, a measure of sensory 
gating that is abnormal in SCH. These behavioural phenotypes of NRG1 hypomorphs were 
partially reversible with clozapine, an atypical antipsychotic drug used to treat SCH.  

 In line with the described function of NRG1 in regulation of NMDA receptors, 
NRG1 hypomorphic mice had 16% less functional NMDA receptors compared to wildtype 
controls (Stefansson et al., 2002). Moreover it was shown that the NR2B subunit of the 
NMDAR (at Y1472) is hypophosphorylated in NRG1 and ErbB4 hypomorphs, which can 
be recovered by the treatment with clozapine at doses that reverse behavioral 
abnormalities. NRG1 hypomorphs also show altered hippocampal short-term synaptic 
plasticity and impaired theta-burst long-term potentiation. Incubation of hippocampal 
slices from these mice with NRG1 reversed those effects (Bjarnadottir et al., 2007). 
Recently, Roy et al., have analyzed transgenic mice that overexpress a dominant negative 
form of ErbB4 receptors and therefore lack normal NRG/ErbB signaling. These mice have 
increased levels of dopamine receptors and transporters and exhibit behavioral phenotype 
overlapping with that of SCH "mouse models" (Roy et al., 2007). 
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Fig. 4. Possible relationships between NRG1 function and schizophrenia endophenotypes.  

NRG1 has been implicated in cortical development by regulating radial glia morphology and neuronal 
migration, in synapse formation and function by regulating the expression of glutamate, GABA and Ach 
receptors, in myelination by regulating oligodendrocyte proliferation and differentiation, and in the control of 
the onset of puberty through the induction of LHRH release in the hypothalamus. All these developmental 
processes have been proposed to be altered in schizophrenia. Thus, defects in NRG1/ErbB signaling can 
potentially contribute to schizophrenia (or some aspects of the disease) by altering one or more of these 
processes. Question marks indicate the current hypothetical nature of these possible links between NRG1 
function and schizophrenia (adapted from Corfas et al., 2004). 

 In addition to glutamate and dopamine, there is some evidence that implicates 
GABA hypofunction in SCH (Lewis and Moghaddam, 2006). In one very speculative 
scenario, the SCH risk haplotypes might result in NRG1 hypofunction, leading to a 
decrease in the efficacy of glutamate and GABA-mediated synaptic transmission in the 
prefrontal cortex (discussed above). This impairment would then produce desynchronized 
firing of pyramidal neurons, the loss of gamma waves recorded from the brain surface, and 
behavioral deficits in working memory. Likewise, other neurotransmitters are certainly 
involved in the full complex of symptoms that comprise SCH. Neuroleptic drugs that 
relieve psychotic and other positive symptoms of SCH are dopamine-receptor antagonists, 
and dopamine is a prime suspect in the striatum and PFC (Fischbach, 2007). Thus, the 
exact role for NRG1 in the etiology or treatment of SCH is not clear. Future studies will be 
needed to develop a better understanding of the effects of local NRG1 expression in the 
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CNS and on its downstream signaling pathways.  

 In summary, we can conclude that NRG1/ErbB signaling in the CNS has a broad 
spectrum of functions including myelination, neuronal migration, axonal pathfinding, 
synaptogenesis and synaptic function (Corfas et al., 2004; Esper et al., 2006; Flames et al., 
2004; Hahn et al., 2006; Lopez-Bendito et al., 2006; Nave and Salzer, 2006). 
Unfortunately, understanding the in vivo relevance of NRG1/ErbB signaling has been 
greatly hampered by the embryonic lethality of null mutations of NRG1 and its receptors 
(Adlkofer and Lai, 2000; Garratt et al., 2000b). To determine the consequences of altered 
NRG1/ErbB signaling on brain development we generated and analyzed a large battery of 
mice with various conditional Nrg1 null mutations (defined by Cre-recombination at 
different stages of development).  



Materials 

3. Materials and Methods

29 



Materials 

3.1 Materials 

3.1.1 Kits and chemicals 

All chemicals were purchased from the Sigma-Aldrich and Merck unless stated otherwise. 
DNA purification kits and other molecular biology kits were purchased from Qiagen, 
Invitek, Promega, Stratagene and Sigma-Aldrich. General laboratory materials were from 
Falcon, Nunc and Eppendorf was used.  

 

Websites referred for online protocols 

http://mrw.interscience.wiley.com/emrw/9780471142300/home/ (Neuroscience) 
http://mrw.interscience.wiley.com/emrw/9780471142720/home/ (Molecular biology) 
http://mrw.interscience.wiley.com/emrw/9780471140863/home/ (Protein Science) 

3.1.2 Molecular biology buffers and stock solutions 

50x TAE buffer 
2.0 M    Tris-Acetate, pH 8.0 
50 mM   EDTA 
57.1 ml  glacial acetic acid 
Adjust volume to 1000 ml with H2O 
 

1x TE buffer 
10 mM   Tris-HCl, pH 8.0 
1.0 mM   EDTA 
 

10x modified Gitschier buffer (MGB) 
6.7 ml   1M Tris-HCl, pH 8.8 
1.66 ml  1M (NH4)2SO4 
650 µl    1M MgCl2 
Adjust final volume to 10 ml with H2O 
 
1x MGB buffer (Working solution) 
1 ml   10x MGB 
100 µl    β-mercaptoethanol 
500 µl    10% Triton X-100 
8.4 ml    H2O 
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TENS buffer 

50 mM   Tris-HCl, pH8.0 
0.1 M    EDTA 
0.1 M    sodium chloride 
1.0%   SDS 
 

1% Ethidiumbromide (stock) 
1 μl/ml of agarose gels (in 1x TAE) 
 
100 mM dNTP (stock)  
25 mM each dATP, dCTP, dGTP, dTTP  
 

3.1.3 Protein biochemistry buffers and solutions 

Modified RIPA buffer (protein lysis buffer) 
50 mM   Tris-HCl, pH 7.4 
150 mM  sodium chloride    
1.0 mM  EDTA 
0.1%   SDS 
1.0%    sodium deoxycholate 
1.0%   TritonX-100 
 
Phosphatase inhibitors 
1.0 mM  sodium orthovanadate 
0.5 mM  zinc chloride 
4.0 mM  sodium pyrophosphate  
1.0 mM  sodium fluoride 
 
Protease inhibitors 
1.0 mM  PMSF 
1.0 tablet  Complete Mini protease inhibitor (Roche) 
* phosphatase and protease inhibitors are added freshly to the RIPA buffer before use. 
 
Homogenization Buffer (complete) 
4.0 mM   Hepes/HaOH pH 7.4 
320 mM   Sucrose 
5.0 mM   EDTA  
* phosphatase and protease inhibitors are added freshly to the buffer before use. 
* 5ml of Homogenization buffer is sufficient for a mouse brains. 
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1X IP buffer 
20 mM   Hepes/HaOH pH 7.4 
150 mM   NaCl  
5 mM   EDTA 
1%    Triton X-100 
*phosphatase and protease inhibitors are added freshly to the buffer before use. 
 
2X IP buffer 
40 mM   Hepes/HaOH pH 7.4  
300 mM   NaCl  
2%    Triton X-100  
10 mM   EDTA  
*phosphatase and protease inhibitors are added freshly (in 2x conc.) to the buffer before 
use.  

3.1.4 SDS PAGE and Western Blotting 

4x Tris-HCl/SDS (Separating gel buffer) 
1.5 M    Tris-HCl, pH 8.8 
0.4 %    sodium dodecyl sulphate (SDS) 
 
4x Tris-HCl/SDS (Stacking gel buffer) 
0.5 M    Tris-HCl, pH 6.8 
0.4%    sodium dodecyl sulphate (SDS) 
 

8.0% Polyacrylamide separating gel (4 gels of 0.75 mm thick)  
9.1 ml   H2O 
5.0 ml   30% acrylamide/bis-acrylamide (29:1)-sigma  
4.7 ml   4x Tris-HCl/SDS (Separating gel buffer) 
50 μl    10% ammonium persulphate (APS) 
 10 μl   TEMED (Biorad) 
 
0.13% Polyacrylamide stacking gel (4 gels of 0.75 mm thick) 
3.05 ml  H2O 
650 µl   30% acrylamide/bis-acrylamide (29:1)-sigma  
1.25 ml  4x Tris-HCl/SDS (Stacking gel buffer) 
25 μl    10% ammonium persulphate (APS) 
10 μl   TEMED (Biorad) 
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6x SDS sample buffer 
7.0 ml    0.5M Tris-HCl buffer, pH 6.8 
3.0 ml    glycerol (30% f.c.) 
1.0 g     SDS  
1.2 ml    1% Bromophenol Blue  
Store in 1 ml aliquots at -20ºC 
 
10x SDS running buffer (Laemmli buffer) 
250 mM    Tris base 
1.92 M    glycine 
1.0%    SDS 
Do not adjust pH 
 
Coomassie blue (Staining solution) 
2.0 g    coomassie brilliant blue (R-250) 
1.0 L    methanol  
200 ml   acetic acid  
800 ml   H2O  
Stir for a minimum overnight and filter through Whatman paper. 
 
Destaining solution  
50 ml   methanol 
10 ml   acetic acid and  
40 ml    H2O 
 
1x Transfer buffer 
48 mM   Tris base 
39 mM   glycine 
20%    methanol 
 
20x Tris buffered saline (TBS) 
1.0 M    Tris base 
3.0 M    sodium chloride  
Adjust pH 7.4 (fuming HCl)  
 
1x TBS with Tween-20 (TBST) 
50 mM   Tris-HCl (pH 7.4-7.6) 
150 mM   sodium chloride  
0.05%    Tween-20 
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10x Phosphate buffered saline (PBS) 
1.7 M   sodium chloride 
34 mM   potassium chloride 
40 mM   di-sodiumhydrogenphosphate.2H20 
18 mM   potassiumdihydrogenphosphate 
Adjust pH 7.2 with 1N NaOH. 
 
Western blot stripping buffer 
0.2 M    Glycine-HCl, pH2.5  
0.1%    Tween-20 
 
Blocking buffer 
5% non-fat dry Milk powder in 1x TBS or 1x TBST 
10% ammonium persulfate (APS) 
* Labile do not store more than a week at 4 ºC. 

3.1.5 DNA and Protein markers 

DNA-marker Lambda/HindIII     Promega 
GeneRuler 1 kb DNA ladder     Fermentas 
GeneRuler 100 bp DNA ladder    Fermentas 
Precision Plus prestained protein standard   BioRad 

3.1.6 Immunohistochemistry buffers and buffers 

Phosphate buffer (Stock Solutions) 
0.2M    sodiumdihydrogenphosphate (NaH2PO4) 
0.2M    di-sodiumhydrogenphosphate (Na2HPO4)  
Working Solution (pH 7.4) 
20 ml    0.2M sodiumdihydrogenphosphate (NaH2PO4) 
80 ml    0.2M di-sodiumhydrogenphosphate (Na2HPO4) 
100ml    H2O  
 
Bovine Serum Albumin (PBS/BSA) 
20 ml    0.2 M Sodiumdihydrogenphosphate (NaH2PO4) 
80 ml    0.2 M di-Sodiumhydrogenphosphate (Na2HPO4)  
1.8 g    sodium chloride 
1.0 g    Bovines Serum Albumin (BSA) and 
100 ml   H2O  
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4% Paraformaldehye (PFA) 
100 ml   0.2M Sodiumdihydrogenphosphate  
400 ml   0.2M di-Sodiumhydrogenphosphate  
108 ml   37% formalin 
392 ml   H2O 
Filtered through 500 ml Nalgene sterile filter unit. 
 
Karlsson-Schultz Fixative (Electron Microscopy): 
20 ml   0.2 M Sodiumdihydrogenphosphate (NaH2PO4) 
80 ml    0.2 M di-Sodiumhydrogenphosphate (Na2HPO4)  
1.0 g   sodium chloride (f.c. 0.5%)  
50 ml   16% PFA (f.c. 4%)  
20 ml   25% Glutraldehyde (f.c. 2.5%)  
Make final volume to 200 ml ddH2O and filter through 500 ml Nalgene sterile filter unit.  
16% PFA is freshly prepared. 
 
Citrate Buffer (Stock Solutions) 
0.1 M    citric acid (C6H8O7.H2O)  
0.1 M    sodium citrate (C6H5O7Na3.2H2O) 
*Stored at 4°C. 
Working Solution (0.01 M pH 6.0) 
9.0 ml    0.1 M citric acid (C6H8O7.H2O) 
41 ml    0.1 M sodium citrate (C6H5O7Na3.2H2O) 
450 ml    H2O 
*Always prepared freshly 
 
Tris Buffer (Stock Solution) 
0.5 M    Tris base 
Adjust pH 7.6 with HCl. Store at 4°C. 
Working Solution 
100 ml   0.5M Tris base (pH 7.6) 
9.0 g    sodium chloride  
Adjust the final volume to 1000 ml with H2O and always prepared freshly. 
 
2% Milk-powder in Tris Buffer 
20g of Fat free milk powder and adjust final volume to 1000ml with working solution of 
Tris buffer. 
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3.1.7 Buffers for IHC of vibrotome sections 

Permeabilization buffer 
0.4% Triton (1x PBS) 
4 ml    4% TritonX-100 
36 ml    1x PBS 
 
Blocking buffer 
4% Horse-Serum (HS) in 0.2% TritonX-100 
800 µl    HS 
10 ml    0.4% TritonX-100 (1x PBS) 
9.2 ml    1x PBS 
 
Primary antibody diluent 
1% HS in 0.05% TritonX-100 
2.5 ml    4% HS in 0.2% Triton 
7.5 ml    1x PBS 
 
Secondary antibody diluent 
1.5% HS (1x PBS) 
150 µl   HS 
9850 µl  1x PBS 

3.1.8 Bacterial culture media 

LB medium  
1 %   Bacto Tryptone 
0.5 %   Bacto Yeast extract 
1 %   NaCl 
Make 1000 ml with H2O, set pH 7,5 with 10 N NaOH and autoclave. 
 
For selective LB media the following antibiotics were used: 
150 mg/l   Ampicillin 
50 mg/l  Chloramphenicol  
25 mg/l  Kanamycin 
 
LB plates 
1.2%    Bacto-agar 
Autoclave, cool to ~55°C in a waterbath, add desired antibiotic. Store plates at 4°C. 
 
Bacterial strains 
Escherichia coli   DH5α, XL1-Blue and EL-250 
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Plasmids 
pBluescript KS  Fermentas 
pFRTNeo   Stratagene 

3.1.9 Histological stains and reagents 

Mayer’s Haematoxylin solution 
1.0 g Haematoxylin in 1000 ml H2O was dissolved. 0.2 g sodium iodate and 50 g 
potassium aluminium sulphate (K2Al2(SO4)4·24H2O) was added under constant shaking 
whereby solution takes a violet blue hue. Finally, 50 g chloralhydrate and 1 g citric acid 
was added, this makes blue colouration of the solution permanent. Always filter the 
solution before use. 
* Mayer’s Haematoxylin solution purchased from Merck. 
 
Eosin solution 
10x Stock Solution: Dissolve 10g of Eosin in 100 ml of MiliQ water and leave the above 
solution for maturation. 
Working Solution: To 250 ml of ddH2O water add 2.5 ml of stock solution and 12 drops of 
glacial acetic. 
 
Scott’s solution 
2 g    potassiumhydrogencarbonate 
20 g    magnesium sulphate  
Adjust final volume to 1000 ml with H2O 
 
HCl- Alcohol 
1.25 ml  HCl 
350 ml   ethanol 
150 ml   H2O 
 
0.5% Cresyl violet (Nissl Stain) 
2.5 g    cresyl violet 
100 ml   2.72% sodium acetate 
400 ml   1.2% acetic acid 
Filter freshly before use. pH~3.8-4.0 
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3.1.10 Reagents for Gallyas silver impregnation for myelin 

Incubation solution 
1.0 g   ammonium nitrate 
1.0 g   silver nitrate 
Dissolve in 1000 ml ddH2O 
3.0 ml   4% sodium hydroxide (pH 7.4-7.6) 
*brown precipitate formed can be dissolved by shaking. Solution can be used for 8-10 
weeks.  
 
Physical developer 
Solution A 
5% sodium carbonate (dehydrated) in H2O 
 
Solution B 
2.0 g    ammonium nitrate 
2.0 g   silver nitrate 
10 g   wolframosilicic acid (silicotungstic acid) 
Dissolve in 1000 ml ddH2O 
 
Solution C 
2.0 g    ammonium nitrate 
2.0 g   silver nitrate 
10 g   wolframosilicic acid (silicotungstic acid) 
7.0 ml   formalin (37% paraformaldehyde) 
Dissolve in 1000 ml ddH2O 
 
*To reconstitute physical developer, take 100 ml of solution A in a clean flask, add 70 ml 
of solution B with constant and gentle shaking and then slowly add solution C with gently 
shaking. 
 
Fixing solution 
2% sodium thiosulphate 

3.1.11 Reagents for Bielschowsky silver impregnation of axons 

10% silver nitrate 
10 g silver nitrate dissolved in 100 ml dd H2O 
 
Developer 
20 ml    formalin (37% paraformaldehyde) 
100 ml   ddH2O 
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1 drop   nitric acid (conc.) 
0.5 g   citric acid 
 
Fixing solution 
5% sodium thiosulphate 
 
β-gal staining buffer (stock solutions) 
500 mM   potassium ferricyanid (in PBS) 
500 mM   potassium ferrocyanid (in PBS) 
2 mM    magnesium chloride (MgCl2)      
20 mg/ml  X-gal (in DMSO) 
Working solution 
5 mM   potassium ferricyanid 
5 mM   potassium ferrocyanid 
2 mM   MgCl2 

600 µl   X-gal (f.c. 1.2 mg/ml) 
Adjust final volume to 10 ml with 1x PBS 

3.1.12 Enzymes  

All Restriction enzymes used were purchased from New England Biolabs (NEB) and 
Promega. Enzymes were provided with their optimal 10x buffers and 100x BSA (if 
needed). Other enzymes used for molecular cloning were purchased from the vendors 
mentioned beside each of them. 
Pfu high fidelity DNA polymerase    Stratagene 
RedTaq DNA polymerase     Sigma 
GoTaq DNA polymerase     Promega 
HotStar Hifidelity DNA polymerase    Qiagen 
Power SYBR Green PCR master mix   Applied Biosystems 
T4 DNA ligase      Promega 
T4 polynucleotide kinase     Promega 
CIP (alkaline phosphatase) (1 U/µl)     Roche 
 

3.1.13  Antibodies  

Antibody Species Dilution Purpose Vendor 

APP mM 1:750 IHC Chemicon 

Calretinin pRb 1:1000 IHC Chemicon 

Cam KinaseIIα mM 1:10,000 IB Santa cruz biotechnology 

CNP mM 1:150, 1:5000 IHC/IB Sigma 
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ErbB2 pRb 1:1000 IB Cell signalling 

ErbB4 pRb 1:1000 IB/IP Santa cruz 

FNP7 mM 1:100 IHC Zytomed systems 

GABAARα1 goat 1:150 IB Santa cruz biotechnology 

GAD65 pRb 1:10,000 (IB) IB Chemicon 

GAD67 mM 1:1000, 1:5000 (IB) IHC/IB Chemicon 

GAPDH mM 1:2000 IB Advanced Immunochem 

GFAP pRb 1:200 IHC DAKO 

GluR1 pRb 1:1000 IB Chemicon 

GluRD pRb 1:600 IB Chemicon 

Krox20 pRb 1:400 IHC Dies Meijer 

Mac3 mRat 1:500 IHC Pharmingen 

MAG mM 1:1000 IB Chemicon 

MBP pRb 1:200, 1:5000 (IB) IHC/IB DAKO 

nAcetylcholine α7 mM 1:1000 IB Covance 

NeuN mM 1:100 IHC Chemicon 

NF200 pRb 1:200 IHC Sigma 

NMDAR1 mM 1:7000 IB Synaptic Systems 

NMDAR2B pRb 1:2000 IB Chemicon 

NMDAR2B(phos) pRb 1:1000 IB Chemicon 

NRG1 pRb 1:500 IB Santa cruz biotechnology 

Olig2 pRb 1:20,000 IHC C. Stiles 

P0 mM 1:000 IHC J.J Archelos 

pAkt (ser473) pRb 1:1000 IB Cell signalling 

Parvalbumin pRb 1:200/1:1000 (IB) IHC/IB Swant 

PLP (A431) pRb 1:600 IHC K.-A. Nave 

PLP(3F4) mM 1:100 IB M. Lees 

PSD95 mM 1:10,000 IB Upstate 

Synaptophysin mM 1:10,000 IB Synaptic Systems 

α-tubulin mM 1:5000 IB Sigma 

Vglut2 gp 1:4000 IHC Chemicon 

α-rabbit-HRP goat 1:5000 IHC Dianova 

α-rabbit-cy3/cy2 goat 1:1000/1:100 IHC Dianova 

α-mouse-HRP goat 1:10,000 IHC Dianova 

α-mouse-cy3/cy2 goat 1:1000/1:100 IHC Dianova 

*IB-immnuoblotting, IHC-immunohistochemistry 
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3.1.14 Mouse lines 

Mouse line Expression time Expression pattern Publication 

Nestin-Cre ~E9 Subventricular zone cells (Tronche et al., 1999) 

Emx1-Cre ~E10.5 Forebrain precursors (Gorski et al., 2002) 

Nex-Cre ~E12.5 Postmitotic neurons (Goebbels et al., 2006) 

Cam KinaseIIα-Cre ~P10 Pyramindal neurons (Minichiello et al., 1999) 

Nex-CreERT2 Inducible Postmitotic neurons Current study 

pan NeuregulinI - - (Meyer and Birchmeier, 1995) 

NeuregulinI type III - - (Wolpowitz et al., 2000) 

floxed NeuregulinI - - (Li et al., 2002a) 

Stop-floxed EYFP - - (Srinivas et al., 2001) 

 

3.1.15 Oligonucleotids 

Oligonucleotides were synthesized and were ordered from the service facility of the Max-
Planck-Institute of Experimental Medicine.  

3.1.16 Genotyping primer for various mouse lines  

Cam KinaseIIα-Cre 
Forward: 5'-CGAGTGGCCCCTAGTTCTGGGGGCAGC-3' 
Reverse: 5'-CGTTGCATCGACCGGTAATGCAGGC-3' 
Amplification product: ~450 bp  
 
Emx1-Cre (Ella-Cre PCR) 
Forward: 5'-CCTGGAAAATGCTTCTGTCCG-3'  
Reverse: 5'-CAGGGTGTTATAAGCAATCCC-3' 
Amplification product: ~400 bp 
 
Nestin-Cre 
Forward: 5'-CCAGCCGGCGGGAGTATGAAT-3' 
Reverse: 5'-CAGCCCGGACCGACGATGAA-3' 
Amplification product: ~600 bp 
 
Nex-Cre and Nex-CreERT2 
Forward: 5'-GAGTCCTGGAATCAGTCTTTTTC-3' 
Reverse: 5'-AGAATGTGGAGTAGGGTGAC-3' 
Reverse: 5'-CCGCATAACCAGTGAAACAG-3' 
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Amplification product: 770 bp (mutant) and 525 bp (wildtype). 
 
Nex-CreERT2 screening PCR 
Outer primer pair 
Forward: 5'-CCCTATCAGTCTAACCTCCTGTGTTG-3' 
Reverse: 5'-TTCTTGCGAACCTCATCACTCG-3' 
Inner primer pair 
Forward: 5'-CCACTTACAGGGATGCCAGATGATC-3' 
Reverse: 5'-CGTTGCATCGACCGGTAATGCAGGC-3' 
Amplification product: 1634 bp 
 
Nex-CreERT2 (specific) 
Forward: 5'-CCCTATCAGTCTAACCTCCTGTGTTG-3' 
Reverse: 5'-GGGGGCTCAGCATCCAACAAG-3' 
Amplification product: ~3.0 kb 
 
panNeuregulin I  
Forward: 5'-CTGCAAGGCGATTAAGTTGGGTAACG -3' 
Reverse: 5'-GGATTTAGGAGAGTGAGGATCACAGG -3' 
Amplification product: ~1250 bp  
 
panNeuregulin I (modified) 
Forward: 5'-GTTGGCAGTCAGACACTTTGTTATCAG-3' 
Reverse: 5'-CTGCAAGGCGATTAAGTTGGGTAACG-3' 
Amplification product:  390 bp 
 
Neuregulin I type III  
Forward: 5'-TTTACTCTTCCTTACGGTCTA -3' 
Reverse: 5'-ACTTTCTTCTTCCCATTCTGT -3' 
Reverse: 5'-TTTCTCTTGATTCCCACTTTG -3' 
Amplification product: 550 bp (mutant) and 880 bp (wildtype). 
 
floxed Neuregulin1  
Forward: 5'-TCCTTTTGTGTGTGTTCAGCACCGG-3' 
Reverse: 5'-GCACCAAGTGGTTGCGATTGTTGCT-3' 
Amplification product: 400 bp (floxed) and 260 bp (wildtype). 
 
Recombined Neuregulin1 
Forward: 5'-TCCTTTTGTGTGTGTTCAGCACCGG-3' 
Reverse: 5'-TCACTATGTAGCTCTGGCTGGCATC-3' 
Amplification product: ~600 bp 

42 



Materials 

 
Stop floxed EYFP 
Forward: 5'-AAAGTCGCTCTGAGTTGTTAT-3' 
Reverse: 5'-CGAAGAGTTTGTCCTCAACC-3' 
Reverse: 5'-GGAGCGGGAGAAATGGATATG-3' 
Amplification product: 250 bp (mutant) and 500 bp (wildtype). 
 

3.1.17 Quantitative real-time PCR primers  

18RNA 
Forward: 5'-AAATCAGTTATGGTTCCTTTGGTC-3' 
Reverse: 5'-GCTCTAGAATTACCACAGTTATCCAA-3' 
 
β-actin 
Forward: 5'-CTTCCTCCCTGGAGAAGAGC-3' 
Reverse: 5'-ATGCCACAGGATTCCATACC-3' 
 
Calretinin 
Forward: 5'-CGAAGAGAATTTCCTTTTGTGC-3' 
Reverse: 5'-TGTGTCATACTTCCGCCAAG-3' 
 
ErbB2 
Forward: 5'-CGCTTTGTGGTCATCCAGA-3' 
Reverse: 5'-CGGTAGAAGGTGCTGTCCAT-3' 
 
ErbB3 
Forward: 5'-CGGAGACAGTGCGATTTCA -3' 
Reverse: 5'- AGGGGAGGGTGTCTGTCTC-3' 
 
ErbB4 
Forward: 5'-GAACTTGGATTAAAGAACCTGACC-3' 
Reverse: 5'-AACATAGGAATTTGTTCTGGTCTACA-3' 
 
GABAARα2 
Forward: 5'-ACAAAAAGAGGATGGGCTTG-3' 
Reverse: 5'-TCATGACGGAGCCTTTCTCT-3' 
 
GAD65 
Forward: 5'-CAAGTTCTGTTCAGGTCATGGT-3' 
Reverse: 5'-AGCGCCCTCTGCTTTATTTT-3' 
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GAD67 
Forward: 5'-TGGAGATGCGAACCATGAG-3' 
Reverse: 5'-GAAGGGTTCCTGGTTTAGCC-3' 
 
GluRA 
Forward: 5'-GCCCAATGCAGAGCTCAC-3' 
Reverse: 5'-GTCACTCCACTCGAGGTAACG-3' 
 
Neuregulin (EGF domain) 
Forward: 5'-GTGTGCGGAGAAGGAGAAAACT-3' 
Reverse: 5'-TGGCAACGATCACCAGTAAACTCA-3' 
 
Neuregulin type III 
Forward: 5'-TGAGAACACCCAAGTCAGGA -3' 
Reverse: 5'-CCCAGTCGTGGATGTAGATGT-3' 
 
NMDAR1 
Forward: 5'-CGTGATATCAGTGGGATGGTACT-3' 
Reverse: 5'-GCTTTTGCAGCCGTGAAC-3' 
 
Parvalbumin 
Forward: 5'-GGCAAGATTGGGGTTGAAG-3' 
Reverse: 5'-CGAGAAGGGCTGAGATGG-3' 
 
PLP 
Forward: 5'-TCAGTCTATTGCCTTCCCTAGC-3' 
Reverse: 5'-AGCATTCCATGGGAGAACAC-3' 
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3.2 Methods 

3.2.1 Generation of recombinant bacteria 

3.2.1.1 Generation of electro-competent bacterial cells 

An overnight (ON) culture of the desired bacterial strain (EL250, EL350) was inoculated 
from a single colony or directly from a glycerol stock into 4 ml of LB or LB-tetracycline 
(10 µg/ml) medium (for XL-1 blue). 500 µl of this ON culture was further inoculated into 
50 ml of LB medium and incubated at 37ºC (or 32ºC for EL250, EL350) with constant 
shaking. The bacteria were grown till OD600~0.5 and then spun down at 5000g for 10 min 
at 4ºC. The supernatant was carefully removed and the bacterial pellet was re-suspended in 
50 ml of ice-cold 10% glycerol in ddH2O. The bacteria were washed two more times with 
10% glycerol (in ddH2O) and after the final wash the bacterial pellet was re-suspended in 
100-150 µl of 10% glycerol (in ddH2O) and snap-frozen in liquid nitrogen. These electro-
competent cells were then stored at -70ºC. The competence of the bacterial cells was tested 
by transformation of super-coiled pUC18 plasmid DNA and this usually resulted in 5x107-
8x108 transformants/µg pUC18 DNA. 

3.2.1.2 Generation of recombination competent EL250 and EL350 bacterial strain 

To obtain recombination-competent EL250 or EL350 bacterial strain, 50 ml cultures were 
grown in LB medium (see 1.1) to an OD600~0.5. At this point the bacteria were heat 
shocked in a water bath for 15 min at 42ºC under gentle agitation (for uniform heating). 
The bacteria were then chilled on ice for 15 min, washed and frozen as described (see 1.1). 
The competence of EL250, EL350 bacterial cells was usually 5x107-8x108 
transformants/µg pUC18 DNA. 

3.2.1.3 Generation of chemical competent E. coli  (XL-1 blue) 

A 4 ml ON culture of E .coli XL-1 blue grown in LB-tetracycline medium (10µg/ml) was 
further inoculated into a 200 ml of LB-tetracycline medium (1:50). The culture was then 
incubated ON at 37ºC with gentle shaking. The bacteria were grown till OD600~0.5 and 
then spun down at 5000g for 10 min at 4ºC. The supernatant was carefully removed and 
the bacterial pellet was re-suspended in 1/15th of the volume in TSB and incubated on ice 
for 10 min. The bacterial cells were then snap frozen in 100µl aliquots and stored at -70ºC. 
The competence of these cells was usually lower than for the electro-competent cells 
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(4x107 – 1x108 /µg pUC18 DNA), but sufficient for standard cloning procedures. 

3.2.1.4 Electroporation of E. coli 

Electro-competent E. coli were thawn on ice and 40µl were pipetted into a pre-cooled 
electroporation cuvette (gap size: 1 mm) togather with the DNA to be transformed. The 
bacteria and DNA were mixed in the cuvette, followed by 15 min incubation on ice. The 
cuvette was placed in the electroporation chamber of a “GenePulserII” (BioRad) and 
electroporated with the following settings: 1.75 kV, 200 ohms, and 25 µF. The bacteria 
were then re-suspended in 800-1000 µl LB or SOC medium, transferred into a microfuge 
tube and incubated for 30-45 min at 37°C (90 min at 32°C for EL250/350) in an orbital 
shaker. After recovery the bacterial cells were then plated on LB plates containing the 
appropriate antibiotic. 

3.2.1.5 Transformation of chemical competent bacteria  

50-100 μl of chemical competent E.coli were pretreated with 1.7 µl of β-mercaptoethanol 
(2-ME) for 5 min on ice. Then, 50 ng of plasmid DNA or 5-10 μl of ligation mixture was 
added and incubated for 15 min on ice. After a heat shock for 30 sec at 42°C and 
incubation for 1 min on ice, the bacteria were directly plated onto LB plates containing an 
appropriate antibiotic. For some ligation mixtures, 1000-800 µl of LB was added and the 
bacteria were incubated at 37°C for 30-45 min with constant shaking. 50-200 µl of bacteria 
were then plated onto LB plates containing an appropriate antibiotic. These LB plates were 
then incubated at 37°C for ON. 

3.2.1.6 Homologous recombination in bacteria 

Lee et al., constructed several E.coli strains capable of efficient homologous recombination 
(Lee et al., 2001). These bacterial strains carry a defective λ-prophage gene encoding the 
Red proteins (exo, bet and gam) under the transcriptional control of a temperature-sensitive 
λ-repressor. The bacterial strains such as EL250 and EL35 carry inducible cre and flpe 
site-specific recombinases under the transcriptional control of the PBAD promoter. The 
promoter activity can be induced by L-arabinose (0.5% w/v). The cre and flpe 
recombinases can excise the gene of interest franked by either loxP or FRT sites 
respectively. For the recombination of the gene of interest, an ON culture of the desired 
clone was grown at 32°C. 2 ml of LB medium was then inoculated with 20 µl of the ON 
culture and grown till OD600~0.5. At this point 50 µl of a 20% w/v L-arabinose solution, to 
a final concentration of 0.5%, was added to the culture. The bacterial cells were further 
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grown for an hour at 32ºC. From this culture, fresh 2 ml LB medium was inoculated (1:50) 
and the bacteria were grown for another hour. 5-10 µl of this culture was then plated on 
LB-Ampicillin plates and incubated ON at 32°C. The next day 5-10 clones were picked 
into 3ml of LB-Ampicillin and grown ON at 32ºC. 1 µl of each culture was used in a PCR 
screen to verify the excision of the gene of interest. 

3.2.1.7 Maintenance and revival of bacterial glycerol stocks 

Genetically modified E. coli were stored as glycerol stocks (30 % glycerol (v/v) in LB 
medium) at -80°C. For revival of culture, 4-5 ml of LB medium was inoculated by tiny 
amount of glycerol stock using an inoculation loop or autoclaved toothpick. The inoculated 
LB medium was incubated ON at 37°C with gentle shaking.  

3.2.2 DNA isolation and purification 

3.2.2.1 Small scale DNA purification ("mini preps") 

The small scale plasmid DNA preparations were carried out using Qiagen’s 'QIAprep 8 
Miniprep kit'. The DNA preparation is carried out by a modified 'alkaline lysis' protocol 
(Birnboim and Doly, 1979) followed by binding of the DNA to an anion-exchange resin 
under appropriate pH and low-salt conditions and subsequent wash and elution steps.  

In brief, 3 ml of LB media containing an appropriate antibiotic was inoculated with a 
single colony and incubated ON at 37°C with gentle shaking. Cultures were transferred 
into 2 ml microfuge tubes and bacteria were pelleted by centrifugation at 3000 rpm for 3 
min at RT. Plasmids were isolated from this bacterial pellet according to the 
manufacturer’s protocol. The bound plasmid DNA was eluted from anion-exchange resin 
columns in 100-200 μl of prewarmed (50°C) ddH20. 

3.2.2.2 Large scale plasmid DNA preparations ("midi/maxi preps") 

Preparative purification of plasmid DNA was carried out using Qiagen’s 'Plasmid midi kit' 
or 'Plasmid maxi kit' that are based on an 'alkaline lysis' procedure (Birnboim and Doly, 
1979) coupled to anion exchange resin purification under appropriate low-salt and pH 
conditions. The contaminating RNAs and low-molecular weight impurities are removed by 
medium salt washes. The plasmid DNA is then eluted from the resin by a high-salt buffer 
and precipitated with isopropanol followed by several washes to remove residual salt from 
the elution buffer.  

In brief, the glycerol stock of the bacterial strain was used to inoculate 3 ml of LB medium 
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(with antibiotic) and incubated at 37°C with gentle shaking for 4-6 hours. Then 200 µl of 
above starter culture was used to inoculate 200 ml of LB medium (with antibiotic), 
incubated overnight at 37°C on constant agitation. Bacteria were pelleted by centrifugation 
at 6,000g for 15 min at 4°C (SLA-1500 rotor). Plasmids were isolated from the bacterial 
pellet according to the manufacturer’s protocol. Finally, the plasmid pellet was re-
suspended in 500 μl of prewarmed (50°C) Tris-HCl (10mM, pH 8.0). The concentration 
and purity of DNA was determined by UV spectrophotometer at 280 nm wavelength. 

3.2.2.3 Preparation of mouse genomic DNA for Southern blotting 

For the preparation of mouse genomic DNA for Southern blotting ~200 mg of tissue (liver 
or tail) were digested in 700 µl TENS buffer supplemented with proteinase K (final conc. 
0.5µg/µl) ON at 52°C. The undigested debris was pelleted by centrifugation for 5 min at 
10,000g and the supernatant was transferred to a fresh microfuge tube. An equal volume of 
phenol:chloroform:isoamylalcohol (49:49:2), pH8.0, was added and vortexed for 20-30 
sec. The aqueous phase was separated by centrifugation at 10,000g for 10 min and 
transferred into a fresh tube. An equal volume of isopropanol was carefully pipetted onto 
the sample and the genomic DNA was spooled onto a glass rod by stirring and twisting. 
The DNA was then washed twice by stirring the glass rod in 70% ethanol, followed by a 
wash in 100% ethanol to facilitate drying. The tip of the glass rod was broken into a new 
tube and the DNA re-suspended in 200 µl of TE buffer. This method usually yielded 150-
200 µg of genomic DNA. 

3.2.2.4 Preparation of mouse genomic DNA for genotyping ('quick n dirty method') 

For the preparation of mouse genomic DNA for genotyping, 2-3 mm of tail snippets were 
placed in microfuge tubes. 180 µl of 1X MGB and 20 µl of proteinase K (10 mg/ml) were 
added to each tube and were closed tightly. These tubes were then incubated at 52ºC for 3 
hours to ON with vigorous shaking. Once tails were dissolved, proteinase K was heat 
inactivated by incubating the DNA lysate at 95ºC for 10 min. The DNA lysate was then 
centrifuged at 13,000g for 1 min to pellet all the undigested material. The supernatant was 
collected in fresh tube and was diluted by ddH20 (1:3). 1-2 µl of this diluted DNA preps 
can directly be used for genotyping PCR amplification. 

3.2.2.5 Purification and concentration of nucleic acids  

Crude DNA preparations such as genomic DNA isolated from tail snippets contain lot of 
impurities (proteins and salts). These impurities can be removed by phenol-chloroform 
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extraction and ethanol/isopropanol precipitation of DNA.  

An equal volume of phenol:chloroform:isoamylalcohol (49:49:2), pH8.0, was added to the 
sample. The resulting sample was mixed gently by inversion for 30 sec and then 
centrifuged at 15,000g for 10-20 min. The aqueous phase was carefully transferred into a 
new tube and 1/10 volume of 3M sodium acetate (pH 5.0) was added. The DNA was 
precipitated with 2 volumes of 100% ethanol or isopropanol by incubation at –20ºC for 1 
hour. The precipitate was pelleted by centrifugation at 15,000g for 10 min. The pellet was 
washed twice with 70% ethanol with each washing step followed by centrifugation at 
15,000g for 2-5 min. The final pellet was air dried to remove any residual ethanol and was 
re-suspended in prewarmed (50ºC) ddH2O or TE buffer. If the expected yield of DNA was 
<100ng/ml, carrier substances such as tRNA or glycogen can be added to the sample in 
order to enhance precipitation and to help visualize the resulting pellet. 

3.2.2.6 Extraction of DNA from agarose gels 

DNA fragments between 200bp-12kb were extracted from agarose gels using Qiagen’s 
"QIAquick Gel Extraction kit". The kit is based on the ability of DNA fragments to bind to 
silica-membranes under high-salt conditions at a pH7.5.  

In brief, the desired DNA fragment was cut out of the agarose gel on a UV screen and 
placed into a microfuge tube. DNA fragments were isolated from agarose according to the 
manufactures protocol. Finally, the DNA was eluted in 30-50 μl of prewarmed (50 °C) 
Tris-HCl (10 mM, pH 8.0). 

3.2.3 Enzymatic modification and manipulation of DNA 

3.2.3.1 Restriction digestion of DNA 

Restriction endonucleases are enzymes that recognize specific sequences within dsDNA 
and cut both DNA strands. Smith and Nathans (1975) discovered and characterized the 
restriction endonucleases that are commonly used in the molecular cloning. These enzymes 
cleave at specific sites within their recognition sequence that ranges from 4-8 bp in length 
and is in most cases palindromic. The hydrolysis of both dsDNA strands can generate 5’-
protruding, 3’-protruding or blunt ends. The 5’ ends are always phosphorylated and the 3’ 
ends are hydroxylated. These characteristics make them a useful tool in molecular biology 
for sequence specific fragmentation of DNA. One unit is defined as the amount of enzyme 
required to cut 1 µg of DNA in 1 hour at 37°C. For analytical DNA digests, usually 500 
ng-µg of DNA was digested with 1-10 units of the corresponding enzyme at 37ºC for 1-2 
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hours. For double digests involving enzymes requiring incompatible buffers, the DNA was 
digested sequentially. Restriction enzymes can be inactivated at 65°C for 20 min (for heat 
sensitive enzymes), or the enzymes can be removed either by phenol-chloroform extraction 
or by purifying the DNA fragment after electrophoretic separation in an agarose gel using a 
Qiagen 'QIAQuick gel extraction' kit. 

3.2.3.2 Dephosphorylation of DNA digested with restriction 

Terminal 5’-phosphoryl groups can be enzymatically removed by treating dsDNA with 
calf intestinal phosphatase (CIP), thereby preventing unwanted re-ligation of restriction 
digested DNA. One unit of CIP is defined as the amount of enzyme required to hydrolyze 
1µM p-nitrophenolphosphate to nitrophenol in 1 min at 37°C. The CIP used was active in 
the buffers used for restriction enzymes. To remove 5’phosphoryl groups, 1-2U of CIP was 
added to a heat inactivated 'restriction digest' and incubated for 30 min at 37°C. Since CIP 
cannot be heat inactivated, the treated DNA was subsequently gel purified using the 
'QIAquick gel extraction kit'. 

3.2.3.3 Phosphorylation of 5’ hydroxyl ends of oligonucleotide 

Polynucleotide kinase (PNK) catalyzes the transfer and exchange of a γ-Pi from ATP to the 
5’-hydroxyl end of dsDNA, ssDNA (oligonucleotide) and RNA. For quantitative 
phosphorylation of ssDNA, ATP is added to the reaction mixture at a final concentration of 
1mM to strongly favor the transfer of a γ-Pi onto the 5’-OH ends of the ssDNA. Usually 
for Kinasing reaction, a mixture of 5 pmol ssDNA and 1mM dATP is used. 4 µl of 10x 
PNK buffer and 10U of PNK were further added. The reaction mix was brought to a final 
volume of 40µl with ddH20 and was incubated for 30 min at 37°C. The reaction was 
stopped by a heat inactivation of PNK at 70°C for 15 min. Finally the phosphorylated 
ssDNA was purified using a S-400 sepharose column. 

3.2.3.4 Ligation of DNA-fragments 

The bacteriophage T4-encoded enzyme 'DNA ligase' catalyses the formation of 
phosphodiester bonds between neighboring 3’-hydroxyl- and 5’-phosphoryl-termini. It 
requires Mg2+ ions and ATP as co-factors. The efficacy of a ligation reaction is influenced 
by several factors, e.g. incubation temperature, reaction volume and the concentration of 
DNA termini. Addition of polyethylene glycol in the ligation buffer enhances the ligation 
efficacy and reduces the incubation time. The enzymatic activity is measured as the 
'cohesive end ligation unit', and is defined as the amount of enzyme required to achieve a 
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50% ligation of HindIII digested λ-DNA in 30 min at 16°C in 20 µl reaction volume and a 
5’ termini concentration of 0.12 µM (300 µg/ml).  

DNA fragments were ligated by mixing 25-50 ng vector DNA with a threefold excess of 
insert DNA. 0.5 μl of T4-ligase and 1 μl of 10x ligation buffer were added and the reaction 
mixture was brought to a final volume of 10 μl with ddH2O. The reaction was incubated 
either for 2 hours at RT or ON at 4°C. "Blunt" end ligations were carried out at 16°C for 
>12 hours. The reaction mixture was used directly for transformation without any further 
purification.  

3.2.4 Analysis and amplification of DNA 

3.2.4.1 Agarose gel electrophoresis for the separation of DNA fragments 

For the separation of DNA fragments ranging from 100bp to 15kb agarose gels ranging 
from 0.7 % to 3.0% were used. The desired amount of agarose was dissolved in 1xTAE 
buffer by heating in a microwave. After the agarose had cooled to approximately 60ºC, 
ethidiumbromide (1 μg/ml) was added. The warm agarose was slowly poured into a gel 
tank and combs were inserted. The set was kept undisturbed till the agarose polymerized. 
Then 1xTAE buffer was poured slowly into the tank till the buffer level stands 0.5-0.8 cm 
above the gel surface. Wells were formed by gently lifting the combs. Standard DNA 
marker (100bp or 1kb ladder) and DNA samples (containing glycerol and tracking dye) 
were loaded into the well. After loading, the set up was connected to power supply and 
voltage was set to 120 V (or 8 to 10 V/cm length). The gel was run until the tracking dye 
bromophenol blue has reached ¾ of the gel length or until the desired separation was 
achieved. For documentation, snapshots of UV-transilluminated gels were taken. 

3.2.4.2 Determination of DNA concentrations 

According to the Lambert-Beer law the absorption of an aqueous solution of a substance is 
directly proportional to its concentration, A=εcl, where ε is the molar extinction coefficient 
(M-1cm-1), c the concentration (M) and l is the path length of the light through the sample 
(cm). The absorption is measured at 260 nm and 280 nm, which represent the absorption 
maxima for nucleic acids and proteins, respectively. The measured absorption is the sum of 
the absorptions of all the bases in the solution.  

For working purposes the following OD260 – concentration relations were used: 
1 OD260 for dsDNA    : 50µg/µl 
1 OD260 for RNA    : 40µg/µl 
1 OD260 for ss-oligonucleotides  : 33µg/µl 

51 



Methods 

 
To determine the concentration, DNA was diluted 1:50 with ddH2O and was pipetted into a 

50 μl cuvette (quartz). The absorbance was measured at 260 nm, 280 nm and 320 nm. The 

purity of the DNA preparation was estimated by calculating the ratio of absorbances at 

260nm and 280nm (A260/A280). For RNA: A260/A280=2.0, DNA: A260/A280=1.8 and protein: 

A260/A280=0.6. A ratio of 1.8 - 2.0 is desired when purifying nucleic acids. If the ratio is 

less than 1.7 the solution is probably contaminated by protein or phenol.  

DNA samples and molecular weight standard (1kb ladder or HindIII digested λphage 

DNA)were subjected to agarose gel electrophoresis to check the integrity of DNA prior to 

molecular cloning experiments. The concentration of DNA can be calculated by comparing 

the intensity of the band of interest to the intensity of the band of molecular weight 

standard. 

3.2.4.3 DNA Sequencing 

16 µl of DNA (f.c. 100 ng/μl) diluted in ddH2O was submitted to the sequence facility of 

the Max Planck Institute of Experimental Medicine. The obtained sequencing data was 

analyzed using DNAStar (SeqManII) software package. Sequences were also verified on 

public domain databases such as ENSEMBL (http://www.ensembl.org) and BLAST at 

'National Centre for Biotechnology Information' (NCBI) 

 (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi).  

3.2.4.4 PCR primer designing 

Sense and antisense PCR primers (24-32 oligonucleotides) were manually designed. To 

achieve a melting point between 50-65°C the length of the primers was varied accordingly. 

Designed primers were proofread using DNAStar "EditSeq, SeqmanII and PrimerSelect" 

software packages. The oligonucleotides (primers) were synthesized by phosphoramidite-

based chemical reaction (Caruthers et al., 1983). All primers were synthesized at the 'Oligo 

Synthesis Lab' of Max Planck Institute of Experimental Medicine. The oligonucleotide 

stocks (50 pM) received were immediately diluted to 10 pM in PCR grade ddH2O. 
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3.2.4.5 Amplification of DNA fragments in vitro using polymerase chain reaction (PCR) 

The polymerase chain reaction allows the in vitro amplification of a specific DNA 

sequence (Mullis et al., 1986). DNA synthesis starts at two primers that are flanking the 

sequence to be amplified. One of the primers anneals to the sense and the other one to the 

anti-sense strand of the amplicon. DNA polymerase of the thermophilic bacterium 

Thermus aquaticus (taq polymerase) catalyzes the synthesis reaction at a temperature of 

72°C and is stable at 95°C. DNA synthesis is carried out in a thermocycler shifting 

temperatures between 95°C, the specific annealing temperature of the primers and 72°C for 

the synthesis reaction. The reaction mixture contains DNA template, primers dNTPs and 

taq polymerase with corresponding salt and optimal pH conditions. Usually, 24-40 cycles 

are necessary to obtain sufficient quantities of the PCR product for subsequent steps. For 

current projects Sigma "RedTaq polymerase" was used. Standard PCR reactions were 

setup as follows: 

2 µl   10x Red Taq Buffer 
1 µl   primer 1 (10 pmol/µl) 
1µl   primer 2 (10 pmol/µl) 
2µl   DNA template (100 pg-25 ng) 
1µl   Red Taq Polymerase (1 U/µl) 
13µl   ddH2O (or final volume 20 µl) 
 
The Taq polymerase does not possess a 3’-5’ exonuclease activity ('proofreading'), which 

on average leads to the introduction of single mutation every 1.3x105 nucleotides. For 

high-fidelity amplifications, the DNA polymerase of pyrococcus furiosus (pfu polymerase) 

was used, which has a proofreading activity that results in a >10-fold reduced mutation 

rate. PCR products were separated on an agarose gel for either visualization or purification 

followed by gel extraction. Alternatively, DNA fragments were purified using a S-200 spin 

column. 

3.2.5 RNA isolation and quantification  

3.2.5.1 Small scale RNA purification ('RNeasy mini prep') 

The small scale 'RNeasy mini preps' were used to purify up to 100µg of total RNA from 

tissue samples. The kit is based on a selective binding of RNAs >200 bases to a silica-gel-

based membrane under high-salt conditions, which excludes 5S, 5.8S and tRNAs. RNAs 
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were purified following the manufacturer’s instructions.  

In brief, specific micro-dissected brain regions were lysed and homogenized with an Ultra-

Turrax (20-30sec) in the presence of a highly denaturing guanidine isothiocyanate 

containing buffer, which immediately inactivates RNases. Ethanol was added to provide 

appropriate binding conditions, and the homogenate was then applied to an RNeasy mini 

column where total RNA binds to the membrane and contaminants are efficiently washed 

away. The RNA was eluted from the column by adding 30-50µl of RNase-free ddH2O. 

RNA quality was assessed by gel electrophoresis or by analysis on an Agilent 2100 

Bioanalyzer. 

3.2.5.2 First strand cDNA synthesis 

cDNA synthesis is based on the characteristic feature of eukaryotic messenger RNAs to 

harbor defined polyadenylated tail on the 3′ end. First-strand cDNA was mainly 

synthesized for quantitative RT-PCR. Total RNA is mixed with a random nonamer and 

oligo-dT primers. The amplification reaction is carried out by Superscript III reverse 

transcriptase (Gerard et al., 1986; Kotewicz et al., 1985) at 55ºC providing high specificity 

and yields of cDNA (from 100bp to >12kb).  

To co-precipitate RNA and primers, 75 pmol of random primers and 1 μg total RNA were 

added to a nuclease-free microfuge tube. The mixture was heated to 70°C for 10 min and 

incubated on ice for 2 min. 5 μl of 5X First-Strand Buffer, 1 μl of 0.1 M DTT and 2 µl of 

10 mM dNTP were added to the tubes and final volume of the mix was adjusted to 24 µl 

with ddH2O. The reaction mixture was incubated at 42ºC for 5 min. Finally 1μl of 

SuperScript™ III RT (200 units/μl) was added to complete the synthesis reaction mixture. 

This mix was incubated in the thermocycler with the following settings: 25°C for 10 min, 

then 50°C for 45 min, 55°C for 30 min (difficult templates or templates with high 

secondary structure) and finally the reaction was terminated by heating at 70°C for 15 min. 

The cDNA can now be used as a template for amplification in PCR. To obtain pure cDNA, 

required for PCR amplification, the mixture was incubated with 1μl (2 units) of E. coli 

RNase H at 37°C for 20 min to remove  >1kb RNA. 
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3.2.5.3 Quantitative real-time PCR for mRNA expression  

Real-time PCR was carried out using the ABI Prism 7700 Sequence Detection System and 

SYBR Green Master Mix according to the manufacturer (Applied Biosystems). For each 

gene expression assay, 5µl of SYBR green master mix, 1pmol of forward and reverse 

primer pair and ~20ng of cDNA were mixed in a 96well plate. The PCR reaction was 

carried out for 40 cycles at the following temperature conditions: 10 sec -95ºC, 25 sec -

60ºC and 35 sec -72ºC. The SYBR green fluorescence was read at the 72ºC step. All 

reactions were carried out in triplicates resulting in an almost complete overlap of the 

amplification plots. The relative quantity (RQ) of RNA with respect to the housekeeping 

genes (β-actin and 18sRNA) was calculated using 7500 Fast System SDS software Ver 1.3 

(Applied Biosystems) and Excel based rt-PRC anylysis software qBase (Hellemans et al., 

2007). Results were depicted as histograms (generated by Microsoft-Excel 2003) of 

normalized RQ values, with maximum RQ value in a given group normalized to 100%.  

3.2.6 Generation of transgenic mice 

All animals used for this thesis were kept and treated in the mouse facilities of Max-

Planck-Institute of Experimental Medicine, in accordance with the guidelines for animal 

welfare.  

3.2.6.1 DNA preparation for embryonic stem (ES) cell electroporation 

The 'targeting vector' was linearized by ON digestion of 150 µg plasmid DNA (from maxi 

prep) by SacII restriction enzyme (20U) at 37ºC. The completion of linearization was 

confirmed by electrophoretic separation of a small aliquot of the digested DNA (~2 µl) on 

a 0.7% agarose gel. The presence of a single band of about 13kb, with no other bands 

representing partially digested DNA (super coiled or nicked plasmid), confirmed the 

complete linearization of the targeting vector. The linearized vector was then purified by 

isopropanol precipitation and column filtration as follows.  

To 600 µl of linearized vector an equal volume of pure isopropanol was added and gently 

mixed. The precipitated DNA fragments were pelleted by centrifugation at 13,000 rpm for 

10 min at RT. The resulting pellet was washed twice with 70% ethanol, each washing step 

followed by centrifugation at 13,000 rpm for 3 min at RT. All traces of ethanol were 
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removed by air-drying the pellet at RT for 20-30 min. Finally, the pellet was dissolved in 

80 µl of 10 mM Tris-HCl (pH 8.5) at 50ºC for 30 min on gentle shaking.  

For the column filtration purification step, C-30 columns from BioRad were used 

according to manufacturer’s protocol. In brief, after breaking the tip of the column they 

were centrifuged at 2000 rpm for 3 min to drain out the storage buffer. 80 µl of linearized 

DNA was added on C-30 column and centrifuged at 2000 rpm for 3 min. The eluted 

fraction was collected in the microfuge tube. 40 µl of 10mM Tris-HCl (pH8.5) was again 

added on C-30 column and centrifuged at 2000 rpm for 3 min. The eluted fraction was 

collected in the same microfuge tube as the previous fraction. Finally to recover any 

remaining DNA, again 40 µl of 10mM Tris-HCl (pH 8.5) was added on column and 

centrifuged at 2000 rpm for 3 min. This fraction was collected in a fresh microfuge tube 

and stored at -20ºC. The DNA concentration was measured spectrophotometrically at 260 

nm and 280 nm and 1 µl was separated on a 0.7% agarose gel for reconfirmation of 

concentration and integrity of the DNA. The linearized fragment (~50 µg) is ready for the 

electroporation in ES cells. 

3.2.6.2 Transfection and selection of ES cells 

2-3 days prior to electroporation, ES cells (2x106) under normal culture conditions were 

plated on 10 cm culture dish to get a cell density of 10-15x106 ES cells/plate (i.e. confluent 

plate). In case of frozen stock, one vial of ES cells (5x106 cells) was plated on a 6 cm dish 

and incubated for 36-48 hours at 37ºC and 5% CO2. Cells were then split on two 10 cm 

dishes and kept in culture for 2-3 days providing sufficient cells for 3 transfections. The 

medium was changed several hours before transfection, as actively growing cells reaching 

70% confluency is an absolute necessity for successful transfection. Cells were trypsinized 

(2 ml/dish) and spun down at 900 rpm for 5 min. The cell pellet was re-suspended in the 

medium, pre-plated on gelatinized 10 cm dishes to get rid of feeders (fibroblast cells) and 

incubated for 45 min at 37ºC and 5% CO2. The supernatant medium containing mainly ES 

cells, as feeders attach very well to the gelatin, was transferred to a 15 ml falcon tube. ES 

cells were spun down at 900 rpm for 5 min and the pellet was immediately re-suspended in 

1 ml of ice-chilled PBS. Cells were counted using a Neubauer chamber and the cell 

number was adjusted to about 10-14x106 cells/ml. 0.7 ml (i.e. 7-10x106 cells) of this cell 

suspension was transferred to a microfuge tube on ice. 100 µl (0.5 µg/µl) of linearized 
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targeting vector DNA was added and mixed well. This mix was transferred to an 

electroporation cuvette (pre-incubated on ice for about 20 min) and was pulsed (240 V, 

500 µF) on BioRad electroporator. After the pulse the cuvette was incubated on ice (4ºC) 

for 20 min. The cell suspension was then transferred to a fresh tube, 30 ml of medium was 

added and cells were plated on 3 dishes (10 cm). 24 hours later the medium was changed 

and selection was started with G418 (f.c. 300 µg/ml). After around 10 days of selection, 

~300 large isolated ES cell clones were picked up. 

3.2.6.3 Isolation of DNA from ES cell for genotyping 

Cells were pelleted by centrifugation at 13,000 rpm for 10-15 min at RT. The medium was 

aspirated out very carefully and the pellet was washed with 100µl of sterile 1x DPBS. 

Cells were re-pelleted by centrifugation at 13,000 rpm for 5 min at RT and the resulting 

pellet was re-suspended in 50µl of ddH2O. This cell suspension was boiled at 95ºC for 10 

min and centrifuged shortly to spin down the evaporated liquid. After cooling down on ice 

(4ºC), cells were digested with 1 µl of proteinaseK (20 µg/µl) at 56ºC for 30 min, with 

vigorous shaking. Cells were then incubated at 95ºC for 15 min to heat inactivate 

proteinaseK and were centrifuged shortly to spin down the evaporated liquid. 5 µl of this 

crude DNA preps were used for PCR amplification. 

3.2.6.4 PCR amplification for selection of ES cells targeted by homologous 

recombination  

To screen ES cells targeted by homologous recombination, a nested PCR based screening 

strategy was designed. For designing and testing of primer pairs capable of efficient 

amplification of a homologously recombined target sequence, a new plasmid was cloned. 

This plasmid, termed as control plasmid, bears 1.16 kb sequence upstream of kpn1 

restriction site located 5’ of exon 1 and ~800 bp of irrelevant (NeoR gene) DNA cloned 

after the Nex ORF in exon 2. The nested PCR is a two-step reaction in which the 

amplification product of the outer primer pair is used as the template for the amplification 

reaction of the inner primer pair (sequence of primers are in section 3.1.16). The nested 

PCR amplification, with the most efficient primer pairs, using the control plasmid as 

template yielded a product of about 1900bp whereas the homologously recombined ES 

genomic DNA as a template yielded a product of 1634bp.   
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The PCR reaction mix: 

5µl  10X Taq-Polymerase Buffer 
5µl  2mM dNTP mix 
1µl  10pmol/µl Primer1 
1µl  10pmol/µl Primer2 
1µl 25mM MgCl2 

5µl template DNA 
1µl Red Taq-Polymerase 
31µl ddH2O 
 

PCR for detection of the homologous recombination (Nested PCR) 

95.0°C  5 min 
95.0°C  45 sec 
54.7°C  45 sec 
72.0°C  2 min (to step 2, 19 cycles) 
4.0°C  Pause  
95.0°C  5 min 
95.0°C  45 sec 
58.0°C  35 sec 
72.0°C  1 min 49 sec (to step 7, 32 cycles) 
58.0ºC  1 min 
72.0ºC  10 min 
4.0°C  Pause 
 

For the first step of the nested PCR, the outer primer pair (8250/8251) and 5µl ES cell 

genomic DNA was used as a template. The amplification reaction was carried out till step 

5. Then for the next step, the inner primer pair (8039/7963) and 5µl of the reaction product 

form the first step was used as the template. The amplification reaction was carried out till 

step 12. The presence of the amplification product of 1634bp in the screening PCR 

confirmed the ES clone to be homologously targeted. 

3.2.7 Protein isolation and analysis 

3.2.7.1 Preparation of protein lysates from the mouse brain  

Mice were sacrificed by cervical spinal cord dislocation and were instantly decapitated 

using sharp scissors. Brains were removed as quickly as possible in order to minimize any 

post-mortem changes. Each brain, immersed in chilled 1X PBS, was micro dissected under 

58 



Methods 

binoculars. The various brain regions such as prefrontal cortex, hippocampus, cerebellum 

and brain stem were collected in 2 ml microfuge tubes, snap frozen in liquid Nitrogen and 

stored at -70°C until further processing. For every 100mg of tissue 1ml of 'modified RIPA 

Buffer' was used for homogenization. Protein lysates were prepared using an Ultraturrax 

(T8) at highest settings (20-30s). After incubation of lysates for about 20-30 min on ice the 

insoluble cellular debris were pelleted by centrifugation at 16,000g at 4ºC for 30 min and 

the supernatant was used for further analysis or stored at -70°C. 

3.2.7.2 Preparation of ‘enriched’ synaptic vesicles  

Synaptic vesicles are secretory organelles that store neurotransmitter in presynaptic nerve 

endings. They are very abundant in the brain with total of about 1017 vesicles in the human 

CNS, thereby contributing about 5% to the total amount of CNS protein (Jahn and Sudhof, 

1993). Being very small (50 nm in diameter) and homogeneous in shape and size they can 

be isolated by size fractionation techniques. The protocol used in this study is modified 

from the protocol outlined in detail by Hell and Jahn (1994). It involves the preparation of 

isolated nerve terminals (synaptosomes) by differential centrifugation steps (Nagy et al., 

1976). These isolated synaptosomes were lysed by osmotic shock to release synaptic 

vesicles into the medium. The sedimentation by an ultra centrifugation step results in five 

to six fold enrichment of the synaptic vesicles in the resulting pellet. This pellet can be 

further resuspended in Hepes buffer and subjected to western blotting. The detailed steps 

for the isolation of synaptic vesicles are as follows. 

• Mice were sacrificed by cervical spinal cord dislocation and were decapitated. 

Brains were instantly removed and were micro dissected in chilled 1X PBS to 

isolate forebrain by cutting out olfactory bulb, midbrain, hindbrain and cerebellum.   

• Each dissected forebrain was placed into a glass potter containing 1.4 ml of 

homogenization buffer and was gently homogenized using a glass-Teflon 

homogenizer (12 strokes, 900 rpm). The pistil was further rinsed with 1.4 ml of 

homogenization buffer for complete recovery of homogenate.  

• The homogenate (H) was centrifuged at 1000gmax (2,700 rpm in Sorval SS34 rotor) 

for 10 min at 4ºC. The resulting pellet P1 containing large cell fragments and nuclei 

was discarded and the supernatant S1 was collected.  

• The supernatant S1 was centrifuged at 12,000gmax (10,000 rpm in Sorval SS34 
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rotor) for 15 min at 4ºC. The supernatant S2 containing microsomes or small 

myelin fragments and soluble proteins was discarded. The pellet was re-suspended 

in 1ml of homogenization buffer and was centrifuged at 12,000gmax (10,000 rpm in 

Sorval SS34 rotor) for 15 min at 4ºC. The resulting pellet P2 represents a crude 

synaptosomal fraction and the supernatant S2' was discarded.  

• The pellet P2 was re-suspended in 250 µl of homogenization buffer and was 

transferred to the glass-Teflon homogenizer. To release synaptic vesicles from 

synaptosomes, the re-suspended P2 was osmotically shocked by adding 2.25 ml of 

ice-cold 4 mM Hepes buffer and was homogenized immediately at max speed of 

1500 rpm (10 strokes).  

• The suspension was centrifuged at 27,000gmax (15,000 rpm in Sorval SS34 rotor) 

for 20 min at 4ºC to yield lysate pellet LP1 (lysed synaptosomal membranes) and 

lysate supernatant LS1. LS1 was immediately and carefully removed without 

disturbing LP1, as contamination with LP1 can affect the purity of the final vesicle 

fraction.  

• The lysate supernatant LS1 was ultra-centrifuged at 265,000gmax (70,000 rpm in 

Beckman TLA 100.3 rotor) for 2 hours at 4ºC. The supernatant LS2 (cytosolic 

synaptosomal fraction) was discarded and the pellet LP2 (crude synaptic vesicle 

fraction) was resuspended in 250 µl of homogenization buffer with a 27-gauge 

needle attached to 1 ml syringe. LP2 represents enriched synaptic vesicle fraction. 

* Small aliquots of all fractions were collected for a quality control of the subcellular 

fractionation process. 

3.2.7.3 Co-immunoprecipitation of synaptic proteins 

The use of antibodies for immunoprecipitation has its origin in the precipitin reaction 

(Nisonoff, 1984). The precipitin reaction is a spontaneous precipitation of antigen-antibody 

complexes formed by interactions of certain polyclonal antibodies with their antigens. In 

immunoprecipitation reaction binding of an antigen to a specific antibody (attached to a 

sedimentable matrix) can be isolated as antigen-antibody complexes. Immunoprecipitation 

protocols consist of three main steps. First, the antigen is solubilized by lysing cells or 

tissues. Sec, a specific antibody is attached to a sedimentable immunoadsorbent such as 

proteinA- or proteinG- sepharose, to allow separation by low-speed centrifugation. Finally, 
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immunoprecipitation is achieved by incubating the solubilized antigen with the 

immobilized antibody, followed by extensive washing and centrifugation steps to remove 

unbound proteins. The protocol used in the current study is modified from (Bonifacino et 

al., 1999) and is outlined below.  

• Mouse brain homogenate was prepared as described in section 7.2 (first three 

steps).  

• The supernatant S1 was centrifuged at 31,000gmax (16,000 rpm in Sorval SS34 

rotor) for 60 min at 4ºC. The supernatant S2 containing microsomes or small 

myelin fragments and soluble proteins was discarded. The resulting pellet P2 

represents a crude synaptosomal fraction.  

• The pellet P2 was re-suspended in 1 ml of homogenization buffer. The protein 

concentration was determined as described in section 3.2.7.4.   

• 1.5 ml of immunoprecipitation (IP) solution was reconstituted to a final 

concentration of 1 mg/ml by mixing the appropriate volume of re-suspended P2 

fraction with 2X IP buffer (plus ddH2O).  

• The IP solution (containing non-denaturating detergent) was incubated at 4ºC for 2 

hours on Intelli-Mix (C1, 16 rmp) in order to solubilize membrane proteins.  

• Solubilized proteins were ultracentrifuged at 166,000gmax for 1.5 hour at 4ºC (at 

44,000rpm in rotor TLS-55 Beckman). The resulting pellet represents insoluble 

postsynaptic density proteins and was re-suspended in homogenization buffer for 

further use. The solubilized P2 fraction (supernatant) was collected in a 1.5 ml 

microfuge tube for immunoprecipitation.  

• The primary antibody (in the concentration recommended on datasheet) was added 

to 1.2 ml of solubilized P2 fraction and was incubated ON at 4ºC on Intelli-Mix 

(C1, 30 rmp).  

• 50 µl of washed ProteinA- or ProteinG-Sepharose beads were added and incubated 

at 4ºC for 2 hours on Intelli-Mix (C1, 30 rmp).  

• Beads containing bound antigens were pelleted at 16,000g for 30 sec at 4ºC and 

were washed three times with 1 ml of chilled IP buffer. Finally beads were washed 

with 1 ml of ice-cold PBS and were pelleted. 

• Beads were dried by removing PBS with a 27-gauge needle attached to a 1ml 

syringe. Dried beads were immediately re-suspended in 40-50 µl 2X Laemli Buffer. 
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3.2.7.4 Protein concentration measurement by the Lowry method 

The Protein concentration was measured using the Bio-Rad DC Protein Assay kit 

according to the manufacturer’s 'microplate assay' protocol. The absorbance was read at 

650 nm in a microtitre plate reader.  

The working principle of the kit is similar to the well-documented Lowry assay (Lowry et 

al., 1951). The assay is based on the reaction of proteins with an alkaline copper tartrate 

solution and Folin reagent. There are two steps that lead to a color development: the 

reaction between protein and copper in an alkaline medium and the subsequent reduction 

of Folin reagent by the copper-treated protein. The color development is primarily due to 

the amino acids tyrosine and tryptophan, and to a lesser extent cystine, cysteine and 

histidine (Lowry et al., 1951; Peterson, 1979). Proteins lead to a reduction of the Folin 

reagent by loss of 1, 2, or 3 oxygen atoms, producing one or several reduced species that 

have a characteristic blue color with maximum absorbance at 750 nm and minimum 

absorbance at 405 nm. 

3.2.7.5 Separation of proteins through discontinuous SDS-PAGE 

The most widely used denaturing and discontinuous polyacrylamide gel electrophoresis 

(SDS-PAGE) method for protein separation was described by Laemmli (Laemmli, 1970). 

In this method buffers of distinctive pH and composition generate a discontinuous pH and 

voltage gradient in the gel. The discontinuity in pH and voltage concentrates proteins in 

each sample into narrow bands thereby allowing the separation of very dilute samples. The 

protocol primarily relies on denaturing proteins by heating in the presence of SDS and β-

mercaptoethanol (β-ME). Under these conditions, the subunits of proteins are dissociated 

and their biological activities are lost. Most proteins bind SDS in a constant-weight ratio, 

leading to identical charge densities for the denatured proteins. Thus, the SDS-protein 

complexes migrate in the polyacrylamide gel according to size, not charge. Most proteins 

are resolved on polyacrylamide gels containing from 5% to 15% acrylamide and 0.2% to 

0.5% bisacrylamide. The detailed theory and protocol for one dimensional gel 

electrophoresis has been described in following references (Gallagher, 2006; Hames, 

1990).  

A glass plate and a 0.75-mm spacer plate sandwich of the electrophoresis apparatus was 

assembled according to Bio-Rad instructions. The separating gel solution of desired 

62 



Methods 

percentage of acrylamide (8% for proteins >50kDa and 12% for proteins <50kDa) was 

prepared freshly and poured along an edge of one of the spacers until the height of the 

solution between the glass plates is 2/3rd of the maximum height of the glass plates.  The 

top of the gel was slowly covered with a layer (1 cm thick) of H2O-saturated isobutyl 

alcohol. The gel was allowed to polymerize for 30 min at RT. Once the gel has 

polymerized the layer of isobutyl alcohol was poured off and was twice rinsed with ddH2O 

to remove any residual isobutyl alcohol. The stacking gel solution was freshly prepared 

and was poured slowly on top of the polymerized separating gel along an edge of one of 

the spacers until the solution reaches the top of the plates. A 0.75 mm Teflon comb (10 or 

15 teeth) was inserted into the layer of stacking gel solution. The stacking gel solution was 

allowed to polymerize for 30 to 45 min at RT. A portion of the protein lysate to be 

analyzed was diluted with 6X SDS sample buffer containing 1% β-ME to a final 

concentration of 4 µg/µl and was heated for 10 min at 90°C in a 1.5 ml microfuge tube. 

The Teflon comb was removed carefully tearing the edges of the polyacrylamide wells. 

After the comb was removed, wells were rinsed with 1X SDS electrophoresis buffer. The 

gel chamber should be submerged with 1X SDS electrophoresis buffer such that wells of 

the stacking gel are filled with buffer. 5-15 µl of denatured protein sample(s) were loaded 

into one or more wells by carefully applying the sample as a thin layer at the bottom of the 

wells. The control well was loaded with molecular weight standards. Equal volume of 1X 

SDS sample buffer was added to any empty wells to prevent spreading of adjoining lanes. 

The power supply was connected to the chamber and was run at 10 mA of constant current. 

Once the bromphenol blue tracking dye enters the separating gel the current was increased 

to 15 mA. After the bromphenol blue has eluted out of the separating gel the power supply 

was disconnected. The gel was carefully removed and preceded with protein blotting. 

3.2.7.6 Western blotting 

Western blotting allows the immunological detection of proteins in biological samples and 

was first introduced by Towbin and colleagues (Towbin et al., 1979). In this technique 

proteins resolved with SDS-PAGE are transferred onto a PVDF membrane. When an 

electric current is applied to the blotting module, the negatively charge proteins migrate 

from the cathode to the anode and are retained on the PVDF membrane by electrostatic and 

hydrophobic interactions.  
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In current study the technique was used to detect endogenous levels of NRG1/ErbB 

signaling cascade proteins, myelin proteins, several neurotransmitter receptors and 

synaptic proteins, in protein lysates prepared from transgenic and control mice. Blotting 

was carried out in a  "XCellSureLock" wet blotting chamber (Invitrogen, Carlsbad, CA). 

Before setting up the blot, the PVDF membrane (Amersham/Millipore, pore size 0.45 µm) 

was activated in 100% methanol for 30 sec, rinsed shortly in water and then incubated in 

transfer buffer for about 5-15 min. Blotting paper and blotting pads presoaked in transfer 

buffer were assembled according to the manufacturer’s protocol. Note that the blotting 

buffer used differs from the manufacturers recommended. Proteins were transferred at a 

constant voltage of 38 V and a maximum current of 275 mA, for 45-70 min (depending on 

the size of protein and thickness of the gel) at 4ºC. 

3.2.7.7 Immunodetection of blotted proteins  

The western blotted PVDF membrane was immediately placed in blocking buffer (5 % 

non-fat dry milk in TBS) for 1 hour at RT. The blocked membrane was incubated with the 

primary antibody diluted in blocking buffer (containing 0.05% tween-20, TBS-T) for about 

1 hour at RT (or overnight at 4 °C) with constant and gentle shaking. After four washes of 

each 10 min in TBS-T, the secary HRP-coupled antibody diluted in TBS-T was then 

applied to the membrane. The incubation was carried out for 1 hour at RT followed by six 

washes of each 10 min in TBS-T. After the washing steps, the membrane was incubated 

for 60 sec in Enhanced Chemiluminescence Detection (ECL) solution according to the 

manufacturer’s recommendations (Western Lightning™, Western Blot Chemiluminescence 

Reagent Plus, PerkinElmer Life Sciences, Inc.). The membrane was then covered with a 

transparent film and an ECL photographic film (Hyperfilm™, Amersham Biosciences) was 

exposed to the membrane. The time of exposure varied from 1 sec to 15 min depending on 

the signal intensity. The films were then developed in a KODAK X-OMAT developer.  

For re-probing of the membrane with a second antibody, the membrane was placed into 

'WB stripping buffer' for 1 hours at 60°C with rigorous shaking. After 3 washes of each 2 

min with TBS-T, the membrane was incubated in blocking buffer for about 30 min at RT. 

Then the membrane was ready to be probed with a second primary antibody. 
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3.2.7.8 Densitometric quantification of band intensity  

For densitometric analysis only films exposed at non-saturating levels were used. These 

films were scanned at greyscale (300 dpi resolution) using a regular image scanner 

(UMAX, Astra). Scanned images were cropped for the bands of interest and were auto 

contrasted using Photoshop CS. These images were then exported as TIF-files for band 

intensity analysis using QuantityOne® software from BioRad or ImageJ. The integrated 

density or mean grey values for the band of interest was calculated by ImageJ and was 

normalized to the integrated density or mean grey values of GAPDH, actin or tubulin. The 

normalized values (±SEM) were depicted as histograms using Microsoft-Excel 2003. The 

analysis for statistical significance (unpaired t-test) was performed using the GraphPad 

Prism software package.  

3.2.8 Histology and immunohistochemistry 

3.2.8.1 Perfusion fixation of mouse tissue for immunohistochemistry 

All data of perfused mice like date of birth, perfusion day, parents, genotype, sex, date of 

tailing and the marked number of the mouse, were documented. Mice was deeply 

anaesthetized by injecting 2.5% Avertin (0.017 ml per gram body weight of mouse x 4) 

intraperitoneally. After anesthesia mice were stretch out ventrally on a Styrofoam board 

with needles and were wiped with 70% ethanol. After removing the skin from the ventral 

side a transversal cut was made just below the diaphragm. The diaphragm was cut through 

just till the edge of the chest and after that it was opened by two lateral cuts along the rib 

cage. Finally the rib cage was flexed forward and fixed with a needle to give a good access 

to the heart. Quickly a piece of tail snippet was cut with a clean pair of scissors (PCR!). 

This piece was stored at -20°C immediately and can be used for re-genotyping of the 

mouse. A new needle (27 gauge) was inserted into the left ventricle and just after starting 

the perfusion a small incision was made in the right auricle to let the blood to flow out (of 

the body) instead of recirculating in the body. The position of the needle was tightly 

controlled so that it doesn’t pierce through the ventricle. Perfusion was carried out with 

warm HBSS that was forced through the aorta using a peristaltic pump, to clean blood 

vessels. The tubing of the pump was changed carefully from HBBS to fixative (freshly 

prepared 4% paraformaldehyde in PBS) without introducing any air bubbles into the 
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system. The perfusion was carried out with about 30-50 ml of fixation solution and during 

this phase of perfusion the mouse will go through some convulsions and then turn stiff 

quickly. The brain, spinal cord, sciatic nerve, optic nerve with adhering eye and/or other 

tissue required were removed carefully. The collected tissue samples were immediately 

dropped into a vial (a scintillation plastic vial well suited) with cold perfusion fluid. The 

tissue samples were stored at 4 °C until needed. It is suggested to process them as soon as 

possible as storing tissues in 4% paraformaldehyde for long time can render them 

unsuitable for immunohistochemistry. If the mice were required for further analysis the 

perfusion fixed carcasses could be stored in a tightly sealed plastic bag with a 

perfusion/fixation solution. 

3.2.8.2 Paraplast impregnation and embedding of tissue 

After the post-fixation, 4% PFA was poured off and was replaced by 1X PBS. Brains were 

cut into 3-4 mm pieces in coronal plane of section and were transferred to plastic chambers 

for dehydration and paraplast impregnation. Brains were dehydrated by incubating them in 

increasing alcohol concentration as follows: 50% ethanol for 1 hour, twice in 70% ethanol 

for 2 hours each, twice in 96% ethanol for 1 hour each and twice in 100% ethanol for 1 

hour each, at RT. 100% ethanol was replaced by isopropanol for 1 hour and then incubated 

twice in Xylene for 2 hours each. Finally brains were impregnated two times with paraplast 

at 60ºC for 2 hours each. Then brains were ready for embedding. Embedding molds were 

filled with molten paraplast. Brains were immediately transferred to the paraplast-filled 

embedding molds using hot forceps. Properly labeled casts were placed on the molds and 

were filled with paraplast. Tissue blocks with casts were left on the cold plate to harden 

completely. Blocks were removed from the molds and can now be stored stably and for 

years a dry place at RT.  

3.2.8.3 Haematoxylin-Eosin (HE) staining 

5-7 µm thick sections were cut from the paraffinised block of brain using a microtome. 

The brain sections were floated on a warm water bath (42°C), placed on silanized or 

positively charged glass slides and were dried ON at 37°C. They were deparaffinised by 

dipping them twice in Xylol and once in Xylol/Isopropanol (1:1) for 10 min each. They 

were rehydrated by incubating them in the decreasing concentration of alcohol (100%, 
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90%, 70%, and 50%) for 5 min each and then rinsed in ddH2O.  

The brain sections were stained with 0.1% Haematoxylin for 5 min. Haematoxylin stains 

gives a blue coloration to the basic nuclear compartment of the cell. The excessive dye was 

washed off from the sections by rinsing them twice with ddH2O. The blue coloration was 

differentiated by dipping sections once for 5-10 sec in HCl-Alcohol leaching solution. For 

arresting the differentiation process and proper development of the blue staining, sections 

were incubated for 5 min in Scott’s blueing solution. They were shortly rinsed with ddH2O 

to remove excessive salts. They were counterstained with 0.1% Eosin for 3-5 min to reveal 

cellular details. Eosin is usually taken up intensely by acidic tissue compartments. The 

excessive dye was rinsed with ddH2O. Sections were dehydrated by incubating them in the 

increasing concentration of alcohol (50%, 70%, 90%, and 100%) for 2 min each (or 

sometimes depending upon the stability of the Eosin stain very short dipping for 10-30 sec 

in alcohol is done). Sections were then dipped for 5 min in Xylol/Isopropanol (1:1) and 

twice for 5 min each in Xylol. Finally, they were mounted carefully, without trapping of air 

bubbles, with Xylol based mounting medium 'Eukitt'. 

3.2.8.4 Cresyl violet or Nissl Staining 

Cresyl violet staining is used for the detection of Nissl bodies in the cytoplasm of neurons 

and are stained purple-blue. This stain is commonly used for identifying the basic neuronal 

structure in brain or spinal cord. The paraffinised brain sections were cut (5-7 µm thick), 

deparaffinized and rehydrated as described in section 8.3. Sections were stained with 

freshly filtered 0.5% cresyl violet for 5-10 min. They were shortly dipped in 0.5% acetic 

acid in order to differentiate staining. Slides were then rinsed by dipping them twice in 

ddH2O. Sections were dehydrated and mounted as described in section 8.3. 

3.2.8.5 Bielschowsky silver impregnation for axonal architecture 

Bielschowsky method is improvisation over Fajersztajn technique of tissue staining using 

'silver mirror reaction'. In Bielschowsky’s method formalin fixed sections are incubated in 

the silver nitrate followed by ammoniacal silver solution (Bielschowsky, 1908). The prior 

treatment with silver nitrate provides active foci for subsequent silver deposition in the 

ammoniacal silver solution. This stepwise impregnation (silver nitrate-ammoniacal silver) 

seemed to improvise the staining by increasing the amount and the size of silver 
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precipitates (Garven and Gairns, 1952; Uchihara, 2007). The detailed protocol for staining 

is outlines as follows.  

The paraffinised brain sections were cut (5-7 µm thick), deparaffinized and rehydrated as 

described in section 8.3. Slides were incubated in 10% silver nitrate for 20 min and rinsed 

with ddH2O. To the above 10% silver nitrate solution ammonia was added drop wise with 

constant and gently shaking till the precipitate was dissolved again. In this ammoniacal 

silver nitrate solution sections were incubated for 15 min in the dark. Slides were rinsed 

with ammoniacal-H2O (3 drops of ammonia were added to ddH2O). To the above 

ammoniacal silver nitrate solution 3 drops of developer were added. Sliced were then 

incubated in this solution till the axons turn black and the background yellowish. This 

process can take 3-5 min and was controlled under the microscope. Slides were again 

rinsed with ddH2O. In order to stabilize the silver ion deposits sections were fixed with 5% 

sodium thiosulfate for 3 min. After washing in ddH2O for 5 min, sections were dehydrated. 

Dehydration was carried out in varying concentration of alcohol (50%, 70%, 90%, and 

100%) for 5 min each. Finally sections were dipped for 5 min in Xylol/Isopropanol (1:1) 

and twice for 5 min each in Xylol and then mounted with Eukitt. 

3.2.8.6 Gallyas silver impregnation for myelin 

The physical development technique for staining myelin by deposition of silver particle is 

a qualitative method to visualize myelinated nerve fibers. The basis of this technique relies 

on the fact that myelin binds colloidal silver particles in a 0.1% ammoniacal silver nitrate 

solution of pH 7.5. The production of metallic silver by other tissue elements is suppressed 

by pretreated of the sections with a 2:1 mixture of pyridine and acetic anhydride for 30 

min. The colloidal silver particles bound to the myelin are enlarged to microscopic 

dimensions by a special physical developer (Gallyas, 1979). The protocol for staining is 

outlines as follows. 

The paraffinised brain sections were cut (5-7 µm thick), deparaffinized and rehydrated as 

described in section 8.3. Sections were pretreated with a 2:1 mixture of pyridine (200 ml) 

and acetic anhydride (100 ml) at RT for 30 min. After washing three times with ddH2O for 

10 min each, sections were incubated in pre-warmed (microwave for one min at 150 watts) 

incubation solution for 10 min at RT. Sections washed three times in 0.5% acetic acid for 5 

min each. Sections were then 'physically developed' by incubating them in a developer 

68 



Methods 

solution for 5-10 min. The extent of silver ion deposition in the developing step was 

controlled under the microscope. Once the silver impregnation reaches a suitable level, 

slides were immediately transferred to 1.0% acetic acid and washed three times for 5 min 

each. Finally, slides were rinse well in ddH2O. In order to stabilize the silver staining, 

slides were incubated in 2% sodium thiosulfate solution for 5 min. After washing twice in 

ddH2O for 5 min each, sections were dehydrated and mounted as described in section 8.5. 

3.2.8.7 Detection of β-galactosidase in tissue sections  (X-Gal staining) 

The bacterial enzyme β-galactosidase catalyzes the cleavage of the O1 bond of the sugar β-

D-galactose to a substituent. Due to a broad substrate specificity the enzyme can also be 

used to cleave organic compounds such as 5-bromo4-chloro-3-indolyl-β-D-galactoside (X-

Gal) giving rise to a colorful indigo-colored precipitate (5-bromo-4-chloro-3-

hydroxyindole) under oxidizing buffer conditions. Furthermore, this enzyme can be 

expressed in mammalian cells when placed under the appropriate regulatory elements and 

is usually well tolerated. This property of the enzyme allows the use of β-galactosidase in 

transgenic mice as a reporter for the detection of transgene activity or for the detection of 

promoter activity of an endogenous gene in ‘knock-in’ approaches (Goring et al., 1987; 

Sanes, 1994).  

To detect β-galactosidase activity in transgenic mice, 50 µm vibratome sections of 4% 

PFA fixed brains were placed in 'β-gal staining buffer' for 20 min to 24 hours at 37°C in 

the dark. Sections were washed in 1XPBS thrice for 15 min each, stopped the X-gal 

reaction. Sections were then mounted on  'superfrosted' slides, air-dried and cover-slipped 

with Immu-mount. Tissue sections can be stored for more than 1 year at RT in the dark 

without any detectable loss of tissue integrity or diffusion of the indigo-colored 

precipitates. 

3.2.8.8 DAB based Immunodetection on paraffin sections 

This method allows the immunodetection of proteins with mono- or polyclonal antibodies 

on tissue sections at a cellular resolution. The technique has been outlined in depth in 

(Harlow and Lane, 1988). 

5-7 µm thick sections were cut from the paraffinised block of brain using a microtome. 

The brain sections were floated on a warm water bath (42°C), placed on silanized or 
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positively charged glass slides and were dried ON at 37°C. They were incubated at 60°C 

for 10 min and then deparaffinised and rehydrated as described in section 8.3. Sections 

were incubated for 5 min in citrate buffer and then cooked for 10 min in boiling citrate 

buffer (at 650 watts in microwave oven). If required water was added during the boiling 

process to prevent complete drying of the sections. After this, sections were left in the 

citrate buffer for about 20 min to cool down. These sections were rinsed in Tris buffer 

containing 2% milk powder for 5 min. They were fixed with cover-plates and then washed 

with Tris buffer (+ milk powder) so as to properly adjust the flow. Endogenous 

peroxidases were inactivated by incubating sections with 100 µl of 3% hydrogen peroxide 

for 5 min. To minimize the unspecific binding of the antibody and to reduce the 

background staining the blocking of free sites on sections were carried out by incubating 

them with 100 µl of goat-serum diluted in PBS/BSA (1:5) for 20 min at RT. Sections were 

then incubated with 100 µl of the primary antibody diluted as par requirement with 

PBS/BSA, for about 60 min at RT or for ON at 4°C. In order to remove excess or unbound 

primary antibodies, sections were washed with Tris buffer (+ 2% milk-powder). The 

sections were incubated with 100µl of bridging antibody i.e. biotinylated secondary 

antibody (Dako LSAB2, yellow bottle) for 10 min at RT. Then they were rinsed with Tris 

buffer (+ 2% milk-powder). The bridging antibodies were probed with 100 µl of tertiary 

antibody i.e Horseradish Peroxidase Streptavidine complex (Dako LSAB2, red bottle), by 

incubating the sections for 10 min at RT. Then they were rinsed with the Tris buffer 

without milk-powder to wash off unspecifically bound antibodies. The binding site of 

antibodies was visualized by incubating the sections with 100 µl of DAB (1ml Dako 

Substrate buffer + two drops of DAB, substrate for HRP) for 10 min. The enzymatic 

reaction between HRP and DAB results in very a stable brown precipitate that can be 

visualized under microscope. Sections were rinsed twice with ddH2O for 5 min each. In 

order to make the proper contrast of the signal from the background, sections were 

counterstained for 30 sec with Haematoxylin (in section 8.3). After washing once in 

ddH2O for 5 min, sections were dehydrated and mounted as described in section 8.5. 

3.2.8.9 Fluorescent immunodetection on paraffin sections 

The protocol for 'DAB based immunodetection on paraffin sections' was followed till 

boiling with citrate buffer. These sections were rinsed three times in the Tris buffer 
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containing 2% milk powder for 5 min each. To minimize the unspecific binding of the 

antibody and to reduce the background staining the blocking of free sites on sections were 

carried out by incubating them with 100 µl of goat-serum diluted in PBS/BSA (1:5) for 20 

min at RT. Sections were then incubated with 100 µl of the primary antibody diluted as par 

requirement with PBS/BSA, for about 1 hour at RT or for overnight at 4°C. Sections were 

rinsed three times in the Tris buffer containing 2% milk-powder for 5 min each. To 

visualize the site of binding of primary antibodies, sections were incubated with 100 µl of 

the fluorescently labeled antibodies diluted as par requirement with PBS/BSA, for about 1 

hour at RT. Sections were then rinsed three times with the Tris buffer containing 2% milk-

powder for 5 min each. To make the proper contrast of the signal from the background 

counterstaining was carried out with DAPI (binds to chromosomes in the nucleus), diluted 

with PBS/BSA (0.5μg/ml final conc.) for 5 min at RT.  Finally sections were rinsed three 

times with Tris buffer without milk powder for 5 min each and were mounted in water 

based mounting medium such as Aquapoly mount. 

3.2.8.10 Fluorescent immunodetection on vibrotome sections 

3-5 mm thick brain sections were embedded in 3% agar to cut vibrotome sections. 40-100 

µm thick vibrotome sections were cut and collected in 24 wells tissue culture plates 

containing 1 ml of 1X PSB. Sections were permeabilized for proper diffusion of 

antibodies, with 600 µl of 0.4% Triton X-100 in 1XPBS for 30 min at RT. To minimize 

unspecific binding of the antibody and to reduce the background staining the blocking of 

free sites on sections were carried out by incubating them with 500 µl of 4% horse-serum 

(HS) in 1X PBS containing 0.2% TritonX-100, for 60 min at RT. Sections were then 

incubated with 150 µl of the primary antibody diluted as par requirement with 1%HS in 1X 

PBS containing 0.05% TritionX-100, for ON at 4°C. Sections were rinsed twice in 1X PBS 

for 5 min each. To visualize the site of binding of primary antibodies, sections were 

incubated with 200 µl of the fluorescent labeled antibodies diluted as par requirement with 

1.5%HS in 1X PBS, for about 2 hours at RT. Sections were rinsed with 1X PBS for 5 min 

to remove any non specifically bound antibody. To make the proper contrast of the signal 

from the possible background counterstaining was carried out with DAPI (binds to 

chromosomes in the nucleus), diluted with PBS (0.5μg/ml final conc.) for 5 min at RT. 

Finally, sections were rinsed for 5 min with 1X PBS and mounted in Aquapoly mount. 
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3.2.8.11 Imaging oligodendrocyte morphology 

After perfusions, brains were postfixed in 4% paraformaldehyde for 1-2 hour at 4°C. 

Coronal vibratome brain sections of 100 μm thickness were cut. Sections were 

immunostained overnight at 4°C with anti-CNP primary antibody (mM; 1:300, Sigma 

Aldrich) and Cy3-coupled anti mouse secary antibody and mounted on superfrost glass 

slides using Aqua Polymount (as described in section 8.10). CNP+ oligodendrocytes (OL) 

from layers 2-3 of the prefrontal cortex were randomly selected. A Zeiss laser scanning 

confocal microscope (Meta 510) was used to acquire z-stacks of OLs at optical sections of 

0.53 μm with a 63X objective (1.4 numerical aperture). Confocal z-stacks were used to 

trace 12-15 individual OLs with the AutoNeuron software package from the Neurolucida 

three-dimensional cell tracing system (MBF Biosciences, Williston, VT). Cell tracings 

were analysed with the Neuroexplorer software (MBF Biosciences, Williston, VT). 

Statistical Data analysis (two tailed t test with Welch’s correction and 1 way ANOVA test 

or kruskal-walli’s test) was performed using the GraphPad Prism software package. 

3.2.8.12 Confocal analysis 

Fluorescent images were captured on a confocal microscope (LSM 510; Carl Zeiss 

MicroImaging, Inc.) with a 40x or 63x oil plan-Apochromat objective (NA 1.4; Carl Zeiss 

MicroImaging, Inc). For final analysis, captured LSM images were exported as TIF or 

PNG images. Documentation and processing of images were done with Photoshop CS. 

3.2.9 Electrophysiological procedure for LTP measurement 

3.2.9.1 Preparation of acute brain sections 

Hippocampal slice preparation and solution: Acute hippocampal sections were prepared 

from 2 year old mice. Mice were deeply anesthetized with diethyl ether before 

decapitation. The brain was quickly removed and immersed for 2-3 min in ice-cold 

artificial cerebrospinal fluid (ACSF). The ACSF had the following composition (in mM): 

130 NaCl, 3.5 KCl, 1.2 CaCl2, 1.2 MgSO4, 24 NaHCO3, 1.25 NaH2PO4, 10 Glucose, 

with the pH adjusted to 7.4. Transverse sections of 400 µm thickness were cut with a 

vibroslicer (752M, Campden Instruments, Loughborough, UK). Sections were then 

transferred to an interface-recording chamber of the Oslo type and allowed to recover for at 
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least 90 min. The recording chamber was continuously perfused with ACSF, aerated with 

95% O2 and 5% CO2 (3-4 ml/min). The temperature was maintained at 34ºC. 

3.2.9.2 Extracellular recordings of hippocampal sections. 

The recording electrodes were pulled from thin-walled borosilicate glass capillaries 

(GC150TF-10, Harvard Apparatus, Holliston, MA, USA) using a horizontal Flaming-

Brown micropipette puller (P-80/PC, Sutter Instrument Co., Novato, CA, USA). They 

were filled with ACSF. Monopolar stimulation electrodes made from bare stainless steel 

microwire (50µm diameter, AM-Systems) were used for stimulation. The stimuli were 

generated by photoelectric stimulus isolation units (Grass PSIU6) triggered by a stimulator 

(Grass S88). Extracellular field potential recordings were done using a custom-built DC 

amplifier. Data were digitized by a DigiData 1322A (Molecular Devices, Sunnyvale, CA, 

USA). Initial analysis of the data was done in Clampfit 9.0 (Molecular Devices, 

Sunnyvale, CA, USA). To evoke field excitatory postsynaptic potentials (fEPSPs), the 

stimulation electrode was placed in stratum radiatum at CA3/CA1 junction for the 

activation of Schaffer collaterals. The recording electrode was placed in the stratum 

radiatum of the CA1 region. The magnitude of fEPSPs was measured as slope between 20-

80% level of the rising phase. For input-output relationship, fEPSPs were evoked with 

0.1ms stimuli at 0.25Hz and an average of 4 consecutive responses was taken. fEPSP 

slopes were plotted against the stimulus intensity (10 to 150µA). Paired-pulse facilitation 

(PPF) was measured at different interstimulus intervals (25, 50, 75, 100, 125, 150, 175 and 

200 ms) as the ratio of the slope of the sec fEPSP to the first fEPSP. Here also the paired 

stimuli were given at 0.25Hz and an average of 4 consecutive responses was taken. To 

study long-term potentiation (LTP), baseline responses were evoked every 20 sec for 5min 

and LTP was induced by 4 trains separated by 20 sec, each train consisting of 100Hz 

stimulation for 1 sec. The post-train responses were then measured every 20 sec for 60min. 

LTP was measured as the average of responses between 50-60 min after induction. 
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4.1 Role of Neuregulin1 in CNS myelination 

 Many CNS axons are first myelinated by oligodendrocytes (OL) and then by 

Schwann cells (SC) as they exit the spinal cord. For example, all primary sensory and 

lower motor axons maintain the same myelinated or unmyelinated fate through out their 

length. In certain pathological conditions SC can also invade the demyelinated CNS and 

ensheath central axons. These observations suggest that the axonal signals controlling 

myelin formation are conserved in the central and peripheral nervous systems (Colello and 

Pott, 1997; Duncan and Hoffman, 1997).  

NRG1, expressed on the axonal surface, is an essential regulator of PNS myelination 

(reviewed in Nave and Salzer, 2006) and complete loss of NRG1 leads to impaired PNS 

myelination and sensory and motor neuron death (Taveggia et al., 2005; Wolpowitz et al., 

2000). Sciatic nerves from heterozygous Nrg1 (Nrg1+/-) mouse mutants are 

hypomyelinated. Correspondingly, overexpression of axon-bound NRG1 type III under 

control of the neuronal ThyI promoter induces hypermyelination (Michailov et al., 2004). 

In contrast to PNS, overexpression of both NRG1 type I and NRG1 type III in the CNS 

causes hypermyelination of the axons in cortical grey matter and corpus callosum 

(Brinkmann and Agarwal et al.,). These observations suggested that OL are capable of 

responding to NRG1 signals and revealed an important difference between the CNS and 

PNS myelination. 

4.1.1 Consequence of NRG1 haploinsufficiency on the maintenance of white 
matter  

 Since Nrg1 +/- mice exhibit a significant hypomyelination of axons in the PNS 

(Michailov et al., 2004; Taveggia et al., 2005), a corresponding hypomyelination in CNS 

white matter tracts was anticipated. Surprisingly, analysis of the optic nerve, corpus 

callosum, and spinal cord of adult Nrg1 +/- mice revealed no such reduction of myelin 

sheath thickness (Brinkmann and Agarwal et al.,). Nevertheless, a chronic deficit in NRG1 

signaling from neurons to OL could have indirectly affected myelinated axons, due to 

insufficient support by glia cells. This hypothesis is supported by the studies that showed 

mutations in OL-specific genes can lead to the disruption of axonal integrity while OL and 
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myelin are relatively unaffected (Griffiths et al., 1998; Lappe-Siefke et al., 2003). The 

possible lack of axonal support by glial cells in Nrg1 +/- mice may lead to myelin related 

axonal pathologies that are often associated with transport defects. These transport defects 

might further result in axonal swellings due to accumulation of amyloid precursor protein 

(APP). The progressive degeneration of these swollen axons leads to the formation of 

GFAP+ astroglial scars, a hallmark of ongoing neurodegeneration (Lappe-Siefke et al., 

2003). We noticed few APP+ swellings in neocortex, corpus callosum, hippocampus, 

cerebellum and midbrain of Nrg1 +/- and wildtype mice brains (Fig. 5A). The absolute 

numbers of swellings were low and no considerable difference between mutant and 

wildtype mice was observed. Due to the lack of massive neurodegeneration in Nrg1 +/- 

mice we observed negligible amount of GFAP+ glial scars (Fig. 5A).  

Western blotting revealed that adult Nrg1+/- mice express the same steady state level of 

NRG1 protein in the brain and spinal cord as wildtype controls (Fig. 5B). This surprising 

observation is in contrast to the finding in PNS of Nrg1+/- mice that have reduced levels of 

NRG1 protein in their sciatic nerves (Michailov et al., 2004). 
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Fig. 5. Absence of neurodegeneration in mice with reduced Nrg1 gene dosage  

(A) Immunostaining of APP and GFAP on sagittal brain sections (5µm thick) of 15 months old Nrg1 +/- 
(bottom) and wildtype (top) mice could not show abnormally increased axonal swellings and astroglial scars, 
respectively. Very few APP positive swellings (black arrows heads) were visible in CA3 region of wildtype 
as well as in Nrg1 +/- mice. These few APP positive swellings might represent age related axonal 
degeneration. CA3 (CA3 region of hippocampus), CC (corpus callosum). Scale bar, 20µm. (B) By Western 
blot analysis, steady-state levels of the major NRG1 isoforms appear unaltered in protein lysates from 
forebrain (left) and spinal cord (right) of Nrg1 +/- heterozygotes (age 4-5 mo) compared to age-matched 
controls (3 mice per genotype; loading control, tubulin). Asterisks denote unspecific bands. 
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4.1.2 Myelination in the absence of NRG1  

 Conventional Nrg1 null (Nrg1 -/-) mice die at embryonic (E) day 10.5, prior to the 

generation of OL. We therefore generated conditional null mutants to analyze possible 

defects of postnatal CNS myelination. Mice carrying two 'floxed' Nrg1 alleles readily 

recombine exons 7-9 (essential for the EGF-like signaling function) upon Cre expression in 

vivo (Li et al., 2002a). By cross-breeding floxed Nrg1 to CamKII-Cre mice (Minichiello et 

al., 1999), we obtained mutants lacking NRG1 in virtually all projection neurons of the 

forebrain (Fig. 6A, B) due to Cre recombination at around postnatal day (P) 5, i.e. after OL 

specification but prior to subcortical myelination. Surprisingly, these mutants revealed no 

obvious developmental abnormalities of the cortex, hippocampus, or the subcortical white 

matter, and showed no demyelination at older age (Fig. 6C, D). Although some 

myelination may have occurred prior to the complete loss of NRG1 protein, we conclude 

that axonal NRG1 is not required to maintain CNS myelin throughout adult life. A detailed 

behavioral analysis of these mice will be discussed in the next chapter. 
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Fig. 6. Conditional inactivation of Nrg1 in postnatal forebrain projection neurons 

(A) CamKII promoter-driven Cre expression (CkII-Cre) results in the recombination of the Rosa26lacZ 
reporter gene in the forebrain of CkII-Cre*lacZ double transgenic mice, as revealed by X-gal histochemistry 
of a sagittal brain section at P30. Scale bar, 1mm. (B) By Western blot analysis, forebrain protein lysates 
from two 2 months old Nrg1 mutants (CkII-Cre*Nrg1F/F) demonstrate strong reduction of NRG1 protein 
levels compared to controls (Nrg1F/+). Molecular weights of protein markers are indicated on the right.  (C) 
Neocortical and hippocampal morphology, axon numbers, and subcortical myelination appear unaltered in 
CkII-Cre*Nrg1F/F mutants. Nissl staining (top), Gallyas silver impregnation of myelinated fibers (middle), 
and Bielschowsky silver impregnation of axons (bottom) of sagittal paraffin sections (5µm) from mutant 
(CkII-Cre*Nrg1F/F) and control (CkII-Cre*Nrg1F/+) brains at 2 months of age. Scale bar, 500µm. (D) Top: 
Immunostaining of CNP on a coronal brain section (7 µm paraffin) from a conditional mutant (CkII-
Cre*Nrg1F/F, right half image) and a control animal (Nrg1F/+, left half) fails to show signs of CNS 
demyelination at age 12 mo.  Scale bar, 500µm. Bottom: Higher magnification of cortical layers II/III (boxed 
areas in top panel) reveals myelinated fibers. Individual CNP+ oligodendrocytes (white arrowhead) are 
shown enlarged in insets. Scale bars, 100µm and 10µm (insets). 
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In order to address the developmental role of NRG1, we generated mutants in which Cre 

recombination occurs already during the embryonic period. By cross-breeding floxed Nrg1 

with NEX-Cre mice (Goebbels et al., 2006), we disrupted NRG1 expression in virtually all 

newborn projection neurons of the cortex beginning at embryonic day (E) 12. Efficient 

Cre-mediated recombination was demonstrated by PCR analysis of brain genomic DNA at 

3 months of age (Fig. 7A). Western blotting (Fig. 7B) and Quantitative RT-PCR (Fig. 7C) 

confirmed the reduction of NRG1, with residual expression most likely derived from glia 

(Esper et al., 2006).  

 Surprisingly, NEX-Cre*Nrg1flox/flox mutants ('NC*F/F') were fully viable and 

indistinguishable in the cage from wildtype, floxed ('F/F' and 'F/+'), or NEX-Cre*Nrg1flox/+ 

controls. By morphological and immunohistochemical criteria, the cortex and 

hippocampus appeared normal (Fig. 8A-D). The subcortical white matter with callosal 

axons from the overlying cortical projection neurons was well developed (Fig. 8A, B). 

Both compact and non-comapct myelin proteins were expressed at wildtype levels (Fig. 

8C, D). We observed that myelinated fibers in the grey matter were normal in appearance 

when immunostained for 2'3'-cyclic nucleotide phosphodiesterase (CNP) (Fig. 8C, D) and 

myelin basic protein (MBP) (data not shown).  
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Fig. 7. Reduced NRG1 and normal levels of myelin protein in mice lacking NRG1 in postmitotic 
forebrain projection neurons  

(A) Mice heterozygous (F/+) or homozygous (F/F) for the floxed Nrg1 allele, when expressing Cre under 
control of the NEX gene (NC), readily recombine the floxed Nrg1 allele. Left: Structure of the floxed Nrg1 
allele (with loxP sites in red, flanking exons 7-9) before (top) and after Cre-mediated recombination 
(bottom). Arrows indicate positions of primers. Corresponding PCR products are depicted to the right: PCR 
of Nrg1 genomic DNA from neuronal tissue (olfactory bulb) of wildtype mice and NEX-Cre conditional 
mutants at 3 months of age. In the uppermost gel, intermediate size PCR products in lanes F/+ and NC*F/+ 
are heteroduplices (refer lowermost gel for details). In the presence of Cre recombinase (NC), the excision of 
exons 7-9 from the conditional Nrg1 allele allows the amplification of a 500 bp fragment (middle gel). Single 
step of denaturation (95ºC) and annealing of F/F and wt genotyping PCR products mixed in equal proportion 
(F/F+wt) resulted in an intermediate heteroduplices in F/F+wt lane. Lane B is control lane where template 
DNA was missing from the PCR reaction mixture (lowermost gel). (B) Top: Western blot of protein lysates 
revealing a loss of NRG1 in the neocortex of NC*F/F mutants compared to controls (F/+) at 3 age months.  
Bottom: Densitometric quantification reveals a ~60% reduction of 'full length' NRG1 type III (∼140 kDa) in 
NC*F/F mutants compared to controls (F/+). Peak intensities (±SEM) were normalized to GAPDH. (C) 
Quantitative RT-PCR detecting mRNA in cortex (Nrg1 typeIII) and hippocampus (Nrg1 typeIII, pan-Nrg1 
and PLP) of 3 months old wildtype mice (F/+ black bars) and mutants (NC*F/F, white bars). Quantitative 
analysis revealed ~50% reduction in Nrg1 type III mRNA in cortex and both pan-Nrg1 and Nrg1 type III 
mRNA in hippocampus. This observation indirectly points to the fact that pyramidal neurons mainly express 
Nrg1 type III isoform. Level of PLP mRNA is not altered in both wildtype and mutants hippocampus. Error 
bars: SEM. Significance test: two-tailed, t test with Welch’s correction. (D) Semiquantitative comparison of 
myelination by Western blotting myelin-specific proteins from neocortical brain lysates of mutant mice 
(NC*F/F; age 3 months) and littermate controls (F/+). Steady state levels of CNP, MAG, MBP, and 
PLP/DM20 are normal. 
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Fig. 8. Normal myelination in the absence of projection neuron derived NRG1 

(A, B) Neocortical development (Nissl staining) and subcortical myelination (Gallyas silver impregnation) 
appear normal in mutant (NC*F/F) compared to controls (F/F). Depicted are mirror images of coronal 
paraffin sections (7 μm) obtained at age 3 months. Scale bars, 1mm. (C, D) Myelinated tracts in neocortex 
and corpus callosum of mutants (NC*F/F), as visualized by immunostaining for CNP. Shown are coronal 
paraffin sections (7μm) of 3 months old brains from mutants (NC*F/F; right hemisphere) and control mice 
(F/F; left hemisphere). Scale bar, 1mm. Enlargements (in E) reveal individual fibers in cortical layers II/III 
(boxed in upper panels). Scale bar, 50µm. 

Using electron microscopy, myelin in the corpus callosum (Fig. 9A) and the spinal cord 

(not shown) exhibited an intact ultrastructure (Brinkmann and Agarwal et al.,). There were 

no obvious differences in myelin sheath thickness or axonal size distribution (Fig. 9B, C). 

There is a clear evidence for premature myelination in transgenic mice that overexpress 

Nrg1 type III in neurons under control of Thy1.2 promoter (Thy1-III). In the developing 

optic nerves of ThyI-III transgenic mice at day P6 there is a 3-fold higher number of 

myelinated axons than in controls, without a corresponding shift of OL numbers 
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(Brinkmann and Agarwal et al.,). To address a potential myelination delay in the absence 

of NRG1 we immunostained MBP at postnatal day (P) 10. Confocal microscopy revealed 

unaltered numbers of MBP+ myelin profiles in the ventral corpus callosum of NC*F/F 

mutants when compared to controls (Fig. 9D, E), demonstrating that also timely 

myelination does not depend on NRG1. Taken together, these results put forth that NRG1 

could initiate the myelination program in CNS development, a function normally provided 

by a distinct (yet unknown) axonal signaling system. 

 Recently, hypomyelination in the CNS was reported in mice lacking the expression 

of BACE1, a protease required for NRG1 processing (Hu et al., 2006; Willem et al., 2006). 

This suggests that widespread BACE1 activity could provide a "paracrine" source of 

NRG1 originating from astrocytes (Esper et al., 2006) that are genetically 'wildtype' in 

NEX-Cre*Nrg1flox/flox mice. In order to eliminate the glial contribution of NRG1, along with 

neuronal derived NRG1, we crossbred floxed Nrg1 and Emx1-Cre mice. In Emx1-Cre mice 

the expression of Cre starts at around day E10.5 in the ventricular zone of the developing 

forebrain (Gorski et al., 2002). The cell populations derived from Emx1+ cell lineage that 

are efficiently recombined in the brain of Emx1-Cre*Nrg1flox/flox mutants include radial glia, 

Cajal-Retzius cells, glutamatergic neurons, astrocyes and OL (Fig. 10A) (Gorski et al., 

2002). In contrast, most of the GABAergic interneurons are generated outside the Emx1+ 

lineage and are not recombined (Gorski et al., 2002). Efficient Cre-mediated recombination 

of the floxed Nrg1 allele in Emx1-Cre*Nrg1flox/flox mutants (at 4 months of age) was 

demonstrated by Western blotting (Fig. 10B) and revealed a severe reduction of NRG1 

protein levels. Thus demonstrating that majority of NRG1 in the cortex is derived from 

principal projection neurons and glial cells, most likely astrocytes (Esper et al., 2006). The 

residual expression of NRG1 is most likely derived from non-recombined few inefficiently 

recombined cells in the cortex or GABAergic interneurons (Gorski et al., 2002).  
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Fig. 9. Figure 9: Myelin ultrastructure and onset of myelination in the absence of projection neuron 
derived NRG1 

(A) Electron microscopy reveals normally myelinated axons in the caudal corpus callosum of mutant 
(NC*F/F) and control mice (wt) at 5 weeks of age. Also myelin ultrastructure and membrane spacing are 
normal. Scale bars, 1µm. (B) Normal myelin sheath thickness (g-ratios) in the corpus callosum of mutant and 
wildtype mice. Scatter blot was derived from electron micrographs of the corpus callosum from mutant 
(NC*F/F) and control (wt) mice, aged 5 weeks (n=3 per genotype). (C) Quantification of the axon size 
distribution in the corpus callosum reveals no obvious difference between mutant (white bars) and control 
(black bars) mice. (D) Callosal myelination in the absence of NRG1 is not delayed (age P10). Confocal 
microscopy of coronal vibratom sections (100 mm) immunostained for axons derived from projection 
neurons (FNP7, red) and myelin (MBP, green) demonstrates widespread myelination in the ventral corpus 
callosum of mutants (NC*FF) and control (F/F) mice. Scale bar, 10 µm (inset, 250 nm). (E) Quantitation of 
MBP data in D (n=3 per genotype; ±SEM). 
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To our surprise Emx1-Cre*Nrg1flox/flox mutants were fully viable and developed overall 

normal cage behavior. Even with such a drastic reduction in the NRG1 levels in Emx1-

Cre*Nrg1flox/flox mutants, their brain morphology seems to be largely normal (Fig. 11A). By 

immunohistochemical analysis, we observed normal numbers of various neural cell 

populations including olig2+ OL, NeuN+ neurons and GFAP+ astrocytes, in the cortex and 

hippocampus of mutants when compared to wildtype brains (numbers not quantified) (Fig. 

11B).  

 

Fig. 10.  Conditional inactivation of Nrg1 in Emx1+ cell linage at embryonic stage   

(A) The expression of Emx1-Cre transgene starts at around E10.5 and leads to the recombination of the 
Rosa26lacZ reporter gene in forebrain projection neurons, astrocytes and OL, except GABAergic 
interneurons. It demonstrates the wide spread expression of Emx1-Cre in the forebrain grey and white matter 
(modified from Gorski et al., 2002). (B) Left: Western blot of cortical protein lysates revealing a loss of 
NRG1 in the neocortex of Emx1-Cre*NRG1F/F (ko) mutants compared to controls Nrg1 F/+ (wt) at 4 
months of age. Right: Densitometric quantification revealed ~70-80% reduction of 'full length' NRG1 type III 
(∼140 kDa) and NRG1 typeI (~95 kDa) isoforms in mutant (ko) compared to control (wt) mice. Peak 
intensities (±SEM) were normalized to tubulin. (C) Semiquantitative comparison of myelination by Western 
blotting myelin-specific proteins from cortical and hippocampal lysates of mutant mice (ko, age 4 months) 
and littermate controls (wt). Steady state levels of CNP and MBP are normal. 
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Fig. 11.  Normal myelination and cell survival in the absence of NRG1 from forebrain 

(A) Neocortical development (Nissl staining, left) and subcortical myelination (Gallyas silver impregnation, 
right) appear normal in mutant (Emx1-Cre*Nrg1F/F) compared to controls (Nrg1F/F). Depicted are mirror 
images of coronal paraffin sections (7μm) obtained at age 4 months. Scale bars, 1mm. (B) Myelinated axons 
(CNP and MBP), oligodendrocytes (olig2), neurons (NeuN) and astrocytes (GFAP) in neocortex of mutants 
(Emx1-Cre*Nrg1F/F), as visualized by immunostaining for their respective markers. Shown are coronal 
paraffin sections (7μm) of 4 months old brains from mutants and control mice (Nrg1F/F). Cingluate cortex 
(CgCx) and CA1 region of hippocampus (CA1). Scale bars, 20µm. 
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We could show normal myelination of cortical axons, in the absence of NRG1 from 

neurons and glia in Emx-Cre*Nrg1flox/flox mice, by immunostaining and western blotting 

myelin protein such as CNP and MBP (Fig. 10C, 11B). Interestingly, Emx1-

Cre*Nrg1flox/flox mutants are extremely susceptible to stressed conditions and exhibit 

epileptic seizures when subjected to mild stress ("handling induced seizures"). Further 

consequences of this phenotype will be discussed in detail in the next chapter.  

 

 To completely abolish Nrg1 expression in the developing CNS, we generated 

conditional mutants using Nestin-Cre mice (Tronche et al., 1999) (Fig. 12A). Nestin-

Cre*Nrg1flox/flox mutants died about 16h after birth, i.e. later than conventional Nrg1 type III 

null mutants (Wolpowitz et al., 2000) but most likely with a lethal PNS defect (see below 

and Fig. 13A, B). When Nestin-Cre mutants were analyzed at birth, there was no 

detectable difference in brain morphology compared to controls (Fig. 14A). However, we 

could show increased number of apoptotic cells by Tunnel and haematoxylene staining 

mainly in corpus callosum, indusium griseum and neuroepithelium of mutants (Fig. 14B). 

Although we cannot comment upon the identity of the cell population undergoing 

apoptosis, based on their location it might be possible that they are oligodendroglial cells. 

Western blotting showed mutant brains to be completely NRG1-deficient. Also in spinal 

cord, NRG1 was dramatically reduced (Fig. 12B).  
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Fig. 12. Nestin-Cre driven recombination of floxed genes in brain and spinal cord  

(A) Embryonic expression of a Nestin-Cre transgene causes recombination of the Rosa26lacZ reporter gene 
in virtually all neural cells of brain and spinal cord. Although this Cre transgenic line has been used by many 
investigators, β-galactosidase gene activation throughout brain and spinal cord is not documented (X-gal 
histochemistry of 50µm vibratome sections at age P8). Scale bars, 1mm (brain) and 200µm (spinal cord).  
(B) NRG1 is virtually absent in the CNS of newborn Nes-Cre*Nrg1F/F mutant mice. Western blot analysis 
of protein lysates prepared from brain (top panel) and spinal cord (lower panel), comparing 3 control mice 
(Nrg1F/+, left) and 3 conditional null mutants (Nes-Cre*Nrg1F/F, right). One brain (upper lane 3) was 
isolated 2 hours after natural death, showing some post mortem proteolysis. Molecular weights of marker 
proteins are indicated (asterisks denote unspecific bands; loading control, tubulin). (C) Quantitative RT-PCR 
detecting Nrg1 mRNA in whole brain (upper left), spinal cord (upper right) and dorsal root ganglia (lower 
left) of newborn wildtype mice (Nrg1 F/+ and Nrg1F/F, black bars) and Nestin-Cre conditional mutants 
(Nes-Cre*Nrg1F/F, white bars). Residual expression in spinal cord preparations is most likely from DRG 
ganglia in which Cre recombination is incomplete. 
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Fig. 13. Impaired peripheral myelination in Nestin-Cre*NRG1flox/flox mutants  

(A) Confocal microscopy of coronal paraffin sections obtained from perinatal sciatic nerves. Immunostaining 
for Krox20 and myelin protein P0 reveals a severe reduction in the number of myelinating Schwann cells and 
myelinated axons in Nestin-Cre*NRG1flox/flox mutants (Nes-Cre*F/F) compared to control mice (F/+). Scale 
bar, 10µm. Note that only a fraction of DRG neurons is recombined (see Fig. 12). (B) Quantitation of the 
data in (A). F/+ and F/F mice were taken as controls (n=4); Nes-Cre*NRG1flox/flox mice (n=2). Error bars, 
±SEM. 
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 Quantitative RT-PCR confirmed the absence of NRG1 in brain and a severe 

reduction in spinal cord, with residual expression (Fig. 12C) most likely derived from the 

central branch of inefficiently recombined DRG neurons. Spinal cord ventral roots, 

harboring the peripheral aspects of motoneuron axons, as well as intercostal nerves, almost 

completely lacked MBP and myelin protein zero (MPZ or P0) immunostaining, 

demonstrating a block of SC differentiation in Nestin-Cre*Nrg1flox/flox mutants (Fig. 15A, 

middle and bottom panel). Accordingly, immunostaining of sciatic nerves derived from 

newborn Nestin-cre*Nrg1flox/flox mice revealed a strong reduction in the number of MPZ-

stained myelin profiles and Krox20-stained myelinating SC (Fig. 13A, B). 

Unexpectedly, the density of Olig2+ and MBP+ OL in the forebrain and spinal cord of 

these mice (Fig. 15B and not shown) did not obviously differ in mutants and controls (not 

quantified). Similary, in the spinal cord, there was no difference in the density of MBP+ 

myelin profiles in Nestin-cre*Nrg1flox/flox mice at birth (Fig. 15B, upper panel). Thus, 

NRG1 signaling appears dispensable for spinal OL differentiation in vivo, at least until 

birth. Since Nestin-Cre*Nrg1flox/flox mice died many days prior to myelin formation in the 

subcortical white matter, we also compared long-term co-cultures of wildtype OL and 

cortical neurons, derived from embryonic wildtype or Nrg1 null mice. As expected, 

myelination of the NRG1-deficient CNS axons could be readily demonstrated by MBP 

immunostaining, and was independently observed in mixed brain cultures derived solely 

from Nestin-Cre*Nrg1flox/flox mice (Brinkmann and Agarwal et al.,).  
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Fig. 14.  Normal cortical development but increased apoptosis in the absence of NRG1 

(A) Cortical and hippocampal development reveals no obvious delay or morphological of conditional Nrg1 
mutants (Nestin-Cre*Nrg1F/F) that recombine in all neural cells (see Fig 8), beginning at E8.5. Shown are 
H&E stained frontal brain sections (7μm, paraffin) of newborn control (Nrg1F/+) and mutants. Scale bar, 
500µm. (B) Tunnel and Haematoxylene stained frontal brain sections (7μm, paraffin) of newborn control 
(Nrg1F/+) and mutants (Nestin-Cre*Nrg1F/F) revealed increased number of apoptotic and pycnotic nuclei in 
mutants. Arrowhead indicates clusters of tunnel+ apoptotic (brown) and pycnotic (dark blue) nuclei. Note, in 
mutants the number of cells undergoing apoptosis have substantially increased in indusium griseum (Ig) 
when compared to corpus callosum (cc) and neuroepithelium (NE). Scale bar, 50µm  
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Fig. 15. Oligodendrocytes develop on schedule in the absence of NRG1 

(A) Impaired peripheral but not central myelination. Top: Immunostaining of the ventro-medial spinal cord 
from newborn mice reveals the normal density of MBP+ myelin profiles (in red) in NRG1-deficient (Nes-
Cre*Nrg1F/F, right) and control mice (Nrg1F/+, left). Neurons are stained for NeuN (in green). Middle: 
Immunostaining of cross sections at the thoracic level for MBP (in red) and myelin protein MPZ (P0; in 
green). Note the almost complete absence of MBP and MPZ in the ventral roots (VR; also marked 'PNS') of 
newborn Nes-Cre*Nrg1F/F mutants (right). In contrast, littermate Nrg1F/+ controls (left) exhibit numerous 
myelinated (MBP+/P0+, merged) axons. Note the presence of MBP+ oligodendrocytes in the ventro-lateral 
spinal chord (marked 'CNS') in both mutants and controls. Bottom: Immunostaining of longitudinal sections 
of the intercostal nerve (ICN) reveals absence of P0-stained fibers (in green) in newborn Nes-Cre*Nrg1F/F 
mutants (right) when compared to littermate controls (left). Scale bars, 50 µm. (B) Olig2+ oligodendrocytes 
(in red) are present at a normal density and with a similar distribution in the forebrain of newborn mutant 
mice (Nes-Cre*Nrg1F/F, right) compared to controls (Nrg1F/+, left). Boxed areas in upper panel are 
enlarged in lower panel. Neurons are stained for NeuN (in green). Scale bars 200 µm (upper panel), 100 µm 
(lower panel). 
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4.1.3 Ectopic myelination in response to NRG1 type I and type III overexpression 

 In NRG1 typeI and typeIII transgenic mouse lines, there is 2-fold increase of 

myelinated fibers in the cortical grey matter compared to controls. Interestingly, there is no 

such "ectopic" ensheathment of axons that normally remain unmyelinated (such as mossy 

fibers in the hippocampus) outside the cortex (Brinkmann and Agarwal et al.,). In both the 

transgenic lines small caliber axons within the cortex (layers II and III) show a significant 

hypermyelination. In Nrg1 type I transgenics hypermyelination was only a feature of axons 

thinner than 0.8 µm (Brinkmann and Agarwal et al.). However, there was no corresponding 

increase in the density of (olig2+ and CC1+) OL.  

The possible explanations for the 2-fold higher "myelin-to-oligodendrocyte" ratio in the 

cortex could be an increase of internodal length and/or a higher number of internodes (i.e. 

OL processes) in NRG1 overexpressing mice. Since an unbiased quantitation of internodal 

length is difficult within cortical sections, we performed confocal microscopy and three-

dimensional cell tracing of selected, singly located (CNP-stained) OL in layers II and III of 

the cingulate and primary motor cortex (Fig. 16A). In the absence of pathological signs, 

the avarage number of processes (Fig 16B), process branch points (Fig 16C), and process 

length including internodal myelin (Fig 16D) was not significantly altered in Nrg1 mutant 

and Nrg1 type III overexpressing mice. Only the average 'territory' of these OL (Fig 16E) 

was significantly higher in transgenics (+50%), similar to the increased volume of the 

oligodendroglial somata (Fig 16F). Thus, cortical hypermyelination cannot be fully 

explained by a numerical increase of OL processes in the cortex of Nrg1 type III 

overexpressing mice. Amazingly, all quantified aspects of OL morphology remains 

primarily unaffected in the complete absence of projection neuron derived NRG1 (Fig. 16 

A-F). 
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Fig. 16. Oligodendrocyte morphology in NRG1 mutants and overexpressors. 

(A) Two-dimensional representations of three-dimensional tracings of CNP-stained oligodendrocytes from 
layers II and III of the cingulate and primary motor cortex (age 6 months). Three examples from NEX-
Cre*Nrg1flox/flox mutant (NC*F/F), control (Nrg1F/F), and Nrg1 type III-overexpressing mice (Nrg1 type III) 
are shown. Each color represents a primary cell process. (B-E) Quantitation of primary process number (in 
B), number of nodal branch points (in C), avarage process length (including internodal myelin; in D), average 
3D oligodendrocyte territory (in E), and average oligodendrocyte soma volume (in F), comparing NEX-
Cre*F/F (NC*F/F), Nrg1F/F and Nrg1 type III mice (12-15 cells from three mice per genotype). Error bars: 
SEM. Significance test: two-tailed t test with Welch’s correction or Kruskal-Walli’s test.  
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4.1.4 Myelination in the absence of ErbB signaling 

 The receptor tyrosine kinases ErbB2 and ErbB4 have been suggested to control 

CNS myelination in vivo (Vartanian et al., 1997), while ErbB3 is not required for 

oligodendrocytic differentiation (Schmucker et al., 2003). NRG1/ErbB signaling is 

completely abolished in the absence of ErbB4 and ErbB3 (as ErbB2 lacks ligand-binding 

activity). Myelination appeared normal in the CNS of mice that lacked ErbB4, but were 

rescued from embryonic lethality by means of a MHC-ErbB4 transgene expressed in the 

heart (Brinkmann, Agarwal et al.,)(Tidcombe et al., 2003). By electron microscopy 

homozygous ErbB4 null mutants had no dysmyelination phenotype and g-ratios of 

myelinated axons in ErbB4 null mutant mice were the same as in controls. As expected, 

mice lacking both ErbB3 and ErbB4 in OL and SC displayed severe defects in PNS 

myelination and died in the second postnatal week. In striking contrast, electron 

microscopy of the corpus callosum clearly demonstrated that OL in both ErbB3 single 

mutants and in ErbB3*ErbB4 double mutants were capable of myelinating callosal axons, 

at least up to this postnatal age (P11) (Brinkmann, Agarwal et al.,). Although one cannot 

rule out impairments in adult CNS myelination, we conclude that NRG/ErbB signaling is 

largely dispensable for myelination of the CNS in vivo. 
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4.2 Neuregulin1 and synaptic function 

 NRG1/ErbB signaling in the central nervous system (CNS) has been implicated in a 

broad range of processes including neuronal migration, axonal pathfinding, and synaptic 

function (Flames et al., 2004; Hahn et al., 2006; Lopez-Bendito et al., 2006). Though there 

are numerous in vitro and few in vivo evidences underlining the importance of NRG1 in 

synaptic fine-tuning, the molecular mechanisms still remain elusive (Bjarnadottir et al., 

2007; Chang and Fischbach, 2006; Huang et al., 2000; Kwon et al., 2005; Li et al., 2007; 

Ozaki et al., 1997; Woo et al., 2007). Nrg1 hypomorphic mice (Nrg1 +/-) exhibit subtle 

behavioral impairments, some of which have been associated with endophenotypes related 

to schizophrenia. These impairments in mouse behavior have been shown to be partially 

alleviated by treatment with antipsychotic drugs such as clozapine (Boucher et al., 2007; 

Gerlai et al., 2000; Karl et al., 2007; O'Tuathaigh et al., 2007a; O'Tuathaigh et al., 2008; 

Stefansson et al., 2002). In order to gain further insight into the synaptic function of NRG1 

we carried out a detailed (behavioral, histological, electrophysiological and biochemical) 

analysis of various conditional NRG1 mutants that were already described in the previous 

section.  

4.2.1 Consequences of postnatal inactivation of Nrg1 in principal projection 
neurons 

 We extensively analyzed the behavior of 3-4 month old mutants in which NRG1 

was eliminated from forebrain projection neurons, beginning at postnatal day 5. In these 

mutants (CKII-Cre*Nrg1flox/flox) NRG1 protein levels were reduced by ~50% in the cortex, 

as demonstrated by western blotting (Fig. 6). CKII-Cre*Nrg1flox/flox mice developed 

normally and showed normal breeding and cage behavior when compared to their 

littermate controls (CKII-Cre*Nrg1flox/+, Nrg1flox/flox and Nrg1flox/+). For behavioral analysis 

a large battery of tests was performed in collaboration with Prof. H. Ehrenreich and Dr. K. 

Radyushkin (Max-Planck-Institute of Experimental Medicine, Goettingen). For behavioral 

tests age-matched, group housed cohort of mutants (CKII-Cre*Nrg1flox/flox), heterozygous 

(CKII-Cre*Nrg1flox/+) and wildtype (Nrg1flox/+) controls were analyzed, with each genotype 

comprising a group of 12-15 male mice. The test-battery includes several behavioral test 
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paradigms (open-field, prepulse inhibition, rotarod, social behavior, sucrose preference, 8-

arm maze, elevated plus maze, Pavlovian fear conditioning and hole board), which assess 

both simple exploratory behavior and complex cognitive modalities such as executive 

function, working memory, short- and long-term memory.  

 

 

Fig. 17. Reduced motor activity in mice with postnatal-onset, projection neuron-restricted NRG1 
inactivation  

(A-F) Behavioral analysis of wildtype (Nrg1 F/+; n=9), heterozygous (CKII-Cre*F/+; n=11) and conditional 
null mutant (CKII-Cre*F/F; n=15) male mice demonstrates reduced motor activity in mutants. (A) CKII-
Cre*F/F mice did not reveal any augmentation in the levels of anxiety or stress as time spent in all three 
zones (centre, intermediate and periphery) when tested in novel "open-field" arena was same for all three 
genotypes. (B, C) Mutants showed significant reduction in the total distance traveled (hypoactivity) in the 
open-field when compared to their littermates. (D) Prepulse inhibition (%) of the acoustic startle response of 
mice was tested. Mice were subjected to a conditioning prepulse noise burst of 70, 75 and 80 dB, just prior 
(100 ms) to the unconditional noise burst of 120 dB. Mutant (CKII-Cre*F/F) and heterozygous (CKII-
Cre*F/+) mice had almost equally impaired prepulse inhibition in comparison to their normal, littermate 
control (Nrg1 F/+) mice. (E, F) On the first day of analysis, the time spent on an accelerating rotarod by 
mutant (CKII-Cre*F/F) and heterozygous (CKII-Cre*F/+) mice was shorter (but not significant) when 
compared to their control littermates. When tested on the second day, mutant and heterozygous mice spent 
significantly less time on the rotarod. The significant difference on the second day of trials in the motor 
learning task can be explained by a failure of the mutant and heterozygous mice to learn and improve on the 
task that is normally the case for wildtype. Error bars SEM, (p < 0.05) * A. Agarwal (generated mice), Anja 
Ronnenberg (technician, conducted behavioral tests) and Dr. K. Radyushkin (analyzed data). 
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 Surprisingly, in most behavioral tests NRG1 mutants performed similar to controls. 

Nevertheless, in some test paradigms mutant mice showed significant differences when 

compared to control groups (Fig. 17 A-F). When mice were evaluated in the novel "open-

field" test, mutants were significantly less active (hypoactive) than their littermate controls 

(Fig 17 B, C). This finding was in contrast to previous studies on Nrg1 +/- mice (Gerlai et 

al., 2000; Stefansson et al., 2002). Since mice are neophobic and find open spaces aversive, 

normal mice prefer to stay close to the walls of the "open-field" arena (thigmotaxis). The 

time spent by a mouse in the center of the arena can be quantified as the measures of 

anxiety. There was no difference between mutants and their normal littermate controls (Fig 

17 A), as mice of all the genotypes tested spent same time in all three regions namely 

centre, intermediate and periphery of the arena. Thereby, pointing to the fact that mutants 

are do not suffer from any anxiety with respect to their littermates.   

 Numerous studies indicate that various schizophrenic patients have impaired pre-

pulse inhibition (PPI) (Braff and Geyer, 1990; Powell and Geyer, 2002). PPI is a 

psychometric measure of sensory gating that can be evaluated in a similar fashion in 

rodents and humans (Braff and Geyer, 1990). The auditory/perceptual systems of mutants 

are intact, since they showed normal acoustic startle responses to a single noise burst of 

120 dB. We found impaired PPI in NRG1 null mutants (CKII-Cre*Nrg1flox/flox), which was 

already manifested in heterozygous (CKII-Cre*Nrg1flox/+) mice, when compared to wild 

type (Nrg1flox/+) controls. Interestingly, the difference in PPI could only be observed at a 

pre-pulse of 70dB; however at higher pre-pulse intensities (i.e. 75 and 80dB) there was a 

tendency for reduced PPI (Fig. 17 D). The abnormal PPI already in heterozygous (CKII-

Cre*Nrg1flox/+) mice was in accordance with the previously reported studies on Nrg1 +/- 

mice (Gerlai et al., 2000; Stefansson et al., 2002).  

 The rotarod is a test widely used to assess motor performance in rats and mice (Karl 

et al., 2003; Luesse et al., 2001; Zausinger et al., 2000). The test measures the ability of the 

mouse to maintain itself on a rod that turns at accelerating speed. The performance in this 

test is affected by any kind of motor deficit and depends on intact nigrostriatal and 

dopaminergic connections (Lundblad et al., 2003). We observed subtle deterioration in the 

rotarod performance of both null mutants (CKII-Cre*Nrg1flox/flox) and heterozygous (CKII-

Cre*Nrg1flox/+) mice when compared to controls (Nrg1flox/+) (Fig. 17 E). At the second 

consecutive day of rotarod testing both null and heterozygous mutant mice exhibited 
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significantly poorer performance suggesting impaired motor learning (Fig. 17 F). The 

comparable level of impairment in PPI and motor learning task in heterozygous and 

homozygous NRG1 mutants currently remains unexplained. 

 

Fig. 18. Mice lacking NRG1 in their projection neuron showed impaired behavior after aging and 
pharmacological treatment 

(A) Absence of pyramidal neuron derived NRG1 affects both contextual and cued fear conditioning. 
The Pavlovian conditioned fear was assessed in 12-13 mo old control (Nrg1 F/+; n=9 and CKII-Cre*F/+; 
n=11) and NRG1 null mutant (CKII-Cre*F/F; n=15) male mice. Baseline: Mutants and control mice 
exhibited normal exploratory and absence of freezing behavior when subjected to a novel context (context 1) 
before the foot shock. Context: Average freezing responses to the fear-conditioning context (context 1) after 
sensitization by two pairings of CS (tone) and US (foot shock). 24 hr after training, compared with littermate 
controls, mutant (CKII-Cre*F/F) mice froze significantly less (~50%) when re-exposed to the fear-
conditioning context (context 1). Basecue: Mutants exhibited similar levels of freezing when compared to 
controls in another novel context (context 2). Cue: Compared to littermates, mutant displayed significantly 
reduced freezing when exposed to the CS (tone) in context 2. Mann-Whitney test, P < 0.05. 
(B) MK-801 induced hyperlocomotion is severely impaired in mice lacking NRG1. 13-14 mo old wildtype 
(Nrg1 F/+; n=9), heterozygous (CKII-Cre*F/+; n=11) and NRG1 null mutant (CKII-Cre*F/F; n=15) male 
mice were administered intraperitonially with MK-801 (0.3 mg/kg). Before injection of MK-801, mice were 
tested for a short interval in the open-field to calculate the baseline activity. After injection, mice were placed 
in the "open-field" arena. The locomotor counts were determined after every 4 min for a time interval of 2 hr. 
Compared to their wildtype littermates (black trace), mutant mice (red trace) showed significantly reduced 
hyperlocomotion induced by MK-801. The hyperactivity of the heterozygous mice (blue trace) was 
intermediate to that of wildtype and mutant mice. Each bar represents the mean ±SEM (p < 0.01).  
* A. Agarwal (generated mice), Anja Ronnenberg (technician, conducted behavioral tests) and Dr. K. 
Radyushkin (analyzed data).  

 

 NMDA receptor-dependent LTP is a widely accepted molecular mechanism 

involved in the acquisition of conditional (Pavlovian) fear (Maren, 2001; Maren and Holt, 
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2000; Maren and Quirk, 2004). NRG1 has been shown to be involved in the fine-tuning of 

NMDA receptor expression and functions in vitro (Bjarnadottir et al., 2007; Garcia et al., 

2000; Gu et al., 2005; Hahn et al., 2006; Huang et al., 2000; Kwon et al., 2005; Li et al., 

2007; Ozaki et al., 1997; Pitcher et al., 2008; Stefansson et al., 2002). To outline the in vivo 

involvement of NRG1 in learning and memory, the acquisition and retention of auditory 

cued and contextual fear conditioning was examined. We analyzed 12-13 month old male 

mice (the same cohort of mice used in our previous study) in a fear-conditioning paradigm 

by measuring the conditioned response (CR) before and after presentation of the 

conditioned stimulus (CS) in a novel context. Specifically, fear memory was assessed by 

measuring the retention of CR (freezing responses) 24 hours after conditioning. Naive 

mice of all the genotypes tested showed similar baseline behavior (normal exploration with 

no freezing) when placed in the shocking chamber (context 1, for 2 min) and subjected to 

CS (a tone of 80 db, for 30 sec) (baseline in Fig. 19 A). Moreover, during the conditioning 

phase the squeaking (vocalization) and jumping behavior in response to two pairings of CS 

(a tone of 80 db, for 30 sec) and the aversive unconditioned stimulus (US, mild electric 

foot shock, for 2 sec) separated by 15 sec was comparable in all groups. Twenty-four hours 

later, retention of contextual fear conditioning was assessed by placing mice in the fear-

conditioning context (context 1) for 2 min. The control group (CKII-Cre*Nrg1flox/+ and 

Nrg1flox/+) showed a steady suppression of locomotor or exploratory activity, as a 

consequence of the freezing elicited by the context (context in Fig. 18 A). In contrast, 

mutant mice (CKII-Cre*Nrg1flox/flox) exhibited ~50% reduced freezing responses to the 

context when compared to controls (context in Fig. 18 A). 2 hours later when these mice 

were placed in a novel shocking chamber (context 2, for 2 min) all genotypes showed 

similar levels of freezing to the novel context (basecue in Fig. 18 A). Next, when mice 

were presented with the auditory CS (a tone of 80 db, for 2 min) heterozygous (CKII-

Cre*Nrg1flox/+) and wildtype (Nrg1flox/+) mice exhibited a typical degree of freezing 

response, indicating a memory for the CS (cue in Fig. 18 A). In contrast, NRG1 null 

mutants (CKII-Cre*Nrg1flox/flox) showed a significant reduction in freezing responses 

throughout the duration of the CS presentation, suggesting that the absence of NRG1 

results in an impairment to acquire and/or retain memory for cued auditory fear 

conditioning (cue in Fig. 18 A). The impaired fear response in CKII-Cre*Nrg1flox/flox mice 

during the acquisition phase of fear conditioning was not caused by a deficit in detecting 
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auditory stimuli as the same cohort of mice performed well in PPI measurements (at 3-4 

months of age) (Fig. 17 D). Also, mutants showed similar response to pain stimuli as 

controls (data not shown). Taken together, chronic absence of NRG1 from cortical 

projection neurons leads to an impaired formation of conditioned fear memories for both 

contextual and auditory cues.  

To further dissect the involvement of NRG1 in the modulation of NMDA receptor 

function, mice were injected with MK-801 (dizocilpine meleate) (Wong et al., 1986). 

MK801 is a non-competitive inhibitor of NMDA receptors and enhances locomotion 

(hyperactivity) in rodents and, at higher doses, induces stereotypic behaviors including 

head weaving and uncoordinated, ataxic gaits (Clineschmidt, 1982; Deutsch et al., 1997). 

Moreover, MK-801 treatment serves as a pharmacological model of schizophrenia 

(Rujescu et al., 2006; Thornberg and Saklad, 1996).  The same cohort of mice (at 12-13 

months) that was used for the above behavioral analysis was injected (intraperitonially, 

i.p.) with 0.3 mg/kg of MK-801 and tested in an "open-field" setting for hyperlocomotion. 

In control mice (Nrg1flox/+) locomoter activity was increased by three fold and mice 

remained hyperactive for several hours post injection (Fig. 18 B). In contrast, MK-801 

induced hyperactivity in NRG1 mutant (CKII-Cre*Nrg1flox/flox) was short-lived and quickly 

reached baseline values (Fig. 18 B).  Importantly, MK-801 induced hyperactivity in 

heterozygous mutants (CKII-Cre*Nrg1flox/+) was intermediate (Fig. 18 B), indicating that 

chronic haploinsufficiency might modulate NMDA receptor function (Bjarnadottir et al., 

2007; Stefansson et al., 2002). 

 Long-term potentiation (LTP) at Schaffer collaterals and CA1 pyramidal neurons 

(Sch-CA1) synapses is essential for activity dependent synaptic strengthening and 

plasticity underlying learning and memory (Bliss and Collingridge, 1993). NRG1 signaling 

might modulate surface expression of neurotransmitter receptors and thereby play a critical 

role in mediating synaptic plasticity (Gu et al., 2005; Kwon et al., 2005). Results derived 

from fear conditioning and pharmacological treatment with MK-801 suggest a potential 

role of NRG1 in the modulation of NMDA receptor function. To gain further insight into 

the role of NRG1 in the regulation of synaptic transmission and plasticity, in collaboration 

with Dr. Weiqi Zhang (Centre of Physiology and Pathophysiology, University of 

Goettingen), field excitatory postsynaptic potentials (fEPSPs) were recorded in acute 

hippocampal slices from aged (24 months old) mice.  
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Fig. 19. Loss of NRG1 from pyramidal neurons leads to suppression of LTP induction at 
hippocampal Sch-CA1 synapses 

(A, B) Basal excitatory synaptic transmission is not altered at Sch-CA1 synapses in mutant mice. The 
field excitatory synaptic potentials (fEPSP) were recorded at the Sch-CA1 synapses on brain slices (300 µm 
thick) from 21-24 mo old mutants (CKII-Cre*F/F, red traces) and control (Nrg1 F/+, black traces) male mice 
(n=6 each genotype). (A) Sample recordings at 50% of maximal response (average of 4 traces) are shown for 
control and mutant mice. (B) Input-output curve as a measure of baseline excitatory synaptic transmission: 
fEPSP slope, plotted against the stimulation strength, is not altered in mutant mice compared to control.  
(C, D) Paired-pulse facilitation is reduced in mutants compared to control mice. (C) Sample traces for 
inter-stimulus intervals of 20 ms are presented for control and mutants. (D) Paired-pulse ratio (fEPSP slope 
for the 2nd stimulus/fEPSP slope for the 1st stimulus) at inter-stimulus intervals of 25-200 ms is significantly 
less in mutant mice as compared to control. 
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(E-H) LTP is reduced at Sch-CA1 synapses in mutants. (E) Sample traces of responses are shown before 
and after high frequency stimulation (HFS; 4 x 100Hz for 1s each, 20s interval). (F) Long-term potentiation 
elicited by HFS: The slopes of fEPSP are normalized to baseline and plotted against time. Time-point 0 
represents the application of HFS (arrow). (G) The magnitude of STP, determined as maximal responses 
within 1 min after HFS, is significantly lesser in mutant mice compared to control. (H) The magnitude of 
LTP, determined as responses between 50 to 60 minutes after HFS, is significantly lesser in mutant mice as 
compared to control.  * A. Agarwal (generated mice), Cornelia Hühne (technician, conducted 
electrophysiological recordings) and Dr. W. Zhang (analyzed data). 

Electrical responses evoked in stratum radiatum of the CA1 region by stimulating Schaffer 

collaterals with increasing stimulus strengths were recorded.  To plot the input-output 

relationship, half-maximal stimulation strength and mean field excitatory postsynaptic 

potential (fEPSP) slopes (between stimulus intensities of 10-150 µA and averaged from all 

the slices recorded) were calculated. In both control (Nrg1flox/+) and mutant (CKII-

 Cre*Nrg1flox/flox) mice no significant difference in baseline synaptic transmission was 

observed (Fig 19. A, B). Next, Paired-pulse facilitation (PPF), the shortest form of synaptic 

plasticity (Zucker and Regehr, 2002),  was measured in the Sch-CA1 pathway at different 

inter-stimulus intervals (25 to 200 ms). PPF values were derived by calculating the ratio of 

the second fEPSP slope to the first fEPSP slope and were significantly reduced in mutants 

when compared to controls slices (Fig. 19 C, D). Finally, slices (300 µm thick) were 

subjected to standard high frequency stimulation (HFS, 4x 100 Hz for 1s each, 20s 

interval) in order to induce short-term potentiation (STP) and long-term potentiation (LTP) 

at the Sch-CA1 pathway. The magnitude of STP was defined as the maximal response 

within the first minute after induction by a train of 100 Hz stimuli. STP was significantly 

reduced in slices of mutant mice compared to controls (Fig. 19 E-G; Nrg1flox/+, 2.88 ± 0.08, 

N = 6; CKII-Cre*Nrg1flox/flox, 1.36 ± 0.03, n = 6 mice; P< 0.001). Furthermore, the 

magnitude of LTP determined as the average response, 50-60 minutes after induction, was 

also significantly reduced in slices of mutants when compared to controls (Fig. 19 E, F and 

H; Nrg1flox/+, 2.06 ± 0.02, N = 6; CKII-Cre*Nrg1flox/flox, 1.07 ± 0.02, n = 6 mice; P< 

0.001). Taken together, these studies indicate that chronic loss of NRG1 from pyramidal 

neurons severely impairs LTP induction at the Sch-CA1 synapse at least at old stages. 
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Fig. 20. Reduced levels of NRG1 but unaltered levels of synaptic proteins in cortical lysates and in 
'synaptic vesicles' prepared from 15 mo old mice. 

(A) Western blot analysis of protein lysates prepared from the cortex (cx), amygdala (amy), prefrontal cortex 
(PFC) and hippocampus (hip) of mutants (CKII-Cre*F/F, n=3) at 15 mo of age revealed a severe reduction in 
NRG1. The 'full length' NRG1 type III (∼140 kDa) and NRG1 type I (~95 kDa) isoforms and C-terminal 
domain after processing of full length NRG1 by β-secratase (~60 kDa) were reduced in mutants compared to 
controls (Nrg1 F/+, n=3). Note, both hippocampus and PFC expressed NRG1 at lower levels when compared 
to the other brain areas such as cortex and amygdala. (B) Densitometric quantification revealed ~70% 
reduction in the levels of 'full length' NRG1 type III (∼140 kDa) in cortical areas (cortex, amygdala and PFC) 
of mutants (CKII-Cre*F/F, n=3) compared to controls (Nrg1 F/+, n=3). Note, in the hippocampus the level 
of 'full length' NRG1 type III is only reduced by ~50%. 'Integrated density' values of NRG1 were normalized 
to α-tubulin and are presented as the mean values (±SEM).  (C) Analysis of synaptic proteins in subcellular 
fractions of protein lysates prepared from cerebral cortices of 15 mo old mutant (CkII-Cre*F/F, (ko) n=1) 
and control (Nrg1F/+, (wt) n=1) mice. After differential centrifugation of cortical extracts and hypotonic 
lysis of "crude synaptosomes", equal amounts of protein (20 µg per lane) from each fraction were analyzed 
by western blotting. Synaptic membrane proteins, such as ErbB4 receptor, glutamate receptor subunit 4 
(GluRD), NMDA receptor subunit 1 (NR1), phosphorylated and non-phosphorylated subunit 2B of NMDA 
receptor (NR2Bp and NR2B) and NRG1, enriched with heavier membranes (including the plasma 
membrane) containing fraction (LP1). The C-terminal domain (~60kDa) generated by processing of the 'full 
length' NRG1 by β-secretase, remains membrane bound and co-sediments with other synaptic membrane 
proteins in the LP1 fraction. The enrichment of phosphorylated Akt (pAkt) takes place with a population of 
crude membranes lighter than synaptosomes (S2), a pattern typical for soluble synaptic proteins. Levels of 
the analyzed synaptic proteins, except NRG1, remain unaltered in mutants when compared to control mice. 
H, Homogenate; P1, nuclear pellet; P2, crude synaptosomal pellet; LP1, lysed synaptosomal membranes; 
LP2, crude synaptic vesicle fraction; S1, supernatant after synaptosome sedimentation; S2, cytosolic fraction 
(with crude membranes lighter than synaptosomes). 
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Fig. 21. Unaltered levels of synaptic proteins in the cortical lysates prepared from mice that have 
undergone behavioral analysis and were treated with MK-801 

(A, B) Semiquantitative comparison of the levels of synaptic protein by western blotting of protein lysates 
prepared from hippocampus and amygdala of mutants (CKII-Cre*F/F (ko), n=3) and littermate controls 
(Nrg1 F/+ (wt), n=3) after treatment with MK-801 at 15 mo of age. ErbB4 (ErbB4 receptors), NR1 and 
NR2B (NMDA receptor subunit 1 and subunit 2B), GluRA (glutamate receptor subunit 1), nAch7 (nicotinic 
acetylcholine receptor α7 subunit and (PSD95postsynaptic density 95). (C, D) Densitometric quantification 
revealed steady state levels of all the synaptic proteins tested in the hippocampus and amygdala of mutants 
compared to control mice. There might be a slight decrease (not significant) in the levels of GluRA in the 
protein lysates prepared from amygdala. Quantification of proteins that were analyzed at least twice by 
western blotting is shown. 'Integrated density' values of proteins were normalized to that of α-tubulin and are 
presented as the mean values (±SEM). 
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 In order to identify potential underlying molecular mechanism of neurotransmitter 

receptor control by NRG1, we quantified the expression of various neurotransmitter 

receptors by western blotting. Protein lysates were prepared from various brain regions 

(hippocampus, amygdala, pre-frontal cortex (PFC) and cortex) of 15 month old mutant 

(CKII-Cre*Nrg1flox/flox) and control (Nrg1flox/+) mice that had undergone behavioral 

analysis and pharmacological (MK-801) interventions. In cortical lysates derived from 

mutant brains NRG1 was reduced by ~70% when compared to littermate contols (Fig. 20 

A, B). Moreover, pyramidal neuron derived expression levels of NRG1 in various brain 

regions seemed to differ, with PFC and hippocampus expressing NRG1 at lower levels. In 

contrast there was no corresponding change in the amount of various synaptic proteins 

such as, glutamate receptors (AMPA and NMDA), ErbB4 receptors, postsynaptic density 

95 (PSD95) and α-7 subunit of neuronal acetylcholine receptor in protein lysates prepared 

from hippocampus (Fig. 21 A, C) of mutants. Although there seemed to be slightly reduced 

levels of synaptic proteins such as, GluR1 and PSD95 in protein lysates prepared from 

amygdala of mutants, these differences were not statistically significant (Fig. 21 B, D). 

Nevertheless, it is conceivable that altered levels of neurotransmitter receptors in distinct 

micro-domains (such as the synapse) will be undetectable in protein lysates prepared from 

whole cortex or hippocampus. Consequently, to study synaptically targeted receptors we 

performed a sub-cellular fractionation of protein extracts to isolate "crude synaptic vesicles 

" from the cortex of mutant and control mice. Surprisingly, levels and phosphorylation 

state of all receptors and signaling proteins tested remained unchanged (in all subcellular 

fractions) in mutants when compared to control mice (Fig. 20 C). In addition, the sub-

 tempting to speculate that 

e (Fig. 20 C). It is noteworthy that the c-terminal domain 

(~60 kDa) generated by processing of 'full length' NRG1 by metalloproteases (or possibly 

-secretase) remains membrane bound and also co-sediments with NR1 and 'full length' 

cellular localization of endogenous NRG1 in the adult brain still remains unknown. 

However, in accordance to its observed in vitro functions, it is

NRG1 is located at presynaptic boutons (Fischbach, 2007). In line with this hypothesis, we 

probed for NRG1 in "crude synaptic vesicle" preparations. Interestingly, NRG1 exhibits 

progressive enrichment with synaptic plasma membrane proteins, such as the NMDA 

receptor (NR1), that sediment with heavy membranes released by hypotonic rupturing of 

synaptosomes (LP1). The localization to LP1 thus supports a specific expression of NRG1 

at the synaptic plasma membran

β
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NRG1 in the LP1 fraction.  

 Possible minor changes in the level of synaptic proteins in specific brain areas, such 

as the CA1 region of the hippocampus cannot be quantified by commonly used 

biochemical methods. Therefore we immunostained for several pre- and postsynaptic 

proteins (such as Vglut1, Vglut2, NR1, PSD95) on brain slices from 15 months old mutant 

and control mice (the same cohort of mice used for behavioral and pharmacological 

analysis). Overall, the staining pattern for the above markers appeared largely unaltered. 

When certain brain areas such as hippocampus (Fig. 22 A) and motor/somatosensory 

cortex (layer V) (Fig. 22 B) were analyzed in more detail by confocal microscopy a 

possible reduction in the numbers of synaptic boutons in the hippocampus (CA1) of 

mutants was observed. Since the above analysis is qualitative, it will be important to 

quantify the numbers of these synaptic boutons to draw any further mechanistic conclusion 

concerning the role of NRG1/ErbB signaling in synaptic plasticity.  
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Fig. 22. Reduced number of synaptic boutons in mutants that have undergone behavioral analysis 
and were treated with MK-801 

Confocal microscopy of 4% PFA fixed, 100µm thick vibrotome sections obtained from the cortex and 
hippocampus of 15 mo old mutant (CkII-Cre*F/F, n=3) and control (Nrg1F/+, n=3) mice. (A) 
Immunostaining for presynaptic (Vglut2), postsynaptic (NR1) and neurofilament (NF200) markers revealed a 
reduction in the number (not quantified) of synaptic boutons in CA2/CA3 junction of hippocampus and in the 
dentate gyrus (hilus) of mutants when compared to control mice. (B) No major reduction in the levels of 
above markers could be shown in the cortex (motor cortex, layer V) of mutant and control mice (not 
quantified). Scale bar, 5µm. 

 Synaptic dysfunction, substantial loss of synapses and axons may precede 

neurodegeneration in the progression of several neurological disorders, including 

Alzheimer’s, Huntington’s, Parkinson’s and Prion’s disease (reviewed in Saxena and 

Caroni, 2007). A possible synaptic dysfunction in (CKII-Cre*Nrg1flox/flox) mutants might as 

well lead to increased neurodegeneration that aggravates with age. However, none of the 

pathological hallmarks of neurodegeneration, such as astrogliosis (accumulation of GFAP+ 

astrocyctes), microgliosis (invasion of mac3+ activated microglia) and block of axonal 

transport (APP+ axonal swellings) was increased in the cortex, hippocampus and white 

matter of 13 months old (CKII-Cre*Nrg1flox/flox) mutants when compared to their age 

matched control littermates (Nrg1flox/+) (Fig. 23). 
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Fig. 23. Normal levels of ongoing neurodegeneration in the aged mice lacking NRG1 in their 

f oligodendrocyte nuclei in the CC. Scale bars, 50 µm and 10 µm (insets). 

.2 

ethality of NRG1 null mutants has so far 

projection neurons 

Immunostaining of markers of neurodegeneration such as Mac3 (activated microglia), GFAP (astrogliosis) 
and APP (axonal swellings) on coronal brain sections (7 µm paraffin) from mutants (CkII-Cre*F/F, lower 
panel) and controls (Nrg1 F/+, upper panel) failed to exhibit severe neurodegeneration in the corpus 
callosum (CC) of mutants, at 12 mo of age. Higher magnification in CC (boxed area) shows the cell 
morphology of an activated microglia and an astrocyte. All sections were counter stained with hematoxylin 
and revealed beaded pattern o

4.2 Consequences of embryonal inactivation of Nrg1  

 Apart from a possible role of NRG1/ErbB4 signaling in the fine-tuning of 

glutamatergic synapses, it has also been implicated in the establishment of inhibitory 

circuits in the forebrain. ErbB4 has been shown to be expressed in a subpopulation of 

interneurons migrating from the medial ganglionic eminences (MGE) to the cerebral cortex 

(Yau et al., 2003). Mice lacking ErbB4 exhibit a reduced number of GABAergic 

interneurons in the cortex and hippocampus (Flames et al., 2004). Thus, NRG1/ErbB 

signaling might play an important role in the tangential migration of interneurons from the 

sub-pallium to the developing cortex. The early l
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prevented a detailed analysis of the role of NRG1 in the development of cortical 

GABAergic interneurons (Flames et al., 2004; Meyer and Birchmeier, 1995). Here, we 

have analyzed cortical interneuron development in two NRG1 mutants (Nex-

Cre*Nrg1flox/flox and Emx1-Cre*Nrg1flox/flox), in which NRG1 is inactivated in the forebrain 

at embryonic stages, but which survive until adulthood.  

4.2.3 Embryonic inactivation of Nrg1 in post-mitotic projection neurons 

 Mice lacking NRG1 in principal projection neurons beginning at ~E12 (Nex-

Cre*Nrg1flox/flox) age normally and exhibit normal cage behavior without any noticeable 

neurological deficits (Fig. 7). However, a detailed behavioral analysis has not been 

performed. There were no major histopathological abnormalities, such as impaired cortical 

(Nissl stain) or axonal (Bielschowsky silver impregnation) cytoarchitecture in mutants 

when compared to their heterozygous (Nex-Cre*Nrg1flox/+) and wildtype (Nrg1flox/flox and 

Nrg1flox/+) littermates (Fig. 24 A, B).  

 

Fig. 24. Normal histology and no major axonal degeneration in mice lacking NRG1 embryonically 
from post-mitotic neurons 

(A, B) Histological analysis of coronal brain sections from 3 months old NRG1 mutants (NC*F/F, n=3) by 
cresyl violet (Nissl) staining and Bielschowsky silver impregnation demonstrate largely unaffected cortical 
development. (A) The cortical layering (layers I-VI) is regular in the motor cortex (MCx) of both mutants 
and control mice. (B) The hippocampus is normally developed and showed no sign of major axonal 
degeneration in mutants when compared to control (F/F, n=3) mice. Scale bars, 100µm and 200µm.  
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Fig. 25. Normal development of the parvalbumin+ and calbindin+ interneuron lineage in the absence 
of projection neuron-derived NRG1 

Immunostaining for parvalbumin (parv) and calretinin (calr) on the coronal brain sections (7µm thick, 
paraffin) revealed widespread distribution of parv (A, B, G, H) and calr (D, F) positive interneurons in the 
rostral (A, D; bregma 2.10 mm) and caudal (G; bregma -0.82 mm) part of the brain of NRG1 mutants 
(NC*F/F, n=3) and controls (F/F, n=3), as depicted in their representative sections. (A, D) The boxed area 
denotes primary and secondary motor cortex (M1/M2) and in (G) M1/M2 and primary somatosensory area 
(fore- and hindlimbs). In these brain areas parv+ or calr+ interneurons were counted for mutants and controls. 
(B, E, H) are magnified sub-region in the boxed area to show the staining pattern of parv+ and calb+ 
interneurons in various cortical layers. (C, F, I) Quantification of parv+ and calr+ cells revealed a slight 
decrease (not significant) in the number of both interneuronal populations in NRG1 mutants compared to 
controls. Note, the decrease in the number of parv+ interneurons seemed to be more prominent in the caudal 
(G, I) part of the brain. Scale bars; (A, D) 500 µm, (B, E, H) 100 µm, (G) 1 mm.  

Both membrane-associated NRG1 type III and secreted NRG1 type I have been shown to 

control migration of interneurons and guidance of thalamocortical axons (Flames et al., 

2004; Lopez-Bendito et al., 2006). The lack of NRG1 from principal projection neurons 

therefore might hamper the proper placement of interneurons in the neocortex. Cortical 

interneurons can be grouped into three major classes based on the expression of Ca2+-

binding proteins, such as calbindin (calb), calretinin (calr) and parvalbumin (parv). A slight 

decrease (not significant) in the number of calr+ (Fig. 25 A-C) and parv+ (Fig. 25 D-I) 

interneurons was observed in the motor cortex (M1/M2) of mutants (Nex-Cre*Nrg1flox/flox, 

n=3) when compared to wildtype (Nrg1flox/flox, n=3) littermates. Interestingly, the difference 

between the controls and mutants becomes more prominent in the caudal (Fig. 25 G) with 

respect to rostral (Fig. 25 D) part of the brain. Since the differences are subtle it will be 

important to increase the number of mice in both control and mutant groups in order to get 

a clearer image.   

 By quantitative real-time PCR changes in mRNA levels of several neuronal 

receptors and interneuronal proteins were analyzed. For the preliminary screening of a 

large number of differentially regulated genes hippocampal mRNA from mutants and 

control mice (n=6 per genotype) were pooled and used to synthesize pooled-cDNA for 

both mutant and controls. Expression of most genes analyzed was unaltered in the mutants 

when compared to controls (Fig. 26 A-D). However, there was a significant decrease in the 

mRNA levels of calretinin (three-fold) and ErbB2 (two-fold) in mutants when compared to

the controls (Fig. 26 A, C). In contrast, there was two-fold increase in ErbB3 mRNA levels 

in mutants (Fig. 26 A-C). In accordance to mRNA expression, most of the neurotransmitter 

receptors and other synaptic proteins analyzed by western blotting of protein lysates 
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prepared from the hippocampus and cortex (data not shown) were unaltered (Fig. 26 D). 

 

Fig. 26. Increased expression of ErbB3 and parvalbumin but decreased expression of calretinin and 
ErbB2 in mutants lacking NRG1 from their projection neurons  

 (A-D) Quantitative real-time PCR on pooled-cDNA derived from hippocampus of mutants (NC*F/F, n=6) 
and controls (Nrg1F/+, n=6) at 3 mo of age. (A, C) mRNA levels of ErbB3 (two-fold) and parvalbumin 
(slightly) have increased in mutants. mRNA levels of calretinin (by three-fold) and ErbB2 (by two folds) 
have significantly decreased in mutants. The expression levels of other genes tested were at steady state 
levels in mutants when compared to control mice. For the relative quantification 18S RNA and β-actin were 
used as internal controls (housekeeping genes). GABA-a2 (GABAA receptor subunit α2), GluRA (glutamte 
receptor subunit 1), parv (parvalbumin), NMDAR1 (NMDA receptor subunit 1) and ErbB2/3/4 (ErbB 
receptor 2/3/4). (E) Western blot analysis of protein extracts prepared from the neocortex of 3 mo old control 
mice (Nrg1F/+, n=3) and mutants (NC*F/F, n=3) revealed unaltered levels of ErbB4 receptor (ErbB4), 
AMPA receptor (GluR1) and postsyanptic protein (PSD95).These data are in line with the real-time PCR 
data. 
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4.2.4 Embryonic inactivation of Nrg1 in forebrain neurons, astrocytes and 
oligodendrocytes 

  To gain further insight into the role of glial cell derived NRG1 signaling in the formation of 

cortical inhibitory circuits we generated Emx1-Cre*Nrg1flox/flox mice. As previously described these 

mice lacks NRG1 from most neuronal (except interneurons), oligodendroglial and astrocytic cells 

of the forebrain. In contrast to Nex-Cre*Nrg1flox/flox mice, Emx1-Cre*Nrg1flox/flox mice lack any 

paracrine signaling by glial contributed NRG1. Accordingly a stronger reduction of NRG1 protein 

(~80%) was observed in these mutants (Emx1-Cre*Nrg1flox/flox) (Fig. 10B)  

 The normal cage behavior of mutants (Emx1-Cre*Nrg1flox/flox) is indistinguishable 

from their heterozygous (Emx1-Cre*Nrg1flox/+) and control (Nrg1flox/+) littermates. There is 

no obvious evidence of ataxia, tremors, spasticity or movement disorder in mutants. 

Though these mice breed normally and produce litters of normal size (6-8 pups/litter) the 

male/female ratio is significantly shifted towards ~0.35 i.e. thrice as many female than 

male (Emx1-Cre*Nrg1flox/flox) mutants are born. The normal 1:1 sex ratio remains unaltered 

in heterozygous and control mice (Emx1-Cre*Nrg1flox/+, Nrg1flox/flox and Nrg1flox/+) (Table 

1). The reason for this preferential loss of mutant (Emx1-Cre*Nrg1flox/flox) male embryos is 

currently unknown but might be due to the implantation failure or prenatal loss (Bacon and 

McClintock, 1999).  

 

 Although mutants seemed inconspicuous, they were more vulnerable to routine 

handling induced stress. Handling per se frequently precipitated epileptic convulsions 

(seizures) suggesting that mild stress or fear induced such seizures. Seizures consisted of 

occasional squeaking (i.e. vocalization just prior to seizures), sitting in "kangaroo posture" 

(i.e sitting on hindlimbs with forepaws drawn up) (Fig. 27 D), watering of mouth, 

myoclonic movement of forelimbs, erection of tail (Fig. 27 C), body stiffening, loss of 

postural control and falling (Fig 27 A, B), occasionally followed by focal clonic 

movements of forelimbs and hindlimbs (Fig. 27 A, B). Typically, the episode lasted for 20-

30 seconds, followed by extensive grooming (mainly cleaning of face because of 

salivation), generalized body weakness, slight decrease in activity and ultimately complete 

recovery within few minutes (see attached video).  
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Fig. 27. Characteristic features of "handling-induced seizures" in mice lacking NRG1 from neural 
precursors  

Seizures start with a loss postural control and might proceed as shown in (A, B) or as (C, D). It is important 
to note that (A-D) is not the precise sequence in which seizures are manifested, only some characteristic 
features are shown. (A, B) After the loss of postural control mice undergo tonic extension of fore and 
hindlimbs, the dorsoflexion of the neck, the tail gets stiffed an
the regain of the postural control, the complete body of th

d loss of bowel control. (C) Few seconds after 
e mouse stiffens and the tail is flexed almost 

parallel to the body with the tip of the tail almost reaching the snout. (D) Few seconds after the episode in 
(C). Note the "kangaroo posture" i.e. sitting on hindlimbs and forelimbs free in the air, stiffed tail, salivation 
and then cleaning of face. 
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Although we have not looked carefully for spontaneous seizures, they seemed to be rare. 

About half of mutants (~50%, both sexes affected) exhibited such "handling induced 

seizures", which were also observed in ~20% of the littermates (Emx1-Cre*Nrg1flox/+, 

Nrg1flox/flox and Nrg1flox/+). Seizures usually occurred in 6-8 weeks old mice and persisted 

throughout adulthood.  

 
Genotype Total Male Female Male% Female% Genotype% Expected%   

Emx1Cre*Nrg1F/F 47 12 35 25.53 74.47 23.5 25 

Emx1Cre*Nrg1F/+  65 26 39 40.00 60.00 32.5 25 

Nrg1F/F 37 16 21 43.24 56.76 18.5 25 

Nrg1F/+ 51 22 29 43.14 56.86 25.5 25 

Size of colony 200 76 124 38.00 62.00 NA NA 

Table 1: Altered sex ratio in mice lacking NRG1 from forebrain neurons and glial cells. 

To generate NRG1 null mutants we crossbred Nrg1F/F (male) to Emx1Cre*Nrg1F/+ (female). Pups were 
born in accordance with Mendelian ratio (~25% for each genotype, shown as geotype%) and were of the 
following genotypes: Nrg1F/F, Nrg1F/+, Emx1Cre*Nrg1F/+ (heterozygous) and Emx1Cre*Nrg1F/F (null 
mutant, red). In all genotypes, except null mutants, male to female ratio was close to the normal and reflected 
the trend of sex ratio that can be observed in the total colony. In an ideal situation male% (and female%) 
=50% (number of males or females in a given genotype/total number of mice in that genotype), 
genotype%=25% (total number of mice in a given genotype/total number of mice in a colony) and 
expected%=25% (expected Mendelian ratio for each genotype). NA; not applicable. 

 Epilepsy is characterized by localized bursts of electrical hyperactivity in the 

cortex, which ultimately can lead to excitotoxicity and cell death (Bozzi et al., 2000). 

Importantly, Hematoxylin-Eosin (HE) staining of cortex and hippocampus of mutants 

(Emx1-Cre*Nrg1flox/flox) did not reveal any gross morphological changes (Fig. 28).  

 The absence of excitotoxic cell dealth in the cortex and hippocampus of mutants (at 

4 months of age) was demonstrated by the lack of Tunnel positive or pycnotic nuclei 

(markers of apoptotic cell death) (data not shown). This is in line with several other mouse 

cortical morphology (Erickson et al., 1996; Kash 

mutants that exhibited "handling or stress induced seizures" but are anatomically normal 

with no major changes or cell death in the 

et al., 1997; Prosser et al., 2001). On western blot no major changes in protein levels were 

observed for GABAaRα1 subunit, GAD67, CaM KinaseIIα, ErbB4 and NR1 in cortical 

and hippocampal lysates prepared from mutants and wildtype (Fig. 29 A, C).  
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Fig. 28. Undisturbed cortical layering and hippocampal morphology in mice lacking NRG1 from 
neural precursors 

The cortex developed normally in 2 mo old mutants (Emx1-Cre*F/F) compared to controls (Nrg1F/F) as 
revealed by HE staining of coronal brain sections (5 µm, paraffin). The cortical layering is undisturbed and 
each layer is designated by roman numerals (I-VI). The cell populations in the rostral part of the brain and 
hippocampus also seemed to be morphologically normal, without sever excitotoxicity mediated cell death 
induced by seizures. MCx (Motor cortex), Cg1 (cingulated cortex area 1) and Hip (hippocampus). Scale bars, 

0µm. 

ajor 

10

Interestingly, there seemed to be a slight increase in GAD65 expression in mutants when 

compared to controls (Fig. 29 A, B). Also in "crude synaptic vesicles" preparations from 

control and mutant cortices (probed for NR1, synaptophysin and NRG1), no m

alterations in expression levels were observed (Fig. 29 D) except for NRG1 (Fig. 29 E). 

Additionally, NRG1/ErbB signaling has shown to be modulated by interaction of 

postsynaptic ErbB4 receptors with PSD95 (Huang et al., 2000). So, in line with this 

hypothesis we carried co-immunoprecipitation of various synaptic proteins with ErbB4 

receptor antibody. We couldn’t show any impairment in the interaction of ErbB4 with 

PSD95 and ErbB2 in mutants where virtually NRG1 is lacking from hippocampal 

pyramidal neurons and glial cells. Currently, analysis of other synaptic proteins is in 

progress.  
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Fig. 29. Unaltered protein levels in cortical lysates and "synaptic vesicles" prepared from mice 

NR1 (NMDA receptor subunit 1), ErbB4 (ErbB4 receptor), CKIIa (Cam KinaseIIα) and GA-a1 
(GABA  receptor α1 subunit). (B) Densitometric quantification revealed increased levels of GAD65 in the 

ract (input) was used to co-immunoprecipitate (co-ip) synaptic proteins using ErbB4 antibody 
munoprecipitates were analyzed by western blotting for ErbB2, ErbB4 and PSD-95. 'no-ab' 

indicates precipitation reactions in the absence of ErbB4 antibody. The interaction between ErbB4 and other 
synaptic proteins, such as ErbB2 and PSD95 was unaltered in the absence of NRG1 signaling in mutants. 

lacking NRG1 from neural precursors  

(A-C) Semiquantitative comparison of levels of interneuronal and synaptic proteins by western blotting of 
protein lysates prepared from cortex and hippocampus of mutants (Emx1-Cre*F/F (ko), n=3) and littermate 
controls (Nrg1 F/+ (wt), n=3) at 4 mo of age. The protein level of GAD65 was increased in the hippocampus 
of mutants. All other proteins immunoblotted were at steady state levels in mutants when compared to 
controls. 

A
protein lysates prepared from hippocampus (but not in cortex) of mutants. 'Integrated density' values of 
GAD65 were normalized to GAD67 or α-tubulin and are presented as the mean values (±SEM).  
(D, E) Analysis of synaptic proteins in subcellular fractions of protein lysates prepared from cerebral cortices 
of 4 mo old mutant (EmxI-Cre*F/F, (ko) n=1) and control (Nrg1F/+, (wt) n=1) mice. After differential 
centrifugation of cortical extracts, equal amounts of protein (20 µg per lane) from each fraction were 
analyzed by western blotting. Synaptic membrane proteins, such as NMDA receptor subunit 1 (NR1), and 
NRG1, were enriched with heavier membranes in LP1 fraction. The c-terminal domain (~60kDa) generated 
by processing of the 'full length' NRG1 by β-secretase, remains membrane bound and co-sediments in the 
LP1 fraction. The enrichment synaptophysin (Syph) occurs in a crude synaptic vesicle fraction (LS2), a 
pattern typical for synaptic vesicle proteins. Levels of the analysed synaptic proteins, except NRG1, remain 
unaltered in mutants when compared to the wildtype control mice. Note, α-tubulin co-sediments in all the 
subcellular fractions as a contaminant. H, Homogenate; P1, nuclear pellet; P2, crude synaptosomal pellet; 
LP1, lysed synaptosomal membranes; LP2, crude synaptic vesicle fraction; S1, supernatant after 
synaptosome sedimentation; S2, cytosolic fraction (F) Unaltered interaction between ErbB4 and ErbB2 and 
PSD-95 in mutants lacking NRG1 from neural precursors. Crude synaptosomal fraction (P2) was prepared 
from cortex of mutants (EmxI-Cre*F/F, (ko) n=1) and controls (Nrg1F/+, (wt) n=1) for co-
immunoprecipitation of synaptic proteins. P2 was solubilized with 1% TritonX-100, and the resulting 
detergent ext
(sc-283). The im
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 To study potential changes in the number or localization of interneurons in the 

cortex and hippocampus of mutants, immunostaining for several interneuronal markers, 

such as calb, calr, and parv was performed. Here, a significant increase (~10%) in the 

number of parv+ interneurons was observed in the mutant when compared to controls (Fig. 

30). Though the most significant difference was observed in more caudal parts of the brain 

(motor and somatosensory cortex), there was a tendency towards increased numbers 

already in more rostral area of the forebrain (motor cortex, M1/M2). To quantify the total 

number of cortical GABAergic interneurons immunostaining for GAD67 was carried out 

(Esclapez et al., 1994; Esclapez et al., 1993). Not significant changes in the number of 

GAD67+ interneurons were detected in mutants. Further analysis with other interneuronal 

markers, such as GABA and calbindin, is ongoing. For the quantification of subtle 

phenotypes the number of mice and brain sections will be increased.  
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Fig. 30. Increased parv+ but decreased GAD67+ interneuron numbers in mice lacking NRG1 from 
neural precursors 

(A, C) Immunostaining for parvalbumin (parv) and GAD67 on brain sections (7 µm thick, paraffin) revealed 
a normal distribution of parv (A) and GAD67 (C) positive interneurons in the motor cortex (top: rostral and 
bottom: caudal part of the brain) of NRG1 mutants (Emx1-Cre*F/F, n=3) and controls (Nrg1F/+, n=3). (B) 
Quantification of parv+ interneurons revealed a significant increase (~10%) in NRG1 mutants compared to 
controls. (D) GAD67+ interneurons were slightly decreased (but not significant) in NRG1 mutants compared 
to controls. Similar area was used for counting parv+ cells as described in Fig. 25, the coordinates of the 
plane of section is as follows: rostral (bregma= 2.10 mm) and caudal (bregma= -1.70 mm). Scale bar; 50 µm. 
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4.3 Generation of a NEX-CreERT2 knock-in mouse line  

 Several strategies have been developed to the study function of a gene in vivo, such 

as generation of transgenic animals through pronuclear injection (Brinster et al., 1982; 

Gordon et al., 1980; McKnight et al., 1983), targeted gene ablation in embryonic stem (ES) 

cells and more recently by conditional ablation of gene in a specific cell type (Doetschman 

et al., 1987; Gu et al., 1994; Thomas and Capecchi, 1987).  

 At the beginning of the project evidence was lacking that forebrain specific NRG1 

conditional mutants (CkII-Cre*Nrg1F/F, Nex-Cre*Nrg1F/F, Emx1-Cre*Nrg1F/F) would 

survive until adulthood, the prerequisite for studying CNS myelination and synaptic 

plasticity (Flames et al., 2004; Meyer and Birchmeier, 1995). Conditional mutagenesis 

permits the spatial control over genomic DNA manipulations in vivo, however standard 

versions of Cre or Flp recombinase do not allow for temporal control. Therefore, we 

decided to generate a novel mouse line that expresses a modified Cre recombinase 

(CreERT2) that is fused to a mutated human oestrogen receptor (ER) ligand-binding 

domain (LBD) (Feil et al., 1997). In the absence of tamoxifen, a synthetic ligand of the ER, 

the CreERT2 variant is located in the cytoplasm and is inactive. Addition of tamoxifen 

induces nuclear transfer and site-specific recombination of loxP-flanked genomic DNA, 

both in vitro and in vivo (Feil et al., 1997). To direct expression of CreERT2 to principa

neurons of the telencephalon we chose regulatory sequences from the Nex gene. Nex 

amily of neuronal basic helix-loop-helix (bHLH) proteins and is 

to the generation of a mouse line, in which Cre recombinase faithfully reproduces 

ndogenous Nex expression patterns (Nex-Cre) (Goebbels et al., 2006). Nex-Cre mice have 

been used and described in the previous sections of this thesis. In the NexCreERT2 mouse 

line it was expected to observe most prominent CreERT2 mediated recombination in 

neocortex and hippocampus, starting from embryonic day 12.5. Within the dorsal 

telencephalon, CreERT2 mediated recombination was supposed to be restricted to 

postmitotic projection neurons and dendate gyrus granule cells, and to be completely 

l 

belongs to the NeuroD-f

predominantly expressed in the dorsal telencephalon (Bartholoma and Nave, 1994; 

Goebbels et al., 2006). To mimic the endogenous Nex expression pattern, the coding region 

of the Nex gene was replaced by a CreERT2 expression cassette using homologous 

recombination in ES cells (Fig. 31). A similar approach using the original Cre version lead 

e
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absent from proliferating neural precursors, interneurons, oligodendrocytes, and astrocytes.  

 

Fig. 31. Strategy to knock in CreERT2 into the murine Nex gene  

(I) Genomic structure of the wildtype Nex allele. The locus comprises two exons (black boxes, exon 1 and 
exon 2). The entire coding region is located on exon 2 (gray box). (II) pAA-NEXCreERT2 targeting vector. 
The construct harbors 5' and 3' homology arms (black boxes and thick lines), the CreERT2-cDNA fused to 
the start-codon of the Nex gene (red box) and a neomycin resistance cassette (green box) flanked by two FRT 
sites (blue triangles).  (III) pAA-NEXCreERT2 allele after homologous recombination in mouse ES cells.  
(IV) pAA-NEXCreERT2 allele after site-specific recombination of the NeoR cassette in vivo by breeding 
NexCreERT2 mice to FLP deletor transgenic mice. The small black arrows in allelic diagrams (I-IV) 
represent the location of various primers used for characterization and genotyping of NexCreERT2 mice. 

4.3.1 Cloning of 'pAA-NEXCreERT2' gene targeting vector 

 As a first step, we cloned a gene-targeting vector harbouring 5' and 3' homology 

arms, the CreERT2-cDNA fused to the start-codon of the Nex gene and a neomycin 

resistance cassette flanked by two FRT sites. (Fig. 31 II). For construction of the pAA-
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NexCreERT2 targeting vector, we used Nex genomic DNA fragments from the pNexCre 

targeting vector (used for generation of the Nex-Cre mouse line) (Goebbels et al., 2006) 

and the CreERT2 sequence from plasmid pCreERT2 (Metzger and Chambon, 2001). The 

CreERT2 sequence used in this study is an improved version of the original tamoxifen-

inducible Cre recombinase (Feil et al., 1997; Metzger and Chambon, 2001). The "short 

arm" of the targeting vector was represented by a 1.47 kb DNA fragment located 

immediately upstream of the coding region. We cloned the 5' part of the "short arm" as a 

KpnI/XhoI fragment (824 bp) into pBluescript-KS (Stratagene). The 3' part of the "short 

arm" was generated by PCR using primers KICreERNEX1-s; 5'- AGA CTT CCG TGG 

CTC TTA GAAC -3' and KICreERNEX2-as; 5'- CAT GGT TCT TTA ACC TTA ATT 

TAC -3' and pNexCre as template DNA. The 5' part of the CreERT2 coding sequence was 

generated by PCR using primers KICreERNEX3-s; 5'- ATT AAG GTT AAA GAA CCA 

TG TCC AAT TTA CTG ACC G -3' and KICreERNEX4-as; 5'- TTC GGA TCC GCC 

GCA TAA CCAG -3' and pCreERT2 as template DNA. Subsequently, the 3' part of the 

"short arm" was fused to the 5' part of CreERT2 by "gene SOEing" PCR (Horton, 1995, 

1997) with primers KICreERNEX1-s and KICreERNEX4-as and subcloned as a 

XhoI/BamHI fragment into the targeting vector. The CreERT2 coding sequence was 

completed by subcloning a 1.8 kb long BamHI/SalI fragment (that also contained a SV40 

polyadenylation signal) from plasmid pCreERT2. Next, we amplified a neomycin 

resistance gene flanked by FRT site from pFRTNeo by PCR with primers SpeINeo-s; 5'-

GCG CGC CAC TAG TCT CGA GAC CGG T -3' and NdeINeo-as; 5'- GGG AAT TCC 

 subcloned the PCR product as ATA TGG CGA TCG CGG CCG GCC AGA TCTC -3' and

NdeI/SpeI fragment (3' to the CreERT2 coding sequence). Finally, the targeting vector 

(was accomplished by cloning a 5.3 kb SpeI fragment (served as the "long arm"), 

harboring the 3' region of exon 2 and downstream sequences of the Nex gene. The final 

targeting vector (pAA-NexCreERT2) was verified by restriction analysis, DNA sequencing 

and Flp-mediated recombination in vitro (Fig. 32 A, B). 
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Fig. 32. Characterization of the targeting vector and PCR based strategy for the screening of 
homologously targeted ES cells. 

The pAA-NexCreERT2 gene targeting vector was verified by restriction analysis (fingerprinting) and Flp-
mediated recombination in vitro. (A) The integrity and correctness of the targeting vector was confirmed by 
digestion with several combinations of restriction enzymes. The following enzymes (with the exact size of 
the fragments generated by each enzyme) were used for the fingerprinting: ApaI/SmaI (A/Sm; 8405 and 4736 
bp), KpnI/SacII (K/Sa; 10275 and 2868 bp), NotI/EcoRV (N/E; 11518 and 1623 bp), AccI (8697 and 4444 
bp), HpaI (8640 and 4501 bp), BamHI (7376, 3862 and 1903 bp), XhoI (9018, 2440 and 1638 bp) and uncut 
(uc) plasmid. Each digestion reaction exhibited the bands of expected sizes. On the right side of the gel, band 
sizes are marked in kb (for a quick overview of the fingerprint pattern) (B) The site-specific recombination of 
the NeoR cassette was demonstrated by successful FLP mediated recombination of the targeting vector in 
EL-250 bacterial strain. EL-250 bacteria were transformed with the targeting vector and recombination was 
induced by 0.5% L-arabinose leading to the excision of the NeoR cassette. The targeting vector with or 
without recombination of the NeoR cassette can be identified by its specific restriction digestion pattern. EL-
250 bacteria transformed with the targeting vector but not induced (N-Ind) give rise to two or three fragments 
after restriction digestion with AccI (8697 and 4444 bp) or BamHI (7376, 3862 and 1903 bp), respectively. In 
contrast, the induction (Ind) of recombination in the transformed EL-250 bacteria results in two fragments 
after restriction digestion with both AccI (3246 and 8697 bp) an
sensitive nested PCR based screening strategy was used to detect th

d BamHI (7376 and 4567 bp). (C) A 
e single homologous integration event in 

a targeted ES cell clone. The primer combinations are shown in Fig. 31: outer primer (4 and 7) and inner 
primer (5 and 6) pairs. The upper gel shows the PCR product (1.9 kb) amplified from 40, 400 and 4000 
copies of  'control plasmid' as template DNA. The lower representative gel shows the PCR product (1634 bp) 
amplified from genomic DNA derived from an ES cell clone that was homologously targeted (clone+). Note: 
ES cells that have not undergone homologous recombination (clone-) don’t show any band. 400 and 4000 is 
the copy number of the 'control plasmid' used as a positive control and water (wc) was used as negative 
control in the screening process.  
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D) 5 positive clones (5.7, 7.3, 8.7, 11.1 and 23.7) out of 288 screened clones demonstrated proper 
homologues recombination and were further verified by combining the sensitivity of PCR and specificity of 
restriction enzymes. The upper gel shows the PCR amplified product (2.7 kb) when genomic DNA from 
positive ES cell clones was used as a template. The primers combinations (5 and 8) and their location are 
shown in (Fig. 31). The tail genomic DNA of Nex-Cre/+ mouse (-ve) and water (wc) was used as negative 
controls for the PCR reaction. The lower gel shows the PCR product (2.7 kb) after BamHI restriction 
digestion resulting in two fragments of the size 1.9 kb and 800 bp. This further verified the identity of the 
positive ES cell clones before injection into blastocysts. (E) The representative gel shows the genotyping 
PCR product on genomic DNA isolated from tails of wildtype (wt, 770 bp) and heterozygous 
(NexCreERT2/+, 770 and 525 bp) mice. The primer (1-3) combination used for the genotyping PCR is 
indicated in Fig. 31. 

4.3.2 Gene targeting in ES cells by homologous recombination 

 To achieve Cre recombinase expression under control of the murine Nex locus, we 

replaced the coding region of Nex (Nex ORF, on exon 2) by a CreERT2 expression 

cassette (pAA-NexCreERT2) using homologous recombination in ES cells (Fig. 31 II). We 

electroporated mouse ES cells (SV129/OLA) with the SacII linearized targeting vector 

(pAA-NexCreERT2). Based on a nested PCR screening strategy we identified several ES 

cell clones harboring the correct genomic targeting event (Fig. 32 C).  

Four of these ES cell clones, in which CreERT2-cDNA was stably integrated in the Nex 

smission was verified by breeding highly 

served as a control for the leakiness of CreERT2 activity in the absence of tamoxifen 

genomic locus, were used to generate chimeric mice by injection into C57bl/6 derived 

blastocysts (Fig. 32 D). The germ line tran

chimeric founders to C57Bl/6 wild-type mice. Heterozygous offspring are currently being 

backcrossed to FLP-deletor mice (C57Bl/6 background) to remove the Neomycin selection 

cassette (Fig. 31 III, 32 B). Routine genotyping of offspring was performed by PCR (Fig. 

32 E). 

4.3.3 Characterization of NexCreERT2 mice  

 NexCreERT2 mice were analyzed for Cre expression by breeding NexCreERT2 

chimeras (~90%) to 'enhanced yellow fluorescent protein' (EYFP) reporter mice that 

express EYFP upon Cre mediated deletion of a floxed stop-cassette (Akagi et al., 1997; 

Soriano, 1999). In order to induce Cre mediated recombination; 23 days old reporter 

(EYFPflox/+) and double transgenic (NexCreERT2*EYFPflox/+) mice were intraperitoneally 

(i.p.) injected with tamoxifen (100 mg/ kg, i.e. 100 μl of 10 mg/ml sunflower oil solution) 

for 10 consecutive days. Double transgenic mice that were not injected with tamoxifen, 
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(Casanova et al., 2001; Hirrlinger et al., 2006). 4 days after the last injection tamoxifen 

induced (EYFPflox/+ and NexCreERT2*EYFPflox/+) and non-induced 

(NexCreERT2*EYFPflox/+) mice were analyzed by immunostaining for EYFP. As expected 

most prominent CreERT2 mediated recombination was observed in the hippocampus and 

was restricted to postmitotic projection neurons of the CA1-CA3 region (Fig. 33 A, B).  

 

Fig. 33. :Tamoxifen induced gene recombination in hippocampal projection neuron. 

CreERT2*EYFPflox/+) mice, the expression of 
hemistry. (A) Immunostaining for EYFP on 

100 µm thick, vibrotome sections) of NexCreERT2*EYFPflox/+ revealed intense

After induction of recombination in double transgenic (Nex
EYFP in the hippocampus was analyzed by immunohistoc
coronal brain sections (  
staining in the projection neurons of hippocampus as seen in the overview image. Lack of recombination in 
dentate granular cells is revealed by the absence of EYFP staining in the dentate gyrus (DG). An efficient 
recombination in the hippocampus can be depicted by maximum-intensity projection images of confocal Z-
stacks acquired from various sub-regions such as CA3, DG and hilar region of DG (DGh). The morphology 
and extensive arborization of EYFP+ cells in these sub-regions resemble that of projection neurons except for 
few EYFP+ cells in DGh that are most likely mossy hilar cells. Scale bars, 100 µm (Hip), 50 µm (DG) and 
20 µm (DGh and CA3). (B) (top) The maximum-intensity projection of confocal Z-stacks acquired from 
CA1 region of the hippocampus exhibits fine details of each recombined EYFP+ projection neuron. (bottom) 
The control mouse brain section (tamoxifen induced EYFPflox/+) immunostained for EYFP shows the strong 
background staining in the cell soma of the CA1 region. Note the absence of staining from the cell processes 
in the control mice. Scale bars, 20 µm. 
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 Conversely, EYFP staining was absent from the dentate granular (DG) cells but 

present in the hilar region Gh), most likely in calretinin positive mossy cells (Fig. 33 A) 

(Fujise et al., 1998; Schwab et al., 1998). Thus, in line with previous observations the Nex 

promoter was not active in DG cells of adult mice. In DG granular cells Nex mediated 

activity starts perinatally and rapidly declines to undetectable levels by postnatal day (

 (D

P) 

10 (Goebbels et al., 2006). Interestingly, only few pyramidal neurons were recombined in 

the cerebral cortex, most of which were located in the motor/somatosensory cortex and 

amygdala (Fig. 34 A, B). Although cells at different recombination stages were observed, 

those recombined early during the tamoxifen induction phase had accumulated sufficient 

EYFP to trace their complete arbor in a golgi-like staining pattern (Fig. 34 A).  

 Since the NexCreERT2 mouse line was generated only very recently sufficient 

numbers of double transgenic mice for an extensive analysis were not available. However, 

based on the location and cellular morphology it is most likely that Cre mediated 

recombination was absent from dendate gyrus granule cells, interneurons, 

oligodendrocytes, and astrocytes. Taken together, these data demonstrate that CreERT2 

under the control of the Nex promoter after induction with tamoxifen faithfully reproduces 

the endogenous Nex expression pattern. Moreover, the absence of EYFP+ cells in the 

control (non-induced NexCreERT2*EYFPflox/+ and induced EYFPflox/+) demonstrated the 

tightly regulated nature of the system. 
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Fig. 34. Tamoxifen induced gene recombination in cortical projection neuron. 

(A) Immunostaining of EYFP on coronal brain section (100 µm thick, vibrotome sections) of revealed strong 
staining of few projection neurons that have recombined in the cortex of NexCreERT2*EYFPflox/+ (tamoxifen 
induced) mouse. The maximum-intensity projection of confocal Z-stacks acquired from layer V of the cortex 
exhibits fine cellular details of a recombined
showed immunostaining for EYFP. (bottom) T

 projection neuron. (B) (top) Several neurons in amygdala 
he control mouse brain section (tamoxifen induced EYFPflox/+) 

munostained for EYFP shows the background staining the in the cortex. Note the absence of staining from 
e cell processes in the control mice. Note the absence of staining from the cell processes in the control 

mice. Scale bar, 20 µm. 

 

 Once the NexCreERT2 mouse colony has been fully established, an extensive 

characterization will be performed by cross-breeding to a recently published global double-

fluorescent Cre reporter mouse line (mT/mG) (Muzumdar et al., 2007). This reporter 

mouse line express membrane targeted tdTomato ("mT") prior to Cre excision and 

membrane targeted EGFP ("mG") following Cre excision. mT/mG mice will be used to 

directly visualize in intact tissue recombined and non-recombined cells (without any need 

of immunostaining). 

im
th
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5. Discussion
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5.1 Neuregulin1 and myelination 

 In the PNS, the entire program of glial differentiation and myelination is controlled 

by NRG1 type III (Garratt et al., 2000a; Jessen and Mirsky, 2005; Nave and Salzer, 2006), 

and many studies have reported that in vitro and ex vivo oligodendrocytes (OL) respond to 

NRG1 (Calaora et al., 2001; Canoll et al., 1996; Fernandez et al., 2000; Flores et al., 2000; 

Sussman et al., 2005; Vartanian et al., 1999; Vartanian et al., 1997). This suggested that 

NRG1 might also be the growth factor responsible for regulating CNS myelination, a 

finding that would have important clinical implications. In multiple sclerosis the 

endogenous repair of demyelinated lesions could be NRG1 dependent (ffrench-Constant et 

al., 2004). Moreover, schizophrenia is a complex disease that has been associated with 

single nucleotide polymorphisms in NRG1 (Hall et al., 2006; Stefansson et al., 2002) and 

independently with myelin abnormalties (Davis et al., 2003; Hakak et al., 2001). Thus, the 

control of subcortical myelination by NRG1 could be a missing link (Corfas et al., 2004). 

5.1.1 The role of Neureg  myelination 

 Using a large set of conditional null mutant mice, we have studied the function of 

NRG1/ErbB signaling in oligodendrocytic differentiation and myelination in vivo. We 

analyzed mice with Cre-mediated Nrg1 null mutations in forebrain neural precursors cells 

(Emx1-Cre) and in cortical projection neurons, occurring either before or after 

oligodendrocytic specification, i.e. at E12 (NEX-Cre) or at P5 (CamKII-Cre). Contrary to 

our expectations, the complete absence of neuronal and glial NRG1 did not perturb OL 

development and myelination in vivo. Even Nestin-Cre*Nrg1flox/flox mice, devoid of NRG1 

from CNS, exhibited normal specification of OL that developed on schedule. These mice 

die perinatally and the cause of death is presumably unrelated to CNS myelination. 

Although there is a slight increase in the number of apoptotic cells in the neuroepithelium, 

indusium griseum and corpus callosum of mutants, brain morphology at birth appears 

unaltered. The identity of apoptotic cells is currently unknown.  

 Can these results be explained by functional compensation between NRG1 and the 

structurally related growth factor Neuregulin-2 (NRG2) (Carraway et al., 1997)? Nrg2 null 

mutant mice are myelinated (Britto et al., 2004), but coexpression of NRG1 and NRG2 

ulins and ErbB receptors in

130 



Discussion 

within the CNS is limited (Busfield et al., 1997; Longart et al., 2004) (Lai et al., 

primarily targeted to dendrites, and the axons of 

NRG2 expressing hippocampal and cerebellar granule cells are mostly unmyelinated. 

, 

proliferation of OL precursors was unaltered. Thus, neuronal NRG1 type III (even at 

stimulating OPC 

unpublished data). Moreover, NRG2 is 

Secondly, transgenic overexpression of NRG2 failed to increase myelin thickness in the 

CNS (Fischer, Schwab, Lai, and Nave, unpublished observation). Thirdly, NRG2 is 

expressed in both motoneurons (Rimer et al., 2004) and DRG neurons (Brinkmann and 

Agarwal et. al., submitted), but obviously fails to compensate for the lack of NRG1 

expression in the PNS. Another candidate for compensation is Neuregulin-3 (NRG3), a 

more distantly-related growth factor that is widely expressed in the CNS (Zhang et al., 

1997). Again, NRG3 null mutants are viable and normally myelinated (Müller and 

Birchmeier, unpublished observation). 

 In contrast to our observations in loss-of-function mutants, the neuronal 

overexpression of NRG1 in transgenic mice stimulated myelination, with little difference 

between NRG1 type III and type I isoforms (Brinkmann and Agarwal et al., submitted). 

Perinatal overexpression of NRG1 type III also increased the soma size of OL. In contrast

severalfold elevated expression levels) appears ineffective in 

proliferation. We hypothesize that NRG1 promotes OL growth by activating the 

PI3K/TOR/S6K pathway, because a similar 'uncoupling' of OL proliferation and 

differentiation can be observed in conditional mutants of the Pten gene (Goebbels and 

Nave, unpublished observations).  

 At the receptor level, only ErbB3 and ErbB4 bind to Neuregulins. ErbB1/EGFR can 

regulate OL precursor development (Aguirre et al., 2007), but fails to bind Neuregulins. 

ErbB2 has no functional ligand binding domain. Thus, OL lacking both ErbB3 and ErbB4 

are incapable of transmitting signals from any of the 3 known Neuregulins. Most 

importantly, they still myelinate CNS axons (Brinkmann and Agarwal et. al., submitted). 

This finding demonstrates that, indeed, Neuregulin signaling is dispensible for CNS 

myelination, at least during postnatal stages. Testing a possible role of Neuregulins in 

(adult) myelin maintenance awaits inducible ErbB mutant mice. 

 Our results are at odds with previous reports suggesting that NRG1 is required for 

OL survival and differentiation (Calaora et al., 2001; Canoll et al., 1996; Flores et al., 

2000; Kim et al., 2003; Sussman et al., 2005; Vartanian et al., 1999; Vartanian et al., 
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1997), and demonstrate the importance of in vivo analyses. However, two reports of CNS 

hypomyelination in mice overexpressing 'dominant-negative' ErbB proteins under control 

of oligodendrocyte-specific promoters are more difficult to reconcile (Kim et al., 2003).  

Unspecific side effects are the most likely explanation. For example, truncated ErbB 

receptors could 'trap' wildtype ErbB4 (heterodimers) at the cell surface and reduce their 

turnover, thereby affecting unrelated PDZ binding proteins in a dominant-negative fashion. 

We also note a general susceptibilty of OL to membrane protein overexpression when 

under control of a strong myelin promoter (Kagawa et al., 1994; Readhead et al., 1994; 

Tuohy et al., 2004; Turnley et al., 1991).  

 Interestingly, a mild CNS hypomyelination (in addition to peripheral 

dysmyelination) was reported for Bace1 mutant mice (Hu et al., 2006). While PNS effects 

own to express NMDA, AMPA and kainate receptors, 

milar

tion of myelinating glial 

in these mice were likely NRG1-dependent (Willem et al., 2006), our data suggest that in 

the CNS other proteins must be the relevant BACE1 targets. Not only could the unknown 

trigger of CNS myelination require proteolytic cleavage. Also the b2 subunit of the 

voltage-gated sodium channel (Kim et al., 2007) is a candidate for BACE1 processing, as 

timely myelination requires electrical activity of axons.  

 

5.1.2 Possible roles of NRG1/ErbB signaling in oligodendrocytes 

 If not required for myelination, are other oligodendroglial functions regulated by 

neuregulins in the CNS? OL are kn

si  to neurons and astrocytes, which coexpress ErbB4 with these glutamate receptors 

(Wong, 2006; Verkhratsky and Kirchhoff, 2007). Since NRG1/ErbB signaling has been 

implicated in the subcellular targeting and endocytosis of synaptic glutamate receptors (Gu 

et al., 2005), it may serve a similar function for glutamate receptors on OL.   

 NRG1 may also have more subtle functions in cortical myelination. This relates to 

the observation of a 2-fold higher density of myelinated axons within the cortex of NRG1 

transgenic mice (a number unmatched by an increase of OL density) (Brinkmann and 

Agarwal et. al., submitted). Does NRG1 stimulate the genera

processes as suggested by Roy et al., 2007? Also cultured neurons and OL reportedly 

increase the number of processes when NRG1 is added to the medium (Canoll et al., 1999; 

Canoll et al., 1996). However, by three-dimensional cell tracing, cortical OL revealed 
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about the same number of primary and secondary branches (per cell), independent of the 

axonal NRG1 expression level. Thus, the increased 'myelin-to-oligodendrocyte' ratio is 

more likely caused by slightly longer internodes (which are virtually impossible to quantify 

in the cortex). 

 In conclusion, our data suggest that although CNS evolution has made vertebrate 

OL independent from NRG1, presumably the ancestral signal on axons that is necessary 

and sufficient for myelination by Schwann cells. Perhaps, a simple system (represented by 

NRG1 type III/ErbB signaling to Schwann cells) has been superseded in the CNS by a 

complex system that includes neuronal activity as a myelination signal. Recently identified 

that although CNS has evolved a 

omplex machinery for myelination it still preserved its response to NRG1/ErbB signaling 

and may use it as a 'survival strategy'. For instance, in in vitro systems the myelination 

or the myelination 

al regulator of 

signaling components that serve different roles in CNS and PNS myelination include 

(activity-dependent release of) ATP and purinergic receptors (Fields and Burnstock, 2006; 

Stevens et al., 2002). An activity-based system of myelination control is an attractive 

candidate, as it is "functional" in mice and lost in in vitro systems. In addition, the excess 

of NRG1 in vivo still enhances intracortical OL growth and myelination, when "added" to 

the unknown physiological trigger of CNS myelination, possibly through converging 

second messenger pathways. Taken together, it seems 

c

process looses track of most of its intricate in vivo interactions.  Thus, f

to continue in vitro the basic survivals mechanisms involving NRG1/ErbB signaling might 

come into play. Moreover, if this signaling is perturbed during in vitro studies the complete 

myelination program collapses. These arguments bring us to the important point that 

previously reported in vitro studies are not to be ignored but have to be dealt with extra 

care. Finally, one can conclude that NRG1 is not the master regulator of CNS myelination, 

but might influence the basic myelination program in the absence of the actu

myelination or during some pathological conditions such as multiple sclerosis (Cannella et 

al., 1999; Marchionni et al., 1999; Marchionni et al., 1996).  
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5.2 Neuregulin1 and synaptic function 

NRG1 is an attractive susceptibility gene for schizophrenia (Stefansson et al., 2002), 

udy, for ErbB4 heterozygous 

utants, but not ErB2 and ErbB3, displayed hyperactivity in the "open-field" test (Gerlai et 

al., 2000; Stefansson et al., 2002). In contrast, conditional null mutants (Nestin-

Cre*ErbB4flox/-) lacking ErbB4 in all neural cells exhibited hypoactivity in a similar test 

setting. Surprisingly, spatial learning and memory performance in the Morris water maze 

was disrupted in heterozygous (ErbB4flox/-) male mutants but not in homozygous mice 

because this factor has been implicated in the control of neuronal migration and synaptic 

plasticity all processes independently associated with schizophrenia (Bartzokis, 2002; 

Corfas et al., 2004). Several in vitro studies have isuggested that NRG1 also plays multiple 

functions in the control of excitatory and inhibitory brain circuits; however, the relevance 

of these studies in vivo remains controversial. In order to address some of the controversial 

issues and to shed some light on the physiological functions of NRG1 we carried out 

extensive analysis using a battery of cell-type and stage-specific conditional null mutant 

mice. 

5.2.1 Behavioral consequences of forebrain specific inactivation of NRG1 

 Conditional null mutants (CKII-Cre*Nrg1flox/flox) lacking NRG1 specifically in 

projection neurons of the forebrain were hypoactive in the "open-field" and exhibited 

reduced prepulse inhibition and impaired motor learning. However, performance in several 

other behavioral paradigms assessed (social behavior, sucrose preference, 8-arm maze, 

elevated plus maze and hole board) mutants was normal. Furthermore, already 

heterozygous (CKII-Cre*Nrg1flox/+) mice exhibited reduced prepulse inhibition and 

impairments in motor learning. In contrast, previously reported behavioral studies have 

shown that panNRG1 heterozygous mutants (Nrg1 +/-) are hyperactive in the "open-field" 

and revealed an impaired response to social novelty and improved performance in both 

rotarod and T-maze test. (Boucher et al., 2007; Gerlai et al., 2000; Karl et al., 2007; 

O'Tuathaigh et al., 2007a; O'Tuathaigh et al., 2008; Stefansson et al., 2002). Similarly, 

behavioral studies carried out on ErbB4 mutants also yielded inconsistent results (Gerlai et 

al., 2000; Golub et al., 2004; Thuret et al., 2004). In one st

m
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(Nestin-Cre*ErbB4flox/-) (Golub et al., 2004). Another study using the same ErbB4 

hibited absence of any phenotype related to 

hyperactivity or impaired rotarod performance (Thuret et al., 2004). Importantly, mice 

from one or both of the parental strains (usually 129/Sv and C57BL6) with the 

mutated gene and/or flanking genes proximal to it (Morice et al., 2004; Waddington et al., 

ly due to 

conditional mutants (Nestin-Cre*ErbB4flox/-) ex

heterozygous for a immunoglobulin domain-specific mutation of the NRG1 gene (lacking 

both NRG1 type I and type II isoforms) performed normally in several activity tests, 

suggesting that type III isoforms of NRG1 are responsible for controlling normal motor 

behavior (Rimer et al., 2005).  

 How can inconsistencies in behavioral studies be explained? Differences in the 

genetic background, which are likely to exist in studies using several different alleles, can 

contribute to different outcomes, especially if observed effects or behavior impairments are 

subtle. Several recent evidences point towards the possibility of an interaction of 'modifier' 

genes 

2005). In addition, subtle differences in the behavioral outcome can also be simp

different housing conditions and experimental design (Karl et al., 2007).  Nevertheless, the 

discrepancy in locomotor data from various NRG1 mutants is unlikely to result from 

background strain differences as each of these mutants have been reported to be 

sufficiently backcrossed C57BL6 (Gerlai et al., 2000; O'Tuathaigh et al., 2006; Rimer et 

al., 2005; Stefansson et al., 2002). The contradicting outcomes between conventional 

(NRG1+/-) and conditional (CKII-Cre*Nrg1flox/flox) NRG1 mutants are more likely be 

attributed to developmental versus concurrent effects. The inactivation of NRG1 in 

forebrain projection neurons of CKII-Cre*Nrg1flox/flox mutants starts after postnatal day (P) 

5 (Gummert and Schwab unpublished data) (Minichiello et al., 1999). This leaves a 

sufficient time window for developmental processes, such as neuronal migration and 

differentiation and axon guidance that are modulated by NRG1/ErbB signaling to proceed 

normally (Anton et al., 2004; Buonanno and Fischbach, 2001; Flames et al., 2004; 

Ghashghaei et al., 2006; Lopez-Bendito et al., 2006; Rio et al., 1997). Importantly, the 

half-life of NRG1 protein still unknown. Since recombination starts at around ~P5 in CKII-

Cre*Nrg1flox/flox mutants, the demand of highly dynamic processes (such as myelination 

and synapse formation) for NRG1 during the early postnatal phase might be fulfilled by 

presence of the residual NRG1. Thus, a time course study of NRG1 protein levels in the 

brain of NRG1 conditional mutants might provide further relevant information. In contrast, 
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in NRG1+/- mice the early developmental processes are exposed to half the gene dosage 

already at early timepoint, which possibly results in different pathophysiology and 

up/downregulation of crucial signaling pathways. Although highly speculative, behavioral 

phenotypes observed in adult CKII-Cre*Nrg1flox/flox mutants might be due to the lack of 

NRG1 at synapses. While those observed in Nrg1+/- could result from abnormal brain 

development. Moreover, normal expression of NRG1 by glial cells (mainly astrocytes) in 

CKII-Cre*Nrg1flox/flox mutants but not in Nrg1+/- mutants should also be taken into 

account. Finally, NRG1 is a potent growth factor that regulates the development of several 

organs, such as heart, muscles, breasts and brain (Falls, 2003b). Thus while in the 

conditional null mutant NRG1 inactivation is restricted to nervous tissuem, in Nrg1+/- 

mutants NRG1 is reduced in the whole body including brain. Possible behavioural 

impairments due to the partial inactivation of Nrg1 in tissue other than brain should 

therefore be taken into account. 

 Several factors might contribute to similar levels of impairment in behavioral 

performance of heterozygous and homozygous NRG1 mutants (CKII-Cre*Nrg1flox/flox and 

CKII-Cre*Nrg1flox/+). One of the most important one that should be addressed is a genetic 

factor differing between conditional NRG1 mutants (CKII-Cre*Nrg1flox/flox and CKII-

Cre*Nrg1flox/+) and wildtype (Nrg1flox/+) controls is the expression of cre recombinase. In 

the presence of cre conditional heterozygous and null mutants did not display histological 

and biochemical differences in the characteristics of. However, it will be important to 

experimentally rule out any deleterious effect of cre expression by analyzing transgenic 

mice that only habor the cre transgene. The other possibility is that the complete (in CKII-

Cre*Nrg1flox/flox), but not the partial loss of NRG1 (in CKII-Cre*Nrg1flox/+) exceeds a 

threshold for eliciting a compensatory response. This differential regulation of 

compensatory mechanisms between conditional heterozygous and null mutants can result 

in varying phenotypes in both of these genotypes (Golub et al., 2004; O'Tuathaigh et al., 

2007a). 

 Since Nrg1-α is also expressed in the human and murine brains (Bernstein et al., 

2006) another crucial issue that still remains to be addressed is the importance of Nrg1-α 

isoform in the development of brain. Our preliminary electrophysiological data have 

suggested that Nrg1-α null mutant (Nrg1flox/flox) mice might have significant impairments in 

their brain (Agarwal, Trembak, Schwab and Zhang unpublished data). 
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5.2.2 NRG1/ErbB signaling in the regulation of neurotransmitter receptors 

 One of the NRG1 isoforms was cloned based on its capability to induce expression 

and localization of nAch at the neuromuscular junction (Falls, 2003a, b). In the CNS 

presynaptic NRG1 can activate ErbB4, which ted at the postsynaptic membrane 

(Yang et al., 1998). ErbB4 colocalizes with NMDA receptors via postsynaptic density 95 

(PSD95) protein complex and modulates NMDA function (Huang et al., 2000). Thus, in 

pyramidal neuron specific conditional null mutants (CKII-Cre*Nrg1flox/flox) absence of 

NRG1/ErbB4 signaling from hippocampus might lead to NMDA receptor hypofunction. In 

line with the above hypothesis, NRG1 conditional null mutants showed severe impairments 

in memory and learning when tested in a fear-conditioning paradigm. Although basal 

synaptic transmission was unaffected and only minor changes in paired-pulse facilitation 

ratios were present, we observed strong suppression of long-term potentiation (LTP) at 

Sch-CA1 synapses in NRG1 conditional null 

is loca

mutants. Since NMDA receptor-dependent 

nohistochemi

utant mice with MK-801 (0.3 mg/kg), a non-competitive 

evious data that are 

LTP is a widely accepted molecular mechanism involved in the acquisition of conditional 

(Pavlovian) fear (Maren, 2001; Maren and Holt, 2000; Maren and Quirk, 2004) we 

speculated that NRG1 mutants display a reduced number of functional NMDA receptors. 

While we were unable to show a reduction in the levels of NMDA and AMPA receptors in 

a synaptosomal preparation, immu cal data indicated a mild reduction in 

NMDA receptor subunit1 (NR1) positive synaptic puncta in the hippocampus of NRG1 

mutants (CKII-Cre*Nrg1flox/flox) (preliminary data). These observations were in line with 

previous studies that showed that pan NRG1 hypomorphic mice (Nrg1+/-) have a reduced 

number of functional NMDA receptors (Stefansson et al., 2002). In addition, several 

studies have shown that NRG1 modulates the expression, activation and phosphorylation 

status of NMDA receptors in an activity dependent manner (Bjarnadottir et al., 2007; Hahn 

et al., 2006; Kwon et al., 2005; Ozaki et al., 1997; Stefansson et al., 2002).  

 To further investigate the possibility of NMDA receptor hypofunction in NRG1 

mutants, we treated null m

antagonist of NMDA receptor that induces hyperactivity (Deutsch et al., 1997; Wong et al., 

1986). Moreover, MK-801 treatment serves as a pharmacological model of schizophrenia 

(Rujescu et al., 2006; Thornberg and Saklad, 1996). To our surprise NRG1 mutants failed 

to exhibit MK-801 induced hyperactivity in the "open-field" arena when compared to 

control mice. How can this observation be explained in light of our pr
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compatible with NMDA receptors hypofunction in NRG1 mutants (CKII-Cre*Nrg1flox/flox)? 

NMDA receptor subunit1 (NR1) deficient mice exhibited either normal (0.2 mg/kg) or 

reduced (0.5 mg/kg) locomotor activity, but never increased activity, upon MK-801 

administration (Duncan et al., 2002; Mohn et al., 1999). This dosage dependent effect of 

MK-801 points towards a possible involvement of other neurotransmitter receptor systems 

that might be activated and/or blocked. Second, MK-801 not only is a potent blocker of 

NMDA receptor but also blocks open channel of nicotinic acetylcholine receptors (nAch) 

(Amador and Dani, 1991; Csernansky et al., 2005; Mastropaolo et al., 2004). Thus, the 

potency of MK-801 to block various neurotransmitters suggests that in vivo its 

pharmacologic action involves complicated interactions of different neurotransmitter 

systems. Third, impaired neuronal plasticity (as revealed by LTP measurements and 

behavioral testing) and protection from MK-801 induced hyperactivity might result from 

alterations in completely different brain circuits. For instance, lesions of output nuclei of 

the nucleus accumbens (ventral pallidum and ventrolateral/ventromedial thalamus) can 

completely block the motor response induced by MK-801 (De Leonibus et al., 2001) and in 

fear-conditioning paradigm hippocampus have an important role to play (Maren, 2001). 

Nevertheless, these seemingly independent brain regions are interconnected by the 

hippocampal-ventral tegmental area (Hip-VTA) loop (Lisman and Grace, 2005). By the 

Hip-VTA loop hippocampus conveys novel information to VTA via subiculum, nucleus 

accumbens and ventral pallidum. Novelty-dependent firing of VTA cells enforces 

dopamine release within the hippocampus. As a consequence, the Hip-VTA loop produces 

a dopamine-dependent enhancement of LTP and learning (Lisman and Grace, 2005). Thus, 

the Hip-VTA pathway acts as a "gatekeeper" of the information that will flow during long-

term memory formation and appears to be a critical component of brain memory systems. 

Interestingly, all major components of the Hip-VTA pathway express NRG1 or its receptor 

ErbB4 and some coexpress both ligand and receptor (Corfas et al., 1995; Steiner et al., 

1999; Woo et al., 2007). Since the molecular players of the Hip-VTA loop are not well 

studied, one can speculate that some of the components in this pathway might 

communicate via NRG1/ErbB4 signaling. Finally, NRG1/ErbB signaling not only 

influences NMDA receptor function but has also been shown to be required for activity-

dependent GABA release and synaptic incorporation and stabilization of AMPA receptor 

(Li et al., 2007; Woo et al., 2007). In addition, NRG1 has been shown to modulate the 
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expression of GABAA and neuronal acetylcholine (nAch) receptors (Esper et al., 2006; 

Rieff et al., 1999; Yang et al., 1998). Taken together, NRG1/ErbB signaling might be 

involved in the coordination of several neurotransmitter systems (cholinergic, 

dopaminergic, GABAergic and glutamatergic) in various brain regions (involved in 

memory, learning and motor activity). Thus, it would be too simple to explain our 

observations solely on the 'NMDA receptor hypothesis'. Taken together, it is quite likely 

that in NRG1 conditional mutants several other synaptic modalities, such as glutametergic 

(AMPA and kinate), GABAergic and cholinergic neurotransmitter receptor systems, are 

differentially disrupted in distinct brain areas, a scenario that demands more detailed 

analysis.  

 Nevertheless, the chronic absence of NRG1 from pyramidal neurons does not result 

in increased neurodegeneration. This points to the possibility that NRG1 in the mature 

brain is mainly involved in the fine-tuning of synaptic plasticity, but not in the 

maintenance of synapses per se. Thus, the chronic loss of NRG1 might result in severe 

cognitive deficits but not in major loss of synapses. Interestingly, in schizophrenia there 

are no signs of severe neurodegeneration or synaptic losses, but patients suffer from 

cognitive impairments (Harrison, 1999). In contrast, most of the neurodegenerative 

disorders such as Alzheimer’s, Parkinson’s and Huntington’s diseases are characterized by 

the severe loss of synapses which precedes the observed neurological deficits (Saxena and 

Caroni, 2007). Thus, our mouse models will allow us to study the molecular machinery 

involved in precise functioning of synapses without being influenced by neurodegenerative 

processes. 

 Another interesting question that remains unanswered is the location of endogenous 

NRG1. Based on western blotting data derived from "crude synaptic vesicle" preparations 

we speculate that both type I and type III isoforms of NRG1 are located at synapses and 

mostly remain membrane bound. This suggests that presynaptic NRG1 might preferentially 

perform a juxtacrine mode of signaling via postsynaptic ErbB receptors. We propose that 

at synapses, glial cells (mainly astrocytes) might be the main source of secreted NRG1 and 

not neurons. The first step to understand the importance of glial derived NRG1 at synapses 

will be the comparative analysis of impaired synaptic functions in Nex-Cre*Nrg1flox/flox 

(lacking NRG1 from principal projection neurons) and Emx1-Cre*Nrg1flox/flox mutants 

(lacking NRG1 from principal projection neurons and glial cells).  Interestingly, the ~60 
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kDa carboxy-terminal domain of NRG1 supposedly generated by β-secretase activity also 

co-sediments with synaptic membrane proteins (such as NMDA receptors) during the sub-

cellular fractionation process. Thus one might speculate that at synapses TACE or γ-

secretase activity is minimal and does not lead to the release of a carboxy-terminal domain 

into the synaptoplasm. This is in contrast to some studies which claim that at the active 

synapse the binding of NRG1 to its receptor ErbB4 leads to the cleavage of an intracellular 

C-terminal domain (ICD) of NRG1 that is retrogradly transported to the nucleus, thereby 

controlling the transcription of certain genes (Bao et al., 2003; Role and Talmage, 2007). 

In light of our observation the relevance of synaptic activity dependent back-signaling 

might be questionable.  

mx1-Cre*Nrg1flox/flox) lack NRG1 from both neurons and glial cells (radial glia, 

5.2.3 NRG1/ErbB signaling in cortical inhibition 

 To study the entire spectrum of NRG1 functions in the adult brain the generation of 

a mouse mutant completely lacking NRG1 in the brain, while surviving until adulthood, 

was a prime necessity. Previous trials to generate such a mouse mutant failed, since even 

conditional inactivation of NRG1 in the telencephalon using Foxg1-Cre mice caused 

perinatal death, possibly due to cre mediated inactivation of NRG1 in the mid-hind brain 

junction and in pharyngeal pouches (Flames et al., 2004; Hebert and McConnell, 2000; 

Lopez-Bendito et al., 2006). To our surprise forebrain specific conditional null mutants of 

NRG1 using the Emx1-Cre driver line, in which recombination starts at embryonic day (E) 

10 in neural precursor cells, were largely normal and survived until adulthood. These 

mutants (E

astrocytes and OL), except interneurons that migrate from ganglionic eminences to the 

cortex. About 50% of the conditional null mutants (Emx1-Cre*Nrg1flox/flox) exhibited 

"handling-induced seizures" suggesting a possible loss of cortical inhibition. Remarkably, 

also ~20% of heterozygous and control littermates (Emx1-Cre*Nrg1flox/+, Nrg1flox/flox and 

Nrg1flox/+) exhibited seizures. Several studies have shown that cross breeding of two inbred 

strains can give rise to a recombinant inbred (RI) mouse strain with increased susceptibility 

to epilepsy (Frankel et al., 1994). Therefore, we speculate that by crossbreeding 

C57Bl/6*FVB males (Nrg1flox/flox) to C57Bl/6 females (Emx1-Cre*Nrg1flox/+) might have 

generated offspring that are prone to "handling-induced seizures" (Frankel et al., 1994). 

Importantly, these occasional seizures are further aggravated by the absence of NRG1. 
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Interestingly, one study has shown that treatment of hippocampal slice cultures with NRG1 

might lead to the reduction in GABAergic synaptic activity occurring during early 

postnatal development in CA1 pyramidal neurons (Okada and Corfas, 2004). Thus, 

alterations in NRG1 levels in the hippocampus during early developmental stages might 

contribute to epilepsy. Additionally, there are several other mouse mutants that exhibit 

"handling-induced seizures", such as mice deficient in GAD65, dopamine receptor D2, 

neuropeptide Y (NPY), GABAB1 subunit and G protein γ3 subunit (Bozzi et al., 2000; 

Erickson et al., 1996; Kash et al., 1997; Prosser et al., 2001; Schwindinger et al., 2004). 

The epileptic manifestations in NRG1 null mutants were similar to that of GAD65 null 

mutants. Although we were unable to show reduction in levels of GAD65 and GAD67 in 

protein lysates prepared from null mutant (Emx1-Cre*Nrg1flox/flox) brains, numbers of 

in the motor cortex of null mutants GAD67+ interneurons were slightly decreased (~10%) 

as revealed by immunohistochemistry. The pathological mechanism that induces epileptic 

seizures in mutants needs further investigation and might involve the interaction of 

unknown epilepsy susceptibility gene and NRG1. 

5.2.4 NRG1/ErbB signaling in neuronal migration 

 Radial glia (in cerebrum and cerebellum) and interneurons (mainly parvalbumin+ 

cells) express ErbB receptors while NRG1 is expressed in migrating and post-mitotic 

projection neurons in cerebral cortex and granular cells in the cerebellum (Anton et al., 

1997; Flames et al., 2004; Rio et al., 1997; Yau et al., 2003). NRG1 is required for the 

normal development of radial glial cells. In the cerebral cortex, the deletion of ErbB2 leads 

to abnormal radial glia formation and indirectly perturbs the radial migration of projection 

neurons (Anton et al., 1997; Schmid et al., 2003). In addition, ErbB4 receptor null mutants 

show defects in the tangential migration of GABAergic interneurons from the ganglionic 

eminence to the neocortex (Flames et al., 2004). In the cerebellum, NRG1 induces 

astrocytes to adopt a radial glia phenotype in vitro, which in turn are required to support 

neuronal migration (Rio et al., 1997). In combination, ErbB2 and ErbB4 might influence 

both radial migration of neocortical projection neurons and tangential migration of 

inhibitory neurons during early developmental stages.  

 We hypothesized that NRG1 null mutants (Emx1-Cre*Nrg1flox/flox) might have 

similar neuronal migration deficits in the cerebral cortex (but not in the cerebellum where 
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Emx1 is not expressed). Surprisingly, we did not observe major defects in cortical layer 

formation or the development of other neural cell populations. Since most of our analysis 

was performed in adult mice we speculate that previously reported migration defects both 

in vitro and in vivo might be rather a delay in the migration program and that mutants 

recover postnatally. However, when we looked for migration defects in several 

interneuronal populations we found subtle but significant increases in the number of 

parvalbumin+ interneurons in the cortex of null mutants. In contrast to our finding in 

NRG1 mutants the number of GABAergic interneurons in the cortex of ErbB4 null 

mutants was reduced (Flames et al., 2004). To address this discrepancy it will be important 

to determine the number of other inhibitory neuron classes, such as calbindin+ and 

calretinin+ interneurons and compare them with the total number of cortical GABergic 

interneurons. It is conceivable that while the number of parvalbumin+ interneurons is 

increased other interneurons are decreased such that the total number of GABergic 

interneurons is reduced in NRG1 mutants. Moreover, mutants lacking NRG1 from their 

principal projection neurons (Nex-Cre*Nrg1flox/flox) did not show significant differences in 

the number of parvalbumin+ intereneurons. Taken together, one might speculate that for 

strocyte derived NRG1 plays a 

er susceptibility to some forms of 

proper functioning and/or migration of interneurons, a

distinct role. In schizophrenia, mRNA levels of several markers for GABAergic 

interneurons (including GAD67, GAT1 and parvalbumin) have been shown to be down 

regulated while NRG1 mRNA might be up regulated (reviewed in Harrison and Law, 

2006; Lewis et al., 2005). In contrast we have found a slight increase in parvalbumin 

mRNA levels in (Nex-Cre*Nrg1flox/flox) mutants, while there was a severe reduction in 

levels of calretinin mRNA. With our current data we cannot explain the exact mechanism 

that might be involved in NRG1 mediated regulation of interneuronal marker expression, 

but our ongoing analysis might shed some light on this issue.  

5.2.5 NRG1/ErbB signaling in neuropsychiatric disorders 

 Our observations that NRG1/ErbB signaling might play an important role in 

neurotransmitter receptor function and cortical interneuron development provide a 

coherent biological context whereby NRG1 may conf

schizophrenia. An interesting aspect, which still remains unexplored, is the possibility that 

NRG1 might act as a communication bridge between excitatory and inhibitory brain 
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ent may lead to abnormal 

cortical GABAergic interneurons function varying from migration deficits to activity 

circuits. For instance, both NMDA receptors and GABAergic interneurons function 

suboptimally in the frontal cortex and temporal lobes of patients suffering from 

schizophrenia (Coyle, 2004). Can these two distinct pathological mechanisms be related to 

each other via NRG1? Interestingly, in limbic cortex NMDA receptors on the GABAergic 

interneurons are highly sensitive to NMDA antagonists, such as MK-801, when compared 

to those on pyramidal neurons (Li et al., 2002b). The loss of the NMDA receptor 

component of the EPSC on hippocampal GABAergic neurons disrupts memory and 

cognitive processing quite similar to that seen in patients suffering from schizophrenia 

(Moghaddam and Jackson, 2003). Moreover, recent studies have shown that chronic 

treatment of rats with MK-801 resulted in down-regulation in the expression of GAD67 

and GAT1 in the frontal cortex (Paulson et al., 2003). ErbB4 expression is maintained in a 

subpopulation of cortical interneurons (mainly parvalbumin+ interneurons) in the postnatal 

cortex (Yau et al., 2003). In addition, ErbB4 can modulate interneuronal synaptic plasticity 

by associating with postsynaptic PDZ binding proteins (Buonanno and Fischbach, 2001). 

Our studies suggest that NRG1 can modulate the function of glutamatergic 

neurotransmitter receptors. Taken together, it is plausible that NRG1 might influence the 

function of glutamatergic neurotransmitter receptors, such as NMDA receptors on 

interneuronal populations and hypofunction of these NMDA receptor subsequently leads to 

the dysregulation of interneuronal functions.  

  These possibilities demand answer to another important question: What is the 

source of NRG1 that regulates the interneuronal development? From our preliminary 

results we speculate that there are two major sources, astrocyte derived soluble NRG1 

(type I) and projection neuron derived membrane bound NRG1 (type III). Based on this 

hypothesis, it is tempting to speculate that an alteration in the expression pattern of the 

different isoforms of NRG1 at different stages of developm

dependent modulation of neurotransmitter receptor function. 

 Although it is difficult to make predictions across species, our data suggest that 

small alterations of NRG1 expression are highly unlikely to explain the documented white 

matter abnormalities in patients (Davis et al., 2003). However, our ongoing in depth 

analysis of various NRG1 mutants supports the previous in vitro studies that suggest 

NRG1 might play an important role in synaptic fine-tuning. 
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7.1 Appendix A: Abbreviations 

Amg    Amygdala 
βME or 2ME   Beta-mercaptoethanol 
bp     Base pairs 
BSA     Bovine serum albumin 
°C    Degrees Celsius (centigrades) 
CA1/CA3   CA1/CA3 region of Hippocampus 
cc    corpus callosum 
CNP    2'3'-cyclic nucleotide 3'phosphodiesterase 
CNS    Central nervous system 
CRD    cysteine-rich domain of NRG1 type III 
Cx    cortex 
ddH2O    double distilled (or miliQ) water 
ddDNA   double stranded DNA 
DAB    3,3'- Diaminobenzidine 
DMSO    Dimethylsulfoxide 
DRG    Dorsal root ganglia 
E    Embroynic day 
EDTA    Ethylened acid 
EPSP    tential 
ES    Embryonic stem cell 
f.c.    final concentration 
G418    Geneticin (gentamicin) 
HE    Haematoxylin-Eosin staining 
Hip    Hippocampus 
HS    Horse serum 
IP    Immunoprecipitation 
Kb    Kilobases  
kDa    Kilodalton  
ko    knock-out (null mutant) 
LB    Luria-Bertani broth 
LTP    Long-term potentiation 
M    Molar  
mM    millimolar 
mA    milliAmpere 
min    minutes 
ml    milliliter 
mo    month 
μg    microgram  
μl    microliter 

iaminetetraacetic 
excitatory postsynaptic po
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ng    nanogram  
er 

nAch    nicotinic acetylcholine receptor 

it 1/2 

ex 

lyflouride 

te  

e  

omethan titred with HCl  

μm    micromet

nm    nanometer  
NR1/2    NMDA receptor subun
NRG1    Neuregulin1 
OD    optical density 
OL    Oligodendrocytes 
ON    overnight 
P    Postnatal day 
PAGE    Polyacrylamid gel electrophorese  
PBS    Phosphate buffered saline 
PFA    Paraformaldehyde  
PFC    Prefrontal cort
PLP    Proteolipid protein 
PMSF    Phenylmethanesulphon
PNS    Peripheral nervous system  
PPI    pre-pulse inhibition 
PSD-95   Postsynpatic density 95 
Rpm    Rotations per minute  
RQ    Relative qunatity 
RT    Room temperature  
RT-PCR   quantitative real time PCR 
SC    Schwann cell 
SCH    Schizophrenia 
sec    seconds  
SDS    Sodium dodecyl sulfa
SEM    standard error mean 
ssDNA    single stranded DNA 
TBS    Tris buffered salin
TBE    Tris-Borat-EDTA  
TEMED   Tetramethylendiamin  
Tris-HCl   Tris-(hydroxymethyl)-amin
WB    western blotting 
wt    wildtype (control) 
U    Unit, (for enzyme activities)  
V    Volt 
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7.2 Appendix B: Publications 
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euron (revised version submitted). *Equal 
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 plasticity in mice lacking cortical 

amoxifen-Inducible Cre mediated 
ons of neocortex and hippocampus. 

Nawaz, S., Humml, C., Velanac, V., Radyushk
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Neuregulin-1/ErbB signaling serves distinct f
peripheral and central nervous system. N
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H., and Schwab, M. H. (2008). Impaired synaptic
Neuregulin1. (manuscript in preparation). 
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7.3 Appendix C: Curriculum Vitae 

27 years old 
Private address:  Am Ebelhof 6 2OG/Links, 

hand, India.  
 Tel: +91-6534-222717, 223319 

Herman-Rein Strasse 3 
  37075, Göttingen, Germany. 
 Tel. +49 551 3899-742 
 Fax: +49 551 3899-753 
 E-mail: agarwal@em.mpg.de 

 

Scientific education. 

University entrance qualification: 
 All India Secondary School Certificate 

Examination (AISSCE)* (May 1998, D.A.V. 
Public School, Bokaro, India) 

 University Joint Entrance Examination (All India 
Rank: 1, July 1999, Guru Gobind Singh 
Indraprastha University, School of 
Biotechnology, Delhi, India). 

University studies: 
May 2005 – present:  PhD Scholar,  
 Max-Planck-Institut für Experimentelle 
 Medizin, Göttingen, Germany. 

 

Personal details: 

Surname:  Agarwal 
Forename:  Amit 
Nationality:  India 
Date and place of birth:  September 13th, 1980, Koderma, India  
Age: 

 37075 Göttingen, Germany 
 Tel: +49-551-9809494, +49-176-70048388 
 Ranchi Patna Road, Jhumritelaiya, 825409 

Jhark

Work address:  MPI of Experimental Medicine 
 Department of Neurogenetics 
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September 2003 – present: Graduate student, 
ternational Max Plank Research School, 

MSc/PhD Program in Neuroscience,  

, Germany. 
 

y (8 semesters),  
astha University, 

lhi, India. 
 

Intermediate and final examination. 

August 2004:  ion in Neuroscience  
ität, 

ugust 1999 – July 2003:  technology 
aprastha University, 
, Delhi, India. 

74.7 
Final Exam CPI = 89.6 (Excellent) 

 

Master Thesis Project. 

Oct 2004 – April 2005:  

  
 
 edicine (MPI-EM), 

Göttingen). 
rade = 1.3 (Excellent) 

 

 In
 
 Georg-August-Universität, 
 Göttingen

August 1999 – July 2003: Bachelor of Technology (B.Tech) in  
 Biotechnolog
 Guru Gobind Singh Indrapr
 School of Biotechnology, De

Master’s Examinat
 Program, Georg-August-Univers
 Göttingen, Germany. 
 Average grade = 1.7  
 
A Bachelor’s Examination in Bio
 Guru Gobind Singh Indr
 School of Biotechnology
 Average CPI (Cumulative Performance Index) = 

 

Role of Neuregulin1 in Oligodendroglial 
 Survival and Axonal Maintenance. 
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 Master thesis g

 
 

172



Appendices 

Resea
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Location of project:  MPI of Experimental Medicine 

 

April, 2005 
 

Schol

prashtha University, Delhi 
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eering) in the field of Life Science (Full 

d by AICTE, 

Technology in any Engineering College in India) 
- 94 percentile. 

 

003 – 2004  eurosciences, 
chool, 

 

rch project. 
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 Department of Neurogenetics 
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 37075, Göttingen, Germany. 
 Supervisor: Prof. Dr. Klaus Armin Nave

 

Commencement of project:  
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1999 – 2003  "University Scholarship of Full Tuition Fee 
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999-2003) with First class 

grades. 
 

Poster presentation. 
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usceptibility Gene 

 
Göttingen Research Association for 

ia (GRAS). 
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 'Distinct functions of Neuregulin1 in PNS and 
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Non-scientific activities. 

Vocational training: 
 English language (Test of English as a Foreign 

language (TOEFL), total score 250 of 300, 2002). 

 Basic German language course (Georg-August 
Universität Göttingen, 2003) 

 

Administrative skills and experiences: 
October 2001- March 2003:  President of “Biotechnological Research and 

Information Society” (BRaInS) – the academic 
and cultural society of School of Biotechnology, 

EM Göttingen. 
Passed my undergraduate degree course (B. Tech 
in Biotechnology, 1
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G.G.S. Indraprashtha University, Delhi. 

 Conducted symposiums and conferences inviting 
scientists from varied field in order to share their 
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Journal Clubs (during my undergraduate studies) 
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