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Abstract

Purpose: Many solid tumors exhibit abnormal aerobic metabolism characterized by increased
glycolytic capacity and decreased cellular respiration. Recently, mutations in the nuclear encoded
mitochondrial enzymes fumarate hydratase and succinate dehydrogenase have been identified in
certain tumor types, thus demonstrating a direct link between mitochondrial energy metabolism
and tumorigenesis. Although mutations in the mitochondrial genome (mitochondrial DNA,
mtDNA) also can affect aerobic metabolism and mtDNA alterations are frequently observed in
tumor cells, evidence linking respiratory chain deficiency in a specific tumor type to a specific
mtDNA mutation has been lacking.

Experimental Design: To identify mitochondrial alterations in oncocytomas, we investigated
the activities of respiratory chain enzymes and sequenced mtDNA in 15 renal oncocytoma
tissues.

Results: Here, we show that loss of respiratory chain complex | (NADH/ubiguinone oxidore-
ductase) is associated with renal oncocytoma. Enzymatic activity of complex | was undetectable
or greatly reduced in the tumor samples (n = 15). Blue Native gel electrophoresis of the multi-
subunit enzyme complex revealed a lack of assembled complex |. Mutation analysis of the mtDNA
showed frame-shift mutations in the genes of either subunit ND1, ND4, or ND5 of complex | in
9 of the 15 tumors.

Conclusion: Our data indicate that isolated loss of complex | is a specific feature of renal

oncocytoma and that this deficiency is frequently caused by somatic mtDNA mutations.

A shift in cellular energy production from aerobic oxidation in
mitochondria to anaerobic glycolysis is a fundamental property
of cancer cells, also called the Warburg effect (1, 2). Otto
Warburg postulated that damage of the aerobic energy meta-
bolism is a primary and irreversible event in tumor formation
(2). Recently, this hypothesis has been supported by the
demonstration that mutations of single enzymes of the
mitochondrial energy metabolism are associated with tumor-
igenesis (3, 4). Germline mutations in distinct subunits of
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succinate dehydrogenase predispose to hereditary paraganglio-
mas and pheochromocytomas (4, 5). Germline mutations in
the fumarate hydratase gene can either cause leiomyoma,
leiomyosarcoma, and renal cell carcinoma (3) or Leydig cell
tumor (6). Therefore, succinate dehydrogenase and fumarate
hydratase are regarded as mitochondrial tumor suppressors
for these types of tumors (5).

Mitochondrial DNA (mtDNA), the small genome of the
mitochondrion, is essential for aerobic energy metabolism and
encodes some of the subunits of respiratory chain complexes I,
I11, and IV, as well as the F,Fy-ATP synthase. Complex I consists
of 46 different subunits, with a molecular mass totaling
980 kDa. Seven of these subunits (ND1-ND6 and NDA4L)
are encoded by mtDNA; the other complex I genes are located
on nuclear chromosomes.

Because of its essential role in energy metabolism, the
mitochondrial genome has long been suspected of contributing
to metabolic alterations in tumors. Such investigations date
back to the 1960s, and in fact, numerous somatic mtDNA
mutations have been reported in various types of human
tumors (7-10). Evidence that dysfunction of enzymes of the
respiratory chain, resulting from mutations in mtDNA, plays a
role in tumorigenesis is based on in vitro data of cultured cells
but has not been shown directly in tumor tissues (10, 11).
Recently, Gasparre et al. have reported that somatic mutations
of mtDNA encoded subunits of complex I are statistically
significantly associated with thyroid oncocytoma (12). How-
ever, no data of the functional consequence on complex I
activity of these potentially disruptive mutations have been
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presented (12). No other direct association of somatic mtDNA
mutations with a distinct tumor type and pathophysiology has
been published thus far (5, 13).

Renal oncocytomas are usually benign tumors accounting
for ~5% of all renal cell neoplasias. A characteristic feature
of oncocytomas is the accumulation of a large number of
mitochondria (14). This hyperproliferation of mitochondria
was first found in thyroid tumors (Hiirthle cell carcinoma) and
was called an oxyphilic change in the cells. Oxyphilic tumors
are also known for various other organs; however, the cause of
the hyperproliferation of mitochondria is unknown. In analogy
to other known defects of the mitochondrial energy metabo-
lism, a compensatory feedback mechanism leading to prolifer-
ation of this organelle has been proposed (15).

Previous studies using restriction length polymorphism
analysis have provided contradictory data on mtDNA alter-
ations in renal oncocytomas (16-18), although to our
knowledge a systematic search for mutations in the mitochon-
drial genome has not been reported. Thus, proof of a direct
association of mtDNA mutations, biochemistry, and tumori-
genesis has been lacking. To elucidate the cause of the
mitochondrial alterations in oncocytomas, we investigated the
activities of respiratory chain enzymes and screened for mtDNA
mutations in renal oncocytomas.

Materials and Methods

Patients. Fifteen renal oncocytoma tissue samples (mean age
61.5 y, range 29-77 y; 66% male) were obtained from the Biobank
of the Medical University of Graz and Department of Urology,
University Hospital Salzburg. All tissues were frozen and stored in
liquid nitrogen within 20 min after surgery. Tumor cell content and
cellular composition of samples were evaluated using H&E-stained
frozen sections. Corresponding unaffected kidney tissue was available
from patients 6, 8, 12, 13, 14, and 15. In addition, 14 age-matched
nonneoblastic kidney samples (mean age 61.8 y, range 35-74 y; 60%
male) were included as controls for enzymatic measurements (19).
The study was approved by the ethical committee of Medical University
of Graz.

Spectrophotometric detection of enzyme activities. Renal oncocytoma
and control kidney tissues (20-100 mg) were homogenized with a
tissue disintegrator (Ultraturrax, IKA) in extraction buffer [20 mmol/L
Tris-HCI (pH 7.6), 250 mmol/L sucrose, 40 mmol/L KCl, 2 mmol/L
EGTA] and finally homogenized with a motor-driven Teflon-glass
homogenizer (Potter S, Sartorius). The homogenate was centrifuged
at 600 X g for 10 min at 4°C. The postnuclear supernatant containing
the mitochondrial fraction was used for measurement of enzyme
activities, Blue Native PAGE (BN-PAGE) and immunoblot analysis.
The rotenone-sensitive complex [ activity was measured spectropho-
tometrically as NADH/decylubiquinone oxidoreductase at 340 nm
(20). The enzyme activities of citrate synthase, complex IV (ferrocyto-
chrome c/oxygen oxidoreductase), and the oligomycin-sensitive ATPase
activity of the F;F; ATP synthase were determined as reported
previously (19).

BN-PAGE and immunoblot analysis. Solubilized mitochondrial
membranes were prepared from post nuclear supernatant (30 pg
protein) of kidney and oncocytoma tissues, as described previously
(21). Briefly, post nuclear supernatants were sedimented by centrifu-
gation at 13,000 X g for 15 min. Membranes were solubilized with
1.5% laurylmaltoside for 15 min and centrifuged for 20 min at
13,000 X g. Solubilized membranes were loaded on a 5% to 13%
polyacrylamide gradient gel and separated electrophoretically. The
in-gel activity assay of complex I and cytochrome ¢ oxidase were done
as previously described (22).
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For immunoblot analysis, membrane preparations were separated by
BN-PAGE (5-13%) and blotted onto polyvinylidene difluoride mem-
brane (Hybond-P, GE Healthcare) using a CAPS buffer [10 mmol/L
3-[cyclohexylamino]-1-propane sulfonic acid (pH 11), 10% methanol].
The membrane was washed in 100% methanol for 2 min and blocked
for 1 h at room temperature in 5% fat-free milk powder dissolved in
TBS. The primary antibody, diluted in 1% milk powder-TBS, was added
overnight at 4°C. The following primary antibody dilutions were used:
complex I subunit NDUFA9 monoclonal antibody (1:480; MitoScien-
ces) and complex V subunit o monoclonal antibody (1:100,000;
MitoSciences). After extensive washing, blots were incubated for
2 h with antimouse IgG POD-labeled antibody (Lumi-Light™" Western
blotting kit, Roche) diluted 1:400. Detection was carried out with Lumi-
Light”™S POD substrate (Roche). After detection of complex I subunit
NDUFA9, the polyvinylidene difluoride membrane was washed twice
in stripping buffer [25 mmol/L Glycin-HCl (pH 2), 2% SDS]| for
10 min, and a subsequent immunodetection with complex V subunit
o antibody was done as described above.

mtDNA analysis. DNA was isolated from tissues by proteinase K
digestion followed by phenol/chloroform extraction. The mtDNA of
ND and tRNA genes was amplified using overlapping PCR fragments
(23). All samples were sequenced using a GenomeLab SNP-Primer
Extension kit (Beckman Coulter). Mutations were analyzed with the
Beckman software investigator. Exact positions of mutations and amino
acid changes were defined with the mitoAnalyzer tool (MitoAnalyzer
2000)4, using the mtDNA Genbank sequence J01415.1 as reference.

Determination of mutational load of the A3243G mutation. The per-
centage of mutational load was quantified by densitometry of ethidium
bromide - stained agarose gels, as described previously (24).

Results

Enzymatic and immunoblot analyses of the respiratory chain in
renal oncocytomas. The enzyme activities of complexes I, 1V,
and V of the respiratory chain, which consist of mitochondrial
and nuclear encoded subunits, and citrate synthase, an enzyme
of the Krebs cycle, were investigated in postnuclear super-
natants from 15 oncocytoma tissues. Activities of complexes IV
and V, as well as citrate synthase in the oncocytomas, were
found to be increased 3-fold to 7-fold, compared with
unaffected kidney cortex samples (Fig. 1; Table 1). In striking
contrast, the activity of complex I was below the detection limit
of <3 nmol/min/mg protein in eight oncocytomas (Fig. 1;
Table 1). The other samples showed a residual activity of
complex I of <25% compared with kidney control samples
(Table 1). If the samples showing residual complex I activity are
compared with the activity of citrate synthase, a marker enzyme
of mitochondrial energy metabolism (25), the relative enzyme
activity of complex I, is <5% compared with normal kidney.
This striking reduction of complex I activity was also found by
activity-staining of BN-PAGE (Fig. 2A and Supplementary
Fig. S1). None of the tumor samples showed any detectable
activity compared with their corresponding tumor tissue.
Activity-staining of cytochrome ¢ oxidase underlines the up-
regulation of complex IV in renal oncocytoma as measured
photometrically (Fig. 2B).

Immunoblot analysis of BN-PAGE samples revealed lack of
assembled complex I (Fig. 2C) in the tumor tissues, whereas
staining of the same blot with complex V antibodies reflects the
high enzyme activity of this complex measured photometrically
(Fig. 2D).

4 http://www.cstl.nist.gov/biotech/strbase/mitoanalyzer. html
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Fig. 1. Enzyme activities (nmol/min/mg protein) of complex | (C/), complex IV
(CIV), complexV (CV), and citrate synthase (CS) in oncocytomas were compared
with renal kidney cortex of controls. 4, in contrast to the normal kidney tissues

(n = 20), complex | enzyme activity in oncocytoma tissues (n = 15) was found to
be <11 nmol/min/mg protein. B, citrate synthase enzyme activity of oncocytomas
was significantly increased compared with controls (P < 0.0001). Complex IV

(C; P =0.0014) and complexV (D; P = 0.0002) enzyme activities of oncocytomas
were also higher than in controls. For the measurement of complexV enzyme
activity, only tumors of 11 patients were available. An unpaired ¢ test was used for
statistical analysis.

Mutation analysis of the mtDNA in renal oncocytomas. To
elucidate the genetic basis for the loss of complex I, we
sequenced all seven mitochondrially encoded complex I genes
and noticed frame-shift mutations in either the ND1, ND4 or
ND5 gene in 9 of the 15 tumors with no detectable wild-type

mtDNA (Table 1; Fig. 3). Insertion of a cytosine residue into a
stretch of six cytosines at mtDNA positions 3566 to 3571 was
detected in the ND1 gene in tumor tissues of cases 1, 2, and 14
(Table 1). In case 3, a deletion of one cytosine in the same
polycytosine stretch was identified. All four of these mutations
cause termination of translation in the first third of the protein.
In case 4, we noticed an insertion of a cytosine residue in a
stretch of six cytosines at positions 10947 to 10952 of the ND4
gene. This insertion causes a frame-shift and creates a stop
codon ~ 150 bp downstream, which results in a truncated ND4
protein. In cases 5 and 6, deletions of one adenine in a stretch
of seven adenine residues (11032-11038) were found, which
results in premature termination of translation of ND4. Two
other insertion mutations—in cases 7 and 8—affect the same
stretch of six cytosine residues (12385-12390) of the ND5 gene.
In case 7, an insertion of one thymine directly before the
homopolymeric sequence was identified; in case 8, an extra
cytosine was added to the polycytosine run. Both of these
frame-shift mutations create a stop codon within the first 10%
of the ND5 gene. Remarkably, tissue 7 and tissue 1 originate
from the same patient with two independent oncocytomas.
Oncocytoma number 7 was excised from the right kidney 18
months after oncocytoma number 1 was surgically removed
from the left kidney. To exclude the possibility of sample mix-
up, we also sequenced the displacement loop of the mtDNA of
these samples and found identical sequences in both, confirm-
ing that they are indeed derived from the same individual. The
matching normal kidney cortex of cases 6, 8, and 14 revealed
no preexisting mutation (Fig. 3). A leucine-to-proline substitu-
tion in the ND5 subunit caused by a transition mutation at
nucleotide position 13493 was observed in case 9 (Table 1).
The effect of this amino acid change on the structure of the
ND5 subunit is not known, although the alteration could be
severe enough to disrupt the catalytic activity of the entire
complex. Finally, an A-to-G transition at position 3243 in the
gene encoding tRNAMU(UUR) wvas detected in case 13. RFLP
analysis revealed >95% mutational load in the oncocytoma

Table 1. Enzymes activities and mtDNA mutations in renal oncocytomas and control kidneys
Case Complex I Citrate Synthase Complex IV Complex V mtDNA Affected Protein
mutation* genes change

1 <3 791 205 481 3571_3572insC ND1 Leu89fs
2 4 1.656 1.393 107 3571_3572insC ND1 Leu89fs
3 <3 727 285 n.d. 3571delC ND1 Leu89fs
4 <3 316 336 1375 10952_10953insC ND4 Leu65fs
5 <3 1.565 323 71 11038delA ND4 Lys93fs
6 5 684 632 359 11038delA ND4 Lys93fs
7 <3 324 268 12384_12385insT ND5 Pro17fs
8 4 1.184 298 n.d. 12390_12391insC ND5 Ile19fs
9 <3 481 142 276 T13493C ND5 Leu386Pro
10 <3 975 292 n.d. — - —

11 <3 456 188 n.d. — - —

12 5 275 232 306 — - —

13 10 910 604 246 A3243G tRNALeu(UUR) —

14 5 638 461 399 3571_3572insC ND1 Leu89fs
15 11 753 952 303 — - —

Oncocytoma, mean + SD 3+1 782 + 109 433 + 89 381 + 106

Kidney, mean + SD (n = 20) 46 + 5 111 +9 157 + 17 56 £ 6

NOTE: Enzyme activity (nmol/min/mg protein) of complex I, citrate synthase, complex IV, and complex V.

Abbreviation: n.d., not determined (lack of sample).

*Positions of mutations refer to the mtDNA sequence Genbank accession number J01415.1.
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Fig. 2. BN-PAGE analysis of the complex | assembly in renal oncocytomas
compared with normal kidney tissue. Mitochondrial membranes were isolated
from kidney and oncocytoma tissues and subjected to one-dimensional

BN-PAGE analysis. In-gel activity staining for complex | (4) and complex IV (B).
C, immunoblot analysis using an antibody directed against the nuclear encoded
complex | subunit NDUFA9 of the same cases. D, immunoblot analysis after
stripping the blot shown in C with an antibody directed against the nuclear encoded
subunit o of complex V. K, normal kidney; O, renal oncocytoma tissue; numbers
refer to cases as summarized inTable 1. Full-length blots/gels are presented in
Supplementary Fig. S1.

tissue, but the mutation was also detectable in the normal
kidney tissue with a 20% mutational load (data not shown).
Interestingly, the same mutation is a frequent cause of MELAS
(mitochondrial myopathy, encephalomyopathy, lactic acidosis,
and stroke-like episodes) syndrome. In the remaining four
cases, screening of all mtDNA-encoded complex I and
mitochondrial tRNA genes did not reveal any somatic mutation
with pathogenic potential.

Discussion

Here, we provide the first report that renal oncocytomas
show a loss of complex I of the respiratory chain, which is
frequently caused by mutations of the mtDNA. Somatic
mutations of the mtDNA have been reported in a number of
different tumor types (7, 8, 13). However, most of these
mutations were silent without an apparent pathogenic poten-
tial and a role for mtDNA in tumor development has not been
established yet (5). Recently, an association of somatic mtDNA
mutations with the oncocytic phenotype of thyroid tumors has
been reported (12). Two types of frame-shift mutations
(3571_3572insC; 11038delA) detected in thyroid oncocytomas
have also been detected in the present study in renal
oncocytoma tissues. Our data now provide also the functional
consequence of these mutations by showing loss of enzyme
activity and assembly of complex 1.

We note that a previous study found an ~ 50% reduction in
complex I activity in renal oncocytomas (26). Residual complex
[ activity found in that study may have been due to con-
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tamination of investigated tumor tissues with normal kidney
tissue and epithelial cells of vessels. To avoid such contamina-
tion, we validated cryostat sections of tumor tissues histolog-
ically before using adjacent sections for biochemical and
genetic investigations. In addition to photometric measurement
of complex I, we substantiated our findings by complex I
activity-staining and immunoblot analysis of Blue Native gels.

The biochemical consequences of the A3243G mutation of
case 13 are in agreement with the decreased activity of complex
I reported in muscle biopsies and fibroblasts of patients
carrying this mutation (27). The A3243G mutation might be
sporadically associated with other tumor types because it was
also detected in a colon cancer sample (28) and a renal cell
carcinoma (24).

The frame-shift mutations detected in this study are predicted
to cause termination of translation in the first third of the
corresponding proteins. Similar mutations are known to affect
not only the enzyme activity, but also the assembly of complex
I (29), which is consistent with our biochemical and
immunoblot data. Homopolymeric stretches (5-8-bp long) in
mtDNA are known hotspots for base pair insertions and
deletions (30). Interestingly, several of these mtDNA repeat
mutations were reported in different tumors in earlier studies
(Fig. 4). Because no respiratory chain activity measurements
were reported in those tumors, it is difficult to evaluate the
effect of those mutations on mitochondrial energy metabolism

Tumor
ACTCT AC

Kidney
CG ACTCTAC ce

==

Deletion of A

B :
Kidney Tumor
TYTCCCCCCATCCYTY TTCCCCCCCATCCY'
Insertion DfC‘

Kidney Tumor
CCCCCCTCCCCATY ACCCCCCCTCCCC
| I Insertion of C¢

Fig. 3. Sequence analysis of mtDNA-encoded complex | genes in oncocytomas
and matched kidney tissues. A, in case 6, a homopolymeric stretch at positions
11032 to 11038 in the ND4 gene displayed seven adenine residues in the

normal kidney tissue and six adenine residues in the oncocytoma tissue.

B, a homopolymeric stretch of cytosines at positions 12385 to 12390 in the ND5
gene in case 8 showed six residues in the kidney cortex tissue and seven in the
corresponding tumor tissue. C, sequence analysis of case 14 shows six cytosines at
positions 3566 to 3571 in the normal tissue and seven cytosines in the tumor tissue.
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Fig. 4. Localization of homopolymeric six G-C and seven to
eight A-T base pair repeats within the human mtDNA (reference
sequence: Genbank J01415.1) and illustration of the sequence
motifs where insertions or deletions were found in the
investigated oncocytoma tissues. The motifs where mutations

in these repeats have been reported previously are annotated

as follows: (a) displacement loop (D-/oop) (39-42), (b)
displacement loop (39), (c¢) displacement loop (42), (d) ND7
(12, 43, this study cases 1-3,14), (e) COX1 (43), (f) tRNASe 4G
(44, 45), (g) COX3 (39), (h) COX3 (46), (/) ND4 (29, this study
case 4), (/) ND4 (12, this study cases 5-6), (k) ND4 (47),

(/) ND5 (43, this study cases 7-8), (m) ND5 (43, 47, 48),

(n) ND5 (12).

and their role in tumorigenesis, especially in cases of high
mutation load.

We hypothesize that the four oncocytomas in our study
with no detected pathogenic mutations in mtDNA (cases 10-12
and 15; Table 1) may have mutations in 1 of the 39 known
nuclear genes encoding complex I subunits or assembly
factors (31). Loss of heterozygosity in combination with such
a nuclear mutation would be expected to lead to impairment
of complex I, and observations of frequent cytogenetic abnor-
malities in oncocytomas lend support to this idea (32).

Oncocytomas occasionally appear in both kidneys. Interest-
ingly, in one such case, distinct cytogenetic backgrounds were
found in each tumor (32). A similar case with two independent
oncoytomas was included in our study, wherein oncocytomas
were excised first from the left (case 1) and then from the right
kidney (case 7) over an interval of 18 months. As in the
aforementioned study (32), these tumors were distinct from
each other, and they carried different frame-shift mutations in
the mtDNA. We can only speculate as to whether the induction
of these tumors is due to an environmental trigger or to a
genetic predisposition in such patients.

Patients with Birt-Hogg-Dube syndrome have an increased
incidence of renal tumors, including renal oncocytomas (33).
However, a function for the BDH (folliculin) gene, which is
thought to be responsible for this syndrome, has not yet been
determined. One possibility is that this protein is involved in
cellular energy metabolism (34). Recently, somatic missense
mutations in the complex I assembly protein GRIM-19 were
identified in 15% of sporadic oxyphil Hurthle cell tumors of
the thyroid (35), suggesting that impairment of complex I
activity may be associated with oxyphilic tumors generally and
not just renal oncocytomas. Further biochemical and genetic
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