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Ultrafast optical modification of exchange
interactions in iron oxides
R.V. Mikhaylovskiy1,2, E. Hendry1, A. Secchi2, J.H. Mentink3, M. Eckstein3, A. Wu4, R.V. Pisarev5, V.V. Kruglyak1,

M.I. Katsnelson2, Th. Rasing2 & A.V. Kimel2

Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling

of the electric field component of the light with spins via spin-orbit interaction or direct

coupling between the magnetic field component and spins. Here we propose a scenario for

coupling between the electric field of light and spins via optical modification of the exchange

interaction, one of the strongest quantum effects with strength of 103 Tesla. We demonstrate

that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is

allowed in a material of any symmetry. Its existence is corroborated by the experimental

observation of terahertz emission by spin resonances optically excited in a broad class of iron

oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond

modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm� 2 acts

as a pulsed effective magnetic field of 0.01 Tesla.

DOI: 10.1038/ncomms9190 OPEN

1 School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK. 2 Radboud University Nijmegen, Institute for Molecules and Materials,
Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands. 3 University of Hamburg, Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761
Hamburg, Germany. 4 Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. 5 Ioffe Physical-Technical Institute, Russian
Academy of Sciences, 194021 St Petersburg, Russia. Correspondence and requests for materials should be addressed to R.V.M.
(email: R.Mikhaylovskiy@science.ru.nl).

NATURE COMMUNICATIONS | 6:8190 | DOI: 10.1038/ncomms9190 | www.nature.com/naturecommunications 1

& 2015 Macmillan Publishers Limited. All rights reserved.

mailto:R.Mikhaylovskiy@science.ru.nl
http://www.nature.com/naturecommunications


T
he symmetric part of the exchange interaction between
spins is responsible for the very existence of magnetic
ordering1. It is described by the Hamiltonian

Ĥex¼ J
P

i;j ðŜi � ŜjÞ, where J is the exchange integral; Ŝi and Ŝj
are the spins of the ith and jth adjacent magnetic ions.
The antisymmetric part ĤDM¼ 2D �

P
i;j ðŜi�ŜjÞ, characterized by

a vector parameter D and called Dzyaloshinskii–Moriya interaction,
gives rise to canted antiferromagnetism2–3 in iron oxides.

The ability to control the exchange interaction by light has
intrigued researchers in many areas of physics, ranging from
quantum computing4–6 to strongly correlated materials7–9.
Laser-induced heating10–11 and photo-doping9,12 have been
suggested to cause a modification of the exchange interaction.
However, these phenomena rely on the absorption of light and are
neither universal, that is, they are only present in specific materials,
nor direct, that is, not instantaneous. Recently the
time-resolved evolution of the exchange splitting in magnetic
metals Ni and Gd subjected to ultrafast laser excitation
was measured using photoelectron spectroscopy13 and angle-
resolved photoemission14 techniques, respectively. Both of these
techniques, unfortunately, do not allow to distinguish the intrinsic
dynamics of the exchange parameters such as J from the
demagnetization dynamics. Nevertheless, a direct, truly ultrafast
effect of the electric field of light on the exchange interaction must
be feasible in any material. In a medium of arbitrary symmetry,
such an effect may be expressed phenomenologically by introducing
an isotropic term in the Hamiltonian of the two-photon interaction
between the light and spins

ĤIMR ¼ Iopta
X

i;j

Ŝi � Ŝj
� �

þ 2 Ioptb �
X

i;j

Ŝi�Ŝj
� �

; ð1Þ

where Iopt is the intensity of light; a and b are some scalar and
vector coefficients, respectively. The presence of the interaction
Hamiltonian (1) manifests itself as a magnetic refraction, described
by an isotropic contribution to the dielectric permittivity eIMRBM2

that leads to a dependence of the refractive index on the magnitude
of the magnetization M15,16. The first term in the Hamiltonian
describes the intensity dependent contribution, DJ¼ aIopt, to the
symmetric Heisenberg exchange integral J, whereas the second term
describes the intensity dependent contribution, DD¼ bIopt, to the
Dzyaloshinskii–Moriya vector D. Recently the effect of isotropic
magneto-refraction has been used to probe d–f exchange in EuTe17.
As for other magneto-optical phenomena, isotropic magneto-
refraction must be connected with an inverse effect18 described by
the same Hamiltonian (1), that is, the optical generation of a torque
Ti acting on a spin Si due to the light-induced perturbation of the
exchange parameters

Ti¼ � g Si�
@ĤIMR

@Si

� �
¼ � gDJ Si�Sj

� �
� 2g Si� Sj�DD

� �� �
;

ð2Þ
where g is the absolute value of the gyromagnetic ratio. The torque
(2) is zero in materials with collinear magnetic configurations since

Si�Sj
� �

¼ 0. In contrast to the torques exerted by the optical
perturbation of the spin-orbit interaction19–21 or transient magnetic
field22–23, it is independent of the light polarization.

In a broad class of transition metal oxides the magnetic order is
governed by indirect exchange via ligand ions (superexchange)1

and is defined by virtual charge-transfer transitions of electrons
between ligands and magnetic ions. Hence, one can anticipate the
feasibility of a direct effect of the electric field of light on the
exchange energy via virtual or real excitation of specific optical
transitions that modify the hopping of the electrons between
electronic orbitals centred at the transition metal ions and oxygen
ligands, respectively.

Antiferromagnetic iron oxides possessing weak ferro-
magnetism, such as iron borate FeBO3, rare-earth orthoferrites
RFeO3 (R stands for a rare-earth element) and hematite
a-Fe2O3, are natural candidates for observing such ultrafast
optical modification of the superexchange interactions. In these
compounds the Fe3þ ions (spin quantum number S¼ 5/2 and
orbital momentum quantum number L¼ 0) form two magnetic
sublattices, the spins of which are antiferromagnetically
coupled24. The presence of the Dzyaloshinskii–Moriya
antisymmetric exchange interaction leads to a slight canting
of the spins from the antiparallel orientation by an angle of
B0.5–1�. The value of the canting is defined by the ratio D/J
between the antisymmetric and symmetric exchange parameters.
Thus, one could expect that an ultrafast optical perturbation
of the exchange parameters could also change the ratio D/J
and thereby trigger, by the torque defined in equation (2), the so-
called quasi-antiferromagnetic resonance mode. This mode
corresponds to oscillations of the magnitude of the weak
magnetic moment without a change of its orientation25.
According to equations (1) and (2), the ultrafast optical
perturbation of the exchange parameters in these weak
ferromagnets is an isotropic mechanism, that is, it can excite
the quasi-antiferromagnetic resonance independently from the
light polarization and propagation direction. The excited
oscillating magnetic dipole in turn will lead to the generation of
terahertz (THz) radiation which can be measured using terahertz
emission spectroscopy26, as has been demonstrated before in
experiments with ferromagnetic metals27–29 and antiferro-
magnetic insulators NiO30–33 and MnO34. In the present
context, observation of THz emission due to laser excitation of
the quasi-antiferromagnetic spin resonance via an isotropic
mechanism would indicate an ultrafast manipulation of the
exchange interactions. Importantly, to observe the THz radiation
the emitting dipole must lie in the plane of the sample and
therefore be perpendicular to the propagation direction of light26.

Here we reveal the inverse magneto-refractive effect to be
responsible for ultrafast modulation of the superexchange
interaction in a very broad class of canted antiferromagnets.
Our findings are supported by a low-energy theory for the
magnetic interactions between non-equilibrium electrons sub-
jected to an external time-dependent electric field. We present
quantitative estimates of the strength and timescale of the optical
perturbation of the exchange parameters.

Results
THz emission from weak ferromagnets. Recently we reported
measurements of THz emission signals in the rare-earth
orthoferrites26 TmFeO3 and ErFeO3 which revealed the optical
excitation of the high-frequency quasi-antiferromagnetic mode
in these compounds along with the low-frequency quasi-
ferromagnetic mode, another form of the antiferromagnetic
resonance in canted antiferromagnets which involves the
precession of the magnetization with no change in its length25.
We also observed unexpected weak modes at B0.3 THz and
assigned them to paramagnetic impurities26. The measurements
suggested that the quasi-antiferromagnetic mode must be excited
via a polarization-independent mechanism of coupling between
light and spins. However, the data were not sufficient to identify
the exact nature of the opto-magnetic excitation, in general, and
to relate it to an optical perturbation of the exchange parameters
D/J via inverse magneto-refractive effect, in particular.

To demonstrate the existence of the inverse magneto-
refractive effect described above, and in particular the
polarization-independent ultrafast optical perturbation of the
exchange parameters D/J, we have studied the THz emission from
a single FeBO3 cut perpendicularly to the z-crystallographic axis
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so that it lacks significant in-plane anisotropy of both optical and
magnetic properties. The magnetization lying in the plane of the
sample was aligned horizontally by a constant bias magnetic field
of B0.1 T. The sample was illuminated by B100-fs laser pulses
with their photon energy centred at 1.55 eV. We performed
time-resolved detection of the THz radiation emitted from the
sample in the direction of the z axis (see Fig. 1a). The waveforms
generated at different temperatures are shown in Fig. 1b.
We observe that the optical excitation of the sample leads to
quasi-monochromatic emission at a frequency of B0.45 THz
(Fig. 1c), which corresponds to the frequency of the quasi-
antiferromagnetic mode in FeBO3 (ref. 35). The amplitude of the
oscillations gradually decreases as the temperature approaches the
Néel temperature TNB350 K (see Supplementary Fig. 1).

To confirm that a similar mechanism is also present in other
weak ferromagnets, we performed more detailed measurements
of THz emission from orthoferrites similar to those reported in
ref. 26, but for a temperature range in which only the quasi-
antiferromagnetic mode was excited, making the interpretation of
the experimental data less complex. Fig. 1e,d demonstrate that
below 55 K the TmFeO3 single crystal plate cut perpendicularly to
the z-crystallographic axis emits radiation with only one spectral
component at the frequency of B0.8 THz, which is the frequency
of the quasi-antiferromagnetic mode25 in TmFeO3 (see also
Supplementary Fig. 1). To check that the observed effect is not
due to the specific electronic structure of Tm3þ ions, we have

performed similar experiments on the YFeO3 single crystal cut
perpendicularly to the x-crystallographic axis (see Fig. 2). Fig. 2
shows that using an ultrafast optical excitation we are able to
excite oscillations at a frequency of B0.55 THz, which again
corresponds to the frequency of the quasi-antiferromagnetic
mode in YFeO3 (ref. 25) (see also Supplementary Fig. 2). We have
also observed similar polarization-insensitive ultrafast optical
excitation of the quasi-antiferromagnetic mode in y- and x-cut
samples of ErFeO3 (see Fig. 3), x-cut and y-cut DyFeO3 and
in hematite a-Fe2O3 (see Supplementary Figs 3 and 4;
Supplementary Note 1).

Properties of the THz emission. To determine if the excitation
mechanism is isotropic, we performed a set of measurements to
systematically investigate its dependence on fluence and polar-
ization of the laser pulse and found that the oscillation amplitudes
depend linearly on the intensity of the pump (see Supplementary
Figs 1 and 2) and are insensitive to the pump polarization (see
Supplementary Fig. 5). By comparing the signals generated in the
crystals pumped along different crystallographic directions, such
as y and x axes in ErFeO3 (shown in Fig. 3) one can see that the
excitation mechanism is isotropic with respect to the pump
propagation direction as well. The phase of the measured
oscillations changed by p with the reversal of the magnetization
direction, confirming the magnetic origin of the signals (see
Fig. 4). Moreover, this shows that the direction of the light-
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Figure 1 | Terahertz emission generated in FeBO3 and TmFeO3. (a) The magnetization M¼M1þM2 lies in the plane of the crystal sample plate.

The optical pump is focused onto the sample plate along its normal (z axis), while the THz emission is collected along the same direction at the opposite

side of the sample. The THz emission arises from the quasi-antiferromagnetic oscillations m(t). (b) The FeBO3 emission at different temperatures

below 170 K. The zero time delay corresponds to an arbitrary starting position. The laser pulse arrives just before the commencement of the oscillations.

(c) The spectra of the FeBO3 emission obtained from the data by Fourier transform (open circles) fitted by Lorentzian functions (solid lines). (d) The

TmFeO3 emission at different temperatures below 55 K. (e) The TmFeO3 emission spectra (open circles) fitted with Lorentzian functions (solid lines).
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induced torque exciting the quasi-antiferromagnetic oscillations
is determined by the orientation of the spins, and not by the
polarization of light. All these observations are in perfect quali-
tative agreement with the anticipated features of an isotropic
mechanism of optical modification of the exchange interaction
described by equation (1).

Discussion
The consistent observation of the photo-excitation of the
quasi-antiferromagnetic mode in a range of compounds clearly
indicates that this effect originates from the perturbation of the
D/J ratio. The isotropic and polarization-insensitive character of
the excitation rules out mechanisms based on the inverse Faraday
effect19, which is sensitive to the ellipticity of the pump, or the
inverse Cotton–Mouton effect36, which is sensitive to the
polarization direction of the pump relative to the magnetization
direction. We note that the THz emission observed from the
antiferromagnets NiO (refs 30–33) and MnO (ref. 34) did not
contain a contribution that was isotropic relative to the pump
polarization. Indeed the Dzyaloshinskii–Moriya antisymmetric
exchange interaction is not allowed in these cubic insulators NiO
and MnO and in the absence of an external magnetic field the
torque (2) is equal to zero. Moreover, the observed effect cannot
be attributed to the laser-induced change of the magneto-
crystalline anisotropy as demonstrated in garnets37 and
orthoferrites38–39 since this mechanism can trigger only the
low-frequency quasi-ferromagnetic mode. This conclusion is
further corroborated by the observation of this effect in FeBO3,
which lacks significant in-plane anisotropy.

We would like to note that our demonstration of an
ultrafast change of the ratio between the exchange parameters
is based on the observation of the femtosecond excitation of the
quasi-antiferromagnetic mode of spin resonance. Despite several
optical pump–probe spectroscopy experiments on femtosecond
laser excitation of spins in the orthoferrites and iron borate,
the optical excitation of the quasi-antiferromagnetic mode has
been very rarely observed. The very first observation of
ultrafast laser excitation of both quasi-ferromagnetic and
quasi-antiferromagnetic modes was reported for DyFeO3 in ref.
19 and later confirmed by Satoh et al.40 It was found, however,
that for the chosen crystallographic orientation of the crystals the
mechanisms of the excitation were dominated by the polarization
dependent inverse Faraday and inverse Cotton–Mouton effects.
Due to the fact that DyFeO3 was a strongly anisotropic material,
discerning the helicity independent contribution from the data
were not possible. Later studies only revealed the possibility of
femtosecond helicity dependent excitation of the quasi-
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Figure 2 | Terahertz emission generated in YFeO3. (a) The emission

waveforms generated in the x cut YFeO3 sample at different temperatures.

(b) The spectra of the YFeO3 emission obtained from the data by Fourier

transform (open circles) fitted by Lorentzian functions (solid lines).
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ferromagnetic mode in TmFeO3 (ref. 39), HoFeO3 (ref. 41),
FeBO3 (ref. 36), ErFeO3 (ref. 42), and SmPrFeO3 (ref. 43).
As a result of laser-induced heating and a subsequent spin-
reorientation phase transition, an ultrafast excitation of again the
quasi-ferromagnetic mode was reported for TmFeO3 (ref. 38),
ErFeO3 (ref. 42) and SmFeO3 (ref. 44). No optically induced spin
dynamics was reported for hematite.

The main reason why the isotropic, polarization-independent
effect, reported here has not been observed before is that the
detection in the aforementioned experiments was based on the
magneto-optical Faraday effect which probes the spins indirectly
that is, it strongly relies on the magneto-optical susceptibility and
does not provide a direct picture of spin dynamics. Using THz
emission spectroscopy, which is a more direct probe of the
oscillating magnetization26, we have been able to identify the
isotropic contribution to the optical excitation of the quasi-
antiferromagnetic spin resonance, which is the principal result of
this paper. We also point out that the excitation of the quasi-
antiferromagnetic mode via the inverse Faraday effect is possible
only in samples with the magnetization pointing out-of-plane.
However in this geometry the THz waves cannot be emitted from
the sample, hence we do not observe inverse Faraday-like effects
in our THz signals.

To specify the possible optical transitions responsible for our
observations, we note that the dispersion of the refraction
coefficient for all these compounds is dominated by the off-
resonant susceptibilities related to the electric dipole allowed
charge-transfer transitions between the 2p orbitals of oxygen and
the 3d orbitals of the Fe3þ ions above 3 eV (refs 45–47). During
the laser pulse duration and the time of optical decoherence, the
collective electron wave-functions are coherent superpositions of
the wave-functions of the ground and excited states. Such

ultrafast modification of the wave-functions affects the exchange
interaction between the spins of the neighbouring Fe3þ ions and
thus changes the energy of the superexchange interaction (see
Fig. 5). One can therefore expect that the observed effect of light
on the exchange interaction is inherent to all magnetic materials,
the magnetic order of which is governed by superexchange.
However, only when the spins are canted, either by the
Dzyaloshinskii–Moriya interaction or by an applied magnetic
field, such an ultrafast change of the exchange interaction will
lead to excitation of the antiferromagnetic resonance and
the subsequent emission of THz radiation in accord with
equation (2).

Our data are in excellent agreement with the phenomenology
of equation (1) that gives the simplest and most plausible
explanation. A possible microscopic scenario underpinning
the phenomenology of our results can be understood in the
framework of a recently developed formalism48 for microscopic
magnetic interactions out of equilibrium (see Methods sections
and Supplementary Note 2). To demonstrate the effect of a
femtosecond laser pulse on the super-exchange interaction we
numerically evaluated the time-dependent exchange for a 3-ion
Fe3þ–O2�–Fe3þ cluster, which is characterized by a strong
on-site Coulomb interaction U on the Fe3þ ions, an energy level
shift D between the Fe3þ and O2� ions, and an equilibrium
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oxides. In the ground state 6A1g the exchange interactions J(0) and D(0)
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ions and occur due to the virtual hopping t (shown with dashed blue

arrows) of electrons (blue balls with arrows schematically showing the ‘up’

and ‘down’ directions of their spins) within the iron-oxygen cluster. The

strong electric field E of the laser pulse of arbitrary polarization excites

virtual electric-dipole transitions from the ground state 6A1g to the excited

state 6T1u over the energy gap UþD in the iron-oxygen cluster. The
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hopping amplitude t0 between Fe and O ions. For a small
ratio t0/U, the leading-order expression for the equilibrium

superexchange in this system reads49 J ¼ 2 t4
0

U2
1
ð 1

Uþ 1
U1
Þ, where

U1¼UþD. By gradually switching on an oscillating off-
resonant electric field we observe an enhancement of the
exchange interaction proportional to the intensity of the laser
pulse (see Supplementary Figs 6 and 7; Supplementary Note 2).
To further understand the dependence of the superexchange on
the laser field, we studied analytically a periodically driven cluster
model. The shift of the energy levels under the periodic driving
field can be understood within Floquet theory50 (see
Supplementary Note 2), which gives an analytical expression for
the change of the exchange interaction:

DJ ¼ e2t4
0

2

X
� 1

U1 � ‘o
þ 1

U1

� �2 1
U � ‘o

� 4
U2

1 U
� 4

U3
1

 !
:

ð3Þ

Here, e¼ eaE0/:o is the amplitude of the vector potential that
describes the electric field in the Coulomb gauge with amplitude
E0, e and a are the unit charge and lattice constant, respectively,
and o is the frequency of the optical field. The terms dependent
on±o are the photon-assisted charge transfer excitations, while
the last two terms describe a laser-induced decrease of the
effective hopping amplitude within the Fe3þ–O2�–Fe3þ cluster
by a coherent destruction of tunnelling51. We obtain excellent
quantitative agreement of DJ/J between equation (3) and the
numerical results obtained from the general theory (see
Supplementary Note 2). In the experiment we typically have
:oBU1/2, from which we conclude that the strengthening of the
exchange interaction is caused by a photon-assisted charge-
transfer excitation, as illustrated in Fig. 5. Using typical
experimental parameters U¼ 3 eV, D¼ 0.25 eV, t0¼ 0.5 eV and
:o¼ 1.5 eV, we find that an optical pulse with a fluence of
1 mJ cm� 2 and a corresponding electric field amplitude
E0¼ 0.12 V Å� 1 should induce an increase of the exchange
integral DJ/J of over 1%. Our model analysis neither incorporates
multi-orbital effects nor a description of the non-equilibrium
Dzyaloshinskii–Moriya interaction, which certainly would be
beyond the scope of this report. Importantly, we have shown
theoretically that the optical manipulation of magnetic
interactions is feasible already in the elementary super-exchange
model defined by the Fe–O–Fe cluster.

To determine whether laser excitation leads to a decrease or an
increase of the ratio D/J we take advantage of the strong
temperature dependence of the magnetic anisotropy, which is
characteristic for many orthoferrites. For instance, heating of
TmFeO3 from 80 to 90 K leads to a change of the equilibrium
orientation of the weak magnetic moment from the x to the z
axis. If the equilibrium orientation is changed as a result of a
sudden heating by a femtosecond laser pulse, such a change is
followed by oscillations of the weak magnetic moment in the (xz)
plane at the frequency of the quasi-ferromagnetic mode
(B100 GHz)38–39. As discussed in ref. 26 in the range between
55 and 68 K, such low-frequency oscillations corresponding to the
quasi-ferromagnetic mode are observed in THz emission spectra
together with the high-frequency quasi-antiferromagnetic
oscillations (see Fig. 6). We applied a low pass filter to the data
(cutoff frequency 250 GHz) to isolate the quasi-ferromagnetic
mode and a high-frequency filter (cutoff frequency 650 GHz) to
isolate the quasi-antiferromagnetic mode. Such a choice of the
cutoffs ensures the filtering out of the impurity modes which
complicate the dynamics26. It is seen from Fig. 6 that the
high-frequency mode measured at 60 K is in phase with that
observed at 40 K. One can also see that the initial phases of the

low-frequency quasi-ferromagnetic and high-frequency quasi-
antiferrimagnetic modes are B180� apart. Note that for the z-cut
TmFeO3 sample, with a net magnetic moment oriented upwards,
a laser-induced spin-reorientation transition should trigger the
quasi-ferromagnetic mode in such a way that the Mx component
of the magnetization decreases. The observed difference in the
phases between the two oscillations shows that the quasi-
antiferromagnetic mode is triggered in such a way that the Mx

component increases, which means that the canting angle
becomes larger. Such a behaviour can only be explained by
assuming that the quasi-antiferromagnetic oscillations are
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quasi-ferromagnetic mode (q-FM). The first half-cycle of the quasi-

antiferromagnetic mode has a different sign compared with the first half-

cycle of the quasi-ferromagnetic mode (see dashed line). (b) During the

spin reorientation the spin configuration of TmFeO3 continuously rotates in

the (xz) plane, while keeping the weak ferromagnetic moment in the same

plane. At low temperatures, the magnetization is oriented along the x axis.

So, due to the laser-induced reorientation at 60 K, the x-component of the

magnetization initially decreases. (c) Since the first half-cycle of the quasi-

antiferromagnetic mode has a different sign, due to the exchange-driven

torque the magnetization initially moves so as to have a positive

x-component which implies an increase of D/J.
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triggered by an increase of the ratio of the exchange parameters
D/J. If this conclusion is true, in the x-cut sample the initial
phases of the two modes must be the same, since the spin
reorientation in this sample proceeds in the opposite direction.
Measurements in the vicinity of the spin-reorientation
temperature in ErFeO3 cut perpendicular to the x axis confirm
this conclusion (see Supplementary Fig. 8; Supplementary Note
3). Interestingly, the increase of the ratio D/J cannot be explained
on the basis of the simplistic model defined by the Fe–O–Fe
cluster that predicts an increase of J and does not evaluate the
change of D. However, the calculation of DJ demonstrates the
plausibility of the proposed mechanism of optical manipulation
of the symmetric exchange interaction in principle.

To deduce the magnitude and timescale of the exchange
modification from the experimental data, we have solved the
Maxwell equations for a slab of a material with an oscillating
magnetization triggered by a perturbation of the ratio D/J and
calculated the electromagnetic radiation emitted by the slab into
the free space. A quantitative analysis supports the sub-
picosecond impact on the spin system (see Supplementary
Fig. 9; Supplementary Notes 4 and 5). The absence of any
significant broadband THz emission, which must accompany a
laser-induced ultrafast demagnetization27–28 in iron borate
and the orthoferrites (Fig. 1), supports the claim that
femtosecond changes of the net magnetic moment can be
neglected. The fact that the observed spin dynamics do not arise
from the laser-induced heating is evidenced by the absence of a
correlation between the strength of the observed signals and the
specific heat and thermal conductivity of the studied materials.
For example, the specific heat of YFeO3 below 100 K grows
rapidly as the temperature increases while its thermal
conductivity exhibits a pronounced peak around 30 K (ref. 52).
At the same time the efficiency of the quasi-antiferromagnetic
mode excitation in this compound does not depend on
temperature at all (see Supplementary Fig. 2a). The observation
of the very same effect of comparable strength in hematite with
high optical absorption B2,000 cm� 1 at 1.55 eV (ref. 53), in the
orthoferrites with moderate optical absorption B200 cm� 1 at
1.55 eV (ref. 45) and in virtually transparent iron borate with
absorption o100 cm� 1 at 1.55 eV (ref. 54) shows that the optical
modification of the D/J does not rely on laser heating due to
optical absorption.

The maximum value of the oscillating magnetization in the
samples is estimated to be B1 A m� 1. Oscillations with such an
amplitude can only be triggered if the laser excitation results in an
ultrafast increase of the ratio D/J by 40.01% (see Supplementary
Notes 4 and 5). Taking into account the parameters of our
experiment, one can find that the sub-picosecond laser excitation
with a fluence of B1 mJ cm� 2 changes the potential energy of
the magnetic system by B1 mJ cm� 2 and acts as an effective
magnetic field pulse of B0.01 T (see Supplementary Note 6).
These values (normalized to the optical fluence) correspond to
some of the largest effects of light on magnetic systems observed
to date19,22.

To summarize, the demonstrated feasibility of a sub-
picosecond modification of the fundamental exchange parameters
J and D and the ratio between them opens wide prospects
for optical control of magnetically ordered materials. The
suggested mechanism is not restricted by any requirement on
the crystal symmetry and must thus be applicable to other
classes of magnetic materials. Given that in some materials
isotropic magneto-refraction can be significantly larger than that
in iron oxides, we foresee many opportunities to enhance the
effects reported here. Finally, we anticipate that by tuning the
wavelength of light, one should be able to affect selectively
different exchange parameters in magnetic materials.

Methods
Samples. The crystals used in the present study were grown by floating zone
melting (orthoferrites) and from the gas phase (iron borate and hematite) The
orthoferrite samples were 60–100-mm thick and cut perpendicularly to the z axis
(TmFeO3), the x axis (YFeO3, ErFeO3) and the y axis, (ErFeO3, DyFeO3). The iron
borate FeBO3 sample (370-mm thick) and haematite a-Fe2O3 sample (500-mm
thick) were cut perpendicularly to the z axis. The lateral size of all plates was
B5 mm.

Terahertz spectrometer. A conventional time-domain THz spectrometer was
used in the measurements. The THz spectrometer was powered by a Ti:sapphire
amplified laser, emitting a sequence of optical pulses (800 nm wavelength, 100 fs
duration) with the repetition frequency of 1 kHz. Each laser pulse was divided into
a stronger pump pulse and a weaker probe pulse. The pump spot size was larger
than the aperture in the sample holder (B2 mm in diameter) to provide a quasi-
uniform excitation with a fluence of B1 mJ cm� 2. The electric field of the emitted
THz wave was measured by the electro-optical sampling technique. The sample
was held inside a closed cycle, helium cryostat (15–300 K, 10� 4 mbar).

Theory of non-equilibrium exchange interactions. We use a general formalism
in which magnetic interactions are obtained from a purely electronic model by
introducing small time-dependent rotations of the spin quantization axes as was
recently described in (ref. 48). For the general non-equilibrium case the evolution
of the electronic model is described using the Schwinger–Keldysh/Kadanoff–Baym
non-equilibrium action and partition function, with the effective action written in
terms of Grassmann fields. By integrating over the electronic degrees of freedom in
the rotated reference frame, an effective quadratic spin model is obtained in which
the time-dependent exchange interaction parameters are identified from the
mapping of the effective action to a time-dependent classical Heisenberg model.
The resulting expressions turn out to be combinations of non-equilibrium elec-
tronic Green’s functions and self-energies, which have to be evaluated numerically
to assess the modification of exchange interaction by time-dependent perturbations
of the electron model.

This method is implemented for the simplest model system that exhibits the
physics of superexchange, which consists of a chain of three atoms, labelled as 0, 1
and 2. Atoms 0 and 2 correspond to transition metal sites with one partially filled d
orbital and atom 1 contributes one filled (oxygen) p orbital. The Hamiltonian
consists of a local part Hloc and a time-dependent hopping term H0(t):

Hloc ¼ ed

X
s

n0s þ n2sð Þþ ep

X
s

n1s þU
X

j¼ 0; 2

nj"nj#; ð4Þ

H0ðtÞ¼ �
X

j¼ 0; 1

X
s

t0 eij tð Þ cþjs cjþ 1 sþ h: c: ð5Þ

Here cþj s creates an electron with spin s¼ {m,k} at site j, and njs ¼ cþjs cjs is the
number operator. The parameters ed and ep are the orbital energies of d and p
orbitals, respectively, and U is the local (Hubbard) interaction energy associated
with d orbitals. H0(t) accounts for hopping between p and d orbitals; t0 is the
equilibrium hopping parameter, while j(t) is the time-dependent Peierls phase,
which absorbs the effect of the time-dependent electric field. In the Coulomb gauge
and for a spatially uniform vector potential the Peierls phase is given by

jðtÞ¼ ea
‘ c

AkðtÞ; ð6Þ

where A||(t) is the component of the vector potential parallel to the chain and a is
the lattice spacing. In the chosen gauge, the electric field is related to the vector
potential as EðtÞ¼ � 1

c
@
@tAðtÞ. In the experimentally relevant regime the model is

characterized by U, Uþ ed� ep44t0 and a total filling of four electrons. To
compute the non-equilibrium functions, this cluster model is solved numerically
using exact diagonalization of the time-dependent Schrödinger equation. The
electric field is taken as the product of an oscillatory component and a gradually
changing envelope function with a rising time in the order of B10 periods of
oscillation. The frequency o of the oscillating part is below the charge-transfer gap,
which prevents direct charge-transfer transitions, consistently with the
experimental conditions.

Further details related to the theoretical and numerical methods are discussed
in Supplementary Note 2.
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