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Quantum information processing requires the ability
to produce entangled states and coherently perform op-
erations on them. Under realistic laboratory conditions,
however, entanglement is degraded through uncontrolled
coupling to the environment. It is of crucial practical
importance to quantify this degradation process [1–3],
though also extremely difficult in general, due to the
intricate mathematical notions upon which our under-
standing of entanglement relies [4–6]. Up to now, no gen-
eral observable is known which would complement such
essentially formal concepts with a specific experimental
measurement setup.

In the present Letter, we come up with a dynamical
characterization of entanglement, through the continu-
ous observation of a quantum system which evolves under
incoherent coupling to an environment. We show that,
at least for small, yet experimentally relevant systems,
there is an optimal measurement strategy to monitor the
entanglement of the time evolved, mixed system state.
Mixed state entanglement is then given as the average
entanglement of the pure states generated by single real-
isations of the optimal measurement-induced, stochastic
time evolution.

Consider a bipartite quantum system composed of sub-
systems A and B, interacting with its environment. Due
to this coupling, an initially pure state |Ψ0〉 of the com-
posite system will evolve into a mixed state ρ(t), in a way
governed by the master equation

ρ̇ = − i
~

[H, ρ] +

N∑

k=1

Lkρ , (1)

where the Hamiltonian H generates the unitary system
dynamics. The superoperators Lk describe the effects of
the environment on the system, and, for a Markovian
bath, have the standard form [7]

Lkρ =
Γk
2

(
2 Jk ρ J

†
k − J

†
k Jk ρ− ρ J

†
k Jk

)
, (2)

where the operators Jk depend on the specific physical
situation under study.

To extract the time evolution of entanglement under
this incoherent dynamics, one solution is to evaluate a
given entanglement measure M(ρ) for the solution ρ(t),
at all times t. One starts from one of the known pure

state measures M(Ψ) [5, 6, 8], together with a pure state
decomposition of ρ,

ρ =
∑

i

pi|Ψi〉〈Ψi|, (3)

where the pi are the positive, normalized weights of each
pure state |Ψi〉. The most naive generalization for a
mixed state would then be to consider the average

M =
∑

i

piM(Ψi) , (4)

which, however, is not suitable, since the decomposi-
tion (3) is not unique: M would thus give rise to different
values of entanglement for different valid decompositions
of ρ [9], inconsistently with the general requirements for
a bona fide entanglement measure [5, 6]. The proper def-
inition of M(ρ) therefore is the infimum of all possible
averages M [10], but holds two main drawbacks: (i) it
turns into a hard numerical problem for higher dimen-
sional or multipartite systems, and, (ii) even for bipar-
tite qubits, where analytical solutions for some measures
M(ρ) are known [8], there is no obvious interpretation of
this optimal decomposition, in physical terms.

Our approach here will be to avoid the direct use of
the mixed state solutions ρ(t), by substituting them by
physically motivated ensembles of pure states. To do
this, instead of solving the evolution equation for the den-
sity operator, we will follow a stochastic time evolution
[9, 11–13] of the initially pure state. This combines ran-
domly occurring quantum jumps, defined by the action
of the operators Jk in Eq. (2), with periods of contin-
uous evolution, generated by a non-hermitian effective

Hamiltonian Heff = H − i~∑k ΓkJ
†
kJk/2. The resulting

quantum trajectories, see Fig. 1, are known to provide
the same result as the master equation, on averaging over
many independent realisations. Moreover, a single tra-
jectory can be understood as the information accessible
through the continuous experimental monitoring of the
system [12–15]. In other words, one possible decompo-
sition of the form (3) is given by the set of the possible
outcomes |Ψi〉 of different runs of one and the same ex-
periment, after a monitoring time t.

Note, however, that the stochastic time evolution in-
duced by the jump operators Jk does not necessarily
yield the optimal decomposition which minimises M .
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FIG. 1: Scheme of a stochastic time evolution generated by
the action of a jump operator J : At each time step δt, δp
gives the probability for a jump into the state |Ψ1

δt〉, while
(1 − δp) indicates the probability for a continuous evolution
of the system in the state |Ψ2

δt〉. Iterative application of this
stochastic jump process generates different stochastic pure
state trajectories, which define a pure state decomposition of
the time evolved density matrix ρ(t), at t = nδt.

Though, the choice of the jump operators is not unique,

and new jumps defined as Lk,± =
(
µk ± J̃k

)
/
√

2, with

J̃k =
∑

i UkiJi, (left) unitary U , and complex µk, leave
Eq. (2) unaltered. Each such choice of jump operators
produces a different unraveling of the same master equa-
tion (2), i.e., a different decomposition of ρ(t). In order
to find the infimum of (4), we have to search for that
type of monitoring which reproduces the desired opti-
mal decomposition. It is by no means obvious that such
monitoring exists, since the set of physically realizable
decompositions of ρ is only a subset of all possible de-
compositions [16]. However, in the sequel of this paper,
we present strong evidence for experimentally relevant
scenarios, suggesting that such a measurement prescrip-
tion indeed can always be found, for a given initial state,
and given environment coupling.

We focus on the dynamics of bipartite two-levels sys-
tems, where our results can readily be compared with
known analytical solutions [6, 8, 17]. We assume that
each subsystem interacts independently with its own en-
vironment, and consider those situations where decoher-
ence is induced by dissipation (zero temperature reser-
voir) or by dephasing. For simplicity, we set all decay
rates Γk ≡ Γ in Eq. (2). We start with the general jump
operators Lk,± as defined above, and search for the ones
which yield the optimal solution. The first step in such
procedure is to follow all possible states |Ψδt〉 of the sys-
tem, at a short time δt after the initial time t0 = 0, and
to calculate the average measure M(δt). Since the possi-
ble states |Ψk

δt〉, k = 1 . . .N , which can be reached after
this short time interval are given by the action of the N
jump operators, plus the state |ΨN+1

δt 〉 which results from
continuous evolution (see Fig. 1), the expression for the

average measure reads

M(δt) =

(
1−

N∑

k=1

δpk

)
M(ΨN+1

δt ) +

N∑

k=1

δpkM(Ψk
δt) ,

(5)

with pk = δt〈Ψ0|L†k±Lk±|Ψ0〉 the probability of detecting
a jump induced by Lk±. Eq. (5) can be minimised over
the different possible unravelings, what ensures that the
short time behaviour of the average measure is optimal.

To illustrate this in more detail, let us first consider the
case of spontaneous emission, which corresponds to the
fundamental limiting factor for the coherent evolution of
atomic qubits. The Lindbladians in Eq. (2) are given by

J1 =
√

Γ(σ
(1)
− ⊗

�
), and J2 =

√
Γ(

� ⊗ σ(2)
− ), where σ

(i)
− is

the deexcitation operator of the ith qubit. General jump
operators can be parametrised as

(
L1,±
L2,±

)
=

1√
2

(
µ1

µ2

)
± 1√

2
U

(
J1

J2

)
, (6)

with the unitary 2× 2 matrix [22]

U = eiχ
(

αeiθ βeiϕ

−βe−iϕ αe−iθ

)
. (7)

Our entanglement measure will be the concurrence
c(Ψ) = |〈Ψ∗|σy⊗σy|Ψ〉| [8] of bipartite, pure qubit states
(analogous results are obtained with other measures such
as the entanglement of formation [5, 8]).

For a general initial state |Ψ0〉 = ψ00|00〉 + ψ01|01〉 +
ψ10|10〉 + ψ11|11〉, c(Ψ0) = 2|ψ01ψ10 − ψ00ψ11|. Using
these definitions in Eq. (5), together with the explicit
form of the operators Lk,±, Eq. (6), one gets

c̄(δt) =
[
1− δt(2µ2 + Γ)

]
c(Ψ0)

+ 2δt
∣∣∣µ2e2iχ r(Ψ0) + Γαβei(θ+ϕ)ψ2

11

∣∣∣ (8)

+ 2δt
∣∣∣µ2e2iχ r(Ψ0)− Γαβe−i(θ+ϕ)ψ2

11

∣∣∣ ,

where r(Ψ0) = ψ00ψ11 − ψ01ψ10, and we set µ1 = µ2 =
µeiχ. The optimal unraveling has to minimize c̄ over the
free parameters of the transformations (6,7).

Let us first consider initial states with ψ11 = 0. Equa-
tion (8) then reduces to

c̄(δt) = (1− Γδt)c(Ψ0) , (9)

which is independent of the unraveling. For such states,
the ensemble of quantum trajectories always remains
within the subspace spanned by {|00〉, |01〉, |10〉}. Hence,
Eq. (9) holds for all times and coincides with the known
analytical solution for c(ρ(δt)) [6]. Entanglement decay
of ψ00|00〉+ ψ01|01〉+ ψ10|10〉 due to spontaneous emis-
sion can thus be detected by any measurement strategy,
and, in particular, simply by the continuous monitoring
of the spontaneously emitted photons.

For initial states including the |11〉 component, one has
to deal with (8) in its full glory, and the optimal parame-

ter values are found to be α = β = 1/
√

2, θ+ϕ = π/2 =
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FIG. 2: Time evolution of the bipartite mixed state concur-
rence for initial states |Ψ0〉 = (|00〉+ |11〉)/

√
2 (c̄(t = 0) = 1)

and |Ψ0〉 =
p

1/8|00〉+
p

7/8|11〉 (c̄(t = 0) ' 0.7), under inco-
herent coupling to a zero temperature environment. Contin-
uous lines represent exact solutions; filled squares stem from
a randomly chosen unraveling. Symbols show the results for
improving unravelings with increasing |µ1| = |µ2| = 0.8 (filled
diamonds), 1.0 (filled pyramids), 3.0 (filled circles), 4.0 (open
squares), 7.0 (open circles), and 15.0 (open diamonds). The
dashed line shows the time evolution of |Λ(t)| = |λ1−

P4
i=2 λi|

beyond the disentanglement time td. 1000 realizations were
used to generate the unraveling data, in all cases.

−2χ+σ, σ = arg(ψ2
11/r(Ψ0)), µ ≥

√
|ψ2

11/r(Ψ0)|/2, pro-
vided |Ψ0〉 is nonseparable (for arbitrary separable initial
states, α = 0 or β = 0 enforce c̄(δt) = 0). While such
choice guarantees the correct short-time behavior, it is
not always sufficient for the correct long-time evolution.
Further optimizations, now in a parameter space reduced
by the above constraints, are needed. Specifically in the
present case of spontaneous emission, increasing the value
of µ rapidly improves the agreement with the exact re-
sult, over longer and longer time scales. On the time
interval monitored in Fig. 2, the exact solution is faith-
fully recovered for µ ≥ 3. For general initial states, the
convergence in µ can be understood and estimated by
optimizing the increments of c̄ at subsequent time steps
mδt, m integer. In contrast, a non-optimal choice of µ
and U produces a completely misleading result.

The entanglement of initial states with 0 < c(Ψ0) <
2|ψ11|2 vanishes at finite times td. Since c(td) is obtained
as a weighted sum of non-negative pure state concur-
rences, each single term has to vanish identically for the
optimal unraveling. This is, the optimal unraveling must
generate an ensemble of separable pure states at the dis-
entanglement time td. In practice, this is achieved in the
limit µ→∞ and δt→ 0, as illustrated in Fig. 2 for opti-
mal U and increasing µ [23]. Once complete separability
is reached, entanglement cannot revive under purely in-
coherent dynamics, and the optimal unraveling for times
t > td has to be replaced by the trivial unraveling for
separable initial states (see above), to reflect the true en-
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FIG. 3: Concurrence of two qubits initially prepared in
|Ψ0〉 = (|00〉 + |10〉)/

√
2, under the action of the CNOT gate

Hamiltonian (see text) with dephasing. Open circles show
the evolution for an optimal unraveling, in perfect agreement
with the exact solution (continuous line), and in pronounced
contrast to the result obtained from the least favourable un-
raveling (open squares).

tanglement evolution. However, and remarkably so, the
optimal unraveling defined through the above optimiza-
tion faithfully follows the time evolution of the modulus
of Λ(t) = λ1 −

∑4
i=2 λi [24], where the λi are the sin-

gular values of the matrix 〈Ψ∗k|σy ⊗ σy|Ψj〉, constructed
from the state decomposition at any time t, in partic-
ular also for t > td. Note that non-negative values of
Λ(t) precisely coincide with the explicit expression [8] for
the mixed state concurrence of qubit pairs, for t < td,
and that vanishing or negative values of Λ(t) indicate
the state’s separability.

More general entanglement dynamics, e.g., with a non-
trivial unitary evolution in the presence of incoherent
environment coupling, can be unraveled with the above
strategy. As an example illustrated in Fig. 3, consider the
action of a CNOT gate, generated by the Hamiltonian
H = 2πI4 + π

2σ+σ−⊗(σx−I2), in contact with a dephas-
ing reservoir. Starting from the separable state |Ψ0〉 =

(|00〉+|10〉)/
√

2, the noise-free Hamiltonian generates the

maximally entangled state |Ψ〉 = (|00〉+ |11〉)/
√

2, after
a time Tgate. However, in the presence of dephasing, the
entanglement at Tgate (which we chose to be five times
shorter than the decoherence time 1/Γ) will not be maxi-
mal, since the target state preparation will not be perfect.
Analogously to the above, by optimizing the increments
of c̄ at 2δt (c̄ is independent of the unraveling at δt), one
finds an unraveling which generates an optimal pure state
decomposition, in excellent agreement with the exact en-
tanglement evolution obtained from the solution ρ(t). If,
instead, one maximizes c̄ by suitable choice of the jump
operators [18], the resulting unraveling suggests rather
distinct entanglement dynamics, with apparently almost
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FIG. 4: Concurrence of a tripartite GHZ state under a de-
phasing environment. Filled circles represent the tripartite
concurrence c3(t) obtained upon averaging over 1000 realisa-
tions of the optimal unraveling defined by the jump operators

Jk =
√

Γσ
(k)
+ σ

(k)
− (k = 1, 2, 3), in perfect agreement with the

exact solution (solid line). A non-optimal unraveling (pyra-
mids) is shown for comparison.

perfect gate performance at t = Tgate – in pronounced
contrast to the correct result.

As a final example, let us consider a simple case of
multipartite entanglement – tripartite GHZ or W states,
in contact with dephasing or zero temperature environ-
ments, respectively. In this case, we choose the gener-
alized concurrence c3, which averages over all nontrivial
partitions of the given state [3, 6], as specific entangle-
ment measure M . c3 can be evaluated explicitely [3, 6]
for tripartite GHZ and W states, under the chosen envi-
ronment coupling. Once again, we optimize the jump
operators Lk,± at δt, and obtain excellent agreement
with the exact result. Fig. 4 compares the optimal un-
raveling with a suboptimal one, for a GHZ initial state

subject to dephasing. In this exemplary case, the opti-
mal detection is provided by the original jump operators

Jk =
√

Γσ
(k)
+ σ

(k)
− , k = 1, 2, 3. The same applies for W

states.

To conclude, we have shown that mixed state entan-
glement can be unraveled by a suitable measurement pre-
scription. The latter can be derived from the initial state
of the composite quantum system under study, together
with the specific type of environment coupling. There is
no ambiguity in the definition of mixed state entangle-
ment with respect to different unravelings: the minimal
nonclassical correlations needed to characterize a dynam-
ically evolving quantum state are filtered out by an opti-
mal (in general not unique) monitoring prescription, and
any in this sense non-optimal unraveling provides a non-
optimal estimate thereof.

Surprisingly, in all examples considered, we so far al-
ways succeeded to come up with a time-independent op-
timal unraveling, i.e., the monitoring strategy does not
need to be readapted during the incoherent time evolu-
tion. This suggests a kind of uniform convergence of the
stochastic average towards the exact solution, and im-
plies a subtle relation between the temporal evolution of
entanglement and the ensemble of pure states which can
be reached during the single realisations generated by the
optimal jump operators.

Future work will have to formulate the general ram-
ifications of the approach outlined here, possibly in the
framework of quantum state diffusion theory [19]. In view
of possible experimental realizations, finite detection ef-
ficiencies as well as general noisy environments [20] need
to be addressed.
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