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Abstract

In contrast to multigap superconductors (e.g. MgB2), the low-temperature properties
of nodal superconductors are dominated by nodal excitations. Here we extend for a
variety of nodal superconductors the earlier work by Simon and Lee and Kübert and
Hirschfeld. The scaling relations seen in the thermodynamics and the thermal conductivity
will provide an unequivocal test of nodal superconductivity.

1 INTRODUCTION

Although nodal superconductors have been with us since 1979 [1], the systematic study of the
gap symmetry of these new superconductors began only around 1994 with the establishment of
d-wave symmetry of high-Tc cuprate superconductors through the angle resolved photoemission
spectrum (ARPES) [2] and Josephson interferometry [3, 4]. Unfortunately, however, these
powerful techniques have not been applied to other nodal superconductors like Sr2RuO4, heavy-
fermion superconductors and organic superconductors.

Since 2001 Izawa et al have succeeded in determining the gap functions |∆(k)|’s in Sr2RuO4

[5], CeCoIn5 [6], κ-(ET)2Cu(NCS)2 [7], YNi2B2C [8], PrOs4Sb12, [9,10], and UPd2Al3 [11,12]
through measurements of the angle-dependent thermal conductivity in the vortex state. These
experiments are only possible now since a) high-quality single crystals of these compounds are
now available, b) low-temperature facilities which allow one to reach 1 - 0.1 K are available,
and c)the necessary theoretical development following the seminal paper by Volovik [13].

Indeed Volovik’s approach has been extended in a variety of directions, as reviewed in
[14]. Also the angle dependent magnetothermal conductivity and the scaling relations [15]
in the vortex state will provide a crucial test of nodal superconductivity. For example, the
multigap superconductors do not exhibit the scaling relations we are going to discuss in general.
Therefore, if any given superconductor exhibits a scaling relation discussed here, it is very likely
that the material is a nodal superconductor. For example, the specific heat data of Sr2RuO4

by Deguchi et al [15] obeys the scaling relation given in [16]. Therefore the simplest choice of
gap function in Sr2RuO4 is the chiral f-wave superconductor as pointed out in [5].

The scaling relations in the vortex state in d-wave superconductors were first proposed by
Simon and Lee [17]. Then within the semiclassical approximation, à la Volovik [13] Kübert
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and Hirschfeld (KH) [18] have succeeded in deriving the scaling function for the quasiparticle
density of states. KH then calculated the thermal conductivity in the scaling region [19]. An
error in [19] was pointed out and corrected in [20]. However, in [20] only the asymptotic
behavior of the thermal conductivity (T ≪< |v · q| >, where v · q is the Doppler shift) has
been worked out.

In the following we shall derive the scaling relations for a class of quasi-2D superconduc-
tors, where |∆(k)| = ∆|f | and f = cos(2φ), sin(2φ) (d-wave superconductor), f = e±iφ cosχ
(chiral f-wave superconductor as in Sr2RuO4), f = cos(2χ) (g-wave superconductor as in
UPd2Al3 [12].) These superconductors have the same quasiparticle density of states as in
d-wave superconductors [21]

N(E)/N0 = G(x) (1.1)

where

G(x) =
2x

π
K(x) for x ≤ 1 (1.2)

=
2

π
K(x−1) for x > 1. (1.3)

where x = |E|/∆ and K(k) is the complete elliptic integral of the second kind. In particular

for |E| < 0.3∆ we have G(E/∆) = |E|
∆

.
As discussed elsewhere [14], all the nodal superconductors so far discovered have G(E)

∼ |E|/∆. Then one can establish a variety of scaling relations in the superclean limit [20], that
is, for (Γ∆)1/2 < T, E; v · q < ∆ where T, E, ∆ and Γ are the temperature, the quasiparticle
energy, the maximal value of the energy gap and the quasiparticle scattering rate respectively.
Therefore the scaling relations provide another test for nodal superconductivity.

2 QUASIPARTICLE DENSITY OF STATES

Let us limit ourselves to a class of quasi-2D systems with f listed in the preceding section. As
already noted we have G(E) ≃ |E|/∆ for E ≪ ∆. In the presence of a magnetic field we find

G(E,H) = < |E − v · q| > ∆−1 (2.1)

where v · q is the Doppler shift and 〈. . .〉 means the average over the Fermi surface and the
vortex lattice. When H ‖ c in the class of quasi-2D systems, the average can be performed
analytically and we find [18]

G(E,H) =
4

π

ǫ

∆
g(E/ǫ) (2.2)

where

g(s) =
π

4
s(1 +

1

2s2
), s > 1 (2.3)

=
3

4

√

1 − s2 +
1

4s
(1 + 2s2) arcsin(s), s ≤ 1 (2.4)

where ǫ = 1

2
v
√

eH and v is the Fermi velocity within the ab plane. The scaling function
∆

ǫ G(E,H) is shown in Fig. 1. As is readily seen G(E,H) for H ‖ c cannot discriminate
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Fig. 1. The scaling function G(E, H)

between different |∆(k)|’s in the above class of nodal superconductors. Then the scaling
function for the specific heat is given by [16]

Cs(T,H)/Cs(T, 0) = F (T/ǫ) (2.5)

where

F (T/ǫ) =
2

9πζ(3)
(
ǫ

T
)2

∫ ∞

0

ds s2g(s)sech2

( ǫs

2T

)

(2.6)

≃ 1 +
ln 2

9ζ(3)
(

ǫ

T
)2, for ǫ/T ≤ 1 (2.7)

≃ 4ǫ

9πζ(3)T
[1 +

1

18
(
πT

ǫ
)2 +

7

1800
(
πT

ǫ
)4 + . . .], for ǫ/T > 1 (2.8)

The scaling function and the experimental data for Sr2RuO4 [15] are shown in Fig. 2. As
is seen readily the scaling function gives an excellent description of the experimental data.
As noted in [15], this clearly shows the superconductivity in Sr2RuO4 is consistent with the
chiral f-wave superconductor as discussed in [22]. On the other hand, as noted in [23], this is
incompatible with p-wave superconductivity.

Now when H is rotated within the a-b plane with an angle φ from the a axis, we can
discriminate between f = cos(2φ) and f = sin(2φ) (the case of vertical nodes). We obtain for
f = cos(2φ)

G(E,H) =
2

π

∑

±

〈

ǫ±(φ, χ)

∆
G(

E

ǫ±(φ, χ)

〉

(2.9)

=
E

∆

(

1 +
ǫ2

2E2

)

, for
ǫ

E
< 1 (2.10)
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Fig. 2. The scaling function F (T/ǫ) = F (x) and Sr2RuO4 specific heat data from Ref. [15].

= (
2

π
)2

ǫ

∆

∑

±
(

√

3

2
± 1

2
sin(2φ)E





1
√

3

2
± 1

2
sin(2φ)



 +

1

6
(
E

ǫ
)2





1
√

3

2
± 1

2
sin(2φ)



K





1
√

3

2
± 1

2
sin(2φ)



 + . . . (2.11)

≃ 4ǫ

π∆
(0.963 + 0.0205 cos(4φ) +

1

6
(1.132 − 0.081 cos(4φ)) × (

E

ǫ
)2 + . . .)for

ǫ

E
> 1 (2.12)

where ǫ = 1

2
ṽ
√

eH and ṽ =
√

vvc. For f=sin(2φ) we have the same formulas as in Eqs. (12)
and (13), except that cos(4φ) in Eq.(14) should be changed to − cos(4φ). Also the presence
of the fourfold term in the specific heat has been studied by Revaz et al [24]. They found no
fourfold term within an accuracy of 3%. This suggests strongly that the thermal conductivity
provides a more sensitive test of the gap symmetry.

For superconductors with horizontal nodes (e.g. f = sinχ, cos(2χ), cosχ) the field configu-
ration H ‖ b − c plane, with θ the angle H makes from the c-axis, is more appropriate. Then
we find [12]

G(E,H) =
4

π

∑

±

〈

ǫ±(θ, φ, χ)

∆
G(

E

ǫ±(θ, φ, χ)
)

〉

(2.13)

=
E

∆
(1 +

ǫ2

2E2
), for

ǫ

E
< 1 (2.14)

= (
2

π
)2

ǫ

∆

∑

±





√

3

2
± 1

2
sin(2φ)E(

1
√

3

2
± 1

2
sin(2φ)

)



 +

1

6
(
E

ǫ
)2





1
√

3

2
± 1

2
sin(2φ)



 K





1
√

3

2
± 1

2
sin(2φ)



 (2.15)

(2.16)
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≃ 4ǫ

π∆
(0.963 + 0.0205 cos(4φ) +

1

6
(1.132 − 0.081 cos(4φ))) × (

E

ǫ
)2 + . . . ,

ǫ

E
> 1(2.17)

≃ 4ǫ

π∆

√

x/2(1 − 1

16
sin2 θ(sin2(θ) + 16α2 cos2 θ sin2 χ0)x

−2 +

1

3
(
E

ǫ
)2x−1(1 +

3

16
sin2 θ(sin2(θ) + 16α2 cos2 θ sin2 χ0)x

−2))for
ǫ

E
≥ 1 (2.18)

where ǫ = v
√

eH , α = vc/v and x = 1 + cos2 θ + 2α2 sin2 θ sin2 χ0 and χ0 = 0, π
4

and π
2

for
f = sin χ, cos(2χ) and cosχ respectively. Therefore in the present configuration the angle
dependent thermal conductivity can discriminate different ∆(k)’s with horizontal nodes.

So far we have completely ignored the effect of impurity scattering. As already indicated
the present analysis is valid in the superclean limit [14, 20], i.e. for (Γ∆)1/2 < T, E, v · q < ∆
where Γ is the quasiparticle scattering rate in the normal state. Then the superclean limit
appears to require Γ/∆ ≤ 0.01.

3 THERMAL CONDUCTIVITY

In the past few years the angle dependent magnetothermal conductivity (ADMTC) has proven
itself the most powerful technique to probe the nodal structure of the gap function ∆(k). Also
in many cases the nodal structure of ∆(k) is sufficient to deduce ∆(k) itself. We are concerned
that much of the confusion and the controversy in the literature regarding the gap functions
in Sr2RuO4, PrOs4Sb12 and UPd2Al3 may be largely due to a misunderstanding of Volovik’s
approach. References [14,20] contain a detailed description of this approach. Generalizing the
standard expression of the thermal conductivity given in [25, 26], the thermal conductivity of
the class of nodal superconductors in the vortex state is given by [14]

κzz =
n

4mT 2

∫ ∞

0

dω ω2

〈

h(ω,H)

Γ̃(ω,H)

〉

sech2(ω/2T ) (3.1)

where

h =
1

2

(

1 +
|ω̃ − v · q|2 − ∆2f2

|(ω̃ − v · q)2 − ∆2f2|

)

(3.2)

and

Γ̃ = Im
√

(ω̃ − v · q)2 − ∆2f2 (3.3)

Here < ... > denotes the averages over the Fermi surface and vortex lattice [20]. In the
superclean limit ω̃ is given by

ω̃ = ω + iΓ

〈

|ω̃ − v · q|
√

(ω̃ − v · q)2 − ∆2f2

〉

(3.4)

≃ ω + iΓG(ω,H) (3.5)

in the Born limit. And in the unitary limit we find

ω̃ = ω + iΓG−1(ω,H) (3.6)

where G(ω,H) has been defined in Eq.(5).
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First we limit ourselves to the quasi-2D systems in a magnetic field H ‖ c. The in the Born
limit we obtain

κ =
n

8mT 2Γ

∫ ∞

0

dω ω2sech2(
ω

2T
=

π2nT

12mΓ
=

1

2
κn (3.7)

where κn = π2nT
6mΓ

is the thermal conductivity in the normal state. In particular Eq.(28) gives
the scaling function

FB(T/ǫ) =
κ(T,H)

κ(T, 0)
= 1 (3.8)

The last result agrees with the corresponding result given in Ref. [19] despite the use of a rather
unphysical spatial average in this work. In the unitary limit, on the other hand, we obtain

κ =
n

8m(T∆)2Γ

∫ ∞

0

dω ω2 < |ω − v · q| >2 sech2(ω/2T ) (3.9)

=
n

8mT 2Γ
(

πǫ

4∆
)2

∫ ∞

0

dω ω2G2(ω/ǫ)sech2(ω/2T ) (3.10)

where G(ω/ǫ) has already been defined in Eqs. 5 and 6. This has asymptotics

κ =
7nπ4T 3

60mΓ∆2

(

1 +
5

7
(

ǫ

πT
)2 +

15

28
(

ǫ

πT
)4 + . . .

)

, for ǫ ≪ T (3.11)

=
π2nT

12mΓ
(
πǫ

4∆
)2

(

1 +
7π2

15
(
T

ǫ
)2 + . . .

)

, for ǫ ≫ T (3.12)

where ǫ = v
√

eH
2

. Then the scaling function is given by

Fu(T/ǫ) =
κ(T,H)

κ(T, 0)
=

3

2π2T 3

∫ ∞

0

dωω2G2(ω/ǫ)sech2(ω/2T ) (3.13)

=

(

1 +
5

7
(

ǫ

πT
)2 +

15

28
(

ǫ

πT
)4 + . . .

)

, for ǫ ≪ T (3.14)

=
5

112
(

ǫ

∆
)2

(

1 +
7π2

15
(
T

ǫ
)2 + . . .

)

, for ǫ ≫ T (3.15)

These scaling functions are shown in Fig. 3. In this figure we also include the scaling function
when the inversion symmetry is broken in the impurity scattering [27]. FI(T/ǫ) describes the
thermal conductivity data of the non-centrosymmetric triplet superconductor CePt3Si by Izawa
et al [28]. The scaling function Fu(T/ǫ) is very different from the one given in Ref. [19] but
describes consistently the scaling behaviors of the thermal conductivity of UPt3 as reported
by Suderow et al [29].

4 ANGLE DEPENDENT THERMAL CONDUCTIVITY TENSOR

Let us consider dx2−y2-wave superconducivity as in the high-Tc cuprates, CeCoIn5 [6] and
κ-(ET)2(NCS)2 [7] in a magnetic field within the a-b plane. Then the thermal conductivity
tensors within the ab-plane are given by

κxx = κyy =
n

8mΓT 2

∫ ∞

0

dω ω2

〈

4ǫ(φ, χ)

π∆
G(ω/ǫ(φ, χ))

〉2

sech2(ω/2T ) (4.1)
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where ǫ(φ, χ) = ṽ
√

eH
2

(1± 1

2
sin(2φ)− 1

2
cos(2χ))1/2 and 〈. . .〉 means the average over ± and over

χ. Here we assumed the unitary impurity scattering and the superclean limit in the present
derivation. This gives the following asymptotics:

κxx = κyy =
7nT

60mΓ
(
πT

∆
)2

(

1 +
5

7
(

ǫ

πT
)2 +

15

28
(

ǫ

πT
)4 + . . .

)

, for ǫ ≪ T (4.2)

=
4nT

3mΓ
(

ǫ

∆
)2[0.927 + 0.039 cos(4φ) +

7

15
(
πT

ǫ
)2[1.090 − 0.055 cos(4φ)]for ǫ ≫ T(4.3)

First of all, the present result is consistent with that in Ref. [20] for T < ǫ. On the other hand,
for T > ǫ there is no fourfold term. In other words the present theory in the superclean limit
cannot describe the fourfold symmetry in κxx observed in YBCO for T > 14K [30–32]. We
have proposed the sign inversion of the fourfold term for T > ǫ in the clean limit in [33].

Also the Hall conductivity in the present geometry is given by [20]

κxy =
n

8m(T∆)2Γ

∫ ∞

0

dω ω2
〈

sin(2φ‘)|ω − v · q|
〉

〈|ω − v · q|〉 sech2(ω/2T ) (4.4)

Further, we find

〈

sin(2φ‘)|ω − v · q|
〉

= − sin(2φ)
ǫ2

2|ω| , for ǫ ≪ |ω| (4.5)

≃ − sin(2φ)
4ǫ

π∆
(0.535 − (

ω

ǫ
)20.14192) for ǫ ≫ |ω| (4.6)

Inserting these into Eq.(4.4) we find

κxy = − sin(2φ)
π2nT

24mΓ
(

ǫ

∆
)2(1 +

3

2
(

ǫ

πT
)2, for ǫ ≪ T (4.7)

= − 4nT

3mΓ
(

ǫ

∆
)2 sin(2φ)(0.5152 + 0.011 cos(4φ)) −

7

30
(
πT

ǫ
)2(0.213 + .0607 cos(4φ))forǫ ≫ T (4.8)
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Therefore in the superclean limit κxy ∼ − sin(2φ)H independent of ǫ/T . Also as T
ǫ increases

the coefficient of -sin(2φ)H decreases almost 40%. The present result appears to be consistent
with the Hall conductivity data of YBCO reported by Ocaña and Esquinazi [34] for ǫ/∆ < 1.
Also in the superclean limit the sign of the Hall conductivity is the same for all T as long as
T < ∆(T ).

5 CONCLUDING REMARKS

We have shown a) the thermal conductivity in nodal superconductors for T < 0.3Tc is domi-
nated by the quasiparticles or nodal excitations, b) the quasiparticles in the vortex state are
accurately described in terms of the semiclassical approximation. Thus the angle dependent
magneto-thermal conductivity provides a powerful tool to determine the nodal structure of the
gap function as demonstrated by a series of experiments by Izawa et al [5–12]. Also in most
cases the nodal structure of the gap function is adequate to deduce |∆(k)| itself. In addition
we have shown that all these model superconductors exhibit a variety of scaling relations. We
have proposed scaling relations for PrOs4Sb12 [35]. Furthermore, from the unusual scaling
relation seen in the thermal conductivity in CePt3Si we can deduce anomalous impurity scat-
tering in this system lacking crystalline inversion symmetry. Indeed the scaling relations in
nodal superconductors provide a unique way to characterize this new class of superconductors.
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